Improving the Quality of Requirements with Scenarios

Martin Glinz

Summary

The classical notion of requirements quality is problematic in practice. Hence the importance
of some qualities, in particular completeness and unambiguity, has to be rethought. Scenar-
ios, the description of requirements as sequences of interactions, prove to be a key concept
for writing requirements specifications that are oriented towards such a modified set of
qualities.

In this paper, the potential of scenarios for improving the quality of requirements is dis-
cussed. Furthermore, a concept for systematically representing both single scenarios and the
structure and relationships in a set of scenarios is presented. Using an example, the positive
impact of this style of representation on the quality of the requirements is demonstrated.

Martin Glinz, Professor, Institut fiir Informatik, Universitat Zurich, Winterthurerstrasse 190,
CH-8057 Zurich, Switzerland, glinz@ifi.unizh.ch, http://www.ifi.unizh.ch/~glinz

] ments because the way that the requirements are rep-
1 Introduction resented does not match the way that customers use a
Ssystem and think about it. Moreover, when customers
do not fully know and understand what they want, the
assessment of adequacy becomes even more difficult.

The classical notion of requirements quality focuse
on Adequacy Unambiguity, Completeness, Consis-
tency, Verifiability, Modifiability and Traceability
(IEEE 1993). In practice however, most requirementsConsequently, we need both a shift in the basic para-
specifications do not meet these qualities. One couldigm of requirements quality and a proper adaptation
argue that this is only a problem of applying the rightof requirements engineering techniques in order to
methods and processes and that we should improwmeet the modified set of qualities. | advocate a re-
our requirements processes until they yield the deguirements quality model that focusesamiequacyas
sired qualities. However, a closer look reveals that ithe most important quality, viewsgonsistency
is not so simple. The qualities themselves are part oferifiability andmodifiability as next important but
the problem. delibemtely lives withincompletenesgthat means
with partial specifications) and with soraenbiguity

he weight oftraceability should be made dependent
the project in hand.

The notion ofcompletenes$eads to waterfall-like
process models, where a requirements specification n
the complete system has to be produced and baselined
prior to any design and implementation activities. Adopting this new quality paradigm demands require-
However, customers do not always fully know andments engineering techniques that

understand what they want. Systems and res describe requirements such that customers can eas-
quirements evolve. So it is almost impossible to pro- jly ynderstand and validate them

duce and freeze a complete requirements specifica- low th ¢ i fructi f partial ifi.
tion. Unambiguityrequires the specification to be as allow the systematic construction ot partial Specifi
formal as possible. However, in the vast majority of cations, and

requirements specifications, requirements are stateti support the early detection and resolution of ambi-
informally with natural language or at best semi-for- guities.

mally, for example with class models or dataflow Scenarios are a new way of representing require-
models. Thus, unambiguity is very difficult to ments. Scenarios describe a system from a user’s
achieve. The value diraceability ranges in practice perspective, focusing on user-system interaction. As
from irrelevant (many in-house projects) to extremelywe will see, scenarios are a key concept for writing
important (safety-critical projects). requirements specifications that are oriented towards

On the other hand, we also do have process- antipe modified set of qualities discussed above.

method-related problems. In many projects, customThe contribution of this paper consists of
ers are unable to assess the adequacy of the requitey general discussion of the nature of scenarios and

their potential impact on requirements quality,

3 Ilr]bIEEE|1993, thed term Correctnegs i? used for adquacy. b a discussion of scenario representation styles and a
eliberately use adequacy instead of correctness, because ; ; ;
correctness is a binary property (something either is correct or it is g:oncept for SYStematlca”y structuring the scenarios
not) and implies the existence of a procedure for deciding about it. N & specification.

Both is typically not the case with requirements. Adequacy, ; :

however, means the quality of being able to meet a needThe rest of the_ paper 1s org_anl_zed as fOIIO_N_S' In
satisfactorily, which is exactly what we want to express for chapter two, | discuss scenarios in general, giving a
requirements.

Proceedings of the Second World Congress for Software Quality (2WCSQ), Yokohama, September 2000. 55-60.
— 55—

definition, listing key advantages and investigatingspecifications, but avoid many of the problems of a
the impact on quality. In chapter three | investigatepurely narrative specification.

concrete styles for scenario representation and intros N .
duce a nev)\// concept for systgmatically structuring>n0"t feedback cycles.The combination of the abil-
scenarios. The paper concludes with a summary ofY [tréat each user function separately in a scenario
achievements and open issues. and th(_a user-ongnted way of representing require-

ments in scenarios allow short feedback cycles be-
tween users and requirements engineers.

