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ABSTRACT 
This paper addresses the classification of linked entities.  We 
introduce a relational vector-space (VS) model (in analogy to the 
VS model used in information retrieval) that abstracts the linked 
structure, representing entities by vectors of weights.  Given 
labeled data as background knowledge/training data, classification 
procedures can be defined for this model, including a 
straightforward, “direct” model using weighted adjacency vectors. 
Using a large set of tasks from the domain of company affiliation 
identification, we demonstrate that such classification procedures 
can be effective.  We then examine the method in more detail, 
showing that as expected the classification performance correlates 
with the relational autocorrelation of the data set.  We then turn 
the tables and use the relational VS scores as a way to 
analyze/visualize the relational autocorrelation present in a 
complex linked structure.  The main contribution of the paper is to 
introduce the relational VS model as a potentially useful addition 
to the toolkit for relational data mining.  It could provide useful 
constructed features for domains with low to moderate relational 
autocorrelation; it may be effective by itself for domains with high 
levels of relational autocorrelation, and it provides a useful 
abstraction for analyzing the properties of linked data. 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Relational Data Mining, Vector-space models, Industry 
Classification. 

1. INTRODUCTION 
The analysis of linked data differs from the traditional data-
mining scenario: the data items, instead of being statistically 
independent, have relationships to each other.  Linked data are 
ubiquitous, and relational data mining is receiving increasing 
attention with the explicit linking of web sites, and with the need 
to analyze social networks for applications such as 
counterterrorism [1, 2, 3].  We address a particular relational data 
mining application: identifying the group membership of linked 

entities.  We address company-industry affiliation, but the 
framework and methods we describe are intended to be general.  
Figure 1 shows a link diagram of companies and their 
relationships, as extracted from the business news.  Colors 
indicate industry-sector affiliation.  The diagram suggests that 
relationships may play a useful role in identifying the (unknown) 
affiliation of a company, because linked companies often have the 
same affiliation.  

 
Figure 1. Link diagram of firms.  Only links with strength > 4 
are shown (but proximity also indicates relatedness).  Colors 
indicate industry-sector membership. 
The key contribution of this paper is the presentation and 
demonstration of a simple, but useful, method for producing 
classification models from linked data.  In analogy to information 
retrieval [4], we represent entities using a vector-space model.  
The relational vector-space (RVS) model abstracts away much of 
the graph structure, representing entities by adjacency vectors.  
Various classification procedures can be defined on the RVS 
model. 
The main attraction of the RVS model is its simplicity.  We argue 
that RVS class-membership scores could be useful constructed 
features for more complex (relational) data-mining approaches, 



    
  

such as ILP [5] that do not naturally summarize the class 
membership of local neighborhoods.  We also believe that for 
certain tasks, the RVS model may be appropriate by itself. 
The rest of the paper is organized as follows.  We present the 
RVS model formally, and define on it several classification 
scoring functions.  Next we introduce the domain of company 
affiliation identification, from which we will take a set of 
classification tasks.  Then we present the results of an 
experimental case study, examining the effectiveness of the RVS 
model for classification in this domain.  Finally, we show how the 
model’s scores can be used to analyze and visualize certain class-
related information about the original, complex graph. 

2. THE RVS MODEL 
We make a direct analogy to the “vector-space model” used for 
information retrieval, in which all textual and linguistic structure 
is ignored and documents are represented by vectors of weights on 
words. The relational vector-space model is a similarly limited 
abstraction of the graph structure, into a representation on which 
straightforward classification techniques can be built.  
Specifically, each dimension in the vector space corresponds to 
another entity; each entity is represented by a (weighted) 
adjacency vector (i.e., the magnitude along each dimension is 
some measure of the strength of the relationship). 

2.1 General Model 
Formally, we consider a set of entities E and a set B ⊆ E of 
“background knowledge” entities.  Later in our company 
affiliation domain, the entities will be companies and the 
background knowledge will be companies for which the 
classification is known.  We place an (arbitrary) ordering on B, 
resulting in bi, i = 1, .. |B|.  These define the dimensions of the 
vector space, and thereby the dimensions along which any entity 
can be described.   
Definition: An entity e is described by an entity vector w = (w1, 
w2, ..,), where wi is the strength of the relationship between entity e 
and background entity bi.  Ignoring strengths gives a simple entity 
vector, ŵ, where the ŵi are binary (presence/absence of a link).   
This relational vector-space representation can be used for 
classification and clustering of entities, and other tasks that rely 
on entity similarity.  In this paper, we will consider entity 
classification.  In particular, consider a discrete, finite set of 
classes C, such that for each Ci∈C, Ci ⊆ E.  If e∈Ci, e is 
considered to be a member of class i.  In principle, the classes 
need not be mutually exclusive, but we will consider them to be 
for this paper, so the class can be considered to be a single-valued 
attribute of an entity and (later) we can adapt previous notions of 
relational autocorrelation directly.  By definition, for e∈B, class 
membership is known.  We would like to determine (estimate) 
class membership for at least one entity e∉B. 

