
Extending a Graphic Modeling Language
to Support Partial and Evolutionary Specification

Yong Xia and Martin Glinz
Institut für Informatik der Universität Zürich

Winterthurerstr. 190, CH-8057 Zurich, Switzerland
{xia, glinz}@ifi.unizh.ch

Abstract

The notion of partial and evolutionary specification has
gained attention both in research and industry in the last
years. While many people regard this just as a process is-
sue, we are convinced that it is as well a language problem.
Unfortunately, UML is not expressive enough to deal with
evolutionary information in the system. In this paper, we
propose an extension to a graphic modeling language called
ADORA which is developed in our research group. We con-
servatively extend the semantics of some ADORA constructs
so that intentional incompleteness can be expressed in the
language and define a calculus for refining such specifica-
tions. With the help of these extensions, evolutionary speci-
fications can be written in a controlled and systematic way.
As the language and its extensions are formally defined, the
consistency of evolutionary refinements can be checked me-
chanically by a tool.

1 Introduction

The notion of partial and evolutionary specification has
gained attention both in research and industry in the last
years. Software is more and more being developed in an
evolutionary, incremental manner. The distinction between
development of new systems and evolution of existing ones
begins to disappear [5]. While many people regard this just
as a process issue, we are convinced that it is as well a lan-
guage problem.

As mentioned in [5], “change” is a constant in software
development. The change of requirements requires that
the software system be developed in an evolutionary way.
There are two types of changes: one are planned changes,
the other are unexpected, unforeseen ones.

For unforeseeable changes in software requirements,
only a sophisticated process can help. Nothing can be done
at the language level.

However, some changes are predictable. For example,
because of the limited resources (lack of manpower, time,
etc.), some system requirements cannot be implemented in
the first version. Some system functions need to be further
augmented in the next version. In such situations, we know
the requirements that will change and can evolve the spec-
ification in a planned way. In this case, extensions on the
language level for supporting the incremental development
of a specification are useful and necessary: without proper
language support, the process will not work well.

Currently, UML [6] is a de-facto industry standard for
graphic modeling languages specifying software require-
ments. Use case diagrams, sequence diagrams, and col-
laboration diagrams in UML are thought of as partial mod-
els, which show a part of the system information. Because
we cannot at one time specify all aspects of a more and
more complex system, whose specification more or less
constantly changes, partial models are the means for de-
scribing a system in an evolutionary manner. UML has nine
different types of diagrams, each of which describing cer-
tain aspects of a system and showing only a part of that
system. The developers can just concentrate on the parts
where the information on certain aspects or certain parts of
the system is available in the current development phase. If,
for example, the general structure of a subsystem is known,
but its behavior is yet unclear, only class diagrams need to
be given. The statechart diagrams can be temporarily omit-
ted and added in a later incremental step.

However, there are problems with UML. UML is a set of
loosely coupled sublanguages (its nine types of diagrams).
There is nearly no enforcement of integrity and consis-
tency checking among the different diagrams at the lan-
guage level. The UML metamodel provides only weak syn-
tactic interconnections between the concepts expressed in
different sublanguages. The usage of OCL in the meta-
model is restricted to well-formedness rules within a sub-
language.

UML also does not deal with two problems that arise in
the context of partial and evolutionary specifications:

Proceedings of APSEC 2004, the 11th Asia-Pacific Software Engineering Conference, Busan, Korea.

• Among different aspects. Incomplete information
in one aspect may bring (side) effects to other as-
pects. For example, an incomplete use case diagram,
in which some requirements in current development
phase is unknown or some design decision still cannot
be made, will affect the construction of statecharts or
class diagrams. On the other hand, the already devel-
oped model has also effects on the future refinement of
that use case.

• Within one aspect. Incomplete information brings
(side) effects within the same aspect. For instance, a
partially specified class affects the specification of the
surrounding classes in the class diagram.

In a word, UML does not have sufficient language con-
structs and mechanism, which
• record evolutionary information (e.g. still be incom-

plete or partial, will be further evolved, etc.) of the
model elements1;

• model effects of an incomplete part of a system to other
parts;

• support a software development process to make evo-
lutionary specification be developed in a systematical
way.

Actually, the characteristic of UML, a set of loosely cou-
pled sublanguages, also brings the difficulty of naturally
solving the above problems. In our research group in Zurich
we have developed a modeling language for requirements
and architecture called ADORA.

In this paper, we focus mainly at the language level and
study how a partial and evolutionary specification can be
expressed in the ADORA language and where the language
has to be modified or extended for this purpose. As conse-
quence, we syntactically and semantically extend language
elements of ADORA so that evolutionary specifications can
be written in a controlled way. Sometimes we call our ex-
tended language ADORA+ to distinguish it from the original
language.

2 A short introduction to ADORA

In this section, we give a brief introduction to ADORA,
as we will use the ADORA language as a sample graphic
modeling language in the rest of this paper. ADORA

is a modeling technique for requirements and software
architecture[4][9]. The acronym stands for Analysis and
Description of Requirements and Architecture. Figures 1
and 2 (taken from the specification of a distributed heat-
ing control system) give an impression how ADORA models
look like. At a first glance, ADORA diagrams look similar

1In UML, we can use some mechanisms, such as Notes, to explicitly
record evolutionary information. However, specifying evolutionary speci-
fication with those kinds of general purpose language constructs is just at
an application level. This makes further system refinement in a controlled
and formal way nearly impossible.

