
How Can Cooperative Work Tools Support Dynamic Group
Processes? Bridging the Specificity Frontier

Abraham Bernstein
Department of Information Systems

New York University – Stern School of Business
44 West 4th Street, Suite 9-76
New York, NY 10012 USA

avi@acm.org

ABSTRACT
In the past, most collaboration support systems have
focused on either automating fixed work processes or
simply supporting communication in ad-hoc processes. This
results in systems that are usually inflexible and difficult to
change or that provide no specific support to help users
decide what to do next.
This paper describes a new kind of tool that bridges the gap
between these two approaches by flexibly supporting
processes at many points along the spectrum: from highly
specified to highly unspecified. The development of this
approach was strongly based on social science theory about
collaborative work.

Keywords
Process Specificity, Process Support System, Mixed-
Initiative Systems, Dynamic/Improvisational Change.

INTRODUCTION
Many researchers have commented on the increased pace of
change in today’s economy. Increasingly groups and
organizations have to adapt their processes to rapid changes
arising from new technologies, new customer demands, or
new competitors. Current process-support systems (e.g.,
ERP, workflow management systems), however, are usually
focused on supporting fixed organizational processes.
Typically they are too rigid to easily support changing
processes. They are mainly used for highly specified and
highly routinized organizational processes. As an
alternative, many organizations use communications
support systems or Groupware (like email or Lotus Notes)
to support their rapidly changing, non-routine processes.
But these systems typically require users to do a lot of work
themselves to keep track of and understand the ongoing
processes: what has been done, what needs to be done next,
and so forth.

This dichotomy is paralleled by an old debate in the
CSCW-literature about the nature of collaborative work
(see [1-5] among others). Both sides in this ongoing debate
present some deeply rooted beliefs about how human actors
perceive the world and decide to act.
One side follows the belief that human actors typically
follow the cycle of problem analysis, solution search or
synthesis, and then the execution of that plan. The goal of a
process-oriented collaboration support system in this
perspective is to increase the speed and efficiency of each
of the steps in the cycle as well as facilitate their seamless
integration. Workflow management systems (WfMS) and
other process support systems like enterprise resource
planning systems (ERP) are based on this research stream
and have typically focused on the execution of
standardized, predefined organizational process (e.g., [6-9]
and others).
The other side sees plans as resources for action [3], which
are used in conjunction with the environment to articulate
and reason about the next action steps [10-12]. Following
this perspective typical WfMSs are too restrictive as they
traditionally prescribe the workflow and do not allow users
to adapt the process to the local situation. Therefore,
researchers following this tradition have often advocated
using flexible communication support systems (like email
or discussion databases) or repositories (e.g., document
management/imaging systems) to support organizational
processes. Those systems, however, have the disadvantage
that an actor typically is on his/her own in deciding what to
do next.
To date, none of the approaches has offered a conclusive
answer. I concur with others (e.g., [13-15]) that
organizational activities often include a mix of both
procedure-like and ad-hoc type parts. The research
presented in this paper, therefore, argues in favor of
bridging between both perspectives by developing systems
that will support the whole range of dynamic organizational
activity: from well-specified and routine (reacting to
exceptions as they occur) to highly unspecified and situated.
In the remainder of this paper, I will first ground this novel
idea in a practical scenario and social science theory. This
will help to ground and explain the approach as well as to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW’00, December 2-6, 2000, Philadelphia, PA.
Copyright 2000 ACM 1-58113-222-0/00/0012…$5.00.

facilitate the presentation of the proof of concept prototype
system. I will conclude with a brief survey of related work
and a discussion of the major lessons learned.

A SCENARIO: HEIDI’S PROBLEM
It is Friday afternoon in Zurich, Switzerland and Heidi, a local
account manager for Zing Computers (pseudonym), a worldwide
producer of computers, gets a phone call from the Swiss stock
exchange. They ask for a delivery of a RT2000-server within 48
hours to Zurich, since they need to replace an existing server that
got damaged in a fire to recommence trading on Monday
morning. Heidi now faces the problem that the traditional order-
entry/fulfillment system will not be able to accommodate this
request, since the truckers in the European Union (EU) are on
strike and the major assembly plant for Europe is in Rotterdam.
The only other tools available to her are communication support
systems like email, telephone or fax, which give her all the
flexibility she needs. However, that also puts the burden of
contextual sensemaking (i.e., understanding the context of the
task) on whomever gets her messages/faxes/phone-calls.
THE CONCEPTUAL FRAMEWORK
The conceptual framework starts with the commonalties
between the situated and the procedural approaches. I
believe that both approaches share some minimal
assumptions about human actors. First, human actors are
boundedly rational and have only limited knowledge about
the future. Consequently, plans (as well as process maps or
Workflow descriptions) are often imperfect, since they
typically can not account for all possible circumstances. A
process support system will therefore have to allow for run-
time changes to the original plan and will have to provide
contextual information about the running process to the
actor as a basis for reasoning about the possible next steps.
Process maps, a representation of plans, can serve as part of
such contextual information [3, 16, 17].
Second, as Newell and Simon [13] point out, our
environment includes well-structured and less well-
structured problems. Consequently, we have problems with
well-defined solution strategies and others, where the
solutions strategy is rather unclear [15]. The transparency
of the solution strategy (which can be represented as a
process map) may change over time, as our understanding
of the problem changes. As an elusive problem becomes,
for example, better understood its solution strategy may
become easier to determine. Or a seemingly simple problem
may become highly complex, as new facets of the problem
emerge during problem solving, rendering the original
solution strategy inapplicable.