Definition: Each class Ci∈C is described by a class vector ci = 
(ci,1, ci,2, ..,), where ci,j is the strength of the relationship between 
class Ci and background entity bi. 
In order to classify an entity, we will consider how similar the 
entity vector is to each class vector, using a similarity-based 
scoring function.  First, let us define a generalized scoring 
function. 

Definition: The generalized RVS score of entity e for class i is the 
normalized inner product of w and ci (the normalizing function 
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RVS scores may be used for classification and other class-based 
scoring (e.g., for ranking) directly. They also could provide 
generally useful constructed features to be used by other methods 
(for example, more complex relational data mining methods 
[1,2,3]).  

2.2 Instantiating the RVS Model 
To define specific RVS scores we must answer three questions, 
which we now will address in turn.   

1. How exactly are the entity vectors, w, defined? 
2. How exactly are the class vectors, ci, defined? 

3. What normalizing function, ),( icwγ is used? 

Entity vectors.  Recall that an entity vector is composed of the 
strengths of the relationships between the entity e and the 
background entities bi.  Of course, the definition of strength is 
domain dependent, but there are some general issues worth 
highlighting.   In all cases, we will consider wi = 0 to indicate the 
lack of a relationship between e and bi.  A simple way of defining 
entity vectors is to ignore strengths, creating a vector of binary 
indicators.  If there is a natural notion of strength, such as the 
number of links between entities, this gives an obvious way of 
defining the wi.  However, in analogy to how the vector-space 
model is used in text classification, a TFIDF-like weighting 
scheme [4] may be provide added discrimination power. 
Class vectors.  Defining class vectors is somewhat more involved.  
One general direct method is to give non-zero weights to the 
background entities that are members of the class.  The 
distribution of weights places an a priori directionality on the 
class vector, which ideally maximizes discriminatability.  Using 
uniform weights defines a set of simple, “canonical” vectors for 
each class. 
Definition: The canonical class vector, ci, for class i has non-zero 
components: 

ci,j = 1 ⇔  bj∈Ci 

Other distributions of direct weights may be natural for a 
particular domain, based on background knowledge or statistics 
summarized from the corpus of background entities.   For 
company affiliation classification, companies in an industry 
(class) may be weighted by market capitalization or by a measure 
of marginal probability of linkage to same-class companies. 
These direct methods assume that linkage to members of the same 
class is sufficient for discrimination.  It may be that members of 
the same class are not linked to each other, but are linked to the 
same other entities (or other classes).  Short of abandoning the 
RVS approach for a more complex graph-based approach, an 
indirect method for defining class vectors may be beneficial.   
Definition: The simple indirect class vector, sici, for class i is the 
vector sum of the entity vectors for the background entities 
belonging to the class: 
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One can define more complicated indirect class vectors.  For 
example, a class centroid would be slightly more complicated.  An 
even more complicated indirect method would be to redefine the 
bi, one per class, as “super-entities.”  Then an indirect method 
could compare an entity’s distribution of links to the various 
super-entities to the average distributions for those classes.  For 
this paper, we do not consider complicated variations further. 

Normalization functions.  Generally, ),( icwγ defines the 
semantics of the similarity represented by the score.  For example, 
the familiar “cosine similarity” between the entity vector and the 
class vector is d(e,i) with the following normalization function: 

ii c wcw =),(γ , 

where  is the Euclidean (L2) norm.  Whether the exact cosine 

distance, or some other normalization, is appropriate is domain 
dependent, but also depends on the definitions of w and ci.  For 
the experiments below, we will look at several scoring functions 
representing different similarities.  These scoring functions are 
defined by different instantiations of w, ci, and ),( icwγ .  

2.3 Five RVS scoring functions 
The RVS model gives a convenient design space of classification 
scoring functions.  We concentrate on the canonical class vector, 
because it is easy to define, and creates intuitively attractive 
scores (that perform well in our domain).   
Definition: The class-normalized direct RVS score of entity e for 
class i is the inner product of ŵ and the canonical class vector ci, 
normalized by the L1 norm of c. 
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The class-normalized direct RVS score counts up the connected 
entities belonging to the class, and then normalizes by the size of 
the class,2 so that certain classes do not get higher scores simply 
because they are larger.  
Definition: The entity-normalized direct RVS score of entity e for 
class i is the inner product of ŵ and the canonical class vector ci, 
normalized by the L1 norm of ŵ . 
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The entity-normalized direct RVS score is attractive intuitively: it 
represents the proportion of connected entities that are members 
of Ci.  This normalizes so that certain entities do not get higher 
scores simply by being more highly connected. 
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angle between it and a weighted entity vector is dubious.   