HeatingControlSystem

MasterModule

BoilerOperator

object object set scenario state
abstract relationship

HeatingOn LocalControl
Disabled

communicate

display

RoomTemp
Sensor: external

RoomControl

RoomModule

RadiatorValve

setRoomTemp

LocalControl
Enabled

User

setDefault

setRoom

Control

Local
Control
Off

Local
Control
On

Controller

element of the
environment

controlBoiler
(1,1)

controlValve
(1,3)

readTemp
 (1,1)

(1,n)

setLocal

Settings

note RoomControl uses
local control parameters
if local control is enabled
and on. Else, default
values (set by Master-
Module) are used.

ManageLocalRoom
Temperature...

RoomTempControl
Panel...

communicate setState

BoilerControl
Panel...

BoilerControl...

OperateHeating
System...

HeatingOff

association relationship

inter- relationship

Figure 1. An ADORA view of the heating sys-
tem: base view + structural view + context
view

to UML diagrams. However, there are fundamental differ-
ences between ADORA and UML [4].

2.1 Basic features of ADORA

In this subsection, we summarize the distinguishing fea-
tures of ADORA.

Using abstract objects (instead of classes) as the basis of
the model. Class models are inappropriate when more than
one object of a class and/or structural nesting of objects has
to be modeled [4]. Therefore, ADORA uses abstract, pro-
totypical objects instead of classes as the conceptual core
of the language. For example, in the sample heating con-
trol system (see Figure 1), there is a single Master Module,
but multiple room modules. In ADORA, we model these
entities as abstract objects and thus can make these cardi-
nalities immediately visible. Moreover, the Boiler Control
Panel in the Master Module and the Room Control Panel
in the Room Module may have the same type. Hence, they
would not be distinguishable in a class model, while with
abstract objects, we can model them separately and place
them where they belong.

Integration of all aspects of the system in one coherent
model. An ADORA model integrates all modeling aspects
(structure, data, behavior, user interaction ...) in one coher-
ent model. This allows us to introduce strong rules for con-
sistency and completeness of models, reduces redundancy,
and makes the model construction more systematic.

Using an integrated model does of course not mean that
everything is drawn in one single diagram. From the inte-
grated model, we can generate aspect views pertaining to a
given aspect. The so-called base view of an ADORA model
consists of the hierarchical structure of objects only. Aspect
views are generated by combining the base view with all
information that is relevant for the selected aspect.

For example, Figure 1 shows the structural view (which
shows the static structure of the system by combining
the base view with directed relationships between ob-

jects/object sets) and the context view (which shows all ac-
tors and objects in the environment of the modeled system
and their relationship with the system) of the whole heating
control system. Figure 2 shows the behavior view (which
shows the dynamic behavior of the system by combining the
base view with a statechart-based state machine hierarchy)
of the Room Module in our heating control system. Figure
3 shows the details of Scenario ManageLocalRoomTemper-
ature using the notation of scenariochart, whose style is de-
rived from Jackson Diagrams. This is a part of the user view
of the system.

Init, Monitoring Modifying

Y

Y

IN LocalControlEnabled.LocalControlOn

ActualTemp > Settings.CurrentTemp(now)

ActualTemp < Settings.CurrentTemp(now)

ActualTemp > Settings.DefaultTemp(now)

ActualTemp < Settings.DefaultTemp(now)

IN LocalControlEnabled

send open over controlValve

send close over controlValve

180 s IN Modifying

MonitoringModifying

10 s IN Reading

self.ReadSensorValue

ReadingReading

Y

N

Y

•

•

N

•

•

N

Y

•Y

Y

N

Y

•

•

N

•

•

N

Y

•Y
State Transition Tables for Controller

RoomModule

(1,n)

HeatingOff

HeatingOn
LocalControl
Disabled

RoomTempControl
Panel...

RoomTemp
Sensor: external

RoomControl LocalControlEnabled

ManageLocal
RoomTemperature...

receive on
over setRoom

"enable" "disable"

Modifying

Monitoring

Init
ControllerSettings

Reading

Local
Control
Off

Local
Control
On

note RoomControl uses local control
parameters if local control is enabled
and on. Else, default values (set by
MasterModule) are used.

note setRoom and controlValve are
relationships (see Fig. 2) that act as
channels for receiving/sending events.

receive off over
setRoom / send shut
over controlValve

Figure 2. A partial ADORA model of the heating
system: base view + behavior view

ManageLocal
RoomTemperature

TurnLocal
ControlOn

Set
Temperature

Inspect
Temperature

TurnLocal
ControlOf

Manage
Temperature

UseLocal
Control

Local
Control

Sequence

IterationConcurrency

1 2 3

*II II

#

Alternative

o o

Component

Figure 3. A scenariochart modeling the struc-
ture of the ManageLocalRoomTemperature sce-
nario.

Hierarchical decomposition. ADORA systematically
uses hierarchical decomposition for structuring models.
With the use of abstract objects, abstraction and decomposi-
tion mechanisms can easily be introduced into the language.
We recursively decompose objects into objects (or other el-
ements, like states). So we have the full power of object
modeling at all levels of the hierarchy and only vary the de-
gree of abstractness: objects on lower levels of the decom-
position model small parts of a system in detail, whereas
objects on higher levels model large parts or the whole sys-
tem on an abstract level.

HeatingControlSystem

MasterModule

HeatingOn

communicate

display

RoomTemp
Sensor: external

RoomControl ...

RoomModule

setRoomTemp

LocalControl
Enabled

setDefault

setRoom

Control

readTemp
 (1,1)

(1,n)

setLocal

RoomTempControl
Panel...

BoilerControl
Panel...

BoilerControl...

Figure 4. A partial ADORA model with base
view and structural view (on a highly ab-
stracted level only with the most fundamental
objects and their relationships).

2.2 The view concept

Hierarchical decomposition also is a powerful means for
viewing a model at different levels of abstraction ranging
from abstract overviews (for example, the view of Figure 4
to detailed views such as the one given in Figure 1.

