
Proceedings of the Second World Congress for Software Quality (2WCSQ), Yokohama, September 2000. 55-60.

– 55 –

Improving the Quality of Requirements with Scenarios

Martin Glinz

Summary

The classical notion of requirements quality is problematic in practice. Hence the importance
of some qualities, in particular completeness and unambiguity, has to be rethought. Scenar-
ios, the description of requirements as sequences of interactions, prove to be a key concept
for writing requirements specifications that are oriented towards such a modified set of
qualities.

In this paper, the potential of scenarios for improving the quality of requirements is dis-
cussed. Furthermore, a concept for systematically representing both single scenarios and the
structure and relationships in a set of scenarios is presented. Using an example, the positive
impact of this style of representation on the quality of the requirements is demonstrated.

Martin Glinz, Professor, Institut für Informatik, Universität Zürich, Winterthurerstrasse 190,
CH-8057 Zurich, Switzerland, glinz@ifi.unizh.ch, http://www.ifi.unizh.ch/~glinz

1 Introduction

The classical notion of requirements quality focuses
on Adequacy1, Unambiguity, Completeness, Consis-
tency, Verifiability, Modifiability and Traceability
(IEEE 1993). In practice however, most requirements
specifications do not meet these qualities. One could
argue that this is only a problem of applying the right
methods and processes and that we should improve
our requirements processes until they yield the de-
sired qualities. However, a closer look reveals that it
is not so simple. The qualities themselves are part of
the problem.

The notion of completeness leads to waterfall-like
process models, where a requirements specification of
the complete system has to be produced and baselined
prior to any design and implementation activities.
However, customers do not always fully know and
understand what they want. Systems and re-
quirements evolve. So it is almost impossible to pro-
duce and freeze a complete requirements specifica-
tion. Unambiguity requires the specification to be as
formal as possible. However, in the vast majority of
requirements specifications, requirements are stated
informally with natural language or at best semi-for-
mally, for example with class models or dataflow
models. Thus, unambiguity is very difficult to
achieve. The value of traceability ranges in practice
from irrelevant (many in-house projects) to extremely
important (safety-critical projects).

On the other hand, we also do have process- and
method-related problems. In many projects, custom-
ers are unable to assess the adequacy of the require-

1 In IEEE 1993, the term correctness is used for adequacy. I
deliberately use adequacy instead of correctness, because
correctness is a binary property (something either is correct or it is
not) and implies the existence of a procedure for deciding about it.
Both is typically not the case with requirements. Adequacy,
however, means the quality of being able to meet a need
satisfactorily, which is exactly what we want to express for
requirements.

ments because the way that the requirements are rep-
resented does not match the way that customers use a
system and think about it. Moreover, when customers
do not fully know and understand what they want, the
assessment of adequacy becomes even more difficult.

Consequently, we need both a shift in the basic para-
digm of requirements quality and a proper adaptation
of requirements engineering techniques in order to
meet the modified set of qualities. I advocate a re-
quirements quality model that focuses on adequacy as
the most important quality, views consistency,
verifiability and modifiability as next important but
deliberately lives with incompleteness (that means
with partial specifications) and with some ambiguity.
The weight of traceability should be made dependent
on the project in hand.

Adopting this new quality paradigm demands require-
ments engineering techniques that

• describe requirements such that customers can eas-
ily understand and validate them

• allow the systematic construction of partial specifi-
cations, and

• support the early detection and resolution of ambi-
guities.

Scenarios are a new way of representing require-
ments. Scenarios describe a system from a user’s
perspective, focusing on user-system interaction. As
we will see, scenarios are a key concept for writing
requirements specifications that are oriented towards
the modified set of qualities discussed above.

The contribution of this paper consists of

• a general discussion of the nature of scenarios and
their potential impact on requirements quality,

• a discussion of scenario representation styles and a
concept for systematically structuring the scenarios
in a specification.

The rest of the paper is organized as follows. In
chapter two, I discuss scenarios in general, giving a

– 56 –

definition, listing key advantages and investigating
the impact on quality. In chapter three I investigate
concrete styles for scenario representation and intro-
duce a new concept for systematically structuring
scenarios. The paper concludes with a summary of
achievements and open issues.

2 Scenarios

2.1 Scenarios in requirements engineering

The term “scenario” is used with several different
meanings. Therefore, I start with a definition.

