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Abstract

Finding good algorithms for assessing the similarity of complex objects in ontologies is central to the
functioning of techniquessuch asretrieval, matchmaking, clustering, data-mining, semantic sensedisambigua-
tion, ontology trandlations, and simple object comparisons. These techniques provide the basis for supporting
a wide variety of business intelligence computing tasks like finding a process in a best practice repository,
finding a suitable service provider or outsourcing partner for agile process enactment, dynamic customer
segmentation, semantic web applications, and systems integration. To our knowledge, however, there exists
no study that systematically compar esthe predi ction quality of ontol ogy-based similarity measures. Thispaper
assemblesa catal ogue of ontol ogy-based similarity measuresthat are (partially) adapted fromrelated domains.
These measures are compared to each other within a large, real-world best practice ontology as well as
evaluated in arealistic business processretrieval scenario. Wefind that different similarity algorithmsreflect
different notions of similarity. We al so show how a combination of similarity measures can be used to improve
both precisionand recall of an ontology-based, query-by-exampl e style, object-retrieval approach. Combining
the study’ sfindings with theliterature, we argue for the need of extended studiesto assemble a more complete
catal ogue of object similarity measures that can be evaluated in many applications and ontologies.

Keywords: Semantic similarity measures, ontology, object retrieval, semantic web, businessintelligence, best
practice repositories, process ontologies

I ntroduction

Susan is a consultant who just finished an intensive brainstorming session with a customer discussing a newly redesigned sales
process. From her experience, Susan knowsthat anal ogiesfrom other industriesand compani es oftentimes hel p to find unexpected
solutions to a process design problem. Therefore, she decides to ook up the relevant information in a (business process) best
practice repository, which is organized as abig ontology. She formulates a query specifying a number of attributes and features
of her process and some of its relationships. When executing the query, however, sheis buried in hundreds of results...

2004 — Twenty-Fifth International Conference on Information Systems 11



Bernstein et al./Object Smilarity in Ontologies

Thisisavery typical situation. People querying databases oftentimes find themsel ves either buried in results to their queries or
find no results whatsoever. A common approach to dealing with these problems is to rank the results of a query, in the case of
too many answers, or return similar returns, when no precise matches to the query exist (Baeza-Y ates and Ribeiro-Neto 1999;
Brin and Page 1998). Both of these approaches require a measure of similarity between queries and answers. Finding a good
measure of similarity is, thus, crucia for providing a good retrieval performance. But not only retrieval of objects profits from
agood similarity measure. A variety of techniques, such as clustering, data-mining, semantic sense disambiguation, ontology
trangl ation, automatic database schema matching, and object comparison rely on good similarity measures. Furthermore, all of
these techniques have ahugeimpact on practical business problemssuch asfinding aprocessin abest practicerepository, finding
a suitable service provider or outsourcing partner for agile process enactment, dynamic customer segmentation, and systems
integration. As a conseguence, similarity prediction algorithms are acentral element in the semantic web, artificial intelligence,
or computer science researcher’s toolbox in order to build useful applications for everyday business use.

The increased use of ontologies for determining the semantic meaning of data raises the question of an appropriate similarity
measurefor the use with ontologies or semantically enhanced applications. M ost semantic-web systems, however, usetraditional
logic approaches where corresponding objects are determined by perfect matches and similarity (as opposed to equivalence or
subsumption) isn’t used as a concept. Humans, on the other hand, typically have little difficulty in determining the intended
meaning of ambiguous words, expressions, or even complex objects, whereas it is challenging to replicate this process
computationally. This paper investigates algorithms for determining the semantic similarity between complex (i.e., aggregated
or compound) objectsin an ontology, as there is reason to believe that the word-vector based similarity measures traditionally
used in information retrieval are unsuitable for this purpose. In particular, it experimentally evaluates a number of adapted or
existing computational measures (mainly taken from the computer linguistics and natural language processing domain) in a
practical use scenario within arealistic application.

As such, the contributions of this paper are the following: First, it assembles a catalogue of similarity measures for the usein
ontol ogies of complex objects by adapting measures from related domains such as natural language processing (NLP). Second,
it comparesthe measureswith each other in alarge, real-world process ontol ogy (with over 5,000 entries) finding, among other
things, that different similarity algorithms reflect different notions of similarity. Third, the use of the similarity algorithmsiis
evaluated within apractical processretrieval scenario, which shows how they can be used to improve recall and precision of an
object retrieval query by extending the reach of alogically specified query with the use of similarity measuresaswell asordering
thereturns of such aquery. In addition, we will see how suitable the different similarity algorithms are for that purpose. Last but
not least, we show that such asimilarity-extended logic retrieval approach is superior to the pure keyword onein both precision
and recall.

The paper is structured as follows: Next, we review the literature on object similarity and present the findings as a catal ogue of
ontology-based object similarity functions. Then, we provide a detailed explanation of our evaluation setup, present the results
of the evaluations, and discuss limitations of the presented study. We close with a discussion of related and future work.

Semantic Similarity

The question of similarity is a heavily researched subject in the computer science, artificia intelligence, psychology, and
linguisticsliterature. In particular theinformation retrieval literature hasalong tradition of looking at measuresfor the similarity
between documents (Baeza-Y ates and Ribeiro-Neto 1999; Salton and McGill 1983). Those approachestypically take the single
words (or word stems) of a document as features and operate on histogram-vectors thereof, usually ignoring the ontological
relationships of the words.