Definition: The weighted, entity-normalized direct (wend) RVS 
score of entity e for class i is the inner product of w and the 
canonical class vector ci, normalized by the L1 norm of w. 
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Using a weighted entity vector inherently deals with noise 
(spurious, low-weight links) in the data.  Using the L1 norm of the 
weight vector gives the intuitively appealing weighted proportion 
of links that are to members of the class of interest. 
All three of these methods directly relate the entity vectors w with 
the respective canonical class vectors ci. A second group of 
scoring functions relates the entity vector w with the simple 
indirect class vector sici of a class. 
Definition: The (simple) indirect RVS score of entity e for class i 
is the cosine similarity between w and sici, 
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We define efigf weights (entity frequency inverse graph 
frequency) analogously to the TFIDF (text frequency inverse 
document frequency) weights used in Information Retrieval [4]. 
Definition: The efigf-based indirect RVS score of entity e for 
class i is the cosine between the efigf-normalized vector w′ and 
the analogously normalized vector sici’, where 
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3. DOMAIN & TASKS  
To demonstrate the RVS model, we report a case study involving 
several classification tasks from the domain of company affiliation 
identification.  Identifying the group membership of companies is 
a prerequisite for solving various problems.  Consider industry 
membership.  Determining which companies belong to a 
particular industry is essential for intellectual property (e.g., 
patent) litigation, financial analysis (e.g., balancing a portfolio, 
constructing sector funds), making/improving government 
economic projections, and so on.  
Traditionally, industry membership has been determined by a 
manual process, and there are various existing classifications. For 
example, the US Government’s Office of Management and 
Budget has developed a framework for how to assign SIC codes 
(“Standard Industry Classification” codes–hierarchical, four digit 
codes used as industry identifiers for firms).  Business information 
companies, such as Hoover’s and Yahoo, have different industry 
(which do not have a high degree of correspondence with the 
assigned SIC codes).  There are known problems with industry 
classifications.  For example, one study showed that two common 
SIC-code sources for the same companies disagreed on more than 



    
  

36% of the codes at the 2-digit code level, and on more then 80% 
at the 4-digit level [6].  
The RVS model can take as background knowledge any industry 
classification, and (attempt to) classify companies based on it.  
This gives the additional flexibility to adjust the classification of 
some background companies, and have the model adjust the rest 
accordingly, or start from scratch with a new scheme.   
The quality of the generalization performance is an empirical 
question, which we address next for Yahoo’s classification.  Thus, 
for the RVS model, E is the set of companies, C comprises the 
Yahoo classifications (industry sector, unless otherwise noted), 
and B contains the companies for which the Yahoo classification 
is (deemed to be) known.  We chose Yahoo because the 
granularity of the classifications (12 sectors) was attractive for a 
conference-paper study and because of ease of access to the data.   
For the RVS model we also need a source for links between 
companies.  For this study we chose a generic, but easily 
accessible link: two companies are linked if they cooccur in a 
business news story, with the strength of the relationship being 
the number of such links.  Note that cooccurrence lumps together 
a wide variety of relationships, including joint ventures, 
mergers/acquisitions, product-related, market related, and so on.  
Some have nothing to do with industry membership (e.g., two 
companies happen to announce earnings on the same day).  We 
based the cooccurrences on a collection of 22,170 news stories, 
crawled from Yahoo’s business news section from 4/1/1999 to 
8/4/1999.  The companies (and cooccurrences) used for this study 
were those for which the news provider had assigned a ticker 
symbol and for which the symbol appeared in the Yahoo 
classification. 

4. RESULTS 
To compare the various RVS scoring methods, we take each 
affiliation (the 12 Yahoo sectors) and ask how well the companies 
can be separated into those belonging to the affiliation and those 
not.  We examine the five scoring functions listed in Section 2.2. 
and two extensions (described later). We also examined the 
methods using as the affiliations 97 Yahoo industries, with similar 
results (which we also use for illustration). 

4.1 ROC Analysis for Sectors 
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Figure 2: ROC curve for weighted, entity-normalized method 

We use ROC analysis [7, 8] to assess the model’s ability to 
separate class members from non-members.  For a given scoring 
of companies, ROC curves plot all the possible tradeoffs between 
correctly classifying the members of the class (the true positive 
rate, on the y-axis) and incorrectly identifying a non-member of 
the class (false-positive rate, on the x-axis).  The area under the 
ROC curve (AUC), equivalent to the Wilcoxon-Mann-Whitney 
statistic, is the probability that a member of the class will be 
scored higher than a non-member [9].  Error is calculated as 1 – 
AUC, and since the AUCs often are close to 1, relative error 
reduction3 is reported for comparisons.  
Figure 2 shows the ROC curves for the best method, the weighted, 
entity-normalized direct score (swend).  Generalization performance 
ranges from moderate class separability (AUC=0.68 for Capital 
Goods) to excellent class separability (0.93 for Transportation).  
Referring back to Figure 1, Transportation is green, and we can 
see that green nodes are very well interlinked.  (Capital Goods, 
cyan, are interlinked not nearly as well.) 