DEFINITION. A scenario is an ordered set of interac-
tions between partners, usually between a system and
a set of actors external to the system. It may comprise
a concrete sequence of interaction steps (instance
scenario) or a set of possible interaction steps (type
scenario).

Jacobson (1992) coined the term use case for type
scenarios and later introduced it into UML. Hence,
this term is widely used today. In Jacobson’s termi-
nology, scenarios are always on the instance level.
Throughout this paper, I will use the term scenario.
Where the distinction between type and instance level
matters, I speak of type scenarios and instance sce-
narios, respectively.

Scenarios were first used in the field of human-com-
puter interaction (Carroll 1995). Stirred by the work
of Jacobson (1992), scenarios received considerable
attention in requirements engineering (Firesmith
1994, Hsia et al. 1994, Carroll 1995, Glinz 1995,
Weidenhaupt et al. 1998).

2.2 Key advantages of using scenarios in
requirements engineering

Taking a user’s viewpoint. A scenario always views
a system from the viewpoint of one of its users. This
is a fundamental advantage when validating the ade-
quacy of requirements. Scenarios give the users a feel
for what they will get, whereas classic techniques like
lists of narrative requirements, entity-relationship
diagrams or object-oriented class diagrams do not.

Partial specifications. Scenarios are a natural means
for writing partial specifications. Every scenario cap-
tures a sequence of user-system interactions repre-
senting a system transaction or a system function
from a user’s perspective. The particular strength of
scenarios lies in the fact that they provide a decom-
position of a system into functions from a user’s per-
spective and that each such function can be treated
separately – a classical application of the principle of
separation of concerns.

Ease of understanding. Scenarios simplify both
elicitation and validation of requirements, because the
notion of user-system interaction proves to be a natu-
ral way of understanding and discussing requirements
both for users and requirements engineers. Scenarios
inherit the comfort and ease of natural language

specifications, but avoid many of the problems of a
purely narrative specification.

Short feedback cycles. The combination of the abil-
ity to treat each user function separately in a scenario
and the user-oriented way of representing require-
ments in scenarios allow short feedback cycles be-
tween users and requirements engineers.

Basis for system test. The interaction sequences
captured in scenarios are also an ideal base for defin-
ing a system test. Test cases can be directly derived
from the scenarios, thus improving the verifiability of
requirements (Ryser and Glinz 1999).

2.3 Affected qualities of requirements

Using scenarios for the specification of requirements
has a strong positive impact on the qualities of ade-
quacy, partial completeness, modifiability and verifi-
ability – as long as the scenarios are used properly;
see chapter 3 below.

Scenarios situate requirements in the environment
where a system will be used and describe them in a
user-oriented way. Together with the decomposability
into user functions or transactions and the ease of
understanding, we have the ingredients that allow for
a continuous validation of written requirements
against the customers’ intentions, thus yielding ade-
quate specifications.

Every scenario (or group of related scenarios) repre-
sents a partial specification that is coherent from a
user’s perspective. Thus, partial completeness natu-
rally comes with the support of partial specifications.

Using scenarios leads to a user-oriented partitioning
of functionality, making it easier to deal with re-
quirements evolution, thus improving modifiability.

Moreover, test cases can be derived from scenarios in
a natural and straightforward way (Ryser and Glinz
1999). Thus, scenarios also are verifiable.

Using scenarios makes processes possible that use
short cycles between writing and validating require-
ments and that define test cases derived from the sce-
narios early. Such processes, together with the user-
orientation of scenarios, yield powerful capabilities
for detecting and resolving ambiguities. Thus, sce-
narios do not lead to specifications that are a priori
unambiguous (this is because they use natural lan-
guage), but they do support processes with close
feedback loops which are the natural means of de-
tecting and resolving ambiguities in communication
between humans.

Consistency is not fostered by the use of scenarios.
On the contrary, viewing every scenario as a separate
entity can lead to severe inconsistency problems.
Moreover, not every requirement should be described
by scenarios. For example, the persistent data and
state-dependent behavior are easier to specify using
object models and state automata.

– 57 –

Thus, in scenario-based approaches, explicit effort is
needed to insure consistency. A systematic approach
to structuring the set of scenarios as presented in the
next chapter is an important step towards consistency.
Consistency between scenarios and object models can
be improved by systematic cross-referencing (Glinz
2000).

