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Abstract

Traditional approaches for program comprehension use
static program analysis or dynamic program analysis in the
form of execution traces. Our approach, however, makes
use of runtime-data such as parameter and object val-
ues. Compared to traditional program comprehension tech-
niques, this approach enables fundamentally new ways of
program analysis which we have not seen so far. Reflection
analysis which allows engineers to understand programs
making use of reflective (dynamic) method invocations is
one such analysis. Another is object tracing which allows
engineers to trace and track the use of a given instance of
a class within the program to be understood. In this pa-
per, we present these techniques along with a case study to
which we have applied them.

1 Introduction

Program comprehension is necessary to get a deeper un-
derstanding of a software application. This is necessary if
the software application needs to be changed or extended
and its original documentation is missing, incomplete, or
inconsistent with the implementation of the software appli-
cation. Source code analysis as performed by Rigi [15] or
Software Bookshelf [3] is one approach for program com-
prehension. These approaches generate a source model that
enables the generation of high level sequence and collabo-
ration diagrams. Since the collaboration between different
modules also depends on runtime data, dynamic analysis
tools such as Software Reconnaissance [2, 16], BEE++ [1]
or Form [12] have been developed. These approaches iden-
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tify the code that implements a certain feature by generating
different execution traces.

Since the above approaches only rely on static data and
dynamic data in the form of execution traces they cannot be
used to perform certain types of analysis. In this paper, we
present a new approach that also takes runtime data such
as the parameters passed during method invocations or the
state of a given program module into account. Taking this
data into account enables new kinds of software analysis.

� Reflective (dynamic) method invocations can be iden-
tified and understood. Traditional analysis techniques
only identify the existence of such a call but are unable
to identify the actual method invocation.

� Execution traces can be reduced to those method in-
vocations that pass a given instance of an object. This
allows developers to understand how a certain object
is being used.

� It simplifies the understanding of a program’s thread-
ing behavior and how data is exchanged between dif-
ferent threads.

In this paper, we focus on the first two kinds of analysis,
and how we have applied these kinds of analysis to Sun
Microsystem’s Bean Development Kit [13].

The remainder of this paper is organized as follows. In
Section 2, we present ARE, our tool for program compre-
hension. Section 3 describes how we have implemented the
analysis of reflective (dynamic) method calls and Section 4
shows how object instances can be traced and how this data
can be used for program comprehension. A case study that
demonstrates the benefits of the new analysis techniques is
presented in Section 5. Future work is presented in Sec-
tion 6 and related work in Section 7. Finally, we draw our
conclusions in Section 8.
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2 ARE

ARE is A Reverse Engineering tool that provides a flex-
ible and extensible approach to gather runtime data and to
analyze the dynamic behavior of existing software systems.
Both, flexibility and extensibility of ARE is guaranteed by
the use of a layered architecture. Engineers can change
the configuration of each layer during run-time, except for
the low-level instrumentation layer which, however, can be
changed during instrumentation time. For instance, they
may choose a different filter or analysis algorithm and in
this way control the analysis process.

Our architecture strictly separates the primary concerns
of our dynamic analysis tool: extraction of the runtime data,
filtering and recording the information of interest, and anal-
ysis of the stored information and visualization of the re-
sults.

The bottom layer contains the modules for the extraction
of run-time information. We use AspectJ [8], an aspect-
oriented programming [9] approach, to instrument the pro-
gram to be analyzed. The instrumentation is implemented
by weaving a tracing aspect into the program. This aspect
allows us to identify each method and constructor invoca-
tion and forwards this data to the recording layer. Although
our tracing aspect is kept general enough to fit most pur-
poses, the tracing aspect may be tuned. For instance, the
instrumentation can be changed to instrument only a subset
of the program’s classes if performance is of major concern.

The advantages of using AspectJ are that AspectJ instru-
ments the application automatically, does not turn off Java’s
just-in-time compiler, and enables access to the parameters
of method and constructor calls. The latter capability of As-
pectJ in particular is mandatory to analyze reflective method
calls and the flow of object instances passed between differ-
ent modules of a software application.

Currently, we are using AspectJ 1.0.6 which requires the
availability of the application’s source code to weave in our
tracing aspects. A beta version of AspectJ 1.1, released in
November 2002 [6], is able to weave an aspect into a pro-
gram’s class files without requiring access to the applica-
tion’s source code.