Table 1: Area under curve (AUC) for all scoring methods 

Sector s end s cnd s wend d si d efigf
BasicMaterials 0.7318 0.6644 0.7339 0.6218 0.6494
CapitalGoods 0.6781 0.6635 0.6810 0.5274 0.5476
Conglomerates 0.7563 0.5318 0.7697 0.6236 0.6281
ConsumerCyclical 0.7379 0.6087 0.7463 0.5845 0.6073
ConsumerNonCyclical 0.8704 0.6530 0.8753 0.7227 0.7285
Energy 0.8685 0.7701 0.8682 0.8083 0.8520
Financial 0.8002 0.6619 0.8067 0.5566 0.6238
Healthcare 0.8890 0.6918 0.8898 0.7652 0.8142
Services 0.7966 0.6035 0.8124 0.5823 0.6031
Technology 0.8378 0.6785 0.8427 0.7146 0.7294
Transportation 0.9306 0.7325 0.9307 0.8406 0.8825
Utilities 0.9103 0.7982 0.9096 0.8841 0.8924
Average 0.8173 0.6715 0.8222 0.6860 0.7132

area under curve

 
Table 1 reports the AUCs of all 5 scoring functions for the 12 
classification tasks.  In most cases all the scoring methods classify 
considerably better than random (represented by the diagonal in 
ROC space).  swend consistently performs better than the other 
scores (with only a few exceptions)..  Table 2 shows the relative 
error reduction of swend over the other methods.  swend has lower 
error than its closest competitor, the simple send, on 10 of 12 
classification tasks, but achieves only a 2.3% error reduction on 
average. 
Notice the curious shape of the ROC curves in Figure 2: rather 
than having smoothly decreasing slopes (for ROC curves the 
slope corresponds to the class-membership likelihood ratio), after 
a certain point the slope is constant (to (1,1)).  This is an 
indication that swend is giving equal (low) scores to a large number 
of entities.  Examining the scores we see that, indeed, the direct 
method is giving scores of zero to many entities.4   

                                                                 
3 Relative error reduction of method2 over method1 = (AUC2 – 

AUC1)/(1-AUC1). 
4 Giving scores of zero to entities not in the class is of course 

desirable.  The problem here is that members of the class are 
receiving scores of zero.  The percentage varies from sector to 
sector, and can be estimated by (one minus) the TP rate at the 
beginning of the final linear segment of the ROC curve.  E.g., 



    
  

Table 2: Relative error reductions for swend over other methods 

Sector s end s cnd d si d efigf
BasicMaterials 0.0080 0.2072 0.2966 0.2411
CapitalGoods 0.0090 0.0520 0.3250 0.2948
Conglomerates 0.0550 0.5081 0.3881 0.3807
ConsumerCyclical 0.0322 0.3517 0.3895 0.3540
ConsumerNonCyclical 0.0382 0.6407 0.5503 0.5408
Energy -0.0028 0.4267 0.3122 0.1092
Financial 0.0327 0.4283 0.5642 0.4863
Healthcare 0.0068 0.6423 0.5305 0.4066
Services 0.0778 0.5268 0.5508 0.5274
Technology 0.0303 0.5106 0.4489 0.4186
Transportation 0.0007 0.7409 0.5653 0.4101
Utilities -0.0073 0.5520 0.2201 0.1600
Average 0.0234 0.4656 0.4285 0.3608

error reduction

 
swend=0 means that the entity is not linked to any (background) 
members of the class.  This may largely be due to our limited data 
sample.  A larger sample would contain (i) many more links and 
perhaps (ii) many more labeled background companies.  
Moreover, comparing different direct scores on these data 
obscures their differences, because (as is evident in Figure 2) due 
to the large number of zeros, for a given industry the AUCs 
cannot be very different for different direct scorings (which would 
correspond only to different slopes of the already-very-steep 
initial rise). By definition, on the cases with no links to 
background class members, all of the direct methods give zero 
scores.   
Therefore, to assess the potential of the scores with more data, and 
to compare different direct scores on those cases where they can 
differ, we magnify the far-left part of the curves by looking only at 
those cases with at least one link to a background member of the 
class (i.e., ignoring the zero scores).  The resultant ROC curves 
for swend are shown in Figure 3. 
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Figure 3: ROC curve for weighted, entity-normalized method, 

ignoring non-linked entities 

                                                                                                           
for Transportation approximately 10% of the members of the 
class receive zeros.  For Capital Goods, approximately 50% 
receive zeros. 