2 Scenarios . . ,
Basis for system test.The interaction sequences

2.1 Scenarios in requirements engineering captured in scenarios are also an ideal base for defin-
ing a system test. Test cases can be directly derived
from the scenarios, thus improving the verifiability of
requirements (Ryser and Glinz 1999).

The term “scenario” is used with several different
meanings. Therefore, | start with a definition.

DEFINITION. A scenaio is an ordered set of interac-
tions between partners, usually between a system a
a set of actors external to the system. It may compris
a concrete sequence of interaction steps (instancegsing scenarios for the specification of requirements
scenario) or a set of possible interaction steps (typ@as a strong positive impact on the qualitiedé-
scenario). quacy partial completenessnodifiability andverifi-
ability — as long as the scenarios are used properly;
see chapter 3 below.

.3 Affected qualities of requirements

Jacobson (1992) coined the tetuse casefor type
scenarios and later introduced it into UML. Hence,
this term is widely used today. In Jacobson’s termi-Scenarios situate requirements in the environment
nology, scenarios are always on the instance levelwhere a system will be used and describe them in a
Throughout this paper, | will use the term scenario.user-oriented way. Together with the decomposability
Where the distinction between type and instance leveihto user functions or transactions and the ease of
matters, | speak of type scenarios and instance scemderstanding, we have the ingredients that allow for
narios, respectively. a continuous validation of written requirements
Scenarios were first used in the field of human-com292inst th_e'customers intentions, thus yieldanp-
puter interaction (Carroll 1995). Stirred by the work guatespecifications.

of Jacobson (1992), scenarios received considerablevery scenario (or group of related scenarios) repre-

attention in requirements engineering (Firesmithsents a partial specification that is coherent from a
1994, Hsia et al. 1994, Carroll 1995, Glinz 1995, user’s perspective. Thupartial completenessatu-

Weidenhaupt et al. 1998). rally comes with the support of partial specifications.
Using scenarios leads to a user-oriented partitioning
2.2 Key advantages of using scenarios in of functionality, making it easier to deal with re-
requirements engineering quirements evolution, thus improvimgodifiability.

Taking a user’s viewpoint.A scenario always views Moreover, test cases can be derived from scenarios in
a system from the viewpoint of one of its users. Thisa natural and straightforward way (Ryser and Glinz
is a fundamental advantage when validating the adet999). Thus, scenarios also aezifiable

quacy of requirements. Scenarios give the users a-feﬂsing scenarios makes processes possible that use
for what they will get, whereas classic techniques like

sts of narrative requirements, entity-mimship - O YT RICR] H e S T he sce-
diagrams or object-oriented class diagrams do not.

narios early. Such processes, together with the user-
Partial specifications. Scenarios are a natural meansorientation of scenarios, yield powerful capabilities
for writing partial specifications. Every scenario cap-for detecting and resolving ambiguities. Thus, sce-
tures a sequence of user-system interactions reprewarios do not lead to specifications that are a priori
senting a system transaction or a system functiomnambiguoug(this is because they use natural lan-
from a user’'s perspective. The particular strength ofguage), but they do support processes with close
scenarios lies in the fact that they provide a decomfeedback loops which are the natural means of de-
position of a system into functions from a user’s per-tecting and resolving ambiguities in communication
spective and that each such function can be treateldetween humans.

separately — a classical application of the principle o

f : . .
separation of concerns, Consistencyis not fostered by the use of scenarios.

On the contrary, viewing every scenario as a separate
Ease of understanding.Scenarios simplify both entity can lead to severe inconsistency problems.
elicitation and validation of requirements, because théMoreover, not every requirement should be described
notion of user-system interaction proves to be a natuby scenarios. For example, the persistent data and
ral way of understanding and discussing requirementstate-dependent behavior are easier to specify using
both for users and requirements engineers. Scenariabject models and state automata.

inherit the comfort and ease of natural language

—56 -

Thus, in scenario-based approaches, explicit effort ixample, in the scenario of Figure 1 it is not clear
needed to insure consistency. A systematic approaciWwhether the production of the loan slip really is the
to structuring the set of scenarios as presented in thiast step in the scenario or whether this feature is
next chapter is an important step towards consistencysimply mentioned last. For the case of an illegal or
Consistency between scenarios and object models camreadable card, no behavior is specified.

be improved by systematic cross-referencing (Glinz
2000). Type scenario: Borrow books Version: 1

When a library user wants to borrow a book, she takes it
3 Representation of scenarios to the checkout station. There she first scans her personal
library card. Then she scans the barcode label of the book.

