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ABSTRACT 
In the past, most collaboration support systems have 
focused on either automating fixed work processes or 
simply supporting communication in ad-hoc processes. This 
results in systems that are usually inflexible and difficult to 
change or that provide no specific support to help users 
decide what to do next.  
This paper describes a new kind of tool that bridges the gap 
between these two approaches by flexibly supporting 
processes at many points along the spectrum: from highly 
specified to highly unspecified. The development of this 
approach was strongly based on social science theory about 
collaborative work.  
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INTRODUCTION 
Many researchers have commented on the increased pace of 
change in today’s economy. Increasingly groups and 
organizations have to adapt their processes to rapid changes 
arising from new technologies, new customer demands, or 
new competitors. Current process-support systems (e.g., 
ERP, workflow management systems), however, are usually 
focused on supporting fixed organizational processes. 
Typically they are too rigid to easily support changing 
processes. They are mainly used for highly specified and 
highly routinized organizational processes. As an 
alternative, many organizations use communications 
support systems or Groupware (like email or Lotus Notes) 
to support their rapidly changing, non-routine processes. 
But these systems typically require users to do a lot of work 
themselves to keep track of and understand the ongoing 
processes: what has been done, what needs to be done next, 
and so forth. 

This dichotomy is paralleled by an old debate in the 
CSCW-literature about the nature of collaborative work 
(see [1-5] among others). Both sides in this ongoing debate 
present some deeply rooted beliefs about how human actors 
perceive the world and decide to act.  
One side follows the belief that human actors typically 
follow the cycle of problem analysis, solution search or 
synthesis, and then the execution of that plan. The goal of a 
process-oriented collaboration support system in this 
perspective is to increase the speed and efficiency of each 
of the steps in the cycle as well as facilitate their seamless 
integration. Workflow management systems (WfMS) and 
other process support systems like enterprise resource 
planning systems (ERP) are based on this research stream 
and have typically focused on the execution of 
standardized, predefined organizational process (e.g., [6-9] 
and others).  
The other side sees plans as resources for action [3], which 
are used in conjunction with the environment to articulate 
and reason about the next action steps [10-12]. Following 
this perspective typical WfMSs are too restrictive as they 
traditionally prescribe the workflow and do not allow users 
to adapt the process to the local situation. Therefore, 
researchers following this tradition have often advocated 
using flexible communication support systems (like email 
or discussion databases) or repositories (e.g., document 
management/imaging systems) to support organizational 
processes. Those systems, however, have the disadvantage 
that an actor typically is on his/her own in deciding what to 
do next. 
To date, none of the approaches has offered a conclusive 
answer. I concur with others (e.g., [13-15]) that 
organizational activities often include a mix of both 
procedure-like and ad-hoc type parts. The research 
presented in this paper, therefore, argues in favor of 
bridging between both perspectives by developing systems 
that will support the whole range of dynamic organizational 
activity: from well-specified and routine (reacting to 
exceptions as they occur) to highly unspecified and situated.  
In the remainder of this paper, I will first ground this novel 
idea in a practical scenario and social science theory. This 
will help to ground and explain the approach as well as to 
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facilitate the presentation of the proof of concept prototype 
system. I will conclude with a brief survey of related work 
and a discussion of the major lessons learned. 

A SCENARIO: HEIDI’S PROBLEM 
It is Friday afternoon in Zurich, Switzerland and Heidi, a local 
account manager for Zing Computers (pseudonym), a worldwide 
producer of computers, gets a phone call from the Swiss stock 
exchange. They ask for a delivery of a RT2000-server within 48 
hours to Zurich, since they need to replace an existing server that 
got damaged in a fire to recommence trading on Monday 
morning. Heidi now faces the problem that the traditional order-
entry/fulfillment system will not be able to accommodate this 
request, since the truckers in the European Union (EU) are on 
strike and the major assembly plant for Europe is in Rotterdam. 
The only other tools available to her are communication support 
systems like email, telephone or fax, which give her all the 
flexibility she needs. However, that also puts the burden of 
contextual sensemaking (i.e., understanding the context of the 
task) on whomever gets her messages/faxes/phone-calls. 
THE CONCEPTUAL FRAMEWORK 
The conceptual framework starts with the commonalties 
between the situated and the procedural approaches. I 
believe that both approaches share some minimal 
assumptions about human actors. First, human actors are 
boundedly rational and have only limited knowledge about 
the future. Consequently, plans (as well as process maps or 
Workflow descriptions) are often imperfect, since they 
typically can not account for all possible circumstances. A 
process support system will therefore have to allow for run-
time changes to the original plan and will have to provide 
contextual information about the running process to the 
actor as a basis for reasoning about the possible next steps. 
Process maps, a representation of plans, can serve as part of 
such contextual information [3, 16, 17]. 
Second, as Newell and Simon [13] point out, our 
environment includes well-structured and less well-
structured problems. Consequently, we have problems with 
well-defined solution strategies and others, where the 
solutions strategy is rather unclear [15]. The transparency 
of the solution strategy (which can be represented as a 
process map) may change over time, as our understanding 
of the problem changes. As an elusive problem becomes, 
for example, better understood its solution strategy may 
become easier to determine. Or a seemingly simple problem 
may become highly complex, as new facets of the problem 
emerge during problem solving, rendering the original 
solution strategy inapplicable. 