Having a view concept with both aspect and hierarchical
views is crucial for making an integrated model work in
practice, because it allows the modeler to generate diagrams
that only show what she or he is currently interested in.

A given view is transformed into a more abstract one
by hiding model elements from that view. Conversely, a
view is transformed into a more concrete and detailed one
by displaying model elements that were previously hidden.
A view transforming transaction which transforms a syntac-
tically correct view into another syntactically correct view
is called a view transition.

In an abstract view of an ADORA model, we do not just
omit information. Instead, all places where model elements
have been hidden are marked in the view. We achieve this
using two concepts: the is-partial indicator and the abstract
relationship.

Every object that is not shown in full detail in a given
view is tagged with an is-partial indicator (visualized with
three dots appended to the names of these objects).

If the structural aspect is included in a view, the relation-
ships that exist between objects are displayed. Now, if we
make a view transition that hides an object which has rela-
tionships to other objects, these relationships must also be
hidden. In order to indicate where we have such hidden re-
lationships, we generate so-called abstract relationships on
the next higher level of the decomposition hierarchy.

Figure 5 shows an example. In Figure 5a.1 we have a
view showing a model in full detail, while in Figure 5a.2 the
interior of object X is abstracted. Hence X is tagged with
an is-partial indicator (the three dots) in Figure 5a.2. Ab-
stracting the interior of object X (i.e. hiding objects A, A′

and C) implies that the relationships s and t have to be hid-
den, too. In order to indicate that we have abstracted away
some relationships here, an abstract relationship u (drawn

with a thick line) is generated in the view a.2.

2.3 Defining the syntax and static semantics

The syntax of ADORA is defined by an EBNF-based
method, which in essence is an extended attributed string
grammar: the terminals in the grammar are interpreted as
two dimensional objects (i.e. the basic language elements,
such as object, association, etc.). The attributes in the gram-
mar express the simple static semantics of the language.

The dynamic constraints in the static semantics (in par-
ticular, the view transitions) are specified by a set of oper-
ational rules, whose logical structure is similar to the rules
being used in the definition of operational semantics for tex-
tual programming and specification language [8]. Note that
our notation looks a little different from the conventional
operational semantics such that the rules in our notation are
easier to read for humans. The operational rules formally
define all possible view transitions, thus guaranteeing that
views of ADORA models are always well-formed. In [10],
the definition techniques of ADORA syntax and semantics
are explained in detail.

3 Extension of the structural view

3.1 Extended semantics

The syntax (and static semantics) of ADORA (see above)
is intended to deal with incomplete views of a specification
which is (intentionally) complete. When a model is shown
with all its views in full details, there should be no is-partial
indicators and abstract relationships in the view. Now we
extend this notion in a straightforward way: from incom-
plete views to incomplete models.

Consider the situation in Figure 5 again. Suppose a situ-
ation where we are incrementally developing this model and
where we have Z, X , Y , and B, but do not yet know the de-
tails of X . Obviously, drawing a model like Fig 5b) would
be an adequate representation of this situation. In this case,
the abstract relationship from X to B is deliberately drawn
to model the fact that there will be some relationship from
objects within X to B (In contrast to that, in Figure 5a2, the
abstract relationship is generated as a representation of the
hidden relationships t and s.).

This example demonstrates that we can model the struc-
tural view of a partial specification by overloading the
meaning of the is-partial indicator (the three dots) and the
concept of abstract relationship.

In the case of complete models, they indicate existing
information which is hidden from the current view. In the
new case of partial/incomplete models, they can either stand
for hidden information as before or for information when
details have not yet been modelled.

The above introduced extension supports partial specifi-
cations. This in turn is required for supporting the planned

evolution of a requirements specification in an incremental
software development project.

a.1) View of a complete specification in full detail

Z

X

A

C

Y

B
t

s

A'

Z

X ...
Y

B

a.2) The same specification as in a),

 but in a more abstract view
Z

X ...
Y

B

b) A partial specification:

details of X are not yet known

u u

Figure 5. A complete specification vs. an in-
complete specification.

Now we explain in detail the semantic extensions on
these two language elements: the is-partial indicator and
the abstract relationship.

An object A with an is-partial indictor means:
• some components of X are hidden from the view (the

original semantics); and/or
• the specification of X is not yet complete and will

be refined by adding more components in the further
development (the extended semantics, which supports
the mechanism of evolutionary specifications).

Note that the first situation usually takes place during the
view transitions by applying operational rules. In the sec-
ond situation, we need to manually add or delete is-partial
indicators.

The abstract relationship construct is extended similarly.
An abstract relationship u, which connects object X and
object B originally implies:
• during the view transition by applying operational

rules, an association, which connects
– a component of X and a component of B; or
– a component of X and B; or
– X and a component of B,

is hidden.
Now it includes a new meaning:
• an association, the details of which are still unclear,

will be set up between
– a component of X and a component of B; or
– a component of X and B; or
– X and a component of B

in the future refinement.
Unlike the original definition, in which the is-partial in-

dicators are automatically appended and the abstract rela-
tionships are automatically generated through the view tran-
sitions, we can now also manually add an abstract relation-
ship or make an object partial by appending an is-partial
indicator manually to record evolutionary information. As
shown in Figure 5b, we manually make Object X partial
and add an abstract relationship u, when the details of Ob-
ject X are still not clear.

The is-partial indicator and the abstract relationship keep

the information of “specification being incomplete”. In Fig-
ure 5b, they tell requirements analysts/software architects
and their team-members that object X is not yet completely
specified and some associations between a component of X
and B may be set up in the further refinement.