3 Representation of scenarios

In the last chapter, I outlined how the quality of a
requirements specification can benefit from the use of
scenarios. However, this benefit does not come auto-
matically. It depends heavily on how scenarios are
used and represented. A specification can be drowned
in a mess of too many, badly written scenarios,
making things much worse rather than making them
better.

In this chapter, we investigate the impact of scenario
representation on the quality of a scenario-based re-
quirements specification and present a systematic
way both for representing a single scenario and for
structuring all the scenarios found in a specification.

The arguments put forward in this chapter will be
illustrated by scenarios that specify a department
library system. Below I give the high-level goals and
constraints for this sample application.

The department library system

Goal: The system shall support a department library, where
students themselves can take books from the shelves, read
them, borrow / return books, and query the library catalog.
Self-service terminals shall be used for borrowing and re-
turning books.

Constraints: Users identify themselves with a personal
library card. Every book has a barcode label. Additionally,
there is an electronic safety device located under that bar-
code label which can be turned on and off by the system. At
the exit of the library, a security gate sounds an alarm when
a user tries to leave the library with a non-checked-out
book. A user may not borrow a book if she has currently
borrowed books that are overdue. A book may not be bor-
rowed if it is reserved for another user.

3.1 The state of the art

Up to now, not too much work has been devoted to
the systematic representation of scenarios, concerning
both the representation of a single scenario and the
structuring of a set of scenarios.

Representing a single scenario. In UML, everybody
can do it the way she or he likes it (Rumbaugh, Ja-
cobson and Booch 1999). Frequently, plain narrative
text is used, in particular, when scenarios are elicited
(Figure 1). Scenarios of this style are convenient for
both writing and reading, but they are typically faced
with serious quality problems. They are very impre-
cise. In particular, there is no clear sequence of ac-
tions. Exceptional cases are frequently unspecified.
There is no distinction between user actions and sys-
tem responses, thus making it difficult to draw a bor-
derline between a system and its environment. For

example, in the scenario of Figure 1 it is not clear
whether the production of the loan slip really is the
last step in the scenario or whether this feature is
simply mentioned last. For the case of an illegal or
unreadable card, no behavior is specified.

Type scenario: Borrow books Version: 1

When a library user wants to borrow a book, she takes it
to the checkout station. There she first scans her personal
library card. Then she scans the barcode label of the book.
If she has no borrowed books that are overdue and the
book is not reserved for another person, the systems regis-
ters the book as being borrowed by her and turns off the
electronic safety device of that book. Several books can
be checked out together. The checkout procedure is termi-
nated by pressing a ‘Finished’ key. The system produces a
loan slip for the books that have been borrowed.

Figure 1. A narrative scenario for borrowing books

Type scenario: Borrow books Version: 2
Actor: User

Normal flow
1 Scan and validate the user’s library card
2 Scan book label and identify book
3 Scan label of book to be borrowed
4 Record book as borrowed, unlock safety label
5 If user wants to borrow more than one book, repeat

steps 2 to 4
6 When finished, print loan slip.

Alternative flows
1.1 Card is invalid: terminate
2.1 User has overdue books: terminate
4.1 Book is reserved for another person: deny loan,

continue

Figure 2. A step-by-step scenario for borrowing books

Cockburn (1997) has proposed a step-by-step de-
scription, given in natural language (Figure 2). This
style is frequently used, too. Others have proposed
semi-formal or formal representations, for example a
sort of flow diagrams (Firesmith 1994), statecharts
(Glinz 1995) or regular languages (Hsia et al. 1994).

Scenarios written in Cockburn’s style exhibit a clear
sequence of actions and separate normal cases from
exceptional ones. However, non-linear flow of
actions (alternatives, iterations) is not systematically
treated and there is still no clear separation between
user actions and system responses. For example, in
step 2 of the scenario of Figure 2 it is not clear who
(the user or the system) scans the book label and
identifies the book.

Semi-formal and formal representations can be made
very precise, but this advantage comes at the expense
of readability and effort to write the scenarios. The
strength of these approaches lies in their ability to
structure a set of scenarios (see below).

Modeling structure in a set of scenarios. In UML
and related approaches, there is no reasonable con-
cept for structuring the scenarios that together form a
requirements specification. The use case diagram in

– 58 –

UML provides two kinds of structure only: (1) it
models the relationship between the scenarios/use
cases and their associated actors, (2) it can express
«include», «extend» and «generalize» relationships
between scenarios. Neither hierarchical structure nor
simple sequential composition can be expressed.