The Specificity Frontier 
The first consequence of this approach in regard to the 
enactment of activity is that the specificity of process 
structure changes over time. Bernstein and Schucan [18], 
for example, provide a description of how the money-
transfer process gained specificity over time. Before the 

formalities of banking were established, this process started 
as a vaguely specified process involving an ad-hoc letter 
sent by a courier. With increasing maturity of the banking 
industry, the specificity of the process increased 
significantly. Today, a money transfer is a fixed computer-
based inter-bank clearing process with a fixed set of 
attributes. 
This illustrates the major pillar of this conceptual 
framework: organizational processes lie on a continuum 
from highly specified and routine processes at one extreme 
to highly unspecified and dynamic processes at the other 
extreme. I call this continuum the specificity frontier (see 
Figure 1). A whole series of points on this frontier are 
possible, from a highly specific to highly unspecific.  
As Figure 1 depicts the concept of a specificity frontier in 
some sense bridges the gap between the structured WfMS 
and the unstructured communication systems. It allows for 
the co-existence of well-specified and almost procedurally 
executed processes (traditionally supported by WfMSs), 
and emergent situated processes (typically supported by 
communication support systems). It also argues that those 
two types of processes are at the extremes of a frontier of 
processes. It proposes that the whole range of processes, 
from highly specified and routine to highly unspecified and 
dynamic should be supported. 
Heidi’s problem, for instance, starts out as having a reasonably 
well-specified solution strategy (process). When she, however, 
realizes that the truckers in the EU are on strike the process 
suddenly becomes much more problematic: the known description 
is not applicable anymore. Thus a support system that allows 
processes to start out as being well defined (and supported by a 
WfMS-type technology) and lets the structure become flexible 
(and supported by a groupware technology) as soon as she finds 
out about the strike would be ideal for her. 
Consequently, a model of business processes should be able 
to capture a range of process specificity (from well 
specified to highly unspecified). A process support system 
should be able to interpret process models with varying 
degrees of specificity. Furthermore, it should support users 
when changing the processes’ specificity at run-time. 
Achieving those goals it can close the specificity gap 
(pictured as a question mark in Figure 1) between 
traditional process-support systems and communication 
support systems, and thus bridge systems following the 
workflow tradition and the situated action tradition. 

Emergent Activity Relies on Structure 
The second consequence of those commonalties (i.e., 
bounded rationality and varying specificity of tasks) is 
illustrated in Orlikowski [19], which shows how change can 
be understood as a series of improvisational embellishments 
to existing practice. In other words: the actors attempt to 
solve the problem at hand following their interpretation of 
the structure and the current context.  



 

This illustrates the second pillar of the conceptual 
framework: that emergent activity relies on some form of 
structure and thus some form of specificity. Emergent 
activity surfaces “… unpredictably from complex social 
interactions” ([20], p. 588). However, we may be able to 
support it by supplying a fertile environment for new 
solutions to emerge, “… much as does a supersaturated 
solution in the moment it is disturbed” ([21], p. 267). For 
example, Jazz improvisation, a type of emergent activity, 
depends on the actors “… having absorbed a broad base of 
musical knowledge” ([22], p. 492). Analogously, people in 
an organizational context must have some foundational 
knowledge about the task at hand. In addition, as Weick 
[23] points out ‘… improvisation does not materialize out 
of thin air…’ (p. 546). People need something to improvise 
on. This explains the limited success of communications-
support systems for business process support: from an 
improvisational standpoint human actors using those 
systems incur the overhead of having to understand the 
context of the task at hand as a basis for improvisation. In 
the domain of organizational activity, a process map with a 
low degree of specificity and information about the 
enactment context could help actors in their sensemaking, 
provide a basis to improvise on and thus a fertile 
environment for emergent processes. 
Consequently, any system that plans to support emergent 
activity (which is what all activity is to a certain degree 
following the situated action approach) should provide 
some structure as a contextual basis for situated 
improvisation. Process maps (in analogy to geographical 
maps) can provide such a structure.  