There are essentially two waysto make use of the hierarchical ontology structure for determining the semantic similarity between
objects in an ontology: the edge-based approach and the node-based approach. The traditional edge-based approach estimates
the distance or edge length between nodes (Lee et al. 1993; Radaet al. 1989). The shorter the path from one node to the other,
themoresimilar they are. The problemwith thisapproachisthat it relies on the notion that edgesin ataxonomy represent uniform
distances (i.e., it assumes that all semantic links are of equal weight). The newer node-based approaches (Resnik 1995; Resnik
1999) typically use information content measures or information about object-part relationships to determine the conceptual
similarity. The similarity between conceptsis determined by the extent to which they share information.

In this section we will present five different similarity measures, both node and edge-based, that are derived from the literature
and are adapted to the context of comparing compl ex objectsin an ontol ogy. Ascomplex objectswedefine entitieswith attributes,
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attribute values, and relationships of which one might be a specialization (i.e., an is-a relationship denoting any type of
subclassing). This definition subsumes both explicit ontologies such as WordNet (Miller et al. 1993), where the specialization
relationship is explicitly defined using an explicit relationship, as well as ontologies, where this relationship is to be derived
logically (e.g., using subsumption [Baader et al. 2003]). Consequently, we consider complex objectssuch asclassesand instances
in a semantic web ontology or a programming language, entities and recordsin arelational or object-oriented database, as well
as any other compound data structure. For each of the measures we will briefly explain its source and how its adaptation to
complex objects works.

Ontology Distance

Themost intuitivesimilarity measure of objectsinan ontology istheir distancewithin theontology. Obviously, sparrowsaremore
similar to geese than to whales. They aso reside closer in the typical biological taxonomies. The calculation of the ontology
distanceis based on the specialization graph of objectsin an ontology. The graph representing a multiple inheritance framework
isnot atreebut adirected acyclic graph. In such agraph the ontology distance could be defined asthe shortest path going through
a common ancestor or as the general shortest path, potentially connecting two objects through common descendants or
specializations. For the purposes of this study we decided to employ the former, common-ancestor based specification, which
seemsto better reflect the common sense understanding of the closeness of two objectsin ataxonomy. The pseudo-codeal gorithm
looks as follows:

1. gen_a=dl transitive generalizations of the object A

2. gen_b=adll transitive generalizations of the object B

3. fromgen_an gen b determine the most recent common ancestor (MRCA)
4. ontology distance = count the length of the path from A to MRCA to B

I nformation-Theoretic Approaches

The problem of the ontology distanceisthat it ishighly dependent on the construction of the ontology. The measureis, therefore,
highly dependent on oftentimes subjective ontology engineering decisions. To address this problem, researchers in the NLP
domain have proposed measuring the simil arity between two objects (intheir case, words) inan ontology (i.e., WordNet) interms
of information-theoretic entropy measures (Lin 1998; Resnik 1999). Specifically, Resnik (1995, 1999) arguesthat an object (i.e.,
word) is defined by the members of the class specified. When using an explicit ontology like WordNet, the set of membersis
equivalent to the descendants (hyponyms) of an object (word). The information of a class is defined as the probability P(.) of
finding the particular set of descendants, its entropy as the negative log of that probability. Similarity is now defined as

sim(A,B) = ( 2*xlog P(MRCA(A,B)) ) / (log P(A) + log P(B) ), (N}

where MRCA is the most recent common ancestor of classes A and B. Intuitively, this measure specifies similarity as the
probabilistic degree of overlap of descendants between two objects. Modeling his evaluation on an experiment by Miller and
Charles(1991), which useshuman subjectsto ratethe similarity between 30 noun pairs, Resnik showsthat thisinformation theory
based method provides significant improvement (correlation 0.79) over traditional edge methods (correlation 0.60) when used
in WordNet. We can directly reuse this approach for complex objects resulting in the following algorithm:

U =the total number of objects

Find the most recent common ancestor (MRCA) of A and B
P(A) = (number of specializationsof A) / U

P(B) = (number of specializations of B) / U

P(MRCA) = (number of specializations of MRCA) / U
sim(A,B) = ( 2*log PIMRCA(A,B)) ) / (log P(A) + log P(B) )

onkwpnpE

Vector Space Approaches

V ector space models are very common in information retrieval (Baeza Y ates and Ribeiro-Neto 1999; Salton and McGill 1983)
and machine learning (Mitchell 1997). They represent each object as a vector of featuresin ak-dimensional space and compute
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the similarity by measures such as cosine or Euclidean distance. We adapted the vector space model to the complex object setting
by representing it asak-dimensional vector. Here k isthe number of unique object attributes or relations (having the same value)
of the object and the length of the k™ component of the vector is associated with the object part frequency in the objects. The
similarity between two objects’ vectorsis now simply defined as their inner product. The pseudo-code algorithm is:

1. Determine vector x from the object parts of A
2. Determine vector y from the object parts of B

3. sm(AB)=|xyl /(X *Iy)

Asan example, consider the object chair, which has four legs and one back to which it has a has-part relation aswell asaroom
officeto which it hasais-in relation. The chair vector [4, 1, 1] would represent the chair in the space with the dimensions [has-
part_legs, has-part_back, is-in_office]. Clearly, this type of “vectorization” is problematic as it, for example, does not capture
that thedimensionshas-part_legsand has-part_back are (semantically) closer related to each other than tois-in_office. However,
it has the advantage of being computationally cheap. We, therefore, decided to use this measure as one option out of awhole set
of possible vectorizations. An exhaustive study of complex object similarity measureswould have to consider other vector space
encodingsasthey areinvestigatedin the propositionalization of relational machinelearning problems(Dzeroski and Lavrac 2001)
and is beyond the scope of this paper.