The Specificity Frontier
The first consequence of this approach in regard to the
enactment of activity is that the specificity of process
structure changes over time. Bernstein and Schucan [18],
for example, provide a description of how the money-
transfer process gained specificity over time. Before the

formalities of banking were established, this process started
as a vaguely specified process involving an ad-hoc letter
sent by a courier. With increasing maturity of the banking
industry, the specificity of the process increased
significantly. Today, a money transfer is a fixed computer-
based inter-bank clearing process with a fixed set of
attributes.
This illustrates the major pillar of this conceptual
framework: organizational processes lie on a continuum
from highly specified and routine processes at one extreme
to highly unspecified and dynamic processes at the other
extreme. I call this continuum the specificity frontier (see
Figure 1). A whole series of points on this frontier are
possible, from a highly specific to highly unspecific.
As Figure 1 depicts the concept of a specificity frontier in
some sense bridges the gap between the structured WfMS
and the unstructured communication systems. It allows for
the co-existence of well-specified and almost procedurally
executed processes (traditionally supported by WfMSs),
and emergent situated processes (typically supported by
communication support systems). It also argues that those
two types of processes are at the extremes of a frontier of
processes. It proposes that the whole range of processes,
from highly specified and routine to highly unspecified and
dynamic should be supported.
Heidi’s problem, for instance, starts out as having a reasonably
well-specified solution strategy (process). When she, however,
realizes that the truckers in the EU are on strike the process
suddenly becomes much more problematic: the known description
is not applicable anymore. Thus a support system that allows
processes to start out as being well defined (and supported by a
WfMS-type technology) and lets the structure become flexible
(and supported by a groupware technology) as soon as she finds
out about the strike would be ideal for her.
Consequently, a model of business processes should be able
to capture a range of process specificity (from well
specified to highly unspecified). A process support system
should be able to interpret process models with varying
degrees of specificity. Furthermore, it should support users
when changing the processes’ specificity at run-time.
Achieving those goals it can close the specificity gap
(pictured as a question mark in Figure 1) between
traditional process-support systems and communication
support systems, and thus bridge systems following the
workflow tradition and the situated action tradition.

Emergent Activity Relies on Structure
The second consequence of those commonalties (i.e.,
bounded rationality and varying specificity of tasks) is
illustrated in Orlikowski [19], which shows how change can
be understood as a series of improvisational embellishments
to existing practice. In other words: the actors attempt to
solve the problem at hand following their interpretation of
the structure and the current context.

This illustrates the second pillar of the conceptual
framework: that emergent activity relies on some form of
structure and thus some form of specificity. Emergent
activity surfaces “… unpredictably from complex social
interactions” ([20], p. 588). However, we may be able to
support it by supplying a fertile environment for new
solutions to emerge, “… much as does a supersaturated
solution in the moment it is disturbed” ([21], p. 267). For
example, Jazz improvisation, a type of emergent activity,
depends on the actors “… having absorbed a broad base of
musical knowledge” ([22], p. 492). Analogously, people in
an organizational context must have some foundational
knowledge about the task at hand. In addition, as Weick
[23] points out ‘… improvisation does not materialize out
of thin air…’ (p. 546). People need something to improvise
on. This explains the limited success of communications-
support systems for business process support: from an
improvisational standpoint human actors using those
systems incur the overhead of having to understand the
context of the task at hand as a basis for improvisation. In
the domain of organizational activity, a process map with a
low degree of specificity and information about the
enactment context could help actors in their sensemaking,
provide a basis to improvise on and thus a fertile
environment for emergent processes.
Consequently, any system that plans to support emergent
activity (which is what all activity is to a certain degree
following the situated action approach) should provide
some structure as a contextual basis for situated
improvisation. Process maps (in analogy to geographical
maps) can provide such a structure.

Other Requirements
Previous research (see [24-27] among others) has shown
that a process support system, also should allow for the
change, composition and execution of processes at run time
as well as provide some means to be integrated into an
existing environment (e.g., using an open interface).

THE SPECIFICITY FRONTIER APPROACH AND
PROTOTYPE SYSTEM
Now that I have explained the theoretical grounding for the
prototype system I will present the major design ideas I
used. I will discuss the proof-of-concept prototype system,
which served to clarify, illustrate and evaluate those design
ideas. Since some of the design ideas can be abstract
without practical example, I will walk through Heidi’s

problem as a practical usage scenario
that will explain the day-to-day usage of
the prototype system as I introduce new
concepts.

Key Ideas
The major obstacle in designing a
process support system following my
conceptual framework is the need for an
implementation approach, which can
handle process specifications at multiple

points of the specificity frontier as well as transformations
of the specificity of a process during execution. As Figure 2
shows, I chose to divide the specificity frontier into sub-
spectra, each supported by its own interpretation logic. I
decided to use four sub-spectra, since existing process-
support technology (email/groupware, constraint
monitoring, constraint-based planning, and transaction
processing) could be categorized into four groups:
providing context for enactment, monitoring constraints
about the task, providing/planning options to reach a goal,
and guiding through a given script.

highly
unspecified

highly
specified

A
Pro

vid
in

g

Conte
xt

B
Monito

rin
g

Const
ra

in
ts

C
Plan

nin
g O

ptio
ns

Bas
ed

 o
n C

onst
ra

in
ts

D
Guid

in
g T

hro
ugh

Scr
ip

ts
/D

ire
ct

io
ns

Figure 2: Different Execution Types

The second idea was to develop run-time transfer-
mappings between the sub-spectra. So processes can be
seamlessly moved to another sub-spectrum by increasing
or decreasing the specificity of the process definition during
run time.