Other Requirements 
Previous research (see [24-27] among others) has shown 
that a process support system, also should allow for the 
change, composition and execution of processes at run time 
as well as provide some means to be integrated into an 
existing environment (e.g., using an open interface).  

THE SPECIFICITY FRONTIER APPROACH AND 
PROTOTYPE SYSTEM 
Now that I have explained the theoretical grounding for the 
prototype system I will present the major design ideas I 
used. I will discuss the proof-of-concept prototype system, 
which served to clarify, illustrate and evaluate those design 
ideas. Since some of the design ideas can be abstract 
without practical example, I will walk through Heidi’s 

problem as a practical usage scenario 
that will explain the day-to-day usage of 
the prototype system as I introduce new 
concepts.  

Key Ideas 
The major obstacle in designing a 
process support system following my 
conceptual framework is the need for an 
implementation approach, which can 
handle process specifications at multiple 

points of the specificity frontier as well as transformations 
of the specificity of a process during execution. As Figure 2 
shows, I chose to divide the specificity frontier into sub-
spectra, each supported by its own interpretation logic. I 
decided to use four sub-spectra, since existing process-
support technology (email/groupware, constraint 
monitoring, constraint-based planning, and transaction 
processing) could be categorized into four groups: 
providing context for enactment, monitoring constraints 
about the task, providing/planning options to reach a goal, 
and guiding through a given script. 
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Figure 2: Different Execution Types 

The second idea was to develop run-time transfer-
mappings between the sub-spectra. So processes can be 
seamlessly moved to another sub-spectrum by increasing 
or decreasing the specificity of the process definition during 
run time. 

Specifying and Interpreting Processes Models with 
Varying Degrees of Specificity 
Providing Context 
In the least specified of the sub-spectra (A, on the left in 
Figure 2) the support system does not have a lot of 
information about the process. Therefore its major goal is to 
provide context for the user to be able to decide what to do 
next. Similar to the Task Manager presented by Kreifelts et. 
al. [28], the system therefore helps the users to share to-do 
lists and documents (resources), which are specific to the 
task context at hand. The system also integrates with other 
communication techniques like email and on-line 
discussions, as well as on-line synchronous communication 
support such as chat, to allow users to communicate with 
their respective collaborators. The specificity of the task to 
the user may vary depending on the information contained 
in the documents. The system’s support, however, will 
remain the same throughout this sub-spectrum, since the 
system cannot decode any of the information in the 
documents. 
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Figure 1: The Specificity Frontier 



 

 
Figure 3: Activity Manager 

This is exactly the type of support Heidi needs to start solving her 
delivery problem. Since she has to collaborate with Marianne, a 
European logistics manager in Rotterdam, she should be able to 
share information about the problem and collect information about 
the tasks to be done (e.g., build the new server, arrange shipment 
and billing, etc.). As we can see in Figure 3, the system provides 
a hierarchical to-do list on the left, and shows the resources 
associated with the task selected. Whenever Heidi writes a new 
document in the context of this task (like the highlighted message 
to George on the right in Figure 3) it gets automatically added to 
the resources connected to the task and complements the 
context. 
From an implementation standpoint the system should pro-
vide a shared, distributed-accessible, hierarchical to-do list, 
which allows users to attach files (as resources) to each of 
the to-do items. I chose to implement each to-do item as a 
software-agent, which manages collections of other to-do 
items and of pointers to files in an object-oriented docu-
ment repository. As we will see, the choice of active soft-
ware agents, rather than a passive data structure, becomes 
advantageous when passing the boundary to the next sub-
spectrum. 