The recorder layer is responsible to filter the trace data
obtained from the instrumentation layer and to record it in a
trace database. To preserve a maximum degree of flexibility
recorders can be changed and customized during run-time.
For instance, we provide recorders to monitor the construc-
tion of objects, to trace the uses of a given object, or to
monitor reflective method calls, constructor calls, or field
accesses, and adding more such recorders is a trivial task.
This allows engineers to control the analysis process and to
focus on the portions of interest.

The top layer of ARE provides data-analysis and visu-
alization tools. Concerning the analysis tools described in

this paper our focus is on resolving reflective method calls
and on the analysis of the flow of object instances. In the
context of program comprehension our analysis tools give
detailed insights into complex software systems by showing
which object really has been invoked and by showing how
objects are passed around between different modules.

3 Reflection Analysis

A reflective system provides structures and mechanisms
to represent or modify a given system itself [10]. The Java
Reflection API [14] provides a set of built-in classes that
support this technique. This API can be used to determine
the class of an object, all the interfaces implemented by the
object, to generate a method call during run-time, and other
such features as shown in Figure 1.

1 import java.lang.reflect.*;
2 public class ReflectionExample {
3 public static void main(String[] args)
4 throws Exception {
5 Class c=
6 Class.forName("javax.swing.JButton");
7 Object o=c.newInstance();
8 c=o.getClass();
9 Method m=c.getMethod("getText",null);

10 System.out.println(m.invoke(o,null));
11 }
12 }

Figure 1. A Reflection Example

The primary class responsible for reflective functional-
ity is the java.lang.Class class. Additionally, all
Java objects have a predefined getClass() method that
returns the object’s corresponding Class object (line 8).
The Class class allows the programmer to query for and
to instantiate classes unknown until run-time (lines 5–7).

Reflection also allows programmers to find out about an
object’s type superclasses and all implemented interfaces.
Another mechanism that the Java reflection API provides
is the support for dynamic class member access. This al-
lows programmers to retrieve objects that reify the meth-
ods (line 9), constructors, and fields of a class. These ob-
jects provide the names, and signatures of the corresponding
class members. Unlike pure static representations of class
members they support method invocation (line 10), object
instantiation, and field access and modification.

This very-late object construction and binding is heav-
ily used within extensible Java applications. In the exam-
ple above, for instance, the name of the class to instantiate,
or the name of the method to invoke could have been sup-
plied by the user of the application. Some programming
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(a) Without Reflection Analysis (b) With Reflection Analysis

Figure 2. Sequence Diagram with and without Reflection Analysis

patterns that make use of reflection are common in Java ap-
plications. One typical usage scenario is the integration of
plugins into an existing application. A third-party plugin
implements one or more interfaces predefined by the main
application. Since the main application does not know the
name of the class implementing the plugin, it is necessary
to store the name of the plugin class in a configuration file.
Subsequently the plugin can be instantiated with reflection.
Other uses of reflection will be shown in Section 5.

Although reflection is indispensable for building dy-
namic and extensible systems the analysis of reflective sys-
tems is difficult. Static analysis does not deliver appropriate
results about the classes or methods being used in reflective
calls. It is only possible to indicate that the program uses re-
flection and sometimes to restrict the result space to a set of
classes or interfaces. The reason for this is that the name of
the method to be invoked is only supplied during run-time
and hence, unavailable during static analysis.

For a better understanding of the application, ARE an-
alyzes applications using reflection by combining dynamic
analysis with the application’s run-time data. During data
collection not only the initiating object of a reflective
method invocation or object instantiation is recognized but
also the called object in case of a reflective method call as
well as the instantiated object in case of an object instantia-
tion. ARE replaces the call data of the reflective method
invocation with that of the actual call (i.e., the concrete
classes, methods or constructors being used during reflec-
tive calls), hence providing a more detailed analysis of the
program execution.

To show the benefits of this analysis Figure 2(a) shows a
sequence diagram generated by using program traces alone
with reflection analysis being disabled. Since a Method
object is created for each method being used by the applica-
tion’s reflective invocations the use dependencies between

the calling object, and the methods being called are not di-
rectly visible. Instead an object for each method is shown.

Figure 2(b), on the other hand, shows the same sequence
diagram but with reflective method calls replaced by the ac-
tual methods that have been invoked. The method names
are surrounded by parenthesis to indicate that the methods
have been invoked using Java’s reflection API. This diagram
is smaller and easier to understand while showing the same
amount of information.

4 Object Tracing and Tracking

The goal of this type of analysis is to monitor how a sin-
gle instance of a class is being used within the program.
This analysis provides a variety of insights about the execu-
tion of a given program since it only reports the calls to the
object of interest and not just all uses of the corresponding
class.

