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Abstract. The ability to rapidly locate useful on-line services (e.g. software 
applications, software components), as opposed to simply useful documents, is 
becoming increasingly critical in many domains. Current service retrieval 
technology is, however, notoriously prone to low precision. This paper 
describes a novel service retrieval approached based on the sophisticated use of 
process ontologies. Our preliminary evaluations suggest that this approach 
offers qualitatively higher retrieval precision than existing (keyword and table-
based) approaches without sacrificing recall and computational 
tractability/scalability. 

1 The Challenge: High Precision Service Retrieval 

Increasingly, on-line repositories such as the World Wide Web are being called upon 
to provide access not just to documents that collect useful information, but also to 
services that describe or even provide useful behavior. Potential examples of such 
services abound: 
• Software applications such as web services that can be invoked remotely by people 

or software. E.g., www.salcentral.com. 
• Software components that can be downloaded for use when creating a new 

application. E.g., www.mibsoftware.com, www.compoze.com. 
• Best practice repositories that describe how to achieve some goal. E.g., 

process.mit.edu/eph/, www.bmpcoe.com.  
• Individuals or organizations who can perform particular functions, E.g., guru.com, 

elance.com, and freeagent.com. 
As the number of such services increase it will become increasingly important to 

provide tools to quickly find the services they need, while minimizing the burden for 
those who wish to list their services with these search engines [1]. Current service 
retrieval approaches have, however, serious limitations with respect to meeting these 
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challenges. They either perform relatively poorly or make unrealistic demands of 
those who wish to index or retrieve services. This paper first reviews these 
approaches and then presents as well as evaluates a novel service retrieval approach 
based on the sophisticated use of process ontologies. It closes with a discussion of 
open challenges for future work. 

2. The State of the Art 

Current service retrieval technology has emerged from several communities. The 
information retrieval community has focused on the retrieval of natural language 
service descriptions and has as a result emphasized keyword-based approaches. The 
software agents and distributed computing communities have developed simple 
‘table-based’ approaches for ‘matchmaking’ between tasks and on-line services. The 
software engineering community has developed by far the richest set of techniques for 
service retrieval [2]. We can get a good idea of the relative merits of these approaches 
by placing them in a precision/recall space (Figure 1): 

p
re

ci
si

o
n

high

high

table-
based

keyword-
based

recall

enumerated
vocabulary

semantic
networksLegend

method

improvement
technique

imprecise
matching

 
Fig. 1. State of the art in service retrieval 

Most search engines, including service repositories such as www.salcentral.org, 
look for items that contain the keywords in the query, which are sometimes prioritized 
using techniques such as TFIDF to increase effective precision [3]. Keyword-based 
approaches are, however, prone to both low precision, as irrelevant items may, e. g., 
contain the keyword, and imperfect recall due issues such as the use of synonyms 
(sometimes addressed with pre-enumerated vocabularies [4], semantic nets [5] and 
partial matching). The key underlying problem is that keywords are a poor way to 
capture the semantics of a query or item. 

Table-based approaches [6] [7] [8] [9] [10] [11] typically use a fixed number of 
attribute value pairs describing the properties of a service. Figure 2, e.g., shows a 
table-based model for an integer averaging service: 

 

Description find the average of a list of integers 
Input Integers 
Output Real 
Duration number of inputs * 0.1 msec 



Fig. 2. A table-based description of an integer sorting service 

Both items and queries are described as tables: matches represent items whose 
property values match those in the query. All the commercial service search 
technologies we are aware of (e.g., Jini™, eSpeak, Salutation, UDDI/WSDL, [12]) 
use this approach. The more sophisticated search tools emerging from the research 
community [13] [14] use ontologies and semantic nets to increase recall, e.g. 
returning a match if the input type of a service is equal to or a generalization of the 
input type specified in the query. Table-based models, however, do little to increase 
precision because of the impoverished range of information they capture, as they 
typically include a detailed description of how to invoke the service (i.e., parameter 
types, return types, etc.), but don’t describe what the service actually does. This 
information is of limited value for search purposes because services with different 
goals (e.g., services that compute averages, medians, quartiles, etc.) can share similar 
call signatures.  

Other approaches (such as deductive retrieval [15] or execution-based retrieval 
[16]) are usually only suitable for limited application domains, as they are, typically, 
to complex (both from a computational and a usability perspective). 