Monitoring Constraints 
When the user decides to add some machine-readable con-
straint to a to-do item, the system provides constraint-
monitoring services. For instance, adding a deadline to a to-
do item could allow the system to prompt the user when the 
deadline is imminent (similar to a project management 
system). The system’s support in this sub-spectrum is 
comparable to the support a map provides to a hiker. It 
shows the ravines and the mountains in the area and may 
therefore help the user to reach his/her goal without long 
detours by alerting him/her of an obstacle (i.e., a 
constraint). The more constraints are specified by the user 
the more helpful the system can be in helping the user to 
reach his/her goal. Summarizing, the system helps the user 
by managing constraints between tasks and resources.  
As Heidi and Marianne quickly discover, there are a series of 
constraints that they have to keep track of: the deadline for 
delivery, the type of server, the facts about the strike, etc. When 
those constraints get specified the system can help them to 
observe them by reminding them whenever they are about to 
invalidate one of the constraints. If they were to become late at 

arranging the shipment, for example, the system would alert them 
of the impending problem of a late shipment. So Heidi and 
Marianne add the most relevant constraints (see Figure 4) to the 
“Provide RT2000”-process. 

 
Figure 4: Adding Constraints 

In this sub-spectrum the system thus offers the constraint 
monitoring services in addition to the context provision 
services. Actors therefore still have the same context infor-
mation on which to decide what to do next. The boundary 
between the two sub-spectra is thus crossed as soon as at 
least one formalized constraint is defined.  
Users form the constraints on attributes of the activities/to-
do items or resources in the existing process models. Figure 
4 for example shows a constraint defined on the attribute 
‘Elapsed Time’ of the ‘Provide RT2000’-process. I 
understand that users sometimes experience difficulties 
using formalized specification languages, such as Boolean 
expressions. In the long run I hope to address this problem 
by (1) implementing a graphical expression design tool [29] 
and (2) providing typical constraints to the user as 
templates to tailor (this was found to be useful in other 
situations [30]). Typical constraint types might include: 
time constraints (e.g., deadlines), budgetary limits (e.g., 
headcount, funds available), external factors (e.g., no 
trucking in Europe), specification of resources (e.g., types 
of processors/pre-fabricated servers in warehouse), etc. 
Here is where we reap the benefit for using active software-
agents to represent the to-do items. When the to-do agent 
detects the definition of a new formally defined constraint it 
spawns a sentinel agent, an autonomous piece of code, to 
monitor the constraint. The sentinel agent periodically 
checks for the validity of the constraints. When it detects 
the invalidation of the constraint it guards, the sentinel 
agent raises an exception. Depending on the constraint 
definition (by the user or template), the system will either 
handle the exception itself (e.g., using an exception 
handling routine/engine) or alert the user. Similar to 
personal schedulers, the users can choose how long before 
the actual invalidation of the constraints they want to be 
warned (e.g., 10 minutes before the expiration of the 
deadline, etc.).  

Planning Options Based on Constraints 
When the user specifies the goal, or post-condition, of an 
activity in his/her to do list (via the same mechanism used 
to define the constraints), the system will try to propose to 



 

the user a series of possible approaches to completing 
his/her work. The system achieves this by taking the 
constraints on the activities provided by the user in the 
constraint-preservation sub-spectrum as well as the 
goal/post-condition and using them as a problem 
specification for an Artificial Intelligence planner (see [31] 
for an introduction). The planner will search for a way to 
achieve the goal while guarding all the constraints using 
activities that reside in a repository of possible actions (see 
below). In the best case it may find one or multiple plans. 
The user can then either choose a plan to follow or can 
decide that none of the plans is satisfactory. This would 
typically indicate that there is some constraint about which 
the system does not know. The user can choose to ignore 
the proposed solutions and act on his/her own or add the 
additional constraint (if he/she can formulate it in a 
machine-readable way) and retry the planner. In some cases 
the planner may not return a solution. This may either be 
due to an incomplete repository of possible actions or due 
to an under-specification of the goal. In this case the user 
can either choose to add more actions to the repository or 
just rely on the more limited support functionality of the 
constraint monitoring sub-spectrum.  
Using the hiking analogy this approach parallels giving a 
hiker a trail map of the area and having him/her decide what 
trails he/she would like to take. Since the constraints are 
specified, the map also contains the ravines and mountains, 
such that the user might be able to decide that none of the 
proposed trails are feasible, and choose to take his/her own 
route. Consequently, in this sub-spectrum the system plans 
tasks and resources to achieve goals and lets the user 
decide which of the possible paths to take. 
Marianne realizes that the system might help her to solve the 
problem of how to ship the server to Zurich in time. She therefore 
initiates the planner, which uses the constraints defined for moni-
toring (in the last sub-spectrum) and the goal specification (i.e. 
RT2000 delivered to Swiss Stock Exchange) as a problem speci-
fication. It proposes three shipping options (see Figure 5). First, it 
proposes to airfreight the server from Rotterdam. Second, it pro-
poses to ship the server from the facility in Rotterdam using a 
train. And last, it suggests airfreighting the server from an Ameri-
can facility in Boston. Marianne did not consider this last option 
before, since deliveries to Europe typically come from Rotterdam. 
Given the looming deadline and the EU-trucker strike she decides 
to explore all three possibilities. She quickly discovers that given 
the strike she can’t even find a truck to bring the server from the 
Rotterdam production facility out to the airport. Therefore the first 
option, shipping the server by plane from Rotterdam becomes 
implausible. To investigate the second possibility, using the train, 
she goes into the repository and looks at the train-shipment 
process. She realizes that since Switzerland is not part of the EU 
the train will have to clear customs at the Swiss border. During a 
phone call to the Swiss customs authority she learns that Swiss 
customs at the port of entry (for the train) is closed all day 
Sunday, which would delay the shipment by an additional 24 

