
TUAnalyzer—Analyzing Templates in C++ Code

Thomas Gschwind∗

Technische Universität Wien

Institut für Informationssysteme

Argentinierstraße 8, A-1040 Wien

Martin Pinzger†

Technische Universität Wien

Institut für Informationssysteme

Argentinierstraße 8, A-1040 Wien

Harald Gall
Universität Zürich

Institut für Informatik

Winterthurerstrasse 190, CH-8057 Zürich

Abstract

In this paper, we present TUAnalyzer, a novel tool that
extracts the template structure of C++ programs on the ba-
sis of the GNU C/C++ Compiler’s internal representation
of a C/C++ translation unit. In comparison to other such
tools, our tool is capable of supporting the extraction of
function invocations that depend on the particular instan-
tiation of C++ templates and to relate them to their partic-
ular template instantiation. TUAnalyzer produces RSF for-
mat output that can be easily fed into existing visualiza-
tion and analysis tools such as Rigi or Graphviz. We mo-
tivate why this kind of template analysis information is es-
sential to understand real-world legacy C++ applications.
We present how our tool extracts this kind of information to
allow others to build on our results and further use the tem-
plate information. The applicability of our tool has been
validated on real code as proof of concept. The results ob-
tained with TUAnalyzer enable us and other approaches
and tools to perform detailed studies of large (open source)
C/C++ projects in the near future.

1. Introduction

The quality of reverse engineering results strongly de-
pends on underlying data that is obtained through fact ex-
traction techniques. Frequently, existing reverse engineer-
ing approaches extract these facts by parsing the source
code that needs to be reverse engineered. Parsing source
code of large complex software systems, however, needs
highly sophisticated parsing approaches, especially when
dealing with language and compiler specific features such
as C++ templates.
Templates are a very powerful C++ programming lan-

guage feature that makes it intrinsically hard to implement
analyzers that are able to parse such code while at the same

∗ Presently at: IBM Research, Zurich Research Laboratory,
Säumerstrasse 4, CH-8803 Rüschlikon.

† Presently at: Universität Zürich, Institut für Informatik,
Winterthurerstrasse 190, CH-8057 Zürich.

time evaluating the template instantiations. Currently avail-
able reverse engineering and parsing tools that concentrate
on C/C++ source code such as Imagix-4D [9], SourceNavi-
gator [13], Columbus [4], GCC XML [6], or CPPX [2] lack
of sufficiently handling C++ templates. Although, some of
these tools extract basic information about templates, they
do not fully handle template instantiations or template pa-
rameter analysis.
In this paper, we present the TUAnalyzer approach to ex-

tract facts from C/C++ source code with focus on C++ tem-
plates and virtual method calls. We use the GNU C/C++
compiler as front-end to parse the C/C++ code that needs to
be reverse engineered. GCC’s translation unit is then used
to analyze function and class templates as well as inheri-
tance relationships and virtual function calls. This allows
us to find out the specific functions to which the invoca-
tion resolves during compilation. The output of TUAna-
lyzer is in FAMIX [12] compliant Rigi Standard Format
(RSF) [16]. As a results, we can feed that resolved func-
tion information back into our other external reverse engi-
neering tools and produce complete function call graphs or
dependence graphs. To evaluate our tool and compare it to
other currently available tools, we developed a number of
small code samples that exhibit the challenges of analyz-
ing C++ templates and virtual method calls. These exam-
ples are based on our experiences in analyzing the source
code of the Mozilla web browser [18] and in teaching the
C++ programming language at our university.
In Section 2, we present some common C++ template

examples taken from the C++ Standard Library and the
Mozilla open source web browser, respectively, that cannot
be completely analyzed using existing C++ analysis tools.
In Section 3, we provide a short overview on the approaches
we have worked out to analyze C++ template instantiations.
Section 4 explains in detail how these instantiations can be
derived. The analysis of records, inheritance relationships,
and the resolution of virtual member function invocations
is presented in Section 5. Section 6 presents the validation
of TUAnalyzer. We compare our work to other approaches
in this field in Section 7 and draw our conclusions in Sec-
tion 8.

2. Background

The background and motivation of our approach is in
the analysis of software systems that heavily use C++ tem-
plates. For instance, we work on analyzing the Mozilla
open source web browser. Applying existing parsing tools
(Imagix-4D [9], GCC XML [6], Columbus [4], CPPX [2])
we discovered that important information about C++ tem-
plates has not been extracted by these parsers inhibiting
a complete analysis. The missed information is related to
method calls of Mozilla components that have been im-
plemented using the Mozilla component model XPCOM
which heavily uses C++ templates.
Basically, C++ templates are a mechanism that allows

the compiler to statically check the type compatibility of
polymorphic functions or classes whose use can be resolved
during compile time. Additionally, since the function invo-
cations can be determined at compile time, the C++ com-
piler can perform many more optimizations than would be
available otherwise.
The disadvantage of templates, however, is that in many

cases they are hard to write or to understand and that any
reverse engineering tool that wants to create a call graph
has to understand all the details of C++’s template instanti-
ation mechanism which has been shown to be Turing Com-
plete [17].
In the following, we present three small code examples

that are typical uses of C++ templates and explain how cur-
rently available tools deal with these examples. We also
used these examples for the validation of TUAnalyzer’s
template analysis capabilities.