3 Our Approach: Exploiting Process Ontologies 

Our challenge can thus be framed as being able to capture enough service and 
query semantics to substantively increase precision without reducing recall or making 
it unrealistically difficult for people to express these semantics. Our central claim is 
that these goals can be achieved through the sophisticated use of process ontologies 
[17]. In our approach, the salient behavior of a service is captured using process 
models, and these process models, as well as their components (subtasks, resources, 
etc.), are placed in the appropriate locations in the process ontology. Queries can then 
be defined (using a process query language – PQL) to find all the services whose 
process models include a given set of entities and relationships. The greater 
expressiveness of process models, as compared to keywords or tables, offers the 
potential for substantively increased retrieval precision, at the cost of requiring that 
services be modeled in this more formal way. As we will see below, our preliminary 
evaluations suggest that the process-based approach offers qualitatively increased 
retrieval precision, and we will argue that this can be achieved with a reasonable 
expenditure of service modeling effort. Our approach has the functional architecture 
shown in Figure 3, which we will consider below. 
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Fig. 3. Functional architecture  

3.1 Modeling Services as Process Models 

The first step in our approach is to capture service behavior as process models. Why 
process models? To understand this choice, we need to understand more precisely the 
causes of imperfect precision. One cause is that a component of the service model is 
taken to have an unintended role. For example, a keyword-based query to find 
mortgage services that deal with “payment defaults” (a kind of exception) would also 
match descriptions like “the payment defaults to $100/month” (an attribute value). 
The other cause for false positives occurs when a service model is taken to include an 
unintended relationship between components. For example, we may be looking for a 
mortgage service where insurance is provided for payment defaults, but a keyword 
search would not distinguish this from a service that provides insurance for the home 
itself. The trick to increasing retrieval precision, therefore, comes down to ensuring 
that important roles and relationships are made explicit in both the query and the 
service model, so unintended meanings (and therefore false positives) can be avoided. 
Process modeling languages are well suited for this as they have been designed to 
capture the essence of different behaviors in a compact intuitive way, and have 
become ubiquitous for a very wide range of uses.  
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Fig. 4. Process model formalism 

We use for our purposes a process modeling formalism (see Figure 4) that, similar 
to other processes modeling languages, includes the following components: 
• Attributes: capture such information as a textual description, typical performance 

values (e.g., execution time), etc. 
• Decomposition:  A process can be modeled as a collection of processes that can in 

turn be broken down (“decomposed”) into sub-processes. 
• Resource Flows: All process steps can have input and output ports through which 

resources flow allowing us to model consumed, and produced resources. 
• Mechanisms: Processes can be annotated with the resources they use (as opposed 

to consume or produce). E.g., the Internet can serve as a mechanism for a process. 
• Exceptions: Processes typically have characteristic ways they can fail and 

associated schemes for anticipating and avoiding or detecting and resolving them. 
Our approach captures these schemes by annotating processes with their 
characteristic ‘exceptions’, and mapping these exceptions to processes describing 
how these exceptions can be handled [18]. 
Let us consider a simple example to help make this more concrete (Figure 5): 
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Fig. 5. An example of a process-based service model 

This represents the process model for a service for selling items electronically. The 
plain text items represent entities (such as exceptions, ports, etc.), while the italicized 
items represent relationships between these entities. The substeps in this service 
model include ‘identify potential customers via data mining’, ‘inform customers’ 
(which uses the Internet as a mechanism), and ‘take orders’. The potential exception 
of sending out unwanted solicitations is avoided by filtering out the names of 
individuals who have placed their names on ‘opt-out’ lists. Each of the entities can 
have attributes (not shown) that include their name, description, and so on. 



Formally, any database of process descriptions (using the formalism above) can be 
defined as a typed graph: 

Ont (Entities, Relationships) (1) 

where entities are the nodes in the graph and relationships are the graph edges. 
Furthermore, the following specifications apply: 
• A node can only have one type (⊕ denoting exclusive-or): 

x ∈ Entities ≡ (x ∈ Task) ⊕ (x ∈ Resource) ⊕ (x ∈ Port) ⊕ (x ∈ Exception) 
⊕ (x ∈ Attribute) ⊕ (x ∈ Value) 

(2) 

• A relationship can only have one type and it connects nodes of certain types: 