hours. Consequently, she chooses the only remaining option: 
shipping the server from the Boston. 

 
Figure 5: Planner 

This part of the interpreter was implemented as a simple 
translator to an existing AI-planner [32]. The interpreting 
agent gathers all the constraints relevant for a to-do item, 
information about the current state of the process (as 
defined by the state of all the involved agents and data-
structures) as well as a goal description (defined as a logical 
expression derived from the post-condition/goal of the 
process) and then passes it as a problem definition to the 
planner. In the scenario, for example, the agents gather the 
constraints like ‘elapsed time < 48 hours’ and ‘no trucks’, 
the goal description ‘having an RT2000-server in Zurich’, 
as well as the definition current state, including the 
knowledge that the EU-truckers are on strike, knowledge 
about Zing Computer’s production facility and information 
about the current time.  
The planner attempts to find a set of actions in the 
repository that will lead from the current state to the goal 
and pass the possible results to the interpreter, which 
translates them back to the process representation used 
within the system and presents them to the user. The 
repository contains a collection of possible actions, which 
are defined by their pre-/post-condition and a description of 
how the transformation from precondition to post-condition 
happens in detail.  
In Marianne’s situation, for example, the repository had to contain 
descriptions of all kinds of transport mechanisms and their 
properties. It thus had to have a description of trucking a good, 
including the property that it typically requires a truck (which are 
unavailable in our scenario), airplane-shipping (which was 
incomplete, since it didn’t take into account the need for getting 
the good to the airport), as well as shipping by train. 
Obviously, the quality of the planner’s results is limited by 
two factors. First, the quality of the constraints entered (in-
cluding the precision of the goal specification) has a major 
influence on the ability of the planner to prune its search-
space. Since the users have entered them, the quality of the 
specification of those constraints is highly dependent on the 
abilities of the users. As mentioned above, though, I hope 
that the usage of expression design tools as well as the pro-
vision of tailorable typical expressions and expression tem-



 

plates provided by process specialists (e.g., residing in the 
repository) may alleviate this problem.  
Second, the quality of the plans generated by the planner is 
dependent on the contents of the repository searched. As 
with any knowledge-based approach there is a bootstrap-
ping problem in filling the repository with an adequate 
initial number of possible actions/processes. In most envi-
ronments, however, a good part of those actions have 
already been formalized and defined in some system (e.g., 
WfMS, ERP). Furthermore, the repository records past 
cases as templates for future action. This ‘case-based’-alike 
[33] approach can simplify some of the initial growing 
phase of the repository by limiting the enormous set-up 
costs.  

Providing “Imperative” Scripts/Directions 
System support in this last sub-spectrum can be likened to a 
traditional WfMS (see [6, 7, 9]). Since the process details 
are algorithmically well defined the to-do item software 
agent will direct each step leading to the result. Rather than 
guarding some constraints, the imperative plan avoids them 
through direction. Thus the system directs the execution of 
tasks using resources to achieve goals.  
The boundary between the constraint-based planning sub-
spectrum and the imperative sub-spectrum is crossed as 
soon as one of the results returned by the planner is chosen 
for enactment that is in an imperative form. The user can 
delegate the choice between the options to the system by 
defining a utility function. As an alternative to using the 
results of the planner the user can also directly browse the 
repository and compose a process manually [34], which can 
also result in an imperative script. The reverse 
transformation happens when the interpreter executing a 
task in the imperative sub-spectrum encounters an 
exception (which might be raised by a user!), stops its exe-
cution and runs the planner to find a number of alternatives 
to solve the current problem. 