In the last chapter, | outlined how the quality of a| If she has no borrowed books that are overdue and the
requirements specification can benefit from the use gfbook is not reserved for another person, the systems regis-
scenarios. However, this benefit does not come autg{ers the book as being borrowed by her and turns off the
matically. It depends heavily on how scenarios are €lectronic safety device of that book. Several books can
used and represented. A specification can be drowne@
in a mess of too many, badly written scenarios

making things much worse rather than making them-— _ : -
better. Figure 1. A narrative scenario for borrowing books

e checked out together. The checkout procedure is termi-
ated by pressing a ‘Finished’ key. The system produces a
 loan slip for the books that have been borrowed.

In this chapter, we investigate the impact of scenarioType scenario: Borrow books Version: 2
representation on the quality of a scenario-based reactor: User

quirements specification and present a systemat
way both for representing a single scenario and fo
structuring all the scenarios found in a specification.

rCNormaI flow

1 Scan and validate the user’s library card
2 Scan book label and identify book

The arguments put forward in this chapter will be| 3 gcan label of book to be borrowed
illustrated by scenarios that specify a department,
library system. Below | give the high-level goals and
constraints for this sample application.

Record book as borrowed, unlock safety label
5 If user wants to borrow more than one book, repeat
steps 2to 4

The department library system 6 When finished, print loan slip.

Goal: The system shall support a department library, whereAlternative flows

students themselves can take books from the shelves, reatl1 Card is invalid: terminate

them, borrow / return books, and query the library catalog. 5 1 yUser has overdue books: terminate
Self-service terminals shall be used for borrowing and re
turning books.
Constraints: Users identify themselves with a personal-; - -
library card. Every book has a barcode label. Additionally,Figure 2. A step-by-step scenario for borrowing books

there is an electronic safety device located under that baicckpurn (1997) has proposed a step-by-step de-
code label which can be turned on and off by the system. fcription, given in natural language (Figure 2). This

the exit of the library, a security gate sounds an alarm whe tvle is f " d t Oth h d
a user tries to leave the library with a non-checked-out '€ 1S Trequently used, 10o. €rs have propose

book. A user may not borrow a book if she has Currem|ysem|-formal or formal representations, for example a

borrowed books that are overdue. A book may not be borsort of flow diagrams (Firesmith 1994), statecharts
rowed if it is reserved for another user. (Glinz 1995) or regular languages (Hsia et al. 1994).

4.1 Book is reserved for another person: deny loan,
continue

Scenarios written in Cockburn’s style exhibit a clear
3.1 The state of the art sequence of actions and separate normal cases from

exceptional ones. However, non-linear flow of
Up to now, not too much work has been devoted taactions (alternatives, iterations) is not systematically
the systematic representation of scenarios, concerningeated and there is still no clear separation between
both the representation of a single scenario and thaser actions and system responses. For example, in
structuring of a set of scenarios. step 2 of the scenario of Figure 2 it is not clear who

Representing a single scenaridn UML, everybody i(ge]:iti?izgtr?er gggksystem) scans the book label and

can do it the way she or he likes it (Rumbaugh, Ja-
cobson and Booch 1999). Frequently, plain narrativeSemi-formal and formal representations can be made
text is used, in particular, when scenarios are elicitedvery precise, but this advantage comes at the expense
(Figure 1). Scenarios of this style are convenient forof readability and effort to write the scenarios. The
both writing and reading, but they are typically facedstrength of these approaches lies in their ability to
with serious quality problems. They are very impre-structure a set of scenarios (see below).

cise. In particular, there is no clear sequence of ac-

tions. Exceptional cases are frequently unspecifiedM0deling structure in a set of scenariosin UML

There is no distinction between user actions and sys2nd related approaches, there is no reasonable con-
tem responses, thus making it difficult to draw a bor-cept for structuring the scenarios that together form a

derline between a system and its environment. FoFeéduirements specification. The use case diagram in

—57-—

UML provides two kinds of structure only: (1) it level of abstraction. Structural relationships can easily
models the relationship between the scenarios/usbe expressed using the features for composing
cases and their associated actors, (2) it can expressatecharts. The underlying semantics of statecharts
«include», «extend» and «generalize» relationshipsnake several kinds of analyses possible and allow the
between scenarios. Neither hierarchical structure nosymbolic execution of the scenarios.

simple sequential composition can be expressed.