Edit Distance (Levenshtein Distance)

The similarity between stringsis often described as the edit distance (also called the Levenshtein distance [Levenshtein 1966]),
the number of changes necessary to turn one string into another. Here a change is typically defined as either the insertion of a
symbol, the removal of asymbol, or the replacement of one symbol with another. In our case, we do not need to compare strings
but objects. Therefore, we calculate the number of transformation steps needed to turn one object into another object. In other
words, we count the number of insert, remove, and replacement operations of attributes, attribute values, relationships, or
relationship types. In afirst version we assume equal costs (=1) for each of the transformations. In an aternative implementation,
we weigh each transformation type with avalue that representsthe “real” costs. For example, is the replacement transformation
comparable with a deletion procedure followed by an insertion procedure? Hence, we could argue that the cost function ¢ would
have the following behavior:

c(deleting) + c(inserting) >= c(replacing) 2

Using thisassumption we cal culate the worst (i.e., most costly) casefor atransformation from A to B by replacing all object parts
of A with object parts of B, then deleting the rest of the object parts of A, and inserting additional object parts of B. The worst
case cost is then used to normalize the edit distance to a similarity. The overall agorithm looks as follows:

Determine parts (attributes/rel ationships) of A

Determine parts of B

Compute number of transformation steps (replace, insert, delete) from A to B
Compute worst case cost for the procedure

Relative edit distance = (number of transformation steps) / (worst case costs)

agrwONE

Full-Text Retrieval Method

Probably the most often-used similarity measure comes from the information retrieval literature and compares two documents
by using a weighted histogram of the words they contain (Baeza-Y ates and Ribeiro-Neto 1999; Saton and McGill 1983).
Specificaly, thetermfrequency and inver se document frequency measure (short TFIDF) worksasfollows: it countsthefrequency
of occurrence of each term in a document in relation to the term’s occurrence frequency in awhole corpus of documents. The
resulting word counts are then used to compose a weighted term vector describing the document. The similarity between two
documents is now computed as the cosine between their respective weighted term vectors.

In our casewe created a (text) document for each object in theontology. Every document contained the object name, itsattributes,

and abrief description of itsrelationships(similar to the descriptions shownin Figure 1). We then used an off-the-shelf algorithm
to compute the similarity of these documents (McCallum 1996).
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(a_) Aoquire labor not for money (23437 Hire employes (G567
Description: Description:
One way of acquiring Iabor is to get it from outzide the organization. Hiring an employee is the usual method of filling a long-temm need for
Thiz is called hirng if in exchange for money and shows under ‘hine labar.
human resources'. Other ways of acquiring labor are to use people
from within the organization (by promating or athemise restructuring)
or acquire from outside the organization but not for money by
senvitude or accepting donated labor)
Process parts : Process parts :
1. (2751 dentify potential sources 1. (27517 |dentify potential sources
2. (5500) Receive employess 2. (54317 Pay employes
3. (6384) Identify staffing need 3. (54020 Giwe offer
4. (4723) Select supplier 4. (4876 hBnage human resource providers
4. (27067 Determine timing A, (85000 Receive employees
G. (23600 Select human resources
T. (6384 Identify staffing need
(b) Acquine |abor not for money (2343 Promate human resources (2351

Description:

One way of acquiring Iabor is to get it from outzide the organization.
Thiz iz called hirng if in exchange for money and shomws under *hire
human resources'. Other ways of acquinng |abor are to use people
from within the arganization (by promating or athemize restructuring)
or acquire from outside the organization but not for money by
senvitude or accepting donated labor)

Process parts :

1. (27517 ldentify potential sources
2. (5600) Receive employess

3. (6384 Identify staffing need

4. (4723) Select supplier

4. (27067 Determine timing

Description:

If a staffing nead iz filled from within an organization, it can be
accomplished by promoting from within. This may or may not include
higher compensation, but does imply an increase in status.

Frocess parts :

1. (2751) |dentify potential sounces
. [B530) Give promotion
. (23600 Select human resources

. [4023) Select supplier

. [2706) Determine timing

2

3

4. (6384 Identify staffing need

]

G

T. (B529) Aesesz employes's perfomance

Figurel. Two Example Process Pairs

Application-Oriented Evaluation

The similarity measuresintroduced above provide afirst catalogue of candidates for an ontology-based similarity metric. All of
them have been used in some form or another in other domains and, therefore, have the potential of being useful in the semantic-
web domain. In order to assesstheir useful ness, however, we need to compare the measuresin the context of areal -world ontol ogy
and evaluate them in an application for similarity measures.* To that end we designed both a statistically sound comparison and
an ontology retrieval experiment, which we will discuss in the remainder of this section.

Similarity Measure Comparison in a Real-World Ontology

To evaluate the similarity measures, we chose object pairs from an ontology and looked how the various measures correl ated.
As the underlying ontology we chose the MIT Process Handbook ontology (Malone et a. 2003; Malone et a. 1999), which
contains over 5,000 organizational processes and has been carefully developed for over 10 years. The ontology has anumber of
advantages. It treats a real-world usage domain to which everybody can relate. Each process in the ontology has a variety of
relationshipsto attributes, subprocesses, exceptions, etc., and also has a detailed textual description, providing multiple types of
information about the processes. Finaly, the ontology has been used (and validated) in many projects (Maone et a. 2003) and
treats adomain of interest to information systems researchers. Unfortunately, the Process Handbook is sometimes confusing in
thatit, likeWordNet, doesn’ t di stingui sh between instancesand classes. We sel ected 20 process pairsfrom the ProcessHandbook.
The process pairs were chosen semi-randomly. In other words we restricted the choice as follows: All chosen processes should
have at |east one specialization in order to allow the informati on-theoretic similarity measure to work. Furthermore, we ensured
that at least some of the pairs would have ancestor/descendant rel ationships with each other.