Whenever ARE displays traces of the program’s execu-
tion, the engineer may select the individual methods, its pa-
rameters, caller, or callee shown in the diagram and add
them to the list of objects to be monitored. Alternatively,
the engineer can inspect these objects by displaying its at-
tributes and can also monitor these attributes.

Object tracing is available in two different forms. In the
first form, we simply record each method invocation where
the object to be monitored is either the caller or the callee.
In the second form, we track the objects to be monitored.
Hence, whenever an object of interest is passed as an argu-
ment of a method call, this method call is being recorded.

Object tracking poses several challenges. It is not suf-
ficient to simply check each individual parameter of the
method invocation, since the object of interest might be en-
capsulted within one of the method’s parameters. For in-
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Figure 3. The Bean Development Kit’s Wrap-
per Class

stance, the object of interest could be passed via the child
attribute of the component Wrapper class shown in Fig-
ure 3.

To identify such calls, we analyze the structure of each
object passed during a method invocation. In our initial ap-
proach, we performed a complete analysis of each object
which noticeably slowed down the execution of the pro-
gram. To solve this problem, we added an additional pa-
rameter indicating how deeply objects have to be analyzed.
While experimenting with this parameter, we have found
out that not all objects which are passed as part of another
object are used by the callee. Hence, these calls should not
be recorded. This is not even surprising since the object of
interest is buried deeply within the parameter’s object struc-
ture.

For the application we have reverse engineered, we have
found out that a recursion depth of � provides an adequate
tradeoff. This level allows the program to execute at an re-
sponsive level, provides a reasonable tracking accuracy and
weeds out most of the unwanted calls.

Besides cutting off after a fixed level of recursion, we
are also experimenting with a more advanced tracking algo-
rithm that takes more execution data into account. Instead
of inspecting each individual parameter, we monitor how a
method uses the parameters that have been passed to it.

5 Case Study

To demonstrate the usability of our approach, we
have analyzed Sun Microsystem’s Bean Development Kit
(BDK) [13], a program that serves as a test environment for
JavaBeans components [4]. The BDK allows its users to
instantiate JavaBean components and provides a graphical
representation of the components’ properties. Additionally,
the BDK allows its users to bind events fired by one com-
ponent to a method call of another component. Since the
BDK is designed to work together with practically any third

party JavaBean component it uses reflection to determine
the component’s properties.

The first aspect of the application we have considered is
the instantiation of a component. To get hold of the imple-
mentation of this functionality, we have used ARE’s Con-
structorRecorder which records object instantiations
no matter whether they have been instantiated with Java’s
new operator or using reflection. After we have started the
BDK, we instantiated an OurButton component. The se-
quence diagram we have obtained (Figure 4(a)) shows that
the component was instantiated using reflection by a Jar-
Info object.

Additionally, shortly after instantiating the component,
the BDK instantiates a Wrapper class. The object inspec-
tor (also shown in Figure 4(a)) shows that the OurButton
component is passed to the Wrapper class as a parame-
ter of the object’s constructor. After inspecting the Wrap-
per class and the instantiation of another component, it got
apparent that the BDK instantiates one such class for each
component. As it turned out, this class is used for the man-
agement of the individual components (e.g., such as taking
care of the components that have been changed).

The second aspect we have investigated was chang-
ing a component’s property, such as the button compo-
nent’s background color. For this test we used ARE’s In-
stanceTracer to trace the uses of the button component,
we have instantiated previously. The advantage of using this
recorder is that the InstanceTracer only records activ-
ities relating to this instance and not to any other button
components used as part of the BDK itself.

The trace obtained with this recorder is shown in Fig-
ure 4(b). Interestingly, the second call recorded is already
a reflective call to the component’s setBackground
method. The first call was the construction of the Prop-
ertyDialog object. The calls in between these two calls
have not been recorded since they were unrelated to our but-
ton component. Hence, these calls are labeled as missing.
At first we were unsure whether our recorder missed one
of the interesting method calls such as querying the compo-
nent for its current background color. After a short look at
BDK’s property window, however, it was obvious why the
button had not been queried for its background attribute.
The button’s background color was already displayed in the
BDK’s property window and hence was passed to the prop-
erty editor directly. The subsequent get... invocations
are simply used to redisplay all the component’s properties
in the property window.