Specifying and Interpreting Processes Models with
Varying Degrees of Specificity
Providing Context
In the least specified of the sub-spectra (A, on the left in
Figure 2) the support system does not have a lot of
information about the process. Therefore its major goal is to
provide context for the user to be able to decide what to do
next. Similar to the Task Manager presented by Kreifelts et.
al. [28], the system therefore helps the users to share to-do
lists and documents (resources), which are specific to the
task context at hand. The system also integrates with other
communication techniques like email and on-line
discussions, as well as on-line synchronous communication
support such as chat, to allow users to communicate with
their respective collaborators. The specificity of the task to
the user may vary depending on the information contained
in the documents. The system’s support, however, will
remain the same throughout this sub-spectrum, since the
system cannot decode any of the information in the
documents.

Dynam ic
Processes

-
loosely defined

Fixed Processes
-

well defined

Lotus
Notes

highly
unspecified

highly
specified

email
Enterprise
Resource
Planning

W orkflow
M anagement?

Figure 1: The Specificity Frontier

Figure 3: Activity Manager

This is exactly the type of support Heidi needs to start solving her
delivery problem. Since she has to collaborate with Marianne, a
European logistics manager in Rotterdam, she should be able to
share information about the problem and collect information about
the tasks to be done (e.g., build the new server, arrange shipment
and billing, etc.). As we can see in Figure 3, the system provides
a hierarchical to-do list on the left, and shows the resources
associated with the task selected. Whenever Heidi writes a new
document in the context of this task (like the highlighted message
to George on the right in Figure 3) it gets automatically added to
the resources connected to the task and complements the
context.
From an implementation standpoint the system should pro-
vide a shared, distributed-accessible, hierarchical to-do list,
which allows users to attach files (as resources) to each of
the to-do items. I chose to implement each to-do item as a
software-agent, which manages collections of other to-do
items and of pointers to files in an object-oriented docu-
ment repository. As we will see, the choice of active soft-
ware agents, rather than a passive data structure, becomes
advantageous when passing the boundary to the next sub-
spectrum.

Monitoring Constraints
When the user decides to add some machine-readable con-
straint to a to-do item, the system provides constraint-
monitoring services. For instance, adding a deadline to a to-
do item could allow the system to prompt the user when the
deadline is imminent (similar to a project management
system). The system’s support in this sub-spectrum is
comparable to the support a map provides to a hiker. It
shows the ravines and the mountains in the area and may
therefore help the user to reach his/her goal without long
detours by alerting him/her of an obstacle (i.e., a
constraint). The more constraints are specified by the user
the more helpful the system can be in helping the user to
reach his/her goal. Summarizing, the system helps the user
by managing constraints between tasks and resources.
As Heidi and Marianne quickly discover, there are a series of
constraints that they have to keep track of: the deadline for
delivery, the type of server, the facts about the strike, etc. When
those constraints get specified the system can help them to
observe them by reminding them whenever they are about to
invalidate one of the constraints. If they were to become late at

arranging the shipment, for example, the system would alert them
of the impending problem of a late shipment. So Heidi and
Marianne add the most relevant constraints (see Figure 4) to the
“Provide RT2000”-process.

Figure 4: Adding Constraints

In this sub-spectrum the system thus offers the constraint
monitoring services in addition to the context provision
services. Actors therefore still have the same context infor-
mation on which to decide what to do next. The boundary
between the two sub-spectra is thus crossed as soon as at
least one formalized constraint is defined.
Users form the constraints on attributes of the activities/to-
do items or resources in the existing process models. Figure
4 for example shows a constraint defined on the attribute
‘Elapsed Time’ of the ‘Provide RT2000’-process. I
understand that users sometimes experience difficulties
using formalized specification languages, such as Boolean
expressions. In the long run I hope to address this problem
by (1) implementing a graphical expression design tool [29]
and (2) providing typical constraints to the user as
templates to tailor (this was found to be useful in other
situations [30]). Typical constraint types might include:
time constraints (e.g., deadlines), budgetary limits (e.g.,
headcount, funds available), external factors (e.g., no
trucking in Europe), specification of resources (e.g., types
of processors/pre-fabricated servers in warehouse), etc.
Here is where we reap the benefit for using active software-
agents to represent the to-do items. When the to-do agent
detects the definition of a new formally defined constraint it
spawns a sentinel agent, an autonomous piece of code, to
monitor the constraint. The sentinel agent periodically
checks for the validity of the constraints. When it detects
the invalidation of the constraint it guards, the sentinel
agent raises an exception. Depending on the constraint
definition (by the user or template), the system will either
handle the exception itself (e.g., using an exception
handling routine/engine) or alert the user. Similar to
personal schedulers, the users can choose how long before
the actual invalidation of the constraints they want to be
warned (e.g., 10 minutes before the expiration of the
deadline, etc.).