Furthermore, if high-level design decisions are taken
based on partial specifications (which is usually the case
in incremental software development), the explicit model
of partiality provides the designers with information about
what to encapsulate in modules and where to design inter-
faces with special care. For example, the requirements rep-
resented by object X in Fig 5b should be realized in a single,
encapsulated module with a carefully designed interface to
the module(s) that realize(s) B.

We decided to overload the existing constructs for ex-
pressing the extended semantics instead of introducing new
notations because the original meanings and the extended
ones are closely related in ADORA+.

3.1.1 Extended definition of well-formedness
With the extended semantics, we should also extend the
definition of well-formedness for the extended language
(ADORA+). Consider the following example:

X

√

√

a)

b)

c)

blabla (1,n)

oops (1,1)

X... Y
A

C

B

blabla (1,n)

oops (1,1)
Y...

A

C

B

blabla (1,n)

oops (1,1)

Y
A B

c ...

X...

X...

Figure 6. The first diagram is not well-formed;
and the second and the third diagram are well-
formed.

The three diagrams show some incomplete specifications
in the structural view. From Figure 6a, we don’t know the
details of Object X (e.g. its properties, the number of its
embedded objects and the corresponding properties). How-
ever, no matter how Object X is completely specified in
future, the refined specification can not evolve to Figure 6a
using the available operational rules for complete specifica-
tion [9]. The reason is: both Object C and Object Y don’t
have any hidden components; however the abstract relation-
ship oops implies that at least one object of them has hidden
components. This conflict will not be solved no matter how
the surrounding objects, such as Object X , are further re-
fined. In a word, Figure 6a can not be a well-formed view,
which is transformed from a well-formed complete speci-
fication. Before we give a definition of “well-formedness”
for an ADORA+ model based on an incomplete speciation,
we first define a related concept.

A complete structural view is defined as a structural view

of an ADORA model without model elements (e.g. object,

object set, etc.) being hidden.

Figure 5a.1 is a complete structural view of an ADORA

model based on a complete specification; while Figure 5b
is a complete structural view of an ADORA model based on
an incomplete specification. Note that a complete structural
view of an ADORA model based on an incomplete speci-
fication should look the same as a partial structural view
(in which some model elements are hidden) of an ADORA

model based on a complete specification. This is the lan-
guage design principle of our conservative extension of the
ADORA structural view. Now, the formal definition of a
well-formed model is given as follows.

An ADORA model M based on an incomplete spec-

ification is defined to be well-formed when there ex-

ists a well-formed ADORA model M ′ based on a com-

plete specification whose complete structural view can

be transformed into the complete structural view of M

by view transitions.

The view transitions in turn are defined in the grammar
by the operational rules [9] (see also next sub-subsection).
Through this definition, we can theoretically determine the
well-formedness of an evolutionary specification (c.f. Fig-
ure 6).

3.1.2 Conservative extension of operational rules

Our conservative extension should keep the original good
features of the language. We extend the operational rules,
which guide the view transition in the structural view of
ADORA+. As shown in Figure 7, the view transitions in
ADORA and ADORA+ look very similar. Here we explain
the extension through an example in Figure 7.

Z

X A ...

C

Y

B

Z

C

Y

B

X ...

Z

C

Y

B
X ...

u

s

ar

s

α

Step a1 Rule "Hide an object"

Step a2 Rule "Abstract a relationship"

Step a3 Rule "Adjust interrelationships"

Z

C

Y

B
X ...

ar

s

u

s

a)

Z

X A ...

C

Y

B

Z

C

Y

B

X ...

Z

C

Y

B
X ...

u

s

ar

s

α

Step b1 Rule "Hide an object"

Step b2 Rule "Abstract a relationship"

Step b3 Rule "Adjust interrelationships"

Z

C

Y

B
X ...

ar

s

u

s

b)

Z

X A ...

C

Y

B
s

Z

X

A

C

Y

B

t

s

A'

t

Step I Rule "Hide an object"

Step II Rule "Abstract a relationship"

a1.

a3.

a6.

b1.

b4.

Figure 7. Abstracting an object A: a) a view transition
based on a complete specification; b) a view transition on
an incomplete specification. The Diagram a1, a3, a6, b1
and b4 are well-formed; the other intermediate ones are not.

After the formal definition, the intuitive meaning of
the rules and explanation on extension will be given.
The semantic functions, operators and notations in the
operational rules are explained as follows.

Let M be an ADORA model with X, Y, Z :
model element2, A, B, C, D : object, r : association, u :
abstract relationship and let Γ be a partial view of M .

• Pretrace is an attribute of a language element (e.g. object,
object set, etc), which captures the hierarchical structure.
The pretrace of a language element U is an ordered set of
model elements that U is embedded in. It is expressed as
“.pre”. In Figure 5, we have
A.pre = {A, X, Z}ordered, C.pre = {C, X, Z}ordered,
X.pre = {X, Z}ordered, and Z = {Z}ordered.

• The meaning of ⊃ and ⊇ are the usual mathematical super-
set relations. Due to the definition of pretraces, we have
A.pre ⊃ X.pre and A.pre ⊃ Z.pre. Additionally, we
define a special superset relation � for pretraces: U.pre �

V.pre, if and only if U is directly embedded in V . In Figure
5, we have A.pre � X.pre and X.pre � Z.pre.

• The meaning of the ⊂ and � operators is extended to rela-
tionships as follows.

– r(A, B) ⊂ u(C, D) if and only if A.pre ⊃ C.pre
and B.pre ⊃ D.pre.

– r � u, if and only if r ⊂ u and there is no u1 in Γ,
such that r ⊂ u1 ⊂ u.

• visible(X, Γ) is a boolean function that is true if and only if
X is visible in Γ.
For a set of model elements, visible({X, Y, Z}, Γ) means
visible(X, Γ) ∧ visible(Y, Γ) ∧ visible(Z, Γ).