)]_),(()()()_[(
)]_),(()()()_[(

)]_),(()()()_[(
)]_),(()()()_[(

)]__),(()()()__[(
)]),(()()()[(

)]_),(()()()_[(
)]_),(()()()_[(

)]_),(()()()_[(
)]_),(()()()_[(

),(

valueHasyxValueyAttributexvalueHasr
attributeHasyxAtributeyEntitiesxattributeHasr

subtaskHasyxTaskyTaskxsubtaskHasr
exceptionHasyxExceptionyTaskxexceptionHasr

byhandledIsyxTaskyExceptionxbyhandledIsr
PropagatesyxResourceyPortxPropagatesr

mechanismUsesyxResourceyTaskxmechanismUsesr
portHasyxPortyTaskxportHasr

subtaskHasyxTaskyTaskxsubtaskHasr
tionspecializaHasyxEntitiesyEntitiesxionspecialiatHasr

ipsRelationshyxr

∈∧∈∧∈∧=
⊕∈∧∈∧∈∧=

⊕∈∧∈∧∈∧=
⊕∈∧∈∧∈∧=

⊕∈∧∈∧∈∧=
⊕∈∧∈∧∈∧=

⊕∈∧∈∧∈∧=
⊕∈∧∈∧∈∧=

⊕∈∧∈∧∈∧=
⊕∈∧∈∧∈∧=

≡∈

 

(3) 

This representation is similar, and equivalent in expressiveness, to other full-
fledged process modeling languages (e.g. IDEF [19], PIF [20], PSL [21] and 
CIMOSA [22]) and substantially more expressive than the keyword and table-based 
languages used in previous service retrieval efforts, by virtue of adding the important 
concepts of resource flows, task decompositions, and exceptions. It does not however, 
include primitives oriented at expressing control semantics, i.e. that describe when 
each subtask gets enacted. Such primitives were excluded for two reasons. First, most 
of the variation between process modeling languages occurs when representing 
control semantics, and we wanted a formalism to which a wide range of existing 
process models could easily be translated. Second, our experience to date that most 
service queries are concerned with what a process does, rather than when the parts of 
the process gets enacted. 

Modeling service behaviors as process models of course involves manual effort, 
but we argue this need not be a major barrier. Because process formalisms are so 
widely used, many services already have process models defined for them, e.g., as 
part of their specification. The expertise needed to create such models is widely 
available. Process ontologies (see below) can reduce the modeling effort involved. 
Also, service providers will likely be motivated to create such process models, since 
they often differentiate themselves in the marketplace by how they provide their 
services, and process models make this explicit. Process models, finally, enable 
important uses other than search, such as automatic service composition. 



3.2 Indexing Service Models into the Process Ontology 

The second step of our approach is to index service models into a process ontology in 
order to facilitate later retrieval. An ontology consists, in general, of a hierarchy of 
entity descriptions ranging from the abstract at one end to the specific at the other. 
Items with similar semantics (e.g. processes with similar functions) appear close to 
each other, the way books with similar subjects appear close to each other in a library. 
Indexing a service comes down to placing the associated process model, as well as all 
of its components (attributes, ports, dependencies, subtasks and exceptions) on the 
appropriate branch in the ontology. Using an ontology is valuable for several reasons. 
It can reduce the burden of modeling a service, since one need only find the most 
similar process model in the ontology and then modify it to model a new service. 
Ontologies can increase recall, since similar services are co-located, one is apt to find 
relevant services simply by browsing the ontology near the matches one has already 
found. In addition, an ontology helps us find matches that are described using 
different, but semantically equivalent, terminology. 

We build for this purpose on the MIT Process Handbook project, a process 
ontology, which has been under development at the Center for Coordination Science 
(CCS) for the past ten years [23] [24]. The growing Handbook database currently 
includes roughly 5000 process descriptions ranging over such areas as supply chain 
logistics, hiring, etc. The Handbook project has developed sophisticated tools that 
allow a knowledgeable user to index a process model in a matter of minutes. We 
believe that the Handbook ontology represents an excellent starting point for indexing 
many services because it is focused on business processes, which is what a high 
proportion of such services are likely to address. 