Planning Options Based on Constraints
When the user specifies the goal, or post-condition, of an
activity in his/her to do list (via the same mechanism used
to define the constraints), the system will try to propose to

the user a series of possible approaches to completing
his/her work. The system achieves this by taking the
constraints on the activities provided by the user in the
constraint-preservation sub-spectrum as well as the
goal/post-condition and using them as a problem
specification for an Artificial Intelligence planner (see [31]
for an introduction). The planner will search for a way to
achieve the goal while guarding all the constraints using
activities that reside in a repository of possible actions (see
below). In the best case it may find one or multiple plans.
The user can then either choose a plan to follow or can
decide that none of the plans is satisfactory. This would
typically indicate that there is some constraint about which
the system does not know. The user can choose to ignore
the proposed solutions and act on his/her own or add the
additional constraint (if he/she can formulate it in a
machine-readable way) and retry the planner. In some cases
the planner may not return a solution. This may either be
due to an incomplete repository of possible actions or due
to an under-specification of the goal. In this case the user
can either choose to add more actions to the repository or
just rely on the more limited support functionality of the
constraint monitoring sub-spectrum.
Using the hiking analogy this approach parallels giving a
hiker a trail map of the area and having him/her decide what
trails he/she would like to take. Since the constraints are
specified, the map also contains the ravines and mountains,
such that the user might be able to decide that none of the
proposed trails are feasible, and choose to take his/her own
route. Consequently, in this sub-spectrum the system plans
tasks and resources to achieve goals and lets the user
decide which of the possible paths to take.
Marianne realizes that the system might help her to solve the
problem of how to ship the server to Zurich in time. She therefore
initiates the planner, which uses the constraints defined for moni-
toring (in the last sub-spectrum) and the goal specification (i.e.
RT2000 delivered to Swiss Stock Exchange) as a problem speci-
fication. It proposes three shipping options (see Figure 5). First, it
proposes to airfreight the server from Rotterdam. Second, it pro-
poses to ship the server from the facility in Rotterdam using a
train. And last, it suggests airfreighting the server from an Ameri-
can facility in Boston. Marianne did not consider this last option
before, since deliveries to Europe typically come from Rotterdam.
Given the looming deadline and the EU-trucker strike she decides
to explore all three possibilities. She quickly discovers that given
the strike she can’t even find a truck to bring the server from the
Rotterdam production facility out to the airport. Therefore the first
option, shipping the server by plane from Rotterdam becomes
implausible. To investigate the second possibility, using the train,
she goes into the repository and looks at the train-shipment
process. She realizes that since Switzerland is not part of the EU
the train will have to clear customs at the Swiss border. During a
phone call to the Swiss customs authority she learns that Swiss
customs at the port of entry (for the train) is closed all day
Sunday, which would delay the shipment by an additional 24

hours. Consequently, she chooses the only remaining option:
shipping the server from the Boston.

Figure 5: Planner

This part of the interpreter was implemented as a simple
translator to an existing AI-planner [32]. The interpreting
agent gathers all the constraints relevant for a to-do item,
information about the current state of the process (as
defined by the state of all the involved agents and data-
structures) as well as a goal description (defined as a logical
expression derived from the post-condition/goal of the
process) and then passes it as a problem definition to the
planner. In the scenario, for example, the agents gather the
constraints like ‘elapsed time < 48 hours’ and ‘no trucks’,
the goal description ‘having an RT2000-server in Zurich’,
as well as the definition current state, including the
knowledge that the EU-truckers are on strike, knowledge
about Zing Computer’s production facility and information
about the current time.
The planner attempts to find a set of actions in the
repository that will lead from the current state to the goal
and pass the possible results to the interpreter, which
translates them back to the process representation used
within the system and presents them to the user. The
repository contains a collection of possible actions, which
are defined by their pre-/post-condition and a description of
how the transformation from precondition to post-condition
happens in detail.
In Marianne’s situation, for example, the repository had to contain
descriptions of all kinds of transport mechanisms and their
properties. It thus had to have a description of trucking a good,
including the property that it typically requires a truck (which are
unavailable in our scenario), airplane-shipping (which was
incomplete, since it didn’t take into account the need for getting
the good to the airport), as well as shipping by train.
Obviously, the quality of the planner’s results is limited by
two factors. First, the quality of the constraints entered (in-
cluding the precision of the goal specification) has a major
influence on the ability of the planner to prune its search-
space. Since the users have entered them, the quality of the
specification of those constraints is highly dependent on the
abilities of the users. As mentioned above, though, I hope
that the usage of expression design tools as well as the pro-
vision of tailorable typical expressions and expression tem-

plates provided by process specialists (e.g., residing in the
repository) may alleviate this problem.
Second, the quality of the plans generated by the planner is
dependent on the contents of the repository searched. As
with any knowledge-based approach there is a bootstrap-
ping problem in filling the repository with an adequate
initial number of possible actions/processes. In most envi-
ronments, however, a good part of those actions have
already been formalized and defined in some system (e.g.,
WfMS, ERP). Furthermore, the repository records past
cases as templates for future action. This ‘case-based’-alike
[33] approach can simplify some of the initial growing
phase of the repository by limiting the enormous set-up
costs.

Providing “Imperative” Scripts/Directions
System support in this last sub-spectrum can be likened to a
traditional WfMS (see [6, 7, 9]). Since the process details
are algorithmically well defined the to-do item software
agent will direct each step leading to the result. Rather than
guarding some constraints, the imperative plan avoids them
through direction. Thus the system directs the execution of
tasks using resources to achieve goals.
The boundary between the constraint-based planning sub-
spectrum and the imperative sub-spectrum is crossed as
soon as one of the results returned by the planner is chosen
for enactment that is in an imperative form. The user can
delegate the choice between the options to the system by
defining a utility function. As an alternative to using the
results of the planner the user can also directly browse the
repository and compose a process manually [34], which can
also result in an imperative script. The reverse
transformation happens when the interpreter executing a
task in the imperative sub-spectrum encounters an
exception (which might be raised by a user!), stops its exe-
cution and runs the planner to find a number of alternatives
to solve the current problem.