• hidden(X, Γ) = ¬visible(X, Γ) for all X and Γ.
• partial(A, Γ) is a boolean function that is true if and only

if the name of A in Γ is followed by an is-partial indicator
(trailing dots).

In ADORA and its extension, the effects of changing a
property of a model element to other model elements will
be exactly recorded and traced. As the real situation is
much more complex than what is shown in the example, the
semantics is given by a series of sequential steps, each of
which being easily readable and implementable. In the fol-
lowing text, we present the operational rules that describe
the processes of making two ADORA views more abstract
by hiding their objects. The processes are illustrated in Fig-
ure 7.

Hide an object

Rule Hide an object (A)
Given: M ; Γ; X : object i; A : object

Condition: (A.pre � X.pre) ∧ visible({A, X}, Γ)∧
(¬∃Y : object • (Y.pre ⊃ A.pre ∧ visible(Y, Γ)))

Assertion: hidden(A, Γ) ∧ partial(X, Γ)
Next Rule: Abstract a relationship (A)

2Note that the definition of operational rules (and static semantics) is
based on our EBNF syntax definition. In the following rules and their ex-
planation, the names with underlines, such as object, object i, association,
abstract relationship, are actually the terminal and non-terminal symbols
in the grammar, which correspond to the graphical language elements or
the categories of the language elements.

.

Abstract a relationship

Rule Abstract a relationship (A)
Given: M ; Γ; X : object i; A, B : object; r(A, B) : association

Condition: (A.pre � X.pre)
∧hidden(A, Γ) ∧ visible({B, X, r(A, B)}, Γ)

Assertion: ∃ar : abstract relationship • (ar(X, B) ∈ Γ) ∧
hidden(r(A, B)) ∧ (∀z : abstract relationship

¬∃α : interrelationship • α(r, z) ∈ Γ) ∧ visible(ar, Γ)

Next Rule: interrelationships (ar)

Rule Abstract a relationship (A)
Given: M ; Γ; X : object i; A, B : object;

u(A, B) : abstract relationship

Condition: (A.pre � X.pre) ∧ hidden(A, Γ)∧
visible({B, X}, Γ) ∧ u(A, B) ∈/ M ∧ u(A, B) ∈ Γ

Assertion: ∃ar : abstract relationship • (ar(X, B) ∈ Γ) ∧
u(A, B) ∈/ Γ ∧ visible(ar, Γ) ∧ ∀z : abstract relationship

¬∃α : interrelationship • α(u, z) ∈ Γ

Next Rule: Adjust interrelationships (ar)

Rule Abstract a relationship : incomplete specification (A)
Given: M ; Γ; X : object i; A, B : object;

u(A, B) : abstract relationship

Condition: (A.pre � X.pre) ∧ hidden(A, Γ)∧
visible({B, X}, Γ) ∧ u(A, B) ∈ M ∧ u(A, B) ∈ Γ

Assertion: ∃ar : abstract relationship • (ar(X, B) ∈ Γ) ∧
u(A, B) ∈/ Γ ∧ visible(ar, Γ) ∧ ∀z : abstract relationship

¬∃α : interrelationship • α(u, z) ∈ Γ

Next Rule: Adjust interrelationships (ar)

.

Adjust interrelationships

Rule Adjust interrelationships (ar)
Given: M ; Γ; s : association; ar : abstract relationship

Condition: (s � ar) ∧ visible(s, Γ) ∧
¬∃α : interrelationship • α(s, ar) ∈ Γ

Assertion: ∃α : interrelationship • α(s, ar) ∈ Γ

Next Rule: Adjust interrelationships (ar)

.

As showed above, every operational rule has the following
format.

Rule rule-name (parameters)
Given: M ; Γ; model elements
Condition: predicate pre
Assertion: predicate post
Next Rule: rule-name (parameters)

Rule names are used to divide the whole set of rules into
three groups: Hide an object, Abstract a relationship and
Adjust interrelationship. As each rule has one of the above
three names, we may have more than one rule with the same
name but with different conditions. A rule is interpreted as
follows: for any ADORA model M which contains the given
model elements and has a view Γ such that predicate pre is
true, the application of the rule modifies Γ so that predi-
cate post becomes true. The application of the rule does
not modify anything that is not specified in predicate post.
If the Next Rule field contains a name, the rule(s) matching
this name must be applied next in order to transform a well-
formed view Γ eventually into a new view Γ1. Rule execu-
tion stops when the Next Rule field is empty or when the

conditions (predicate pre) of all matching rules are false.
Parameters may be used to transfer information from a rule
to the next one.

In fact, most of the original operational rules can be ap-
plied for the incomplete specification without any changes.
But there are still some differences between two sets of the
operational rules.

In the structural view of an ADORA model, three
model elements (abstract relationship, interrelationship and
is-partial indicator) appear in the view, only because some
objects and relationships are hidden. In the model resp. the
complete structural view of the model, they don’t exist at
all. On the contrary, in the structural view of an ADORA+

model, the abstract relationship and the is-partial indica-
tor, which record evolutionary information, may exist also
in the model and the complete structural view. Therefore,
some rules must be extended or added to cope with more
general situations.

Let us look at the second group of rules in the example
more closely. The first rule in Group “Abstract a relation-
ship” specifies the following three points: (i) after object A
is hidden, any association connecting with A should also be
hidden in the view; and (ii) an abstract association ar con-
necting with X , in which A is directly embedded, should be
automatically generated in the view (only in the view, not in
the model); and (iii) any interrelationship should be deleted
from the view. This rule is applied in Step II in Figure 7a.
The second rule in Group “Abstract a relationship” specifies
also three points. The last two points are the same as the
first rule. The first one is different, and it says: after object
A is hidden, any abstract relationship, which connects with
A and does not belong to the model (i.e. it was automati-
cally generated.), should also be deleted from the view. It is
applied in Step a2 in Figure 7a.