 
Figure 6: Starting a WfMS-like Script 

Using the hiker’s analogy again this sub-spectrum can be 
best compared to giving a hiker a specific set of directions. 
The directions are useful as long as he/she does not 
encounter a problem (e.g., an avalanche has cut off an 

existing path). As soon as a problem is encountered the 
hiker has to use a more situated method to finding his/her 
way to the goal (i.e., he/she has to drop the specificity of 
the process specification and use the support provided by 
the system in the other sub-spectra). 
When Marianne chooses to airfreight the server from Boston by 
choosing to start that sub-process in her Activity Manager (Figure 
6) the system starts the underlying WfMS-like shipment process 
of a new server from Boston to Zurich using airfreight in the last of 
the four sub-spectra. Assuming no new exceptions the system will 
direct the shipment just like a traditional order fulfillment system. 
Division of Labor and Transfer Mappings in the Frontier 
It is important to note that this system view relies on a co-
operative understanding of the user system collaboration, 
where the system attempts to provide as much help as it 
can. The more specific a task description is, the more the 
system can support the user and relieve him/her of some 
part of the task. The less specific the task is, the more the 
user will have to do. Consequently the specificity of a 
process description guides the resulting type of division of 
labor between the human actor and the system.  
Another important point is the system’s capability to 
seamlessly integrate between the different spectra. The 
boundary between the context-provision and the monitoring 
sub-spectra is automatically crossed when some constraints 
are formalized in a machine-readable form. The next 
boundary is traversed when the system can find a series of 
paths from the current state to the goal (i.e., the planner can 
find an acceptable plan). Finally, the provision of some type 
of utility function by the user (either implicitly by choosing 
one of the options or explicitly by defining some sort of sort 
criteria between the options) helps the system to cross to the 
scripts sub-spectrum.  
From the user’s point of view, the transfers between the 
sub-spectra happen automatically as soon as the system can 
find the appropriate information. The user does not need to 
explicitly tell the system to cross the boundaries between 
the spectra. He/She does, however, need to enter the 
information (e.g., the constraint specification) that will 
prompt the system to cross the boundary. 

Providing Structure for Situated Improvisation 
The second requirement that the conceptual framework puts 
on process support system is the provision of a context for 
sensemaking and the articulation of next steps. As we have 
seen, the prototype system provides the user with ample 
contextual information (past activities in process context, 
documents related to this process, other actors involved, 
etc.) in order to understand the current state of the process. 
In some stages, however, he/she might not exactly know 
what to do next. The possible options of next actions can, 
for example, lie beyond his/her experience or an alternative, 
novel course of action is needed. Malone et. al. [35] have 
described how a repository of re-usable process compo-
nents as well as past cases can be applied to organizational 



 

processes and can be useful in a process-design and inno-
vation setting. I therefore believe that a process repository 
containing process fragments and past cases can help users 
to articulate next steps and have included a repository, 
similar to the one presented by Malone et. al. [35], in my 
prototype.  

Implementation Details 
Process Models 
The prototype system uses a process description, which is 
comparable to the one used by the MIT-process handbook 
(see [35] or Figure 7 for a meta-model). Activities are the 
central element of the model. Each activity can have an 
arbitrary number of resources in its context (e.g., for pro-
viding the links for the documents, which are related to a 
task). An activity can also have sub-activities (for func-
tional decomposition) and sub-dependencies. Dependencies 
represent constraints between activities. In order to ensure 
the constraint represented by the dependency it needs to be 
coordinated by an activity. When two activities share a re-
source (i.e. a sharing dependency), for example, they can be 
coordinated using a first-come first-serve activity. Finally, 
activities, resources and dependencies can all have an arbi-
trary number of constraints defined on their attributes and 
parts. Furthermore, all elements can participate in a type of 
specialization hierarchy. This allows for a construction of 
an object-oriented-like hierarchy in the process- and case-
repository. The main difference from traditional object-ori-
ented inheritance is the possibility to ‘disinherit’ a feature 
from its parent. So when a person changes an inherited part 
of an activity it does not have loose its inheritance relations 
(see also [35], p. 427). 
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System Architecture and Implementation 
The overall system consists of five major logical compo-
nents: a repository, a process-model interpreter, a planner, a 
user-interface, and an application-programming interface 
(API), which is used by other programs to interact with the 
system. 
The repository stores all the process models, process frag-
ments, and past cases. It furthermore contains references to 
all the resources (e.g., files) that are referenced by 
processes in the system and has some information about all 
the actors/users of the system. Distribution of the process 
data is accomplished through the services of an Object 
Request Broker (ORB). Each object in the repository is 