In (Glinz 1995) I have described an approach for
hierarchically structuring a set of disjoint scenarios
using statecharts (Harel 1987). Desharnais et al.
(1998) describe a formal approach to the integration
of partially overlapping sequential scenarios, which,
however, requires a fully formal representation of
scenarios and works under restrictive conditions only.

3.2 A new approach: systematically combining
structured text and statecharts

In this section, I present a style for the representation
of scenarios that combines a statechart-based struc-
ture of the set of scenarios with a structured textual
representation of single scenarios.

Representation of single scenarios. Figure 3 shows
a single scenario in this style. The distinctive features
of this representation are

• the clear separation of the stimuli (that means the
events produced by an actor) and the responses of
the system,

• some simple structuring constructs (if, go to step,
terminate) that make the flow unambiguous,

• the possibility to transform this representation into
a statechart in a straightforward way2.

Thus, we combine the readability of natural language
text with the structural rigor of statecharts. Please
note that (in contrast to Cockburn’s notation) our
normal flow can contain alternatives and iterations.
This is because the normal case of a sequence of
interaction steps frequently does include alternatives
and iterations.

Structuring a set of scenarios. Statecharts provide
powerful mechanisms for structuring and abstraction,
which is exactly what we need for systematically
organizing a set of scenarios. Structuring is required
to express relations like “scenario A must be followed
by scenario B” or “at this point, either scenario A or
scenario B can be executed”. Abstraction enables us
to use scenarios both on a detailed level and on a high
level and to systematically relate high-level and de-
tailed-level scenarios with each other.

We distinguish elementary scenarios on the one hand
and composite and abstract scenarios on the other.
Elementary scenarios are specified textually as shown
in the previous section. In composition structures, the
elementary scenarios are represented as simple states.
Composite and abstract scenarios are represented as
statecharts. Due to the hierarchical structure of
statecharts, scenarios can thus be represented on any

2 Every stimulus becomes an event, every response an action
triggered by that event. Alternatives are modeled by states with an
outgoing state transition for every alternative.

level of abstraction. Structural relationships can easily
be expressed using the features for composing
statecharts. The underlying semantics of statecharts
make several kinds of analyses possible and allow the
symbolic execution of the scenarios.

Type scenario: Borrow books Version: 3
Actor: User

Normal flow
1 User scans her library card

System validates the card; returns the card; displays
user data; displays ‘Select function’ dialog

2 User selects ‘Borrow’ function
System displays ‘Borrow’ dialog

3 User scans label of book to be borrowed
System identifies book; records book as borrowed,
unlocks safety label; displays book data

4.1 User presses ‘More books’ key
System displays ‘Borrow’ dialog; go to step 3

4.2 User presses ‘Finish’ key
System prints loan slip; displays ‘Finished’ message;
terminate.

Alternative flows
1’ System validates the card; if card is invalid, system

returns the card, displays ‘Invalid’ message;
terminate; endif

2’ if User has overdue books, System displays ‘Denied’
message. terminate; endif

3’ System identifies book; if book is reserved for another
person, system displays ‘Reserved’ dialog; go to step
4; endif

Figure 3. A precise textual scenario for borrowing
books

In order to facilitate composition, we assume that
every scenario has exactly one starting point and ex-
actly one normal end. Hence, every statechart that
represents a scenario correspondingly has one starting
state and one normal exit state. We do not draw these
states, we symbolize them by two bars at the top and
the bottom of the statechart. An arrow ending at the
top bar of a statechart represents a transition to the
starting state. An arrow leaving from the bottom bar
represents a transition that takes place when the state-
chart is in its exit state. Arrows leaving a statechart
rectangle from the side represent a transition that
leave the statechart whenever the trigger condition
becomes true, regardless of the substate(s) that the
statechart is currently in. Such transitions can be used
to model exceptions. (For an example of an excep-
tion, see the timeout transitions in Figure 6.)

The notational differences between the standard state-
chart notation and our notation are summarized in the
appendix. The notation also slightly differs from the
one that was proposed in Glinz (1995) where every
structural element has to be expressed as a statechart
of its own. This relaxation makes reading the dia-
grams substantially easier.