In Figure 3, most of the AUCs are 0.9 or better, and only one 
(Conglomerates, AUC=0.67) is less than 0.8.  This demonstrates 
that swend can separate the entities by class remarkably well, in 
cases where it has a chance—i.e., where there is at least one link 
to a known member of the class. 

Table 3: Area under curve (AUC) for all scoring methods 
ignoring non-linked entities 

Sector s end s wend d si d efigf
BasicMaterials 0.9106 0.9286 0.6442 0.6685
CapitalGoods 0.8321 0.8574 0.5299 0.5676
Conglomerates 0.5755 0.6668 0.7079 0.7169
ConsumerCyclical 0.8205 0.8602 0.5853 0.6107
ConsumerNonCyclical 0.9079 0.9317 0.7482 0.7578
Energy 0.9291 0.9281 0.8283 0.8522
Financial 0.8892 0.9107 0.6243 0.6646
Healthcare 0.9397 0.9405 0.7599 0.8078
Services 0.8143 0.8462 0.5712 0.5970
Technology 0.8373 0.8446 0.7051 0.7195
Transportation 0.9567 0.9624 0.8551 0.9124
Utilities 0.9397 0.9518 0.9076 0.9225
Average 0.8627 0.8857 0.7056 0.7331

area under curve (no zeros)

 
Table 3 reports the AUCs of all 5 scoring functions for the 12 
classification tasks for this task.  In most cases all the scoring 
methods classify considerably better than random (represented by 
the diagonal in ROC space), but again send and swend perform the 
best.  The wend score consistently performs better than the other 
scores (with only a few exceptions).  Table 4 shows the relative 
error reduction of the swend over the other methods.  Even over 
send, it achieves a 15% error reduction on average. 
Table 4: Relative error reductions for swend over other methods 

ignoring non-linked entities  

Sector s end d si d efigf
BasicMaterials 0.2019 0.7994 0.7846
CapitalGoods 0.1506 0.6966 0.6701
Conglomerates 0.2152 -0.1406 -0.1768
ConsumerCyclical 0.2209 0.6628 0.6408
ConsumerNonCyclical 0.2586 0.7290 0.7182
Energy -0.0152 0.5810 0.5132
Financial 0.1945 0.7624 0.7339
Healthcare 0.0133 0.7521 0.6904
Services 0.1716 0.6413 0.6183
Technology 0.0444 0.4729 0.4458
Transportation 0.1298 0.7402 0.5702
Utilities 0.1994 0.4779 0.3777
Average 0.1487 0.5979 0.5489

error reduction (no zeros)

 
It is important to emphasize that we are not claiming that these 
results show that swend is generally preferable.  This will be 
domain and task dependent.  For this particular domain, swend 
seems to be the better score.  This general result is reinforced by 
examining the results on the finer-grained industry (rather than 
sector) affiliations.  For 34 of the 97 industries the two methods 



    
  

produce identical generalization performance.5  For the remaining 
63 industries, send is superior for 11 and swend for 52.  Figure 4 
plots the AUCs of swend (vertical axis) and send (horizontal axis).  
Points above the diagonal indicate that swend has a higher AUC 
than send.  Clearly, swend is the better performer on these finer-
grained classification tasks, sometimes by a large margin. 

 
Figure 4. AUC of swend vs. AUC of send on the 97 industries 

Returning to the zero scores, the direct RVS method does not 
stand a chance when there are no links to a known member of the 
class.  The indirect method is not so limited—the only time it will 
give a non-zero score for a class is if the entity in question is not 
linked to anything that a known member is linked to.  Scoring all 
the companies with the indirect method indeed produces few 
zeros.  Unfortunately (as shown in Table 1), the classification 
performance is not nearly as strong with the indirect methods.  
The indirect methods show a much wider range of performance, 
from Utilities (almost as good as with the direct score) down to 
Capital Goods (apparently random). 

4.2 Hybrid methods 
In order to improve the direct methods’ performance on entities 
with no direct links to the class, it is possible to combine the 
direct and indirect methods, using the latter only when the former 
returns a zero.  
Definition: The weighted, efigf combined score of an entity is: 
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Thus, we use the weighted, entity normalized direct score swend, 
unless swend is zero, in which case we scale the efigf-score by the 
minimal, greater-than-zero swend to fit the defigf‘s below the true 
weighted, entity normalized scores. Using this approach, we see a 
modest improvement. On average we see 4% additional error 
reduction over swend (see Table 5). However, there are certain 
cases where additional error reduction is very large 
(Transportation, Energy error reduction >20%), and three cases 
where it increases error (on average 9% relative increase). This 

                                                                 
5 For sparser data the two methods’ scorings will become more 

similar—and exactly identical scorings are not necessary to 
produce identical ROC curves. 