3.3 Defining Queries 

It is of course imaginable that we could do without queries entirely once services have 
been indexed into an ontology. One could simply browse the ontology to find the 
services that one is interested in, as in [25]. Our experience suggests however that 
browsing can be slow and difficult for all except the most experienced users. This 
problem is likely to be exacerbated when, as with online services, the space of 
services is large and dynamic. To address this challenge we have defined a query 
language called PQL (the Process Query Language) designed for retrieving process 
models indexed in an ontology. Process models can be straightforwardly viewed as 
entity-relationship diagrams made up of entities like tasks characterized by attributes 
and connected by relationships like ‘has-subtask’. PQL queries are built up as 
combinations of three primitive clause types that check for these elements: 

 

• Entity <entity> isa <entity type>  
• Relation <source entity> <relationship type>  <target entity> [*] 
• Attribute <attribute> of <entity> {includes | equals} <value> 

 

The ‘entity’ clause matches any entity of a given type (the entity types include 
task, resource, port and so on). The ‘relation’ clause matches any relationship of a 
given type between two entities (the relationship types include has-subtask, has-
specialization, has-port, and so on). The optional asterisk finds the transitive closure 



of this relationship. The ’attribute’ clause looks for entities with attributes that have 
given values. Any bracketed item <> can be replaced by a variable (with the format 
?<string>) that is bound to the matching entity and passed to subsequent query 
clauses. 

The ‘When’-clause allows to group clauses into sub-queries: 
 

• When {exists | does-not-exist} <query> 
 

Let us consider a simple example to help make this more concrete. The query 
below searches for a sales service that uses the internet to inform customers: 
 



attribute "Name" of ?sell includes "sell" 
relation ?sell has-specialization ?process * 
when exists (relation ?process has-subtask ?subtask * 
                 attribute "Name" of ?subtask includes "inform" 
                 attribute "Description" of ?subtask includes “internet") 

 

The first clause searches for a processes in the ontology whose name includes 
“sell”, the second finds all specializations of this, and the third checks if any subtasks 
of these services are “inform” processes with “internet” in their description. A PQL 
query is thus equivalent to a typed sub-graph pattern, and any search for a process 
model can then be treated as finding the nodes of type task, which match the graph 
pattern that represents the query. 

The three clause types of PQL, and their variants, can be formalized as follows: 
 

Relation x rel-type y 
is defined as:  (x,y) ∈ rel-type, where rel-type ∈ {has-specialization, has-subtask, …} 
 

Relation x rel-type y * 
is formalized using  a fixpoint/recursive definition, as: 
((x, y) ∈ rel_type) ∨ (∃z : ((x,z) ∈ rel_type) ∧ rel_type(z,y)* ) 
 

Entity entity isa entity-type 
is defined as: 
entity ∈ entity-type, where entity-type ∈ {Task, Port, Resource, Exception, Attribute, …} 
 

Attribute attribute of entity equals value 
is shorthand for two relationships, as follows: 
has_attribute(entity, attribute) ∧ has_value(attribute, value)  
 

Attribute attribute of entity includes value 
is defined as:  
has_attribute(entity, attribute) ∧ has_value(attribute, v1) ∧ IsSubString(value, v1) 

 

Note that PQL includes built-in functions, such as IsSubString, comparable to 
those in other query languages such as SQL. If any of the parameters to a predicate 
are preceded by a question mark (e.g., ?y), then it denotes a variable that needs to be 
bound to a value from the database/model that can fulfill its place.  

The ‘when’ construct serves two roles. If used with the “exists” operator then it 
simply groups sub-queries in an intuitive way, and does not add any expressive power 
to PQL. For example: 

 

Relation ?x Has_subtask ?y 
When exists ((Relation ?y Has_subtask a)) 
is formalized equivalently with or without the “when” operator, as: 
Has_subtask(?x,?y) ∧ Has_subtask(?y, a) 

 

If the when-statement is used with the “does-not-exist” option then it will only return 
a result if <query> does not. This introduces a form of negation into PQL, so: 

 

When does-not-exist query 
is defined as ¬∃ xi= 1 ..k: xi= 1 ..k ∈Entities : <query> 
where: xi= 1 ..k are the unbound variables in query. 

 

The question of how to add negation to a query language is a non-trivial issue, as it 
may have major implications on its computational tractability. As will become 
obvious in section 5 below, the type of negation introduced here is consistent with an 



inflationary fixpoint approach, ensuring that the resulting language is bounded by 
polynomial time. 