I illustrate my approach using the library example.
When viewing from a very high level, the library
system has three abstract scenarios: the user uses the

– 59 –

library, the librarian works in the library and the exit
gate ensures that no book leaves the library that has
not been checked-out. We can model this fact with
the statechart of Figure 4.

Be a library user Administer library Guard the exit

Department library

Figure 4. The three high-level scenarios of the library
system

On the other hand, let us look at the scenarios for
borrowing books, returning books and reserving a
book that is currently on loan. These scenarios repre-
sent three alternative transactions that a user can per-
form in the library system. When analyzing these
scenarios in more detail, we figure out that all three
start with the same sequence of reading and validat-
ing the user’s library card. Therefore, we factor out
this authentication process into a scenario of its own
and model the four scenarios as Authenticate user fol-
lowed by an alternative of Borrow books, Return books
or Reserve on-loan books (Figure 5). The Borrow books-
scenario of Figure 3 has to be adapted accordingly by
deleting steps 1 and 1’.

Borrow books Return books Reserve on-loan
books

Authenticate
user

User selects
borrow

User selects
reserve

User selects
return

card is invalid

Perform book transaction

Figure 5. The structure of the transaction scenarios
of the library system

Query catalog Perform book
transaction

Use the library

User selects
query

User selects
transaction

timeout timeout

User selects
termination of
membership

Terminate library
membership

Register at
library

Be a library user

Figure 6. The structure of all user scenarios

Finally, Figure 6 models the structure of all scenarios
describing interaction between users of the library
and the library system. A person has to register in

order to become an authorized library user. Then she
or he can use the library, using the library system for
performing queries of the library catalog or for exe-
cuting transactions. These scenarios can be repeated
arbitrarily often (see the transition leading from Query
catalog and Perform book transaction back to the top of
the scenario Use the library). The timeout transitions
model exceptional behavior: if a user does not com-
plete a query or a transaction, the timeout lets the
system return into a defined state.

3.3 Combining scenarios with a static view of a
system

As already mentioned in chapter 2, not every require-
ment should be described by scenarios. For example,
persistent data and state-dependent behavior are eas-
ier to specify using object models and state automata.
As soon as we employ more than one modeling
technique for describing the requirements of a sys-
tem, we have the problem of combining these models
in a systematic, consistent way. A lightweight ap-
proach to consistency can be based on systematic
cross-referencing between a scenario model and an
object model. A more formal approach requires a
model that integrates scenarios, object models and
behavior models in a single integrated model (Glinz
2000).

3.4 Validation and verification capabilities

The statechart-based composition of scenarios pro-
vides us with validation and verification capabilities
that go far beyond those available for a set of isolated
scenarios. Exploiting the properties of statecharts, we
can

• assess the adequacy of a scenario not only in isola-
tion but also in its context,

• verify that the specification expresses required
properties of a system properly, for example, mu-
tual exclusion of scenarios that must not be exe-
cuted in parallel, or the reachability of a given state
of interaction,

• manage partial specifications. Statechart composi-
tion provides a framework for organizing partial
specifications, keeping them consistent and show-
ing how they fit together. It also helps to detect
missing, overlapping or contradictory scenarios.

4 Conclusions

I have presented arguments for a modified paradigm
of requirements quality that concentrates on ade-
quacy, consistency, modifiability and verifiability,
but requires only partial completeness and lives with
some ambiguity. Achieving these qualities is more
realistic than achieving the traditional ones, in par-
ticular when using incremental and evolutionary
processes for software development and requirements
engineering. I have shown that requirements engi-
neering with scenarios supports the modified para-
digm and potentially improves overall quality, but

– 60 –

still needs a systematic approach to exploit this po-
tential. Finally, I have demonstrated how a system-
atic, quality-oriented representation of scenarios
could look, both for individual scenarios and for the
relationships between a set of scenarios.

However, there are still open problems with scenario-
based requirements engineering. We have neither
measures nor suitable processes to determine how
much formality is needed to achieve consistency and
reduce ambiguity to a tolerable level. Concepts for
systematic integration with other approaches are still
rare and preliminary. We have no clear concepts how
to integrate non-functional requirements. We still do
not know how to cope systematically with different
levels of requirements (business requirements vs.
detailed software requirements). And we do not ade-
quately deal with the intertwining between require-
ments and design where high-level design decisions
produce lower-level requirements in a recursive spi-
ral.