6 Future Work

The current version of ARE uses a relatively simple al-
gorithm to track objects passed between different modules.
As mentioned in Section 4, however, we have already a pro-
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(a) Component Instantiation (b) Property Change

Figure 4. Analysis of the Bean Development Kit

totype implementation for a more advanced object track-
ing algorithm. One minor drawback of this algorithm is
that, unlike our current implementation, it cannot do object
tracking across modules whose source code is unavailable.
Hence, more work to find a hybrid approach between these
two algorithms is necessary.

ARE comes with some support for understanding the
threading behavior of a program. Unfortunately, gaining
some understanding of a program’s threading behavior is
only possible through the use of ARE’s console window.
From an end-user perspective, however, this is tedious.
Hence, we plan for a tighter integration of this kind of anal-
ysis. Additionally, we currently do not make use of all the
data available for a program’s thread analysis and hence,
further research is necessary to exploit the full potential of
this kind of analysis.

Finally, ARE focuses on the use of run-time data for
program comprehension. Although using run-time data
provides viable data for program understanding, we be-
lieve that it can be combined with existing analysis tech-
niques [2, 5, 11] to build a more powerful and more inte-
grated tool for program comprehension.

7 Related Work

Many program comprehension approaches that exist to-
day integrate static and dynamic analysis techniques. Ex-
amples of such approaches are Dali [7], Rigi [15], or the
Software Bookshelf [3]. Although, the objectives of our
approach are related to these other approaches, we address
more specific run-time analysis problems that concentrate

on resolving reflective method calls and object traces. In the
area of dynamic analysis several tools exist that, however,
differ in the area of analysis and the type of instrumentation
that they use.

Software Reconnaissance [16] uses test cases as probes
to locate code for a particular product feature. The program
is instrumented similar to instrumentation for test coverage.
Afterwards, two different execution runs are started. In the
first run a few test cases are applied that exhibit the desired
feature. In the second run other test cases are used that do
not use this feature. The difference of the trace files gener-
ated by the instrumented code shows which code has been
executed by a test for a particular feature. Hence, it is pos-
sible to build a mapping between features and code. An
extension of Reconnaissance that supports concept analy-
sis was presented in [2]. Concept analysis is used to iden-
tify the most feature-specific subprograms among all exe-
cuted subprograms. A static analysis uses this subprogram
to identify additional feature-specific subprograms along a
dependency graph. While Reconnaissance provides support
for well established analysis techniques, it does not allow
engineers to gain information about reflective method calls
and object traces as provided by ARE.

BEE++ [1] is a C++ based object-oriented framework for
the dynamic analysis of distributed systems. BEE++ con-
siders the execution of a distributed system as a stream of
events. Hence, BEE++ allows the customization of events
and event views. Event and event view customization rely
on the inheritance mechanisms of C++. BEE++ has a rich
object model that separates event generation and event in-
terpretation. The main drawback of BEE++ is that the in-
strumentation of the application has to be performed by the
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programmer manually.
Richner et al. [11] presents an iterative and interac-

tive approach to analyze execution traces of object-oriented
software systems with respect to the collaborations between
classes. For each method invocation the name of the in-
voked method, sender and receiver class, as well as their
identities are recorded. Through pattern matching they find
similar execution traces and represent program behavior in
terms of collaboration patterns. By querying and brows-
ing this information engineers can focus on specific aspects
of the application and wade through a lot of trace informa-
tion. Whereas this approach groups and abstracts execu-
tion traces we focus on the run-time aspect of the analysis.
Hence, it would be interesting to look at a combination of
both approaches for future versions of ARE.

8 Conclusions

The contribution of this paper is to use the state of ob-
ject instances during run-time for program comprehension.
This kind of data allows engineers to perform new kinds
of program analysis. In this paper, we have presented two
analysis techniques that have been based on this approach:
reflection analysis and object tracing.

Reflection analysis allows engineers to identify and to
resolve reflective or dynamic method calls (i.e., identify
the actual method and object that have been called). Such
method calls typically used by highly extensible applica-
tions cannot be resolved using static program analysis. Ob-
ject tracing allows engineers to analyze the use of a specific
instance of a class within a program. Typical applications
for this are to track how an object is passed from one mod-
ule to another or to eliminate calls to other instances of the
same class and hence to reduce the size of the program trace
to be understood.

To show the usability of the analysis techniques we have
developed, we have reverse engineered a JavaBeans compo-
sition environments. As we have shown reflection analysis
and object tracing have been used extensively throughout
this study. Without these new kinds of analysis we would
not have been able to understand and compare these two
environments that quickly.
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