Alternatively, we could have eval uated the measures usefulness against a“ gold standard” of object similarity, which is beyond the scope of
thispaper. Such an evaluationistypical inthe NLP domain (Budanitsky and Hirst 2001; Jarmasz and Szpakowicz 2001), wherethefocuslies
on word similarity rather than object similarity.
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As an example consider the process pairsin Figure 1. Both pairs show similar processesin the domain of human resources. The
process pair (a) compares the process of hiring employees (i.e., work for money) with the process of “acquiring”? labor not for
money (e.g., finding volunteer workers). Notethat they share some subprocesses, such as” identify potential sources,” whileothers
(such as “pay employee”) are unique to one of the processes. The process pair (b) compares the “acquisition” of labor with the
promotion within an organization. All three processes are a so shown in Figure 2, which depicts an excerpt of the specialization
rel ationships within the Process Handbook ontol ogy, where the relevant processes arein bol dface (and quite afew processesare
hidden). Given thisinformation about the ontology, we can compute the similarities between the process pairs. The absol ute edit
distance in both process pairs is the same (4). The vector similarity is dightly higher for the pair b) (0.676) than for the pair a)
(0.507). This correlates with the similarity assessment of the information theory finding (b): 0.867; (a): 0.542) and the ontology
distance (b): 2; (a): 8).® These similarity assessments seem intuitively correct, asthey reflect the absence of money in the bottom
vs. the top pair.

To assess the quality of the similarity algorithms beyond the example given above, we compared their assessments for each of
the chosen process pairs. This turned out to be a non-trivial task. First, some algorithms provided nominal predictions; others
generate assessmentson an ordinal scale. Second, the prediction of some algorithmswasnonlinear, complicating their comparison
using traditional correlations. We, therefore, compared each pair of assessments using the corrected Spearman correlation
coefficient r, which comparesbindings (corrected ranks) of assessmentsrather than absol ute val ues addressing both i ssues (Sachs
2002). This coefficient compares two paired sets by assigning each number a binding rank with respect to its set and provides a
number r, between —1 and 1, where 1 represents perfectly correlated sets, —1 inversely correlated sets, and O completely
uncorrelated sets. Typically values of r, > 0.5, respectively r, < 0.5, are taken as some indication of (respectively, inverse)
correlations and values of r, > 0.6, respectively r, < —0.6, as good indication of correlations.* In other words, wetook each series
of similarity assessment and compared it to every other assessment using the corrected Spearman rank correlation.

Acquire conscripts 827500

| Acquire not for money |---[ Acquire labor not for money 234300 |: - I Acquire volunteers 827400

Place human resources 235200

" [Ciodiy ] '
T Promote human resources 235100 |
Vi
[ Get | Hire employee 656700 |
| - ¥ . Hire temporary labor 656800
. Hire human resources 472400 |Z: . —~ I
. Promote person on career ladder 653100 ]

Buy information resource 718100

| Buy ] | Acquire financial resources 571000 | ' Lease employee 656900
) i Buy physical resources 234100

Figure 2. Ontology Excerpt Containing Specialization Relationships of a Partial View of the* Acquire” Branch
(Note that many elements have been removed to allow the inclusion of the figure)

AWe use the names given in the ontology, which don’t necessarily represent our understanding but the ontology’s.

*These numbers cannot be inferred directly from Figure 2, as some special ontology elements called “bundles’ in the Process Handbook are
omitted in the figure. More information on bundles can be found in Malone et al. 2003.

“The exact cutoffs for the significance of the relationship is dependent on the degrees of freedom (number of ranked items minus 2) compared
(Sachs 2002).
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Tablel. Corrected Spearman Rank Correlations between the Similarity Assessment Methods

Algorithm @) I \Y, E W T
Ontology Distance (O) 1 -0.93" -0.70" 0.49 0.65 -0.58
Information Theory (1) 1 0.60" -0.37 0.65" 0.57
Vector Space (V) 1 -0.91” -0.99” 0.75"
Edit Distance (E) 1 0.95" -0.64
Weighted ED (W) 1 07"
TFIDF (T) 1

**p=0.001; *p=0.01

Table 1 shows the resulting coefficients. We can discern two groups of methods. The first group, consisting of the ontology
distance and the information theory has an absoluter, of 0.93 (i.e., itssimilarity predictions correlate highly). The second group,
consisting of the two edit distances, the TFIDF measure, and the vector space model,® has an average absolute r, of 0.82 (or 0.95
without TFIDF). Both groups seem to have an underlying structure. The first group of measures, the information-theoretic
approach and the ontology distance, are oriented toward the location of a process in the ontology: the information-theoretic
approach through its reliance on the processes’ descendants, which are likely to be more common for closer objects, and the
ontology distance by the direct count of the closeness in the ontology. Also, these two measures did correlate in the NLP
experiments (Resnik 1999). The second group of measures, the two edit distances and the vector model, largely focus on the
objects parts, i.e., their attributes and rel ationshi ps (especially the subprocesses). The correlation between thetwo edit distances
isto be expected; essentially they only differ in the weights. The vector space modé is highly similar in that it builds a vector
from the parts and uses the similarity between those vectors to assess similarity. To a certain degree the TFIDF measure aso
reflects the focus on abjects’ parts, as their names are included in the objects’ full-text descriptions (see Figure 1) and as such
implicitly get taken into account when computing the similarities.