Example 1. Figure 1 shows a simplified version of the
find_if function found in the C++ Standard Template Li-
brary [10, 15]. If this function is invoked with an integer
pointer as first and second argument and a callback function
as third argument, the C++ compiler generates a specialized
version of this function that operates on integer pointers and
the callback function provided. If it is invoked elsewhere in
the program with a pointer to doubles and another callback
function, the C++ compiler also generates such a special-
ization.

template <typename I, typename Op>
I find(I begin, I end, Op op) {
while(begin!=end) {

if(op(*begin)) break;
++begin;

}
return begin;

}

Figure 1. A Simple Find Example

When we analyzed the previous source code example
with Imagix-4D, we identified that Imagix-4D retrieves
the template function find and its parameters. However, it
misses the call of op(*begin), because it does not inter-
pret the template parameter Op. Columbus identified op as
a callback function but could not identify which function is
actually being called. The quality of results produced by re-
lated parsing tools were even worse.

Example 2. We use a simplified version of the C++ STL’s
distance function shown in Figure 2. This function com-
putes the distance between two elements pointed to by it-
erators. Depending on the type of iterator a different algo-
rithm can be used. In case of a simple forward iterator, the
iterator may only be advanced by one element and hence
in order to count the number of elements we have to count
how often we can advance the iterator until we have reached
the second iterator. In case we have a random access itera-
tor, it is possible to subtract the iterators from each other to
compute the number of elements in between.

The first two functions compute the difference for an in-
put iterator and a random access iterator as indicated by the
function’s third argument. Since the argument is not used
within the function, we do not have to specify a name for the
parameter. The third function is a generic wrapper that de-
termines the type of iterator it is parameterizedwith through
the iterator_traits class which returns for a given it-
erator the type of iterator. Then, this function creates an ob-
ject of the corresponding type and lets the compiler stati-
cally determine the function to be called through its over-
load resolution mechanism.

template<class I> inline
int dist(I first, I last,

input_iterator_tag) {
int n=0;
while(first!=last) { ++first; ++n; }
return n;

}

template<class I> inline
int dist(I first, I last,

random_access_iterator_tag) {
return last-first;

}

template<class I> inline
int dist(I first, I last) {
return dist(first,last,typename
iterator_traits<I>::category());

}

Figure 2. Algorithm Selection

NS_IMETHODIMP ScrollbarsPropImpl::GetVisible(PRBool *aVisible)
{
nsCOMPtr<nsIScrollable> scroller(do_QueryInterface(docshell));
scroller->GetDefaultScrollbarPreferences(

nsIScrollable::ScrollOrientation_Y, &prefValue);
...

}

Figure 3. A Code Example Taken from the Mozilla Open Source Web Browser

Analyzing the code snippets with existing analysis tools
lacks information about the call to an instantiation of the re-
spective dist/3 function template in the dist/2 function
template because currently available parsing tools do not re-
solve the type of the third parameter due to template param-
eter dependencies. Hence they cannot statically determine
which dist function is being called.

Example 3. XPCOM uses templates for the implementa-
tion of a kind of smart pointer (nsCOMPtr). This pointer
is subsequently used to maintain a reference count of its
components. In order to understand function invocations on
these pointers, it is imperative that the reverse engineer-
ing tool understands the template instantiations performed
by the C++ compiler. Figure 3 shows a sample taken from
Mozilla’s source code.
Imagix-4D correctly identifies the construc-

tor call in order to instantiate the scroller object
but it does not correctly identify the call to the
GetDefaultScrollbarPreferences method be-
cause the object returned by the -> operator depends
on the type with which the pointer has been parame-
terized. Since Imagix-4D does not analyze the interde-
pendencies between argument types and the instantiated
templates, it overlooks the information about the type re-
turned by the -> operator and hence cannot identify the
method call as has been confirmed by Imagix-4D en-
gineers. Another problem illustrated by this code is
that this code invokes a virtual function that are fre-
quently used within the XPCOM implementation. Hence,
our analysis tool not only has to be able to deal with tem-
plates but also with the invocation of virtual functions.

3. GCC’s Translation Unit

Our first approach to identify the function calls that are
being generated through template expansion was to use the
object file generated by the compiler. Although this ap-
proach worked perfectly fine for identifying function calls
generated by templates, using this approach, we were un-
able to identify the virtual method calls performed by the
application such as the one shown in our Mozilla sam-
ple code. This is because virtual method calls are invoked

through a virtual method table. Identifying the index of the
function in the virtual method table and subsequently the
function to be invoked on the basis of the disassembled
code is very complex. Merging the information that can
be obtained using this approach with the information pro-
vided by existing tools does not work either. By doing so,
we are still missing virtual method invocations on objects
which depend on a given template parameter. Hence, in or-
der to extract the complete structure of the underlying pro-
gram, our approach has to provide support for all of the fea-
tures also provided by other fact extraction tools. Hence, we
looked for a different approach.