Nevertheless, scenario-based requirements engineer-
ing is definitely a step into the right direction. In par-
ticular, scenarios are a key enabler for an evolution-
ary, incremental style of requirements engineering.

Summing up, scenarios – when applied properly – do
improve the quality of a requirements specification.

References
Carroll, J.M. (ed.) (1995). Scenario-Based Design. New
York: John Wiley&Sons.

Cockburn, A. (1997). Using Goal-Based Use Cases. Jour-
nal of Object-Oriented Programming 10, 7. 56-62.

Desharnais, J., Frappier, M., Khédri, R., Mili, A. (1998).
Integration of Sequential Scenarios. IEEE Transactions on
Software Engineering 24, 9 (Sept. 1998). 695-708.

Firesmith, D.C. (1994). Modeling the Dynamic Behavior of
Systems, Mechanisms and Classes with Scenarios,” Report
on Object Analysis and Design, 1, 2. 32-36&47.

Glinz, M. (1995). An Integrated Formal Model of Scenarios
Based on Statecharts. In Schäfer, W. and Botella, P. (eds.):
Software Engineering – ESEC ’95. Proceedings of the 5th
European Software Engineering Conference, Sitges, Spain.
LNCS 989, Berlin, etc.: Springer. 254-271.

Glinz, M. (2000). A Lightweight Approach to Consistency
of Scenarios and Class Models. To appear in: Proceedings
of the Fourth IEEE International Conference on Require-
ments Engineering. Schaumburg, Ill., June 2000.

Harel, D. (1987). Statecharts: A Visual Formalism for
Complex Systems. Sci. Computer Program. 8 (1987). 231-
274.

Hsia, P., Samuel, J., Gao, J., Kung, D. (1994). Formal
Approach to Scenario Analysis. IEEE Software 1 1, 2
(March 1994). 33-41.

IEEE (1993). IEEE Recommended Practice for Software
Requirements Specifications. IEEE Std 830-1993.

Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G.
(1992). Object-Oriented Software Engineering – A Use
Case Driven Approach. Reading, Mass., etc.: Addison-
Wesley.

Rumbaugh, J., Jacobson, I., Booch, G. (1999). The Unified
Modeling Language Reference Manual. Reading, Mass.,
etc.: Addison-Wesley.

Ryser, J., Glinz, M. (1999). A Practical Approach to Vali-
dating and Testing Software Systems Using Scenarios.
QWE’99: Third International Software Quality Week
Europe, Brussels, Nov 1999.

Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P. (1998).
Scenarios in System Development: Current Practice. IEEE
Software 15, 2 (Mar/Apr 1998). 34-45.

Appendix: Notation for the composition
of scenarios

The standard statechart notation proves to be clumsy
when visualizing typical scenario structures. This is
mainly because a scenario typically runs from a start-
ing to a termination point, which requires modeling a
start state and an end state in every state or statechart
that represents a scenario. We therefore introduce
some notational simplifications.

• We use so-called closed statecharts (Glinz 1995).
These are drawn with bars at the top and the bottom
of the surrounding rectangle, representing a starting
state and a terminating state (Fig. A1a and b). A
closed statechart is interpreted as follows.

(1) Let A be a state representing a single scenario
that is described textually in the style of Fig. 3
(Fig. A1a). When the transition leading into A
is executed, the scenario becomes active and
executes to termination. Then the scenario
waits until the event out occurs. An occurrence
of the event except signals an exception. In this
case, the execution of the scenario is disrupted
and the transition labeled except is taken.

(2) Let A be a statechart representing a composite
scenario (Fig. A1b). Then the execution se-
mantics is equivalent to that of the correspond-
ing conventional statechart given in Fig. A1c.

• We use unlabeled transitions where applicable.
This is equivalent to an unconditional transition
that is always enabled. It is executed immediately
when its originating state is entered.

• We omit the dashed lines that usually separate par-
allel items in statecharts and consider any uncon-
nected items to be parallel instead (see Fig. 4).

start_A
...

...

...

exit_A

out IN(exit_A)

out

∧

A

...
...

...

any network of
states or statecharts any network of

states or statecharts

A
x

y

z

x
y

z

except

except

in
in

A

in

out
except

a. b. c.

Figure A1. Interpretation of closed statecharts