The above two rules are the original ones for the com-
plete specification. However, they are not adequate to deal
with the situation of an incomplete specification (c.f. Step
b2 in Figure 7b). Therefore, a third rule, to whose name
a syntax sugar “incomplete specification” is appended,
needs to be added in Group “Abstract a relationship”. The
first point of this rule specifies: after Object A is hidden,
any abstract relationship, which connects with A and be-
longs to the model (i.e. it is manually generated from users),
should also be hidden in the view (note that it should not be
deleted.). The remaining two points are the same as those
in the first two rules.

The rules in the other groups are extended similarly.
From the above explanation, we see some differences be-
tween the extended rules and the original ones:
• In a model based on a complete specification, an ab-

stract relationship does not exist in the model, but may
exist in a structural view. Therefore, if an abstract rela-
tionship should disappear from the current view during

the view transitions, it will just be deleted. Even if the
two objects, with which it connects, become visible in
future, it is not necessary to be generated.

• In a model based on an incomplete specification, an ab-
stract relationship does exist in the model. During the
view transitions, if it should disappear in the current
view, it will not be deleted from the model, but only
from the current view. When the two objects, with
which it connects, become again visible, it must also
be visible.

Here, we only show the part of rules, which specify the
view transition in Figure 7. Actually, the view transitions
in the structural view are rather complex, in which more
than 30 operational rules are used to generalize all the situ-
ations for the complete specification (e.g. abstract an object,
concretize an object, etc.). In order to get a semantics ap-
plicable in the extended ADORA, about 10 rules need to be
modified or added to the original rules. The strict formal
definition, their execution sequence, and detailed explana-
tions on those rules and the corresponding examples can be
found in [10]. The formal definition serves two purposes:
(i) it provides a sound base for the language and avoids se-
mantic conflicts and inconsistencies in the language; (ii) it
is also a formal specification for the ADORA tool, in which
the view transitions can be automatically carried out.

3.2 A refinement calculus

Our extended language fits the typical “top-down” ap-
proach of software development and system refinement. As
ADORA+ is compositional, the objects which specify the
general structure of (sub-)systems, can be first defined and
be viewed as a composition of several black box compo-
nents. Then they will be filled in with the relationships and
objects describing more details. Again those newly defined
relationships and objects need to be refined to the full detail
level. Is-partial indicators and abstract relationships will
be used in all situations where an object or a relationship
cannot be defined in full detail yet.

In order to control this process and preserve the integrity
of the model during evolutionary refinement, we define a re-
finement calculus which is composed of a set of logic con-
straints. Applying the calculus during refinement makes
sure that the evolving model is always well-formed and
thus preserves the integrity of the model. In essence, to-
gether with the extended operational rules in the last sub-
subsection, the refinement calculus can also be seen as a
constructive definition of well-formed model resp. views.

Now we give a natural language description of the cal-
culus, which is applied in the following four situations.
making an object partial When system developers think

that an object should be further defined, but still can-
not decide how this object should be refined, they can
just add an is-partial indicator after the name of that

object. In this situation there is no special constraint.
adding an abstract relationship When system analysts

and software architects think that Object A and Object
B or their components should have some relationships,
but the details can still not be decided, they can add
an abstract relationship between them. The constraints
are:

1. either A or B should be partial in the model;
2. if there exists already an abstract relationship be-

tween A and B, no new abstract relationship
should be added;

3. after the abstract relationship is newly added,
some interrelationship should be adjusted. The
principle of this adjustment is the same as that
of the operational rules in the last sub-subsection.

deleting the is-partial indicator of an object After an
object A, which was made “partial” before, is fully
specified, it can be made “not partial” again. I.e. the
previous manually added is-partial indicator of A can
be deleted. There is one constraint, which prevents
an object from being “not partial”: if there exists an
abstract relationship connecting A and another object
B in the model, and B is not partial in the model, A
must remain to be “partial”. In this case, the manually
added abstract relationship should be deleted first.

deleting an abstract relationship After two objects A and
B are fully specified, and no associations will be added
between A and B or their components, the previous
added abstract relationship can be deleted. There are
two constraints in this case: (1) the abstract relation-
ship cannot just be deleted in the view, unless no asso-
ciation between the components of A and B is hidden
in the view; (2) if the abstract relationship is deleted,
some interrelationship should be adjusted.

The formal definition of the refinement calculus has a
similar notation as that of operational rules. We give only
one example on the situation of “adding an abstract rela-
tionship”. The formal definition of the complete refinement
calculus can be found in [10].

Rule adding an abstract relationship (ar)
Given: M ; Γ; A, B : object; ar : abstract relationship

Condition: visible({A, B}, Γ)
Assertion: man g absrel(ar(A, B), Γ, M) →

(Constraint1 ∧ Constraint2 ∧ Constraint3)

where
Constraint1 ≡ partial(A, M) ∨ partial(B, M)
Constraint2 ≡ (∀ar1 : abstract relationship • ar1(A, B) ∈ Γ →

(ar1 = ar)) ∧ ar(A, B) ∈ M
Constraint3 ≡ (ar ∈ Γ) ∧ (∀α : interrelationship,

as : abstract relationship, r : association•
(ar � as ↔ α(ar, as) ∈ Γ) ∧ (as � ar ↔ α(as, ar) ∈ Γ)∧
(r � ar ↔ α(r, ar) ∈ Γ) ∧ (¬(r � as) → α(r, as) ∈/ Γ))

Note that
• The rule structure is nearly the same as that of the opera-

tional rules. As the constraints here are much easier, they

don’t need to be written as a sequence of rules to enhance
the understandability. Therefore, the item of “Next Rule” is
unnecessary.