only illustrates the need for a flexible framework within which a 
variety of RVS methods can be defined and tested.  
Another approach to address the scoring of entities with no links 
to a known member of the class in question is to investigate 
degree-2 links (links to entities “two hops” away). Redefining the 
links in the direct RVS model results in a score, which is 
analogous to send, the simple entity-normalized direct RVS score, 
but follows links of degree two.  Consider ŵ″ to be the analogue 
to ŵ, except with two-hop links.  
Definition: An entity ej can be described by an simple second-
degree entity vector ŵ″j = (ŵ″j,1, ŵ″j,2, …), where: 

ŵ″j,k = 1 if ŵj,i * ŵi,k = 1 for any ei, ek in E 
Definition: The second-degree class-normalized direct RVS score 
of entity e for class i is the inner product of w ′′ˆ and the canonical 
class vector ci, normalized by the L1 norm of c. 
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Again we can define a combined score: 
Definition: The weighted, second degree class-normalized 
combined score  of an entity is: 
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As Table 5 shows this method improves further over swend. On 
average we get 9% relative error reduction with some reductions 
going up to 20% (for energy) and two additional being higher 
than 20 % (Healthcare and Technology). Like with the weighted, 
efigf combined score cs, however, some sectors have an error 
increase, the largest being Conglomerates with 20 %.  (NB: by its 
nature, Conglomerates is the one sector for which we would not 
expect members to be linked to each other.)  This illustrates that 
even in a domain where simple scores perform very well, more 
complex scores can add value. 

Table 5: AUC and relative error reduction with combined 
methods 

Sector s wend cs cs'' cs cs''
BasicMaterials 0.7339 0.7313 0.7677 -0.0098 0.1270
CapitalGoods 0.6810 0.6525 0.7187 -0.0891 0.1183
Conglomerates 0.7697 0.7702 0.7232 0.0024 -0.2019
ConsumerCyclical 0.7463 0.7178 0.7682 -0.1126 0.0862
ConsumerNonCyclical 0.8753 0.8859 0.8726 0.0850 -0.0215
Energy 0.8682 0.8981 0.9078 0.2267 0.3003
Financial 0.8067 0.7938 0.8129 -0.0671 0.0319
Healthcare 0.8898 0.8945 0.9136 0.0425 0.2163
Services 0.8124 0.8150 0.8234 0.0137 0.0586
Technology 0.8427 0.8458 0.8496 0.0200 0.0437
Transportation 0.9307 0.9470 0.9458 0.2347 0.2177
Utilities 0.9096 0.9185 0.9187 0.0979 0.1011
Average 0.8222 0.8225 0.8352 0.0370 0.0898

area under curve rel. error red.

 

4.3 Comparing scores across sectors 
The ROC analysis above evaluates the problem: given a sector, 
how well can companies be separated into those in the sector and 
those not.  More specifically, it evaluates the scoring function’s 
ability to rank the companies by probability of class membership.   



    
  

The dual question is: given a company, how accurately can it be 
placed into the “correct” sector?   
The base rate for this classification problem will be the marginal 
probability of the most common class; in our (1999) data, 0.29 
(Technology).  The accuracy of swend for classifying companies 
into the correct sector was 0.68.  Table 6 shows the accuracy for 
the companies in each sector. For only one sector 
(Conglomerates) was the classification accuracy worse than the 
base rate (0.15) and this sector also had the smallest number of 
members (recall that swend does not normalize for the size of the 
class).  Classification is one (important) case where comparing 
scores across sectors is necessary.  We will return to this in the 
follow-up analysis below.  

Table 6: Accuracy for classifying companies in each sector 
Sector Correct Total Accuracy
Technology  392 505 0.78
Energy 54 71 0.76
Transportation 28 38 0.74
Healthcare  131 180 0.73
Utilities  21 30 0.70
Financial  111 170 0.65
Services  286 444 0.64
ConsumerNonCyclical  38 60 0.63
BasicMaterials  47 104 0.45
ConsumerCyclical  36 99 0.36
CapitalGoods  17 73 0.23
Conglomerates  3 14 0.21
Overall 1164 1788 0.65
base rate (Technology) 0.28

 

4.4 Other methods 
How good are these results, with respect to other methods of 
company-affiliation classification?  Our goal in this paper was to 
demonstrate the RVS model, and not to assess what is the best 
method for company affiliation identification.  Nevertheless, for 
completeness we address this question briefly.  
Running the relational learning program FOIL [10] on these data 
failed completely, returning a single clause for each company.  
We modified FOIL to search for more general theories, and it still 
performed far worse than the RVS methods.  In retrospect, this is 
not surprising because FOIL (and many other ILP [5] algorithms) 
do not perform even rudimentary numeric aggregations—which 
are exactly what the direct RVS scores do (compute normalized, 
weighted counts). 
We created a ensemble, multi-document, full-text classification 
method, using the stories from which the links were extracted.  
This method performed similarly to swend but was two orders of 
magnitude slower.  Interestingly, when the sector-specific word 
models were examined, the names of major companies in the 
sector were given high scores.  So the text-based method chose to 
use our “links” in its vector-space model.  
In the financial literature and industry, companies are clustered 
into industry groupings based on correlations in their financial 
time series (and singular-value decompositions) [11].  Our 
experiments so far with these methods have not yielded 
remarkable performance on our classification tasks. 
Probabilistic and statistically oriented relational learning methods, 
such as PRMs [12], and relational versions of naïve Bayes [13], 