. . Type scenario: Borrow books Version: 3
In (Glinz 1995) | have described an approach for yoior User

hierarchically structuring a set of disjoint scenariog
using statecharts (Harel 1987). Desharnais et al.Normal flow
(1998) describe a formal approach to the integrationl User scans her library card
of partially overlapping sequential scenarios, which System validates the card; returns the card; displays
however, requires a fully formal representation of user data; displays ‘Select function’ dialog
scenarios and works under restrictive conditions only] 2 User selects ‘Borrow’ function
System displays ‘Borrow’ dialog
3 User scans label of book to be borrowed
System identifies book; records book as borrowed,
unlocks safety label; displays book data
In this section, | present a style for the representations.1 User presses ‘More books’ key
of scenarios that combines a statechart-based struc- system displays ‘Borrow’ dialoggo to step 3
ture of the set of scenarios with a structured textuals > yser presses ‘Finish’ key
representation of single scenarios.

3.2 A new approach: systematically combining
structured text and statecharts

System prints loan slip; displays ‘Finished’ message;

Representation of single scenarioszigure 3 shows terminate.
a single scenario in this style. The distinctive features ajternative flows
of this representation are 1’ System validates the cardf card is invalid, system

« the clear separation of the stimuli (that means the returns the card, displays ‘Invalid’ message;
events produced by an actor) and the responses |of terminate; endif
the system, 2’ if User has overdue bookSystem displays ‘Denied’

* some simple structuring construcif o to step, messagaerrpl_nate; end!f .

terminate) that make the flow unambiguous 3" System identifies bookif book is reserved for another
o . o erson, system displays ‘Reserved’ dialggto ste

« the possibility to transform this representation into E;endif Y Py o P

a statechart in a straightforward Way))))
. . Figure 3. A precise textual scenario for borrowing
Thus, we combine the readability of natural language books
text with the structural rigor of statecharts. Please . .
note that (in contrast to Cockburn’s notation) our!n order to facilitate composition, we assume that
normal flow can contain alternatives and iterations.€Very scenario has exactly one starting point and ex-

interaction steps frequentyoesinclude alternatives 'epresents a scenario co_rrespondingly has one starting
and iterations. state and one normal exit state. We do not draw these

states, we symbolize them by two bars at the top and
Structuring a set of scenarios.Statecharts provide the bottom of the statechart. An arrow ending at the
powerful mechanisms for structuring and abstractiontop bar of a statechart represents a transition to the
which is exactly what we need for systematically starting state. An arrow leaving from the bottom bar
organizing a set of scenarios. Structuring is requireqepresents a transition that takes place when the state-
to express relations like “scenario A must be followedchart is in its exit state. Arrows leaving a statechart
by scenario B” or “at this point, either scenario A or rectangle from the side represent a transition that
scenario B can be executed”. Abstraction enables Ugave the statechart whenever the trigger condition
to use scenarios both on a detailed level and on a higljbcomes true, regard|ess of the Substate(s) that the
level and to systematically relate high-level and de-statechart is currently in. Such transitions can be used
tailed-level scenarios with each other. to model exceptions. (For an example of an excep-

We distinguish elementary scenarios on the one hantPn: S€e the timeout transitions in Figure 6.)

and composite and abstract scenarios on the otheThe notational differences between the standard state-
Elementary scenarios are specified textually as showghart notation and our notation are summarized in the
in the previous section. In composition structures, theappendix. The notation also slightly differs from the
elementary scenarios are represented as simple statgse that was proposed in Glinz (1995) where every
Composite and abstract scenarios are represented &guctural element has to be expressed as a statechart

statecharts. Due to the hierarchical structure Obf its own. This relaxation makes reading the dia-
statecharts, scenarios can thus be represented on aggams substantially easier.