Figure 6: Starting a WfMS-like Script

Using the hiker’s analogy again this sub-spectrum can be
best compared to giving a hiker a specific set of directions.
The directions are useful as long as he/she does not
encounter a problem (e.g., an avalanche has cut off an

existing path). As soon as a problem is encountered the
hiker has to use a more situated method to finding his/her
way to the goal (i.e., he/she has to drop the specificity of
the process specification and use the support provided by
the system in the other sub-spectra).
When Marianne chooses to airfreight the server from Boston by
choosing to start that sub-process in her Activity Manager (Figure
6) the system starts the underlying WfMS-like shipment process
of a new server from Boston to Zurich using airfreight in the last of
the four sub-spectra. Assuming no new exceptions the system will
direct the shipment just like a traditional order fulfillment system.
Division of Labor and Transfer Mappings in the Frontier
It is important to note that this system view relies on a co-
operative understanding of the user system collaboration,
where the system attempts to provide as much help as it
can. The more specific a task description is, the more the
system can support the user and relieve him/her of some
part of the task. The less specific the task is, the more the
user will have to do. Consequently the specificity of a
process description guides the resulting type of division of
labor between the human actor and the system.
Another important point is the system’s capability to
seamlessly integrate between the different spectra. The
boundary between the context-provision and the monitoring
sub-spectra is automatically crossed when some constraints
are formalized in a machine-readable form. The next
boundary is traversed when the system can find a series of
paths from the current state to the goal (i.e., the planner can
find an acceptable plan). Finally, the provision of some type
of utility function by the user (either implicitly by choosing
one of the options or explicitly by defining some sort of sort
criteria between the options) helps the system to cross to the
scripts sub-spectrum.
From the user’s point of view, the transfers between the
sub-spectra happen automatically as soon as the system can
find the appropriate information. The user does not need to
explicitly tell the system to cross the boundaries between
the spectra. He/She does, however, need to enter the
information (e.g., the constraint specification) that will
prompt the system to cross the boundary.

Providing Structure for Situated Improvisation
The second requirement that the conceptual framework puts
on process support system is the provision of a context for
sensemaking and the articulation of next steps. As we have
seen, the prototype system provides the user with ample
contextual information (past activities in process context,
documents related to this process, other actors involved,
etc.) in order to understand the current state of the process.
In some stages, however, he/she might not exactly know
what to do next. The possible options of next actions can,
for example, lie beyond his/her experience or an alternative,
novel course of action is needed. Malone et. al. [35] have
described how a repository of re-usable process compo-
nents as well as past cases can be applied to organizational

processes and can be useful in a process-design and inno-
vation setting. I therefore believe that a process repository
containing process fragments and past cases can help users
to articulate next steps and have included a repository,
similar to the one presented by Malone et. al. [35], in my
prototype.

Implementation Details
Process Models
The prototype system uses a process description, which is
comparable to the one used by the MIT-process handbook
(see [35] or Figure 7 for a meta-model). Activities are the
central element of the model. Each activity can have an
arbitrary number of resources in its context (e.g., for pro-
viding the links for the documents, which are related to a
task). An activity can also have sub-activities (for func-
tional decomposition) and sub-dependencies. Dependencies
represent constraints between activities. In order to ensure
the constraint represented by the dependency it needs to be
coordinated by an activity. When two activities share a re-
source (i.e. a sharing dependency), for example, they can be
coordinated using a first-come first-serve activity. Finally,
activities, resources and dependencies can all have an arbi-
trary number of constraints defined on their attributes and
parts. Furthermore, all elements can participate in a type of
specialization hierarchy. This allows for a construction of
an object-oriented-like hierarchy in the process- and case-
repository. The main difference from traditional object-ori-
ented inheritance is the possibility to ‘disinherit’ a feature
from its parent. So when a person changes an inherited part
of an activity it does not have loose its inheritance relations
(see also [35], p. 427).

Activity Dependency

is
coordinated by

Constraint
has

Resource

uses

contains

connects

has

has

contains

Sell Server

Build
Server

Set-up
Server

Ship

Figure 7: Process Model Parts Figure 8: Example Process

System Architecture and Implementation
The overall system consists of five major logical compo-
nents: a repository, a process-model interpreter, a planner, a
user-interface, and an application-programming interface
(API), which is used by other programs to interact with the
system.
The repository stores all the process models, process frag-
ments, and past cases. It furthermore contains references to
all the resources (e.g., files) that are referenced by
processes in the system and has some information about all
the actors/users of the system. Distribution of the process
data is accomplished through the services of an Object
Request Broker (ORB). Each object in the repository is