decision trees [14], etc., hold the most promise for competing 
with the RVS model.  These methods do perform aggregations 
over the values of the attributes at linked nodes.  In particular, 
properly utilized COUNT or MODE operations would incorporate 
the fundamentals of the basic, direct RVS scores.6  Whether these 
would be passed through the model to produce effective scores is 
not clear, but it would not be surprising.  However, even if they 
performed competitively, they far more complex learning 
procedures than the RVS scoring functions. 

5. Discussion and Followup 
So, what does our case study illustrate about the relational vector-
space model?  First, it shows that there are domains where the 
interlinkage between class members is strong enough for simple 
scoring methods based only on linkage to capture much of the 
“signal” needed for good classification.  And for some tasks the 
scoring can lead to remarkable classification accuracy.  For 
example, even though Transportation companies represent only 
2% of the companies, the excellent Transportation scores 
(AUC>0.9) lead to a classification accuracy of 74%, when 
classifying by choosing the highest sector-score (of the 12). 
Intuitively, we expect the direct RVS methods to excel when (as 
in Figure 1) entities are more likely to be linked to other entities 
with the same class membership.  This intuitive notion is captured 
more formally by relational autocorrelation [15]: the correlation 
between values of the same attribute on linked entities “represents 
an extremely important type of knowledge about relational data, 
one that is just beginning to be explored and exploited for 
learning statistical models from relational data” (ibid).  We can 
use this notion to understand the RVS model in more detail. 
Adapting Jensen & Neville’s [15] definition to our context, 
consider a set of entities E, an attribute f, and a set of paths P that 
connect objects in E. 
Definition: Relational autocorrelation C’ is the correlation 
between all pairs (f(x1),f(x2)) where 2121 ,, xxExx ≠∈ and such 

that .)2,1( Pxxp ∈∃  

Let us define degree-k relational autocorrelation as further 
restricting the length of )2,1( xxp to be k.  Intuitively, the direct 
RVS method should be appropriate when the degree-1 relational 
autocorrelation in the entities’ class values is high.  We can use an 
existing measure of relational autocorrelation to verify this.  
Following Jensen & Neville we use Pearson’s corrected 
contingency coefficient to measure class-value autocorrelation.7  
For our sector-classification problem, the degree-1 relational 
autocorrelation considering all classes is 0.84, reflecting our 
intuition from inspecting Figure 1.  Figure 5 shows for each class 
the classification performance (accuracy) plotted against the class 
vs. not-class degree-1 autocorrelations.  The rankings of 
performance and autocorrelation are very similar (Pearson’s 
correlation coefficient is 0.76).  This high value is due to a large 
part to Conglomerates, which has the lowest autocorrelation and 

                                                                 
6 We are not aware of the use of a weighted COUNT or MODE, 

but they should be straightforward to include. 
7 Jensen & Neville found high relational autocorrelation for 

almost all attributes they examined in linked movie data. 



    
  

the lowest accuracy.  Nonetheless it suggests that the performance 
of the direct RVS method indeed is related to the degree-1 
relational autocorrelation in the class values.   

 
Figure 5: Accuracy versus degree-1 autocorrelation 

More specifically, the direct RVS score itself is a measure of 
degree-2 relational autocorrelation where the path p(x1,x2) passes 
through the entity to be classified.  If the degree-1 relational 
autocorrelation is high, one would expect entities connected by 
paths of length 2 through an entity of class C, also to have class C 
(this is the condition for the direct RVS score to be effective for 
classification).   

 
Figure 6: Fraction of correct and incorrect Sector 
Classifications (black are correct classifications, gray are 
incorrect classifications) 
This suggests that the RVS scores can be used for assessments of 
the nature of the relational autocorrelation in a graph, that are 
finer-grained than given by the contingency coefficient.  For 
example, for our sector-classification problem, Figure 6 is a 
histogram, plotting the distribution of companies over the 
maximum of swend for any of the 12 classes.  The black (gray) 
shading shows the percentage of companies with the same 
(different) class as the class with the maximum score. 
Interestingly, the distribution shows that for this domain, most 
(>75%) of the entities have a (weighted) majority of the links to 
entities of a single class.  More often than not, this class is correct. 
Let us use swend to view two of the particular sector classification 
tasks, Transportation (high AUC & accuracy) and Capital Goods8 
                                                                 
8 Conglomerates is similar, but has only 13 member companies (as 

compared to 61 for Capital Goods). 