| illustrate my approach using the library example.
2 Every stimulus becomes an event, every response an actiofVhen viewing from a very high level, the library

triggered by that event. Alternatives are modeled by states with agystem has three abstract scenarios: the user uses the
outgoing state transition for every alternative. ’

— 58 —

library, the librarian works in the library and the exit order to become an authorized library user. Then she
gate ensures that no book leaves the library that hasr he can use the library, using the library system for
not been checked-out. We can model this fact wittperforming queries of the library catalog or for exe-

the statechart of Figure 4. cuting transactions. These scenarios can be repeated
arbitrarily often (see the transition leading fr@uery
Department library catalog andPerform book transaction back to the top of
the scenaridlse the library). Thetimeout transitions
Be a library user| [Administer library Guard the exit model exceptional behavior: if a user does not com-
plete a query or a transaction, the timeout lets the

system return into a defined state.

Figure 4. The three high-level scenarios of the library
system 3.3 Combining scenarios with a static view of a

On the other hand, let us look at the scenarios for ~ SyStém

borrowing books, returning books and reserving aas already mentioned in chapter 2, not every require-
book that is currently on loan. These scenarios reprément should be described by scenarios. For example,
sent three alternative transactions that a user can peersistent data and state-dependent behavior are eas-
form in the library system. When analyzing thesejgr to specify using object models and state automata.
scenarios in more detail, we figure out that all threeag soon as we employ more than one modeling
start with the same sequence of reading and validaechnique for describing the requirements of a sys-
ing the user’s library card. Therefore, we factor outtem, we have the problem of combining these models
this authentication process into a scenario of its own, 5 systematic, consistent way. A lightweight ap-

and model the four scenarios Aghenticate user fol- proach to consistency can be based on systematic

lowed by an alternative ddorrow books, Return books cross.-referencing between a scenario model and an

or Reserve on-loan books (Figure 5). Thdorrow books- gpject model. A more formal approach requires a

scenario of Figure 3 has to be adapted accordingly byode| that integrates scenarios, object models and

deleting steps 1 and 1'. behavior models in a single integrated model (Glinz
2000).

- Perform book transaction

Authenticate

user 3.4 Validation and verification capabilities

The statechart-based composition of scenarios pro-
User selects User selects User selects e . leas
borrow returmn reseIve vides us with validation and verification capabilities
Borrow books Return books Reserve on-loan that go far beyond those available for a set of isolated
books scenarios. Exploiting the properties of statecharts, we

|\/ can

 assess the adequacy of a scenario not only in isola-
tion but also in its context,

« verify that the specification expresses required
properties of a system properly, for example, mu-
tual exclusion of scenarios that must not be exe-
cuted in parallel, or the reachability of a given state

Register at of interaction,

library
* manage partial specifications. Statechart composi-
tion provides a framework for organizing partial

Figure 5. The structure of the transaction scenarios
of the library system

- Be a library user

S Use the library ~ ~ . : J
timeout timeout _speuﬂcatlons, keepmg them consistent and show-
l@tg\‘lugerse,ws ing how they fit together. It also helps to detect
query transaction missing, overlapping or contradictory scenarios.
Query catalog J (Perform book
transaction .
(J 4 Conclusions

\\|/' User selects
ﬁmggg’g};f | have presented arguments for a modified paradigm
A / of requirements quality that concentrates on ade-

quacy, consistency, modifiability and verifiability,
but requires only partial completeness and lives with
some ambiguity. Achieving these qualities is more
J realistic than achieving the traditional ones, in par-
ticular when using incremental and evolutionary
processes for software development and requirements
Finally, Figure 6 models the structure of all scenariosengineering. | have shown that requirements engi-
describing interaction between users of the libraryneering with scenarios supports the modified para-
and the library system. A person has to register irdigm and potentially improves overall quality, but

Terminate librar
membership

N
Figure 6. The structure of all user scenarios

— 59—

still needs a systematic approach to exploit this poRumbaugh, J., Jacobson, I., Booch, G. (1998 Unified

tential. Finally, | have demonstrated how a systemModeling Language Reference ManuRleading, Mass.,

atic, quality-oriented representation of scenariosftc.: Addison-Wesley.

could look, both for individual scenarios and for the Ryser, J., Glinz, M. (1999). A Practical Approach to Vali-

relationships between a set of scenarios. dating and Testing Software Systems Using Scenarios.
QWE’99: Third International Software Quality Week