currently stored in a file, which transparently gets loaded 
when needed. Figure 8 shows the graphical representation 
for the “Sell Server”-process, as it is stored in the 
repository. It consists of three parts, the “Build Server” and 
“Set-up Server” processes as well as the “Ship” 
dependency.  
The interpreter is implemented using a software-agent-ori-
ented approach. Each active element of a process model is 
assigned to an agent. Collaborating with the other agents in 
the process model the software agent attempts to provide as 
much support as possible given the process specification. 
Thus for the “Sell Server”-process, a software-agent is 
going to be started for “Sell Server”, “Build Server”, “Set-
Up Server”, and “Ship”. All those agents are going to inter-
act using a speech-act-based protocol [36] to achieve the 
goal of the task. If the process specification falls within the 
context-provision spectrum, the agents ensure that all the 
resources referenced are accessible. When constraints get 
defined (i.e. in the constraint-preservation sub-spectrum) 
the agents start special sentinel-agents, which regularly 
check the consistency of the constraint. When a post-condi-
tion is specified the agents pass the process definition to the 
planner (see below). Finally, if the process model contains 
imperative features, they execute them analogous to a 
traditional WfMS while still checking on the constraints (to 
find exceptions). In all cases the agents maintain the 
relationships to other agents to which they have 
dependencies. This integration of previously unconnected 
techniques provides the system its ability to support the 
enactment of processes that move along the specificity-
frontier at run-time. Consequently, it is the heart of this 
system’s support for dynamic, rapidly changing organiza-
tional processes. Using the agent-based approach allowed 
me to build a dynamic interpreter, where local variation in 
process specificity and composition is handled by single 
agents and global changes are handled by the interplay 
between agents. This greatly reduced the complexity of the 
interpreter. 
As a planner I used sensory graph-plan (SGP), a LISP-
based research prototype presented by Weld et. al. [32]. 
The interpreter-agents translate the process model and the 
repository-content to a problem definition in the format 
understood by SGP. If the planner returns a result, then the 
interpreter-agents translate it back to the internal process-
specification format.  
In our scenario all parts of the process other then the “Ship”-
dependency (Figure 8) were relatively well defined. So when 
Marianne initiated the planner (Figure 5) the interpreter collected 
all the constraints relevant to the problem (i.e. the constraints on 
“ship” directly, including the fact that it is in relation with both “build 
server” and “set-up-server”). 



 

The user-interface (see Figures 3-6) contains is a 
mixture of a traditional workflow-management 
work-list and a task-management user-interface 
(like the one presented in Kreifelts et. al. [28]) as 
well as a process model editor. It provides a direct-
manipulation interface to all the major functions in 
the system like a browser for the process frag-
ment/case repository, an activity-manager that 
provides a look at the activities a user is presumed 
to complete, a process-editor to change the tasks, 
and some additional maintenance editors. 
The API provides a bi-directional interface 
between the prototype-system and external tools 
such as email, discussion databases, and on-line 
chat-programs.  

EVALUATION AND LESSONS LEARNED 
I have chosen three routes to evaluate the validity of the 
work presented. First, I chose to thoroughly ground my 
work in existing theory, previous work on requirements for 
supporting dynamic organizational processes, and some 
direct exchange with potential users, which provides me 
some assurance that the approach would be helpful in a 
practical setting. Second, I have implemented a proof-of-
concept system and used it myself. 
Finally, I am developing a number of detailed usage 
scenarios based on real-world occurrences and am evalu-
ating how those scenarios would play out in different types 
of support systems: an email/Lotus-Notes-type system, a 
WfMS, and the prototype system presented. At the time of 
writing this analysis is underway; preliminary results 
support my assumptions about the advantages of a system 
basing on the specificity frontier, given its guidance in more 
routine tasks as well as flexibility where needed. 
One interesting lesson learned was that the combination of 
previously unconnected approaches could lead to extremely 
useful solutions, just as the combination of messaging, 
database technology, security, and networking approaches 
led to a versatile tool like Lotus Notes. In my case it led to a 
system with the capability to support rapidly changing 
processes. However, I believe that this type of judicious 
integration could be extremely useful for many problems. 
Another insight was that the usage of agent-oriented tech-
niques allowed me to simplify the implementation of my 
multi-faceted prototype system (given its multiple sub-
spectra) by avoiding code tangling, which complicates 
implementations. As Lopes [37] points out, code tangling 
typically happens when different concerns (or 
implementation issues like synchronization and information 
exchange) have to be addressed within the same piece of 
code. Using the agent-based approach I was able keep the 
complex parts of the implementation (for example, the code 
handling the change in specificity for different types of 
objects in my system) local to its effects and successfully 
avoid code tangling. This insight becomes increasingly 