currently stored in a file, which transparently gets loaded
when needed. Figure 8 shows the graphical representation
for the “Sell Server”-process, as it is stored in the
repository. It consists of three parts, the “Build Server” and
“Set-up Server” processes as well as the “Ship”
dependency.
The interpreter is implemented using a software-agent-ori-
ented approach. Each active element of a process model is
assigned to an agent. Collaborating with the other agents in
the process model the software agent attempts to provide as
much support as possible given the process specification.
Thus for the “Sell Server”-process, a software-agent is
going to be started for “Sell Server”, “Build Server”, “Set-
Up Server”, and “Ship”. All those agents are going to inter-
act using a speech-act-based protocol [36] to achieve the
goal of the task. If the process specification falls within the
context-provision spectrum, the agents ensure that all the
resources referenced are accessible. When constraints get
defined (i.e. in the constraint-preservation sub-spectrum)
the agents start special sentinel-agents, which regularly
check the consistency of the constraint. When a post-condi-
tion is specified the agents pass the process definition to the
planner (see below). Finally, if the process model contains
imperative features, they execute them analogous to a
traditional WfMS while still checking on the constraints (to
find exceptions). In all cases the agents maintain the
relationships to other agents to which they have
dependencies. This integration of previously unconnected
techniques provides the system its ability to support the
enactment of processes that move along the specificity-
frontier at run-time. Consequently, it is the heart of this
system’s support for dynamic, rapidly changing organiza-
tional processes. Using the agent-based approach allowed
me to build a dynamic interpreter, where local variation in
process specificity and composition is handled by single
agents and global changes are handled by the interplay
between agents. This greatly reduced the complexity of the
interpreter.
As a planner I used sensory graph-plan (SGP), a LISP-
based research prototype presented by Weld et. al. [32].
The interpreter-agents translate the process model and the
repository-content to a problem definition in the format
understood by SGP. If the planner returns a result, then the
interpreter-agents translate it back to the internal process-
specification format.
In our scenario all parts of the process other then the “Ship”-
dependency (Figure 8) were relatively well defined. So when
Marianne initiated the planner (Figure 5) the interpreter collected
all the constraints relevant to the problem (i.e. the constraints on
“ship” directly, including the fact that it is in relation with both “build
server” and “set-up-server”).

The user-interface (see Figures 3-6) contains is a
mixture of a traditional workflow-management
work-list and a task-management user-interface
(like the one presented in Kreifelts et. al. [28]) as
well as a process model editor. It provides a direct-
manipulation interface to all the major functions in
the system like a browser for the process frag-
ment/case repository, an activity-manager that
provides a look at the activities a user is presumed
to complete, a process-editor to change the tasks,
and some additional maintenance editors.
The API provides a bi-directional interface
between the prototype-system and external tools
such as email, discussion databases, and on-line
chat-programs.

EVALUATION AND LESSONS LEARNED
I have chosen three routes to evaluate the validity of the
work presented. First, I chose to thoroughly ground my
work in existing theory, previous work on requirements for
supporting dynamic organizational processes, and some
direct exchange with potential users, which provides me
some assurance that the approach would be helpful in a
practical setting. Second, I have implemented a proof-of-
concept system and used it myself.
Finally, I am developing a number of detailed usage
scenarios based on real-world occurrences and am evalu-
ating how those scenarios would play out in different types
of support systems: an email/Lotus-Notes-type system, a
WfMS, and the prototype system presented. At the time of
writing this analysis is underway; preliminary results
support my assumptions about the advantages of a system
basing on the specificity frontier, given its guidance in more
routine tasks as well as flexibility where needed.
One interesting lesson learned was that the combination of
previously unconnected approaches could lead to extremely
useful solutions, just as the combination of messaging,
database technology, security, and networking approaches
led to a versatile tool like Lotus Notes. In my case it led to a
system with the capability to support rapidly changing
processes. However, I believe that this type of judicious
integration could be extremely useful for many problems.
Another insight was that the usage of agent-oriented tech-
niques allowed me to simplify the implementation of my
multi-faceted prototype system (given its multiple sub-
spectra) by avoiding code tangling, which complicates
implementations. As Lopes [37] points out, code tangling
typically happens when different concerns (or
implementation issues like synchronization and information
exchange) have to be addressed within the same piece of
code. Using the agent-based approach I was able keep the
complex parts of the implementation (for example, the code
handling the change in specificity for different types of
objects in my system) local to its effects and successfully
avoid code tangling. This insight becomes increasingly

important for CSCW-researchers, as the experimental
systems we implement become more complicated and have
to integrate more technologies (see previous insight).

RELATED WORK
As explained in the introduction the approach presented
here is closely related to systems in the WfMS-tradition as
well as the Groupware tradition. In the WfMS-domain a
number of projects have tried to address the issues of
adaptiveness and flexibility [27, 38-40]. However, all of
those approaches aim at completely specifying the process
before it is started using some formal method (e.g., Petri-
nets) and adapting them when exceptions occur. They
typically do not allow the execution of partially specified or
abstractly specified process descriptions. On the other end
of the frontier a number of CSCW-projects and Groupware
tools have addressed the support for highly flexible
processes.
The biggest problem of all those related projects, however,
is the impermeability of processes across the specificity
frontier. As can be seen in Figure 9, processes that get
started in one category of support system are stuck in that
type of support. Thus the support for an emergent process,
for example, stays trapped in an ad-hoc system, even
though its process structure may have emerged during a
first part of its execution. Even systems basing on event-
condition-action rules (ECA), which are typically used for
constraint preservation or AI-planning systems, do not
allow for mobility across the specificity frontier.
I know of three exceptions: ProZessware [41], Bramble
[42] and FreeFlow [43]. ProZessware allows embedding
Lotus-Notes Discussions into well-specified Workflows.
However, these embedded discussions have to be pre-
specified and the actual process structure is fixed. Bramble
divides activities into well specified and unstructured.
Similar to ProZessware it allows composing semi-structured
activities from both well-specified and unstructured
activities. In addition, it provides a rich mechanism for
providing process context. Unlike the system presented
here, though, it doesn’t seem to allow for run-time
transformations of activities from well specified to

highly
unspecified

and dynamic

highly
specified

and routine

ProZessW are (now Lotus)