As a final example, let us consider how our original example PQL query is 
formalized: 

 

Has_attribute(?sell, “Name”) ∧ Has_value(“Name”, ?v1) ∧ IsSubString(“sell”, ?v1) ∧  
Has_Specialization(?sell, ?process) ∧ 
Has_attribute(?process, “service?”) ∧ Has_value(“service?”, “yes”) ∧ 
( Has_subtask(?process, ?subtask) ∧ 
  Has_attribute(?subtask, “Name”)∧Has_value(“Name”, ?v2)∧IsSubString(“inform”, ?v2) ∧ 
  Has_attribute(?subtask, “Description”) ∧ Has_value(“Description”, ?v3) ∧ 
   IsSubString(“inform”, ?v3) ) 

 

PQL has been used successfully to represent a wide range of queries drawn from 
many different domains. Some other examples include “find a loan process that uses 
the internet, takes real estate as collateral, and has loan default insurance”, “find all 
processes that take oil as an input and are prone to cause environmental damage”, and 
so on.  Our preliminary assessment is that PQL is sufficiently expressive to capture all 
queries describable in process-oriented terms. 

3.4 Finding Matches 

The algorithm for retrieving matches given a PQL query is straightforward. The 
clauses in the PQL query are tried in order, each clause executed in the variable 
binding environment accumulated from the previous clauses. The bindings that 
survive to the end represent the matching services. While we have not yet evaluated 
PQL’s performance in detail yet, we do show (see below) that queries are within 
polynomial time complexity. 

4 Empirical Evaluation 

An initial version of the PQL interpreter has been implemented, and we have 
performed some preliminary evaluations of its precision and recall compared to 
existing (keyword and table-based) approaches. The following scheme was used for 
all of the evaluations described below. The roughly 5000 processes in the Process 
Handbook process ontology were treated as service models, which is reasonable since 
they all represent functions used in business contexts and many could imaginable be 
performed remotely. We then defined keyword and process-based queries that use the 
same keywords, operate over the same database of service models, and differ only in 
whether they use the role and relationship information encoded in the service models. 
We did not define a separate set of table-based service models and queries for this 
evaluation because, from the standpoint of retrieval precision, the keyword and table-
based approaches are equivalent. The fact that table-based models differentiate name 
and description attributes does not help since descriptions almost invariably reprise 
the keywords included in the service name, and none of the queries we used made use 
of I/O specifications. In any case, if we had used queries that refer to such I/O specs, 



it would not change the relative precision of table- and process-based queries since 
both can use I/O information. We tested simple keyword search as well as TFIDF, the 
latter because its potentially greater effective precision makes it a dominant scheme 
for keyword-based search. All the queries in our evaluation had perfect recall, 
because of the consistency in the use of keywords in the process descriptions. While 
we do not anticipate that process-based search will differ significantly in recall from 
keyword and table-based, this remains a subject for future evaluation. The queries 
below, clearly, are only illustrative, since a complete evaluation would require 
executing a representative range of many queries. 

Since our goal was to determine whether process-based retrieval improves on 
existing approaches, our evaluation focused on the value of the additional information 
captured by process-based service models as compared to keyword- and table-based 
models. This additional information falls into five categories: task decompositions, 
port connectivity, exception handling, task mechanisms, and specializations. We 
examine each category in the sections below. 

4.1 Task Decomposition 

Our process-based service model allows us to explicitly describe the subtasks that 
make up a service’s behavior. This can help avoid confounding information that refers 
to different subtasks. Imagine, for example, that we are searching for a sales service 
that informs customers using the Internet. We can frame this query as follows: 

Table 1. Query types and actual Queries 

Type Query 
Keyword-based “Sell”  “inform “internet” 
Process-based attribute "Name" of ?service includes "sell" 

when exists (relation ?service has-subtask ?subtask * 
                 attribute “Name” of ?subtask includes "inform" 
                 attribute ?attr of ?subtask includes “internet") 

 

The keyword and table-based service models are not able to distinguish cases 
where “inform” and “internet” (or their synonyms) belong to the same subtask from 
cases where these keywords belong to different subtasks (and thus are probably not 
relevant). We would thus predict false positives and therefore lower precision for 
these approaches, and this is in fact what happens. There were 13 correct matches for 
this query, including such processes as “Sell travel services via electronic auction”, 
“Sell books via electronic store” and so on. The PQL query had 13 correct matches 
out of the 18 it returned, for a precision of 72%. A simple keyword-based search had 
280 returns, for a precision of roughly 5%. TFIDF did not improve much upon simple 
keyword search in this case: its precision reached a maximum of 6% (at match 163), 
and its’ overall precision was lower because it allowed partial matches and therefore 
generated more total returns, 