We have found that the similarity measures indeed capture a sense of object similarity in an ontology. One group of measures
captures the object’s position within the ontology, essentially using the quality of the ontology structure as a measure for
similarity. The second group practically ignores the ontology but relies on the object’ sstructure asameasure for similarity. Only
the TFIDF measure indirectly combines both approaches by implicitly including some ontology structure: some attributes and
their values are inherited down the hierarchy, are passed from classes to their subclasses, and, hence, included in the textual
description of both. This finding shows us that the similarity measures follow an intuitively comprehensible rationale. We do,
however, till have to show that they can be useful in practical applications. We will address thisissue in the next subsection in
the context of ontology-aided object retrieval, acentral task in applications such asthe semantic web or best practicerepositories.

Similarity Measure Evaluation in Ontology-Aided Object Retrieval

To answer the question about the usefulness of similarity measures, we decided to put them to use in a practical application
scenario. Susan’s—our consultant’ s—task of finding anovel sales process providesthe frame for that evaluation. In particular,
what if Susan were to be looking for a sales process in which customers are contacted electronically over the Internet? Such
processes are very common. Online retailers such as Amazon use them every day. Susan, however, needsto find a sales process
that avoids creating an untrustworthy impression on potential and current customersthrough unsolicited messagesby considering
opt-out lists. Recall that we treat complex objects and not full-text documents. Hence, Susan searches a database of processes
encoded as structured data. Given this scenario, we picked asuitable retrieval technology and evaluated how similarity measures
could be used to improve both its recall and precision on queries that Susan might pose.

®Even though the vector space assessment mechanism correlated significantly with both groups, we decided to include it in the second group,
asits correlation with that group is higher.
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The Base Retrieval Technology: Process Query Approach

Current technology for processretrieval has been extensively reviewed by Klein and Bernstein (Bernstein and Klein 2002; Klein
and Bernstein 2004). Keywor d-based retrieval methodsrely ontechnology traditionally used by Web search engines(Baeza-Y ates
and Ribeiro-Neto 1999; Brin and Page 1998; Salton and McGill 1983) to search ontol ogies. These approachestypically achieve
fairly high recall but low precision, as keywords are a poor way to capture the semantics of a query or item. Table-based
approaches (Devanbu et al. 1991; Karp 2000; Fernandez-Chamizo et al. 1995; Fugini and Faustle 1993; Henninger 1995) use
attribute val ue pairs describing the properties of an item. Both items and queries are described as tables: matches represent items
whose property values match those in the query. The usefulness of these approaches is limited, however, because of the
impoverished range of information typically captured by table-based service models. In deductive retrieval (Chen et al. 1993;
Kuokka and Harada 1996; Meggendorfer and Manhart 1991), service properties are expressed formally using logic. Retrieval
then consists of finding the itemsthat can be proven to achieve the functionality described inthe query. Thisapproach, however,
facestwo very serious practical difficulties: it can be prohibitively difficult to model the semantics of non-trivial processesusing
formal logic and the proof processimplicit in thiskind of search can have ahigh computational complexity, making it extremely
slow (Meggendorfer and Manhart 1991). Last, structure-based approaches, which Klein and Bernstein propose themselves
(Bernstein and Klein 2002; Klein and Bernstein 2004), allow specifying queries using an ontology. They find that this last
approach has excellent recall characteristics without the precision penalty, which is indigenous to keyword-based approaches.
Furthermore, itisshown to haveacceptabl e computational complexity and encompassthe propertiesof table-based queries. Given
those findings, we chose to use this last approach as a basis for our investigation.

The proposition of Klein and Bernstein is to employ a process query language (PQL) to pose queries for evaluation against a
process ontology. The process query language essentially allows the composition of process fragmentsthat result in aquery-by-
example style specification of the sought-after processes. In Susan’ s case we could assume that she would compose two queries
shown as PQL and as keyword equivalents (see Table 2).

Table 2. Full-Text, Keyword-Based, and PQL Queries Used for Evaluation
(Variablesin PQL queries are denoted with a question mark “?")

Query 1
Find all sales processesthat inform their customersover | PQL:
theInternet (ATTRIBUTE “Name” OF ?process INCLUDES “sdl”) A
(RELATION ?process HAS-PART ?subtask *) A
(ATTRIBUTE “Name” OF ?subtask INCLUDES “inform

Keywords: “sell inform internet”

theinternet and allow them to avoid unwanted
solicitations using opt-out lists

Keywords: “sell inform customer internet unwanted opt-
out”

customer”) A
(ATTRIBUTE “Mechanism” OF ?subtask INCLUDES
“internet™)
Query 2
Find all sales processesthat inform their customersover | PQL:

(ATTRIBUTE “Name” OF ?process INCLUDES “sdl”) A
(RELATION ?process HAS-PART ?subtask *) A
(ATTRIBUTE “Name” OF ?subtask INCLUDES “inform
customer”) A

(ATTRIBUTE “Mechanism” OF ?subtask INCLUDES
“internet”) A

(RELATION ?subtask HAS-EXCEPTION ?exception) A
(ATTRIBUTE “Name” OF ?exception INCLUDES
“unwanted”) A

(RELATION ?exception ISAVOIDED-BY ?handler) A
(ATTRIBUTE “Name” OF ?handler INCLUDES “opt-out”)
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Aswe can see, query 1islooking for sales processesthat inform their customers over the Internet and query 2 adds an additional
constraint of the “opt-out” list. In order to evaluate the performance of the query mechanism, we needed a coding of all 5,000
entries in the Process Handbook database as either answers (true positives) or not (true negatives) with respect to those two
gueries.