FreeFlow (Dourish et. al '96)

ADEPT (Norman et. al '97)

M ilano (Agostini et. al 2000)

Endeavors (Kammer et. al 2000)

Email

Lotus Notes

TaskM anager (Kreifelts et. al '93)

AI (Planner

and Scheduler)
Coordinator

(W inograd et. al '86)
ECA

Figure 9: Related Work

unstructured and vice-versa. FreeFlow provides a
mechanism to break the predefined constraints, which
specify the Workflow. Once a constraint is broken,
however, its guidance is lost for the process. Thus the
system only allows a one-time reduction of specificity of a
process description during run-time.
The work presented here is set apart from other projects by
proposing a novel well-grounded approach to enabling the
mobility of a process instance across the specificity frontier
during run time.

CONTRIBUTIONS AND CONCULSIONS
The primary contribution of this research project is twofold.
First, it suggests a novel approach to addressing the
problem of support for dynamic organizational processes.
The proposition of using varying specificity as an approach
to solving the problem of supporting dynamic
organizational processes is novel, non-obvious, promising,
and supported by social science theory (see above). Second,
the project showed the technical feasibility of this approach.
Combining previously separate process-support technolo-
gies from well-specified and routine, to highly unspecified
and dynamic, into a seamlessly integrated system that fa-
cilitates the mobility of processes across the specificity-
frontier during run-time using a common process model is a
non-trivial technical achievement.
Even though the primary focus of this project was not to
empirically test the usefulness of the system, it provides
some evidence to its plausibility. By developing detailed
usage scenarios, based on empirical data, I have shown that
it is at least plausible that a system like the one I have
developed could be usable and useful. The preliminary re-
sults of the scenario analysis indicate that the variation of
process specificity provides a useful approach to support
dynamic organizational activity. It seems to reduce the
overhead incurred by actors when attempting to adapt
existing (running) processes to changing circumstances
compared to traditional approaches.
For final proof, however, we will have to wait for a detailed
empirical test of the usability and usefulness of a system
like mine in a real world environment – a substantial
research project in its own right.

AKNOWLEDGEMENTS
I would like to thank Tom Malone, Mark Klein and the
other members of the MIT-CCS for their invaluable help,
support and contribution to the ideas underlying this paper.

REFERENCES
1. R. C. Schank and R. P. Abelson, Scripts, Plans, Goals

And Understanding: Lawrence Erlbaum Associates,
1977.

2. T. Winograd and F. Flores, Understanding Computers
and Cognition: a New Foundation for Design. Norwood,
N.J.: Ablex Pub. Corp., 1986.

3. L. A. Suchman, Plans and Situated Actions: The
Problem of human-machine communication. Cambridge,
UK: Cambridge University Press, 1987.

4. T. Winograd, “Categories, Disciplines, and Social
Coordination,” Computer Supported Cooperative Work,
vol. 2, pp. pp. 191-197, 1994.

5. L. Suchman, “Do Categories Have Politics?,” Computer
Supported Cooperative Work, vol. 2, pp. pp. 177-190,
1994.

6. M. Hammer, W. G. Howe, V. J. Kruskal, and I.
Wladawsky, “A Very High Level Language for Data
Processing Applications,” Communications of the
ACM, vol. 20, pp. 832-840, 1977.

7. M. D. Zisman, “Office Automation: Revolution or
Evolution?,” Sloan Management Review, vol. 19, pp. 1-
16, 1978.

8. C. Mohan, G. Alonso, R. Günthör, and M. Kamath,
“Exotica: A Research Perpespective on Workflow
management Systems,” IEEE-Data Engineering, vol. 18,
pp. pp. 19-26, 1995.

9. S. Jablonski and C. Bussler, Workflow management:
modeling, concepts, architecture and implementation.
London & Boston: International Thomson Computer
Press, 1996.

10. L. Gasser, “The Integration of Computing and Routine
Work,” ACM Transactions on Information Systems, vol.
4, pp. 205-25, 1986.

11. E. M. Gerson and S. L. Star, “Analyzing due process in
the workplace,” ACM Transactions on Information
Systems, vol. 4, pp. 257-70, 1986.

12. L. Suchman, “Supporting Articulation Work,” in
Computerization and controversy: value conflicts and
social choices, R. Kling, Ed., 2nd ed. San Diego:
Academic Press, 1996, pp. 407-423.

13. A. Newell and H. A. Simon, Human problem solving.
Englewood Cliffs, N.J.,: Prentice-Hall, 1972.

14. P. G. W. Keen and M. S. Scott Morton, Decision
support systems: an organizational perspective. Reading,
Mass.: Addison-Wesley Pub. Co., 1978.

15. R. Rock, P. Ulrich, and F. H. Witt,
Dienstleistungsrationalisierung im Umbruch - Wege in
die Kommunikationswirtschaft, vol. 11, 1st ed. Opladen:
Westdeutscher Verlag, 1990.

16. K. E. Weick, The social psychology of organizing, 2nd
ed. Reading, Mass.: Addison-Wesley Pub. Co., 1979.

17. J. E. Bardram, “Plans as Situated Action: An Activity
Theory Approach to Workflow Systems,” presented at
Fifth European Conference on Computer Supported
Cooperative Work. Kluwer Academic Publishers, 1997.