However, there are still open problems with scenarioEurope Brussels, Nov 1999.

based requirements engineering. We have neithefygigenhaupt, K., Pohl, K., Jarke, M., Haumer, P. (1998).

measures nor suitable processes to determine ho¥cenarios in System Development: Current PractiEEE

much formality is needed to achieve consistency angoftwarel5, 2 (Mar/Apr 1998). 34-45.

reduce ambiguity to a tolerable level. Concepts for

systematic integration with other approaches are still

rare and preliminary. We have no clear concepts how

to integrate non-functional requirements. We still do

not know how to cope systematically with different

levels of requirements (business requirements vs. . . .
detailed software requirements). And we do not adeAppendix: Notation for the composition
quately deal with the intertwining between require- of scenarios

ments and design where high-level design decision .
produce lower-level requirements in a recursive spiﬁ—he standard statechart notation proves to be clumsy

ral. when visualizing typical scenario structures. This is

mainly because a scenario typically runs from a start-
Nevertheless, scenario-based requirements engineeng to a termination point, which requires modeling a
ing is definitely a step into the right direction. In par- start state and an end state in every state or statechart
ticular, scenarios are a key enabler for an evolutionthat represents a scenario. We therefore introduce
ary, incremental style of requirements engineering. some notational simplifications.

Summing up, scenarios — when applied properly — do We use so-called closed statecharts (Glinz 1995).

improve the quality of a requirements specification. These are drawn with bars at the top and the bottom
of the surrounding rectangle, representing a starting
References state and a terminating state (Fig. Ala and b). A

closed statechart is interpreted as follows.

(1) Let A be a state representing a single scenario
that is described textually in the style of Fig. 3

Carroll, J.M. (ed.) (1995)Scenario-Based DesigiNew
York: John Wiley&Sons.

Cockburn, A. (1997). Using Goal-Based Use Cagesr- (Fig. Ala). When the transition leading into A
nal of Object-Oriented Programmirl), 7. 56-62. is executed, the scenario becomes active and
Desharnais, J., Frappier, M., Khédri, R., Mili, A. (1998). executes to termination. Then the scenario
Integration of_Seql_JentiaI ScenaridBEE Transactions on waits until the evenbut occurs. An occurrence
Software Engineering4, 9 (Sept. 1998). 695-708. of the eventxcept signals an exception. In this
Firesmith, D.C. (1994). Modeling the Dynamic Behavior of case, the execution of the scenario is disrupted
Systems, Mechanisms and Classes with ScenafRenbrt and the transition labeledicept is taken.

on Object Analysis and Desigh, 2. 32-36&47.

Glinz, M. (1995). An Integrated Formal Model of Scenarios
Based on Statecharts. In Schafer, W. and Botella, P. (eds.):
Software Engineering — ESEC '95. Proceedings of the 5th

(2) Let A be a statechart representing a composite
scenario (Fig. Alb). Then the execution se-
mantics is equivalent to that of the correspond-

European Software Engineering Confereritges, Spain. ing conventional statechart given in Fig. Alc.
LNCS 989, Berlin, etc.: Springer. 254-271. « We use unlabeled transitions where applicable.
Glinz, M. (2000). A Lightweight Approach to Consistency This is equivalent to an unconditional transition
of Scenarios and Class Models. To appeaPnaceedings that is always enabled. It is executed immediately

of the Fourth IEEE International Conference on Require- when its originating state is entered.

ments EngineeringSchaumburg, i, June 2000. « We omit the dashed lines that usually separate par-
Harel, D. (1987). Statecharts: A Visual Formalism for gjje| items in statecharts and consider any uncon-
g%fnplex SystemsSci. Computer PrograrB. (1987). 231- nected items to be parallel instead (see Fig. 4).

Hsia, P., Samuel, J., Gao, J., Kung, D. (1994). Formal
Approach to Scenario Analysi$EEE Softwarel 1, 2 :
(March 1994). 33-41.

IEEE (1993).IEEE Recommended Practice for Software
Requirements SpecificatiolEEE Std 830-1993.

Jacobson, 1., Christerson, M., Jonsson, P., Overgaard, G.
(1992). Object-Oriented Software Engineering — A Use
Case Driven ApproachReading, Mass., etc.: Addison-
Wesley.

out
except

any network of

states or statecharts

Figure Al. Interpretation of closed statecharts

— 60 -