When running both the PQL and the keyword-based query, we find the following results. For query 1, PQL finds 17 returns of
which two are correct answers and one correct answer is missing, a TFIDF-based query engine finds the true answers at the 8",
86", and 233" position resulting in poorer precision and only eventually better recall. When running query 2, PQL finds two
returns (both of which are correct answers) resulting in a perfect precision but alimited recall of two-thirds. The TFIDF-based
agorithm findsthe returns at the 3, 16", and 101% position, again resulting in poorer precision and only eventually better recall.
These findings essentially reflect those of Klein and Bernstein, the main difference being a new addition to the ontology.

Improving Recall: Similarity-Based Result Set Extension

We first address how we could use the similarity measures to improve the recall performance of PQL without degenerating its
precision too much. Assuming that the PQL query would find at |east some true positive returns, one could argue that the rest of
the correct answers should be similar to the returns already found. Conseguently, we decided to rank the remaining processesin
the ontology in decreasing similarity to the ones found by the PQL query. In other words, we took the set of answers A returned
by the PQL query and gave each of those a score of 1. We then calculated the score of the remaining entriesin the ontology R
by using the maximum (or average) similarity to all elementsof A. Thustherank of r € R isdetermined by either the maximum
or average of { Vae A: similarity(a,r) }. Therecall of the resulting ranked returnsfor query 1 can be found in Figure 3 together
with the original PQL and keyword-based retrieval approaches. Query 2 has analogous results. Note that we couldn’t use the
information-theoretic measurefor these experiments, asit requireseach el ement compared to have descendants, whichisnot given
for leaves of the ontology—a property shared among all true (positive) answers.

Asis clearly visible, the traditional keyword-based TFIDF approach provides the poorest recall performance up until the 86"
returned object, whereiit attains the same level as PQL, which only returns 17 objects. Therecall enhancing PQL methods attain
the samerecall asPQL until the 17" returned object. There, therecal | enhancements based on the maximum similarity with either
the (weighted or unweighted) edit and the vector distance immediately climb to 100 percent recall. In other words, the first
element outside the PQL result set is found to be the missing true positive. As a consequence, we can argue that the above
mentioned assumption of the similarity between the objects in the answer set A and the third true positive seemsto be true. As
the figure also shows the other similarity-enhanced methods follow to the 100 percent recall between the 20" and 59" returned
object (20"—ontology distance max, 25"—ontology distance avg, 37"-vector distance avg, 58"—edit distance avg, 59"-weighted
edit distance avg), whereby the methods based on average similarity are clearly outperformed by those based on maximum
similarity. Summarizing, we can statethat our approach for enhancing recall hasclearly worked on the examplequeriesand seems
to merit further investigation.

1 =
i ;s
| I
0.8 | l : : _ PQL
I ¥ 5 - - - Keyword-based TFIDF
_ 06 : — = (weighted) Edit and vector distances max
g : — = Ontology distance max
04 : — — Ontology distance avg
................................. Vector distance avg
: ---- Edit distance avg
0.2 : -----Weighted edit distance avg
1 11 21 31 41 51 61 71 81 91 101
Result set size

Figure 3. Recall of Traditional Keyword-Based, PQL, and Similarity Enhanced PQL Approachesfor Query 1
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Figure4. Precision Analysisof Traditional Keyword-Based, PQL, and Enhanced PQL Approachesfor Query 1
(Non-improving methods are omitted to improve chart clarity)

Improving Precision: Similarity-Based Result Set Ordering

Given our successin enhancing recall, we devised methods for using object similarity measuresfor reordering the PQL result set
with the goal of enhancing retrieval precision. Again we based our approach on the assumption that the result set returned by the
PQL method contained some information about the nature of the true answers to Susan’ s question. As a consequence, we took
the elementsin the answer set /A and ordered it by the maximum (or average) similarity to the other elementsin A. Thusthe rank
of ae A isdefined asmaximum (or average) of {Vbe A: a=b: similarity(b,a) }. Asan additional measure we decided to order
the elements of A by their keyword-based TFIDF score.

Theresults of thisprecision analysisfor query 1 can befound in Figure 4, which clearly showsthat precision can be substantially
improved with the suggested approach. As abaseline, we have to take the pure PQL results, which are represented asthe fat red
lineat aprecision of 0.118. Note also, that PQL returns 17 answers to the query, at which point almost all methods meet as they
base on the original PQL query. Itisclearly visible, however, that some methods, such as the average TFIDF (shown as brown
with diamonds), ontology (greenwith circles), or vector (bluewith squares) similarity enhanced PQL methods, successfully order
the returns to increase precision. Summarizing, we find that similarity measures, again, showed their capability to improve
retrieval performance—in this case, precision—of complex objects in ontologies. Given the already perfect precision of query
2 we omit its discussion here.

Combination: An Improved Similarity-Aided Object-Retrieval Approach

So far we have shown that similarity measures between complex objects can be successfully used to increasethe precision aswell
astherecall of asuccessful ontology-based object retrieval method. Obviously, those two approaches can be combined to result
in an overall well-performing retrieval method, in which the elementsin the answer set /A are ranked according to their average
ontology distance or TFIDF similarity and the onesin R are ranked (for example) by their edit distance similarity. The result of
this combination should be an overall well-performing retrieval mechanism. The remaining question is how to choose the best
overall performing similarity measuresfor theranking. Intheinformation retrieval literature, combinations of precision and recall
aretypically evaluated using the F-measure—the harmonic mean of precision and recall—or the E-measure® (see Baeza-Y ates
and Ribeiro-Neto 1999, p. 82). Both measures assume that the tradeoff between precision and recall made by the users of the
systemisknown at thetime of the analysis; the F-measure weighing them equally, the E-measure using a parameter to determine

Calculated as 1 — (1 + b?) / ( b¥recall + L/precision), where b provides aweight of precision versus recall.