4.2 Task Mechanisms 

Our process-based service model allows us to describe the mechanisms used by a 
task, thereby avoiding false positives due to the appearance of the same keyword with 
a different role. We can, for example, refine the PQL query given above so that  it 
only matches services where the keyword “internet” appears as a mechanism (the 
added clauses are bold type): 

 

attribute "Name" of ?service includes "sell" 
when exists (relation ?service has-subtask ?subtask * 
                 attribute “Name” of ?subtask includes "inform" 
                 relation ?subtask uses-mechanism ?mechanism 
                 attribute “Name” of ?mechanism includes “Internet”) 

 

This query had 13 correct matches, as above, but this time out of 16 responses, for an 
improved precision of 81%. 

4.3 Specialization 

The has-specialization relationship enabled by our inclusion of a process ontology can 
be used to avoid false positives by ensuring that the service, and its components,  have 
the semantics that we desire. For example, we can use this to refine the query 
presented above to only accept services whose subtask is a specialization of the 
generic “Inform” task, thereby pruning out services with subtasks that include the 
string “inform’ in their name for unrelated reasons (e.g. the subtask named “Collect 
configuration information using Internet”): 

 

attribute "Name" of ?service includes "sell" 
when exists (relation ?service has-subtask ?subtask * 
                 attribute “Name” of ?subtask includes "inform" 
                 relation ?subtask uses-mechanism ?mechanism 
                 attribute “Name” of ?mechanism includes “Internet” 
                 attribute “Name” of ?class equals “Inform” 
                 relation ?class has-specialization ?subtask) 

 

With this refinement, the query returns 13 correct matches out of 13 total, for an 
accuracy of 100%. 

Similar ontologies have of course been made available for table-based service 
retrieval engines. UDDI, for example, provides the UNSPSC taxonomy of product 
and service categories and the NAICS taxonomy of industry codes, among others. 
The particular value of the ontology we utilize is that it captures functions that a 
business might require at a much finer grain than the taxonomies mentioned above. 
We believe this will be helpful for service retrieval since many queries will, no doubt, 
be looking for services to support business functions. At the time of writing our 
database did not categorize services using these other taxonomies, so we were unable 
to evaluate their relative merits. 



4.4 Exception Handling 

Our process-based service model allows us to explicitly delineate the exceptions faced 
by a service, as well as the handlers available for dealing with each exception. 
Imagine, for example, that we wish to find a sales service that informs customers via 
the internet but avoids the exception of sending unwanted solicitations (e.g. by 
filtering out the names that appear on “opt-out” lists). We can, for this purpose, refine 
the query described above as follows shown in Table 2. 

Table 2. Query types and Query for exception handling Query 

Type Query 
Keyword-based “Sell” “inform” “internet” “avoid” “unwanted” “opt-out” 
Process-based attribute "Name" of ?service includes "sell" 

when exists (relation ?service has-subtask ?subtask * 
                 attribute “Name” of ?subtask includes "inform" 
                 relation ?subtask uses-mechanism ?mechanism 
                 attribute “Name” of ?mechanism includes “Internet” 
                 attribute “Name” of ?class equals “Inform” 
                 relation ?class has-specialization ?subtask 
                 relation ?subtask has-exception ?exception 
                 attribute “Name” of ?exception includes “unwanted”  
                 relation ?exception is-avoided-by ?handler 
                 relation ?attr of ?handler includes “opt-out”) 

We would expect the keyword- and table-based models to incur false positives by 
finding services that have the same keywords in different roles, that have that 
exception but do not have a handler for it, or that use a different handler (e.g. allowing 
recipients to remove their name from subsequent solicitations) for the same exception. 
In this case, there was one correct match. PQL returned only that item, for a precision 
of 100%. Keyword-based search returned 188 matches (0.53% precision), and TFIDF 
did not do any better, returning 248 documents, with a maximum precision at 0.4%. 