(low AUC & accuracy).  Figure 7 and Figure 8 show histograms 
of the sector-specific swend scores for the members of the class 
(black) and the non-members (gray).  We can see clearly that 
Transportation companies are primarily linked to other 
Transportation companies, and other companies are not.  Capital 
Goods companies, on the other hand, show very different 
connectivity—they are not primarily linked to other Capital 
Goods companies.  In fact, their linkage to other Capital Goods 
companies is remarkably similar to that of the rest of the 
companies. 

 
Figure 7: Sector specific swend scores for Transportation  
(gray is All but Transportation, black is Transportation) 

 
Figure 8: Sector specific swend scores for Captial Goods 
(gray is All but CapitalGoods, black is CapitalGoods) 

Finally, consider the comprehensive view of class-interlinkage 
given in Figure 9 (on last page), which shows the class 
interlinkage for all class pairs.  Each individual graph shows the 
averages across the members of the class of the swend scores for 
each of the 12 classes.  This figure gives a condensed 
visualization of the class-specific interlinkage in the graph.   
We argue that this visualization could lead to insights about the 
classes.  Pretend for the moment that we did not already have a 
basic understanding of the sectors.  We see that Capital Goods has 
high linkage to most of the other classes.  Transportation, on the 
other hand is linked primarily with itself.9 And Services are linked 
                                                                 
9 We have not normalized here by the size of the class here, in 

keeping with the rest of the paper (so Technology is weighted 
heavily across most of the classes).  Doing so gives a different, 
and equally intriguing visualization. 



    
  

almost uniformly to the rest of the sectors. Utilities are linked to 
Energy and Transportation (and in contrast to the rest of the 
sectors, not to Technology much at all).  Each of these properties 
makes good sense for the corresponding class. 

6. LIMITATIONS AND FUTURE WORK 
For this study we limited ourselves to relatively simple RVS 
scoring functions.  This was partially due to our desire to flesh out 
the basics of the model first before getting fancy, but more due to 
the remarkable performance of the basic methods in our case-
study domain.   
There are several ways in which the current model is limited.  We 
only consider a single link type.  This does not restrict the model’s 
applicability, because (as we did in our case study) the type of 
links can simply be ignored.  However, it may obscure 
information that is important for classification.  The model as 
presented could be extended to handle multiple link types simply 
by creating multiple vectors (one per link type) and concatenating 
them.  Alternatively, different models could be produced for 
different link types, and selected among or applied as an 
ensemble.  Whether or not these would be effective techniques is 
a subject for future study.   
We also only consider a single entity type.  This is a more 
fundamental limitation of the model, and we have not considered 
carefully how to extend it.  One obvious way to apply the model 
to data with multiple types of entities is to focus on one entity 
type, and consider paths between these entities (perhaps going 
through other entities) to be the links. 
The direct RVS scores (as presented) abstract away most of the 
graph structure, only considering adjacency.  This is the source of 
the model’s elegant simplicity, but it also limits the types of 
problems on which it will be effective.  It could be extended by 
defining links in the model to be paths of length greater than one.  
These could be treated similarly to multiple link types, as 
discussed above.  
We have assumed that more data will (partially) resolve the issue 
with many zero scores (described in Section 4.1).  We have little 
support for this assumption, but it seems reasonable.  We have 
procured another data set to test with; however, we have not yet 
completed the data preprocessing necessary to make the two data 
sets comparable.  
Finally, we have looked at different sector and industry 
classifications (SIC codes and Hoover’s classification) with 
qualitatively similar results, but not studied comprehensively.  We 
would like to show that the RVS model with newswire-extracted 
links can model various, different classifications that have little 
similarity to each other (the aforementioned surprisingly do not) 
but are nevertheless meaningful. 

7. CONCLUSIONS 
The relational vector-space model is a useful abstract 
representation for studying relational classification.   With simple 
choices for its components (entity vector, class vector, 
normalization function) it represents straightforward, intuitive 
notions of classification by relational autocorrelation.   With more 
complicated choices, it can represent more complex classification 
models on linked data (still abstracting away much of the graph 
structure). 

In our case study of company affiliation classification, relatively 
simple scoring functions performed remarkably well, illustrating 
the potential utility of the RVS model.  However, the RVS scores 
may be most useful as feature constructors in other, more 
complicated systems.  Relational learners can include these scores 
as (additional) aggregation functions.  Standard feature-vector 
learners can use the RVS scores to take into account an important 
part of relational structure. 
The case study also illustrated the advantage of the structure that 
the RVS model places on the space of scoring functions, allowing 
them to be explored systematically.  Although the improvement 
for this domain was not dramatic, the results of combining the 
different scores do suggest that combined RVS scoring models 
may be advantageous in certain domains. 
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Figure 9.  Average class-specific swend scores by class, as visualization of class interlinkage in graph 

 

 