important for CSCW-researchers, as the experimental 
systems we implement become more complicated and have 
to integrate more technologies (see previous insight). 

RELATED WORK 
As explained in the introduction the approach presented 
here is closely related to systems in the WfMS-tradition as 
well as the Groupware tradition. In the WfMS-domain a 
number of projects have tried to address the issues of 
adaptiveness and flexibility [27, 38-40]. However, all of 
those approaches aim at completely specifying the process 
before it is started using some formal method (e.g., Petri-
nets) and adapting them when exceptions occur. They 
typically do not allow the execution of partially specified or 
abstractly specified process descriptions. On the other end 
of the frontier a number of CSCW-projects and Groupware 
tools have addressed the support for highly flexible 
processes.  
The biggest problem of all those related projects, however, 
is the impermeability of processes across the specificity 
frontier. As can be seen in Figure 9, processes that get 
started in one category of support system are stuck in that 
type of support. Thus the support for an emergent process, 
for example, stays trapped in an ad-hoc system, even 
though its process structure may have emerged during a 
first part of its execution. Even systems basing on event-
condition-action rules (ECA), which are typically used for 
constraint preservation or AI-planning systems, do not 
allow for mobility across the specificity frontier.  
I know of three exceptions: ProZessware [41], Bramble 
[42] and FreeFlow [43]. ProZessware allows embedding 
Lotus-Notes Discussions into well-specified Workflows. 
However, these embedded discussions have to be pre-
specified and the actual process structure is fixed. Bramble 
divides activities into well specified and unstructured. 
Similar to ProZessware it allows composing semi-structured 
activities from both well-specified and unstructured 
activities. In addition, it provides a rich mechanism for 
providing process context. Unlike the system presented 
here, though, it doesn’t seem to allow for run-time 
transformations of activities from well specified to 
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Figure 9: Related Work 
 



 

unstructured and vice-versa. FreeFlow provides a 
mechanism to break the predefined constraints, which 
specify the Workflow. Once a constraint is broken, 
however, its guidance is lost for the process. Thus the 
system only allows a one-time reduction of specificity of a 
process description during run-time. 
The work presented here is set apart from other projects by 
proposing a novel well-grounded approach to enabling the 
mobility of a process instance across the specificity frontier 
during run time.  

CONTRIBUTIONS AND CONCULSIONS 
The primary contribution of this research project is twofold. 
First, it suggests a novel approach to addressing the 
problem of support for dynamic organizational processes. 
The proposition of using varying specificity as an approach 
to solving the problem of supporting dynamic 
organizational processes is novel, non-obvious, promising, 
and supported by social science theory (see above). Second, 
the project showed the technical feasibility of this approach. 
Combining previously separate process-support technolo-
gies from well-specified and routine, to highly unspecified 
and dynamic, into a seamlessly integrated system that fa-
cilitates the mobility of processes across the specificity-
frontier during run-time using a common process model is a 
non-trivial technical achievement. 
Even though the primary focus of this project was not to 
empirically test the usefulness of the system, it provides 
some evidence to its plausibility. By developing detailed 
usage scenarios, based on empirical data, I have shown that 
it is at least plausible that a system like the one I have 
developed could be usable and useful. The preliminary re-
sults of the scenario analysis indicate that the variation of 
process specificity provides a useful approach to support 
dynamic organizational activity. It seems to reduce the 
overhead incurred by actors when attempting to adapt 
existing (running) processes to changing circumstances 
compared to traditional approaches. 
For final proof, however, we will have to wait for a detailed 
empirical test of the usability and usefulness of a system 
like mine in a real world environment – a substantial 
research project in its own right.  
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