18. A. Bernstein and C. P. Schucan, “Document and Process
Transformation During the Product Life-Cycle,” in

Information and Process Integration in Enterprises -
Rethinking Documents, T. Wakayame, S. Kannapan, C.
M. Khoong, S. Navathe, and J. Yates, Eds. Norwell,
MA: Kluwer Academic Publishers, 1998.

19. W. J. Orlikowski, “Improvising Organizational Change
Over Time: A Situated Change Perspective,”
Information Systems Research, vol. 7, pp. 63-92, 1996.

20. M. L. Markus and D. Robey, “Information Technology
and Organizational Change: Causal Structure in Theory
and Research,” Management Science, vol. 34, pp. pp.
583-598, 1988.

21. H. Mintzberg and J. A. Waters, “Of Strategies,
Deliberate and Emergent,” Strategic Management
Journal, vol. 6, pp. 257-272, 1985.

22. P. F. Berliner, Thinking in Jazz: The Infinite Art of
Improvisation. Chicago, IL: University of Chicago,
1994.

23. K. Weick, “Improvisation as a Mindset for
Organizational Analysis,” Organization Science, vol. 9,
pp. 543-555, 1998.

24. K. D. Swenson, “Visual support for reengineering work
processes,” presented at Conference on Organizational
Computing Systems (COCS), 1993.

25. K. R. Abbott and S. K. Sarin, “Experiences with
workflow management: issues for the next generation,”
presented at Conference on Computer Supported
Cooperative Work, Chapel Hill United States, 1994.

26. C. A. Ellis and G. J. Nutt, “Workflow: The Process
Spectrum,” presented at NSF Workshop on Workflow
and Process Automation in Information Systems: State-
of-the-art and Future Directions, University of Georgia,
Athens, 1996.

27. P. J. Kammer, G. A. Bolcer, R. N. Taylor, and M.
Bergman, “Techniques for Supporting Dynamic and
Adaptive Workflow,” Computer Supported Cooperative
Work: The Journal of Collaborative Computing, vol. 9,
pp. 269-292, 2000.

28. T. Kreifelts, E. Hinrichs, and G. Woetzel, “Sharing to-
do lists with a distributed task manager,” presented at
Proceedings of the Third European Conference on
Computer Supported Cooperative Work, (ECSCW),
Milan, Italy, 1993.

29. A. Spoerri, “InfoCrystal: a visual tool for information
retrieval management,” presented at Second
International Conference on Information and
Knowledge Management, Washington, D.C., 1993.

30. A. MacLean, K. Carter, L. Lövstrand, and T. Moran,
“User-tailorable Systems: Pressing the Issues with
Buttons,” presented at Human Factors in Computing
Systems, Seattle, Washington, 1990.

31. D. S. Weld, “An introduction to least commitment
planning,” AI Magazine, vol. 15, pp. 27-61, 1994.

32. D. S. Weld, C. R. Anderson, and D. E. Smith,
“Extending Graphplan to Handle Uncertainty & Sensing
Actions,” presented at National Conference on Artificial
Intelligence, 1998.

33. J. L. Kolodner, R. L. Simpson, and K. Sycara-Cyranski,
“A process Model of Case-Based Reasoning in Problem
Solving,” presented at International Joint Conference on
Artificial Intelligence (IJCAI), 1985.

34. A. Bernstein, “The Product Workbench: An
Environment for the Mass-Customization of Production-
Processes,” presented at Workshop on Information
Technology and Systems (WITS), Helsinki, Finland,
1998.

35. T. W. Malone, K. Crowston, J. Lee, B. Pentland, C.
Dellarocas, G. Wyner, J. Quimby, C. Osborn, A.
Bernstein, G. Herman, M. Klein, and E. O'Donnell,
“Tools for inventing organizations: Toward a handbook
of organizational processes,” Management Science, vol.
45, pp. 425-443, 1999.

36. J. R. Searle, Speech acts: an essay in the philosophy of
language. London,: Cambridge U.P., 1969.

37. C. V. Lopes and G. Kiczales, “D: A Language
Framework for Distributed Programming,” Xerox Palo
Alto Research Center, Palo Alo, CA, Technical Report
SPL97-010, P9710047, February 1997 1997.

38. T. J. Norman, N. R. Jennings, P. Faratin, and E. H.
Madami, “Designing and Implementing a Multi-Agent
Architecture for Business Process Management,”
presented at Intelligent agents III: Agent Theories,
Architectures, and Languages: IJCAI'96 Workshop
(ATAL), Budapest, Hungary, 1996.

39. A. Agostini and G. De Michelis, “A Light Workflow
Management System Using Simple Process Models,”
Computer Supported Cooperative Work: The Journal of
Collaborative Computing, vol. 9, pp. 335-363, 2000.

40. C. Ellis and K. Keddara, “ML-DEWS: A Workflow
Change Specification Model and Language,” Computer
Supported Cooperative Work: The Journal of
Collaborative Computing, vol. 9, pp. 293-333, 2000.

41. ONEstone, “ProZessware for Lotus Domino/Notes,”
ONEstone Information Technologies GmbH, Paderborn,
Germany, White Paper 1998 1998.

42. R. L. Blumenthal, “Supporting Unstructured Activities
with a Meta-Contextual Protocol in Situation-Based
Workflow,” in Department of Computer Science.
Boulder, CO: University of Clorado, 1998, pp. 173.

43. P. Dourish, J. Holmes, A. MacLean, P. Marqvardsen,
and A. Zbyslaw, “Freeflow: Mediating Between
Representation and Action in Workflow Systems,”
presented at Computer Supported Cooperative Work,
Boston, MA, 1996.