• man g absrel(ar(A, B), Γ, M) is a boolean function,
which is true when the action of “adding an abstract rela-
tionship” happens and an abstract relationship is manually
generated.

• The three formally specified constraints one to one corre-
spond to the explanations in the natural language.

4 Extension of other aspect views

Because of the limit of the space, here we can only talk
about the extension of the behavioral view and the user
view. The basic ideas on the extension of other aspect views
are very similar to what we introduce in this and previous
sections.

4.1 The behavioral view

The behavioral view in ADORA models the system be-
havior by combining the base view with a statechart-like
state machine hierarchy. In essence, the behavior view can
be seen as a special statechart, in which a state can also
be replaced by an object. It is called Generic Statechart in
ADORA. As explained in [3], a (generic) statechart with-
out inter-level transitions is compositional. Therefore, the
extension method used in the structural view can be also
used in the behavioral view: for the generic statechart with-
out inter-level transitions, we use the is-partial indicator in
a stateobject 3 D′, which means (i) either during the view
transitions, the details in D′ are temporarily hidden; or (ii)
some (sub-) generic statecharts may be added into D′ in a
further refinement.

By the way, a refinement calculus in the behavior view is
also defined similarly. A formal and complete description
of the extension is given in [10].

4.2 The user view

The user view combines the base view with the actors
in the system environment, which the scenarios interact
with, and all those abstract relationships, which model in-
teractions between scenarios and objects. In the integrated
ADORA model, the scenariocharts are usually embedded in
the generic statechart or the object hierarchy.

In this section, the effects of incomplete specifications
from one aspect to another aspect will be particularly dis-
cussed.

4.2.1 The conservative extension

The basic idea on the extension of scenariocharts is nearly
the same as those in the structural and behavioral views.
The is-partial indicator is appended after the name of a sce-
nario A to mean that (i) either some sub-scenarios of A are

3stateobject SO denotes that SO is either a state or an object.

hidden from the view; or (ii) the specification of A is not yet
complete and will be refined by adding more sub-scenarios
in the further development.

With this extension, evolutionary information of scenar-
ios is recorded. For example, an incomplete scenario S im-
plies that special attention needs to be paid to designing of
the scenarios around S, and more importantly, the objects
containing or connected to S. For details, see [10].

4.2.2 Integration semantics

As we mentioned before, one advantage of ADORA over
UML is that ADORA provides the mechanism to check the
consistency among different types of the aspect views. The
integrity checking is not only at the application level (model
level), but also at the language level (metamodel level).
Here we only show two example of the integrity checking.

W
B

C *

1D
Y

2E
X

a) b)

Figure 8. a) integration of a scenariochart and
a generic statechart b) integration of a sce-
nariochart into an object hierarchy.

• Conflicts between two aspect views. In Figure 8a, Sce-
nario C can be decomposed into two sequentially exe-
cuted sub-scenarios: first D then E. At the same time,
in Object W there is a generic statechart, where Object
X precedes Object Y . This brings a conflict on the
temporal order of Scenarios D and E, which should
not be allowed.

• Violation of the modularity. Good modularity guaran-
tees the principle of Information Hiding. Suppose that
Scenarios S is embedded in Object O. a sub-scenario
S′ of S (S′ describes part of the scenario of S) should
and must be embedded in Object O or a component of
O. In Figure 8b, Scenario F in Object Y , which is not
a component of W , destroys the principle of a good
modularity.

Usually, the semantics is formally defined in a form, in
which the meanings of language constructs are easy to un-
derstand. Then a refinement calculus is derived from that
formal definition. Derivation process makes the refinement
calculus repeat parts or the whole information of the seman-
tics definition. A refinement calculus is defined in a form, in
which logic and algebraic inferences are easy to carry out.
When the semantics is not difficult to understand, they can
also be directly defined in the form of refinement calculus.

4.2.3 A refinement calculus in the user view

When we further refine a currently not fully specified sce-
nario with is-partial indicator, the newly specified sub-

scenarios should conform to the constraints mentioned in
last sub-subsection. The constraints are defined by a set of
rules, which compose a refinement calculus.

Here we only show only a part of the refinement
calculus, which specifies the constraint in Figure 8b.

Refinement in the User View: ensuring the modularity
Rule Refinement Scenario(D)
Given: M ; Γ; A, B : object; C, D : scenario

Condition: part of(C, D)
Assertion: ((C.pre � A.pre) ∧ (D.pre � B.pre)) →

(A.pre � B.pre)

... ...

where
• The rule structure is the same as that of the operational rules.
• sequence sce(C, D) is a boolean function that is true iff

Scenario C is a sub-scenario of D, and the relation between
C and D is sequence.

• The function part of(C, D) means C is a sub-scenario of
D. The relation between C and D can be one of the five
types specified in the scenario-chart (c.f. Figure 3).

In essence, while the refinement calculi in the previous
sections concern the effects of a partially specified part to
others in the same aspect view, the rules here, which guar-
antee the integrity and consistency of the integrated ADORA

model, specify the effects of a partial specification in one
aspect view to other aspect views. A complete formal def-
inition on the above refinement calculus can be found in
[10].

5 Conclusion

A model should record system information, which in-
cludes evolutionary information. As evolutionary infor-
mation is so closely coupled with system information, it
should not be separated from system information and clas-
sified only into the field of software process. Therefore,
the concept of evolutionary specification being supported at
the language level is useful and necessary. This paper is a
continuation of previous work [9], in which the syntax and
static semantics of ADORA are formally defined. Here, we
extend the semantics of ADORA so that evolutionary speci-
fications can be written in a controlled and systematic way,
while the original good properties of ADORA are perfectly
kept. In order to make this paper more understandable,
we have tried to avoid too many formal notations. Inter-
ested readers find all the formal definitions and procedures
in [10].