20 2004 — Twenty-Fifth International Conference on Information Systems



Bernstein et al./Object Smilarity in Ontologies

= =PQL
—8— Edit distance max
-+ e Edit distance avg
+  Weighted edit ditance avg
—©o—Ontology distance avg
+ < TFIDF avg
=== Convex Hull
Random

True positive rate

0 0.2 0.4 0.6 0.8 1
False positive rate

Figure 5. Receiver Operating Characteristics of PQL and Some Similarity Enhanced PQL Methodsfor Query 1

the weight of the tradeoff. Aswe do not precisely know the weight given to either precision or recall, we draw on the receiver
operating characteristic (ROC) analysis, which hasrecently gained usage in the machinelearning literature (Provost and Fawcett
2001). ROC curvesgraph thefal se positive rate versusthetrue positive rate of aclassification or retrieval operation. Assuch, the
curves, which are limited to the space between [0,0] and [1,1], allow the comparison of different retrieval mechanismsregardless
of the cost of false positives or fal se negatives and the distribution of the true positivesin the underlying dataset.

Consider, the ROC curves for our retrieval methods in Figure 5. Aswe can see, al of the methods’ curves are in the upper left
half of the graph. Thisisagood sign, as the perfect method would show as a curve from the origin [0,0] through [0,1] to [1,1],
while the random method would lie on the diagonal providing a baseline. The closer to theideal curve, the better the method.
Hence, the method’ s quality is oftentimes measured as the area under the ROC curve. As we can see, some of our methods
perform very well. The maximum edit distance enhanced PQL method (highlighted with empty sgquares), for example, follows
the y-axis very closely until about 0.3, then stepsto [0.1, 0.3] and [0.1, 1] before it reaches [1,1]. Some other methods, such as
the average ontology distance (empty circles), clearly outperform it between x =0 ... 0.1, but fall short after that region. This
shows how the ROC curves capture the two methods' performance with regard to precision and recall, where the maximum edit
distance method outperformed the average ontology distance in the recall evaluation and vice versa: in ROC curves, the
relationship between the cost false positives and fal se negatives determines the incline of aline. The method whose tangent to
that lineliesclosest to [0,1] isthe optimal under the given cost relationship. In our example, theincline, thus, essentially captures
the weight given to precision and/or recall. As Provost and Fawcett (2001) show, an overall optimally performing method can,
therefore, be constructed by combining the methods that together establish the convex hull (shown fat with triangles).
Summarizing, we have seen that the similarity measures for complex objects asintroduced above can indeed be used to improve
retrieval performance of objects aswell as provide the basis for constructing a combined, overall well-performing method.

Limitations

The above evauation illustrates how similarity measures can be used to improve both precision and recall of complex objects
in an ontology. As such, it fulfillsthe goal that we set ourselves to show the usefulness of the similarity measures both through
acomparison within arealistic ontology and in the context of an application. Nevertheless, there are limitationsto the eval uation.
First, and concerning both evaluations shown, the limitation on one ontology might limit the generalizability of the results.
Budanitsky and Hirst (2001), for example, state that the differencesin retrieval performance found in various NL P publications
might stem from the different versions of WordNet used asthe underlying ontology. Assuch, our eval uation needsto be extended
to include other ontologies before a general statement can be made. But even in its current form, our findings on the different
notions of similarity and methods for extending current object retrieval methodol ogi eswith object similarity measuresare highly
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likely to generalize to other domains, as some of the similarity measures have been adopted from other domains where they have
been used successfully inthe context of various ontologies. Second, and concerning theretrieval evaluation (only), our limitation
on two queries hampersvalidity to queriesin general. While we will have to address this concern with broader evaluationsin the
future, we believe that findings from other domains showing the usefulness of similarity measuresfor retrieval of text documents
or for clustering feature vectors should generalize to the use of similarity measures of complex objects supporting our illustration
in an object or process retrieval application. Third, our repertoire of similarity algorithmsisfar from complete. It presents but a
first version of aframework which we intend to extend significantly. Notable exceptions, for example, are graph or tree-based
similarity algorithms (Guhaand McCool 2003; Jonyer et al. 2001; Melnik et al. 2002; Palopoli et al. 2003; Roddick et al. 2003;
Wang et a. 1999). Last, we did not evaluate the computational performance of the algorithms—an issue we need to addressin
future work.

Related and Future Work

Most closely related, Rodriguez and Egenhofer (2003), similar to Fridman Noy and Musen (1999), present an approach to
computing semantic similarity that accountsfor differencesinthelevelsof explicitness and formalization of different ontologies.
They combinethree similarity measuresin order to detect similar classes across ontol ogies and find that the combination of word
and semantic-neighborhood matching obtains best recall and precision rates, whereas combining word matching with feature
matching results in increasing precision, but decreasing recall. Each measure on its own is insufficient for cross-ontology
evaluations. Thisissimilar to our finding that the best retrieval performanceislikely to befound by combining different measures.
Given their focus on comparisons across ontologies, however, it is difficult to compare our results.