4.5 Port Connectivity 

The final category of information uniquely provided by process-based service models 
is port connectivity, which captures the resource flow relationships between tasks. We 
may, for example, want a service that generates the lists of potential customers to 
inform by applying data-mining techniques, which implies that the output of a data 
mining subtask is an input to the inform customers subtask. This would imply a PQL 
query like the following: 

 



attribute "Name" of ?sell includes "sell" 
when exists (relation ?process has-subtask ?sub1 
 attribute "Name" of ?sub1 includes "inform" 
 relation ?sub1 has-port ?port1 
 entity ?port1 isa input-port 
 relation ?process has-subtask ?sub2 
 attribute "Name" of ?sub includes “mining” 
 relation ?sub2 has-port ?port2 
 entity ?port2 isa output-port 
 relation ?port1 is-connected-to ?port2) 

 

A query like this can avoid false positives wherein a data-mining subtask exists in 
the service model, but it does not provide information to the inform customers step. 
The data-mining subtask may be applied instead, for example, to the database of sales 
generated by this service. We would therefore expect the keyword- and slot-based 
retrieval queries to demonstrate lower precision than PQL. At the time of writing we 
were unable to evaluate this because the Process Handbook ontology did not include 
sufficient port connectivity information; this will be addressed in future work. 

 
While a wider range of queries and services needs to be evaluated, these test cases 

strongly suggest that the greater expressiveness of process-based service models can 
in fact result in qualitatively higher retrieval precision. Even a PQL query that only 
took advantage of the subtask relationships in the process-based models produced 
retrieval precision more than 10 times greater than keyword-based approaches. The 
relative advantage of PQL, moreover, increased radically as the number of 
relationships specified in the query increased.  

4.6 Retrieval Complexity 

One of the major considerations for any retrieval capability is that it must return 
answers in a timely way. The speed at which queries get returned should be 
comparable to that of existing document retrieval mechanisms, which manage to 
search millions of documents in seconds. Even though our experience with the 
prototype implementation has been favorable (i.e., queries generally take several 
seconds at most without exploiting well-known performance-enhancing techniques 
such as query optimization) there is still the question of how the performance will 
scale with the size of the database. As we have shown elsewhere [26] PQL can be 
mapped to DATALOG¬, which has been shown to be bounded by polynomial time 
[27]. Consequently, we have every reason to believe that PQL will perform 
comparably to other database query languages. 

5 Contributions of this Work 

High retrieval service precision is widely recognised as a critical enabler for 
important uses that range from finding useful software components or applications, to 
finding best practice models, to tracking down people or organisations with the skills 



you need. Our work can be viewed as representing a new class of service retrieval 
technique that helps achieve these goals (Figure 6). 

Our evaluations to date suggest that process-based queries produce retrieval 
precision qualitatively greater than that of existing service retrieval approaches, while 
retaining polynomial complexity for query enactment. This work represents a 
significant contribution to work on pattern matching over generic graph-like 
representations, such as graph grammars [28], object-oriented query languages [29], 
and XQuery (a query language for XML; see http://www.w3.org/TR/xquery/). The 
unique value of our work comes from exploiting the more constrained semantics of 
process models to enable higher-precision service retrieval. 

Another line of related work comes from the semantic web community. These 
efforts use RDF [30] (or DAML+OIL [31]) to model services (e.g., [32]), and apply 
standard RDF (or DAML+OIL) query engines such as RDFSuite [33] or TRIPLE [34] 
to retrieve services. This work differs from ours in several important respects. Our 
work takes advantage of a more expressive process model, which as we have seen 
potentially translates into higher retrieval precision. All of these approaches capture 
task inputs and outputs. Only DAML-S [35] and our approach, however, captures how 
a service works (i.e. the subtasks in the service process model), and only our approach 
captures exceptions and their handlers. Another important difference concerns the 
nature of the process ontology used to index service models. The Handbook ontology, 
unlike that underlying RDF and DAML+OIL, allows one to "default" (i.e. delete) 
inherited features [36]. It has been shown that this form of inheritance is easier to 
understand by non-specialists [37], thereby making it easier for them to classify 
services. It is our hope that the insights we are exploring will lead to the enhancement 
of the semantic web standards and the ability to exploit these ideas using off-the-shelf 
query engines. 
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Fig. 6. The contribution of process-based service retrieval technology 

6 Next Steps 

While our preliminary results are promising, many important challenges remain. First 
and foremost, PQL needs to be evaluated for a wide range of queries in order to assess 



its precision and recall performance as compared to existing approaches, and to 
suggest refinements in the language and associated interpreter. Second, we hope to 
explore recall-enhancing techniques such as ontology-based query rewriting. Third, 
there is a need to minimize the manual effort involved in listing new services with the 
search engine by developing automatic indexing techniques. And finally, we will have 
to develop intuitive user interfaces for PQL. 
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