Discussion of achievements. Just introducing some new
constructs to support evolutionary specification is not too
difficult. However, every potential extension should be
carefully evaluated whether it is really necessary and useful.
Here, we achieve a smallest extension: instead of introduc-
ing new constructs, we extend the semantics of the original
constructs of ADORA to support evolutionary specification.
We achieve a conservative extension. That is to say, our

extension satisfies the following two criteria: (i) for the ex-
tended operational rules, if we throw away the parts relating
to the evolutionary specification, they are the same as, or at
least totally consistent with the original rules; (ii) the re-
sult of view transitions of applying the extended rules to a
specification without any extended constructs is the same as
that of applying the original rules. This makes sure that the
extension causes no syntactic or semantic conflicts with the
original language and that the original features and seman-
tics are maximally kept (e.g. the mechanism of hierarchical
decomposition).

Important evolutionary information is formally specified
and documented in the extended ADORA models, which can
be exploited in the further refinement of the models by ap-
plying our refinement calculus.

We give a formal semantics definition and a refinement
calculus in a constructive way. This helps particularly for
the development of a tool, which automatically checks the
syntax and semantics of an ADORA model and mechani-
cally controls the evolutionary development of a software
system.

Related Work. Just as what we do for a UML model,
we can build an ADORA model view by view. Therefore,
building an integrated ADORA model is no more compli-
cated than building a UML model. On the contrary, the
mechanism of the integrated model and its corresponding
refinement calculus makes the model refinement easier.

Surely our extension approaches and language defini-
tion methods for syntax, semantics and refinement calculus
can also be applied to other graphical modeling languages
with some adjustments. For example, we can extend UML
to a “stereotyped UML” with part of the above mentioned
features of ADORA. We can also easily translate our se-
mantics and the refinement calculus from a normal first or-
der predicate logic into OCL. However, this extension of
UML makes the target model unnecessarily complicated,
and brings no more value than ADORA does. Research on a
small language can often inspire some new ideas, which can
not be achieved by restricting only to a big language such as
UML. And keeping great variety in our research community
is valuable, even for the further development of UML.

[7] shares a basic idea with ADORA: using a single
model. Like most of other works on consistency check-
ing, they mainly concentrate on the refinement process from
an architecture model to a detailed design model or coding
(BON/Eiffel).

There are lots of work on the definition of semantics
and refinement calculus for each individual sublanguage
of UML in literature (e.g. [1], etc.). [2] proposes a com-
mon formalism relating different models. Some correctness
rules based on that formalism are provided to validate the
whole model. However, without a clear integration seman-
tics, consistency checking is difficult to be carried out in a

language with a set of loosely coupled sublanguages, such
as UML.

In our approach, we mainly focus on specification of par-
tial and evolutionary information in the requirement and
architecture model. In particular, we study the effects of
the partial and evolutionary information on other model el-
ements in the same or other views, and define a refinement
calculus for the integrity and consistency checking.

Limitations. As we know, our work on supporting evolu-
tionary specification at the language level is the first try in
this field. It has to be done in a very careful way, and the
extension is really “conservative”. Whether new constructs
needed to be introduced is not clear in the current research
phase. A radical extension (e.g. introduction of new con-
structs recording evolutionary information, etc.) needs to be
further validated.

Future Work. We will validate the other extension possi-
bilities for ADORA. A process for ADORA should also be
proposed correspondingly to better support the evolution-
ary development of a software system. What is more, the
formal definition of the extended ADORA on syntax, static
semantics (well-formedness rules) and the refinement cal-
culus provides a sound base to develop a tool, which im-
plements the above mentioned rules and checks the well-
formedness of the ADORA model dynamically. A prototype
ADORA tool is now being developed in our research group.

References
[1] Back, R-J., Petre, L., Porres, I.:Formalising UML Use Cases in the

Refinement Calculus. Turku Centre for Computer Science, Techni-
cal Report No 279 (1999)

[2] Fradet, P., Metayer, D., Perin, M.: Consistency checking for multi-
ple view software architectures. Proc. ESEC/FSE99, LNCS series,
Springer (1999)

[3] Glinz, M.: Statecharts for Requirements Specification - As Simple
As Possible, As Rich As Needed. Proc. of the ICSE2002 Workshop
on Scenarios and State Machines: Models, Algorithms and Tools
(2002)

[4] Glinz, M., Berner, S., Joos, S.: Object-oriented Modeling with
ADORA. In: Information Systems, 27, 6 (2002)

[5] Lehman, M.: Software’s Future: Managing Evolution. In: IEEE
Software, 15, 1 (1998)

[6] OMG: Unified Modeling Language Specification (Version 1.5).
OMG document (2003)

[7] Paige, R., Ostroff, J.: The Single Model Principle. In: Jounal of
Object Technology, Vol. 1, No. 5 (2002)

[8] Xia, Y., George, C.: An Operational Semantics for Timed RAISE.
In: Proc. of the World Congress on Formal Methods, LNCS Vol.
1709. Springer (1999)

[9] Xia, Y., Glinz, M.: Rigorous EBNF-based Definition for a Graphic
Modeling Language. In: Proc. of 10th Asia-Pacific Software Engi-
neering Conference, IEEE Computer Society Press (2003)

[10] Xia, Y.: A Language Definition Method for Visual Specifica-

tion Languages, Ph.D. thesis, Institut für Informatik, University of

Zurich (2004) www.ifi.unizh.ch/req/ftp/phdthesis/xia.pdf