Di Noiaet a. (2003) compare a human-based ranking of 12 items with the returns of a description logic-based retrieval engine,
which attains imprecise matching by relaxing query constraints. Thisis similar to using an ontologized edit distance for ranking
retrieved objects. They find the automated rankings show good correspondence to the average human subject’ s assessment and
refer to ongoing large-scale experimentsfor further details. Their work differsfrom oursin that they do not comparetheir ranking
method with any other similarity measures, preventing acomparison with the methods we presented. Nonethel ess, in futurework
we also intend to evaluate retrieval performance with human subjects.

Ouzzani and Bouguettaya s (2004) propose and implement a generic approach for optimally querying Web services using their
input/output parameters, whose sole use for retrieval has been shown to be problematic (Klein and Bernstein 2004). They don’t
report any evaluation of their approach. Nevertheless, their study shows the big impact good similarity measures might have on
practical applications.

Focusing on areal-world application in the domain of bioinformatics, Lord et a. (2003) found that sequence similarity of proteins
correlated well with Resnik’ sinformati on-content-based similarity operating on protein annotations. Using the semantic measure,
they generated aranked list of semantically similar proteins to enhance recall. Their main problem was that many of the results
had identical similarity values and can, therefore, not be ranked appropriately. We believe that the use of a more fine-grained
similarity algorithm could help to address this issue (e.g., by sorting similar ranked items as we did in the recall experiment).

The NLPliterature provides alarge group of related work focusing on word rather than object similarity. Motivated by Resnik’s
study, a number of papers describe improvements to his information-theoretic measure. Wu and Palmer (1994) focus on the
semantic representation of verbsin computer systems and find those measureswell applicableinthefield of machinetrandation.
Jiang and Conrath (1997) propose a combined edge-counting and node-based method that outperforms either of the pure
approaches. This hints at the usefulness of different or combined similarity algorithmsfor different notions of similarity, just as
we found it when constructing the combined precision and recall enhancing method. Furthermore, Budanitsky and Hirst (2001)
evaluate five measures of semantic rel atednessin areal-world mal apropism detection and spelling correction system. They show
that mal apropism detection provesto be an effective approach for evaluating similarity measures and that there are considerable
differences in the performance of the measures. These studies, thus, support our finding that there are different notions of
similarity and, therefore, that different semantic similarity measures aren’'t equally suitable for all applications.

A number of studies explore similarity measuresin general. Lin (1998) explores an information-theoretic measure of similarity
that relies on a probabilistic model of the application domain, which makesit problematic for smaller ontologies. Roddick et al.
(2003) propose a graph-based approach that determines the semantic distance between objects through a traversal distance,
weighted arcs, and transition costs. They show that their approach can be simplified to straightforward enhancementsto standards
such as SQL.
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Already in the late 1980s concept-based retrieval systems were proposed to enhance the precision and recall of text documents.
In Giger’'s (1988) study, for example, users enter queries as keywords and a concept space (derived from a corpus) together with
a cosine/entropy-based similarity function are used to improve retrieval performance. The focus of that stream of research on
documents rather than complex objects differentiates it from our study.

Cohen’s (2000) WHIRL system uses a TFIDF-based similarity operator to enhance a relational database system allowing
similarity-basedjoins. WHIRL illustratesthe power of similarity functionsin acontext of structured objects(in his case, database
relations). It differsfrom our approach in that WHIRL compares attributes of database recordsfor joins, whereaswe comparethe
similarities of whole complex objects (e.g., database records).

Summarizing, we can say that the study of similarity measures has been found to be an important subject of research in many
domains of computer science and information systems. Itsimpact in some of the domains such as NLP and information retrieval
cannot be overstated. Some of the more recent studies also show that similarity measures for objects are likely to have asimilar
impact on practical application domains such as the semantic web, Web-service discovery, object-retrieval, or the use of best
practice repositories. Much work remains to be done. Our catalogue of similarity measures should be extended with other
candidates mentioned in this section and beyond. Furthermore, we need to address the limitations of our evaluation by extending
it to more queries, eval uating them in differing ontol ogies, and comparing their assessmentsto human subjects. Last but not least,
we intend to compare the usefulness of the similarity measuresin other applications such as clustering, ontology construction,
and others.

Conclusions

In this paper, we argued that similarity measures between complex objectsin ontologies, a central component of techniques such
a clustering, data-mining, semantic sense disambiguation, ontology tranglation, and simple object comparison, deserve more
attention given their foundational valuefor business-relevant computing taskslikefinding processesin best practice repositories,
finding a suitable service provider or outsourcing partner for agile process enactment, dynamic customer segmentation, and
systems integration. We assembled a catal ogue of five algorithms (one of which was presented in two versions) and compared
them to each other within a large, real-world best practice ontology as well as evaluated them in a realistic business process
retrieval scenario. We found that different similarity algorithms reflect different notions of similarity, which arise from the
comparison of complex objects rather than documents (as bags of words) or feature vectors. Thisintriguing finding hints at the
importance of people's cognition of object similarity, which, like the algorithms’ similarity assessments, might have several
aspects and, as such, warrants further explorations. We also showed how a combination of similarity measures can be used to
improve both precision and recall of an existing object-retrieval approach providing a notion of practical applicability of the
similarity measures found and ultimately hel ping practitioners such as Susan in a practically relevant task. This study provides
afirstinvestigation of similaritiesin ontologies. Nevertheless, the task of understanding similarity in ontologiesisfar from over.
To that end, both technical work on better, feature-combining, and ontology-adapting similarity assessment algorithms as well
as behaviora studies exploring peopl€e’ s understanding of similarity and their use of similarity-based features are needed.
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