Our next step was to look at GCC, one of the best known
C++ compilers available today. GCC internally stores the
abstract syntax tree (AST) as an über-union (a union that
may store any node of GCC’s AST) that is hard to under-
stand. GCC, however, allows maintainers to dump its rep-
resentation of the abstract syntax tree using one of several
compiler switches. This functionality has been included to
allow for the debugging of GCC itself [14]. Since we did
not want to fiddle around with the implementation of GCC
code directly we wrote a program that analyzes the dump of
GCC’s abstract syntax tree.
Using this approach, a C++ program can be easily ana-

lyzed by building the program using GCC and adding the
necessary compiler switches. This compiles the program
and generates files representingGCC’s representation of the
individual translation units. Finally, our analyzer uses these
files and generates FAMIX compliant RSF format. These
facts then are integrated into the repository generated by a
traditional reverse engineering tool and thereby complete
the fact base (i.e. source code model graph).
The interesting GCC compiler switches to supply during

the build process of a given program are:

--fdump-translation-unit dumps almost all the informa-
tion stored within GCC’s abstract syntax tree for a
given translation unit. It provides all the template dec-
larations and all the template instantiations. Deriving
the layout of the virtual method table on the basis of
this information is non-trivial but possible. A short ex-
cerpt of this tree is given in Figure 4.

@1 namespace_decl name: @2 srcp: <internal>:0
dcls: @3

@2 identifier_node strg: :: lngt: 2
@3 function_decl name: @4 type: @5 srcp: find_tmpl.cc:30

chan: @6 C extern
body: @7

@4 identifier_node strg: main lngt: 4
@5 function_type size: @8 algn: 64 retn: @9

prms: @10
@6 function_decl name: @11 mngl: @12 type: @13

srcp: find_tmpl.cc:26 chan: @14
args: @15 extern body: @16

@11 identifier_node strg: iszero lngt: 6
@14 template_decl name: @26 type: @27 srcp: find_tmpl.cc:18

chan: @28 rslt: @29 spcs: @30
prms: @31

@26 identifier_node strg: find lngt: 4

Figure 4. GCC Translation Unit

--fdump-tree-original dumps the AST of each individual
method. The advantage of this approach is that a lot
of information pertaining to a given method can be
extracted from the tree without a deep understand-
ing of GCC’s AST. Since GCC, however, only dumps
the information that is absolutely necessary to gen-
erate the code for the method, only partial informa-
tion about records is being dumped and one cannot ex-
tract a record’s virtual method table, unused methods
or fields. The switch generates a dump similar to that
given in Figure 4 for each function or method defined
in the translation unit.

--fdump-class-hierarchy dumps the class hierarchy as
well as the virtual method tables of the individ-
ual classes. Using this class representation allows de-
velopers to infer the methods that correspond to the
individual virtual method table elements more eas-
ily.

The translation unit shown in Figure 4 shows the typi-
cal structure of GCC’s representation of a translation unit.
It first gives a namespace declaration (node @1) which ref-
erences all the declarations within that namespace through
the dcls attribute. The declarations itself are linked through
chan links. This allows us to traverse through all the decla-
ration in a translation unit.
Node @3, for instance, shows the declaration of the main

function. The function’s type is referred to by the type and
the body by the body attribute. To identify all of the func-
tion calls or accesses to records, all the statements and ex-
pressions inside the body need to be analyzed. For brevity
reasons, we omit this discussions for simple function calls
and focus our discussion on virtual function calls and tem-
plates.

4. Template Analysis

The strength of using GCC’s representation of a transla-
tion unit becomes clear when C++ templates need to be an-
alyzed. As we will see in the next section, interestingly, it
is easier to obtain this information on the basis of GCC’s
translation units then the information about virtual method
calls because they are called indirectly through the virtual
method table.

4.1. Function Templates

Within GCC’s translation unit, a template declaration is
represented as a template_decl node. This node contains
pointers to the original definition of the template, its param-
eters and to the instantiations of the template.
Figure 4 shows this node (@14) for the find func-

tion presented in Section 2. The type attribute points to a
function_type node that provides the generic represen-
tation of the function’s type and the rslt attribute points to
the function’s generic implementation.
The find function takes two template parameters: a for-

ward iterator (i.e., a class that supports the comparison,
dereference operator, and the pre-increment operator) and
a function or class providing the () operator (both taking
an argument of the type returned by *begin).
For analysis purposes, the find function poses several

challenges. If the analysis tool is unable to interpret tem-
plate parameters, it will be unable to identify which func-
tion will be called by the different instantiations of the func-
tion. Another challenge is that if the template parameter I
is a class implementing the above mentioned operators, we
would like to see the operator invocations reported since an

@30 tree_list purp: @51 valu: @52 chan: @53
@52 function_decl name: @26 mngl: @83 type: @84

srcp: find_tmpl.cc:18 args: @85
extern body: @86

@53 tree_list purp: @87 valu: @88
@88 function_decl name: @26 mngl: @133 type: @134

srcp: find_tmpl.cc:18 args: @135
extern body: @136

Figure 5. Instantiated find Functions

operator is basically a function. On the other hand if it only
represents a pointer type, no user-defined function is called
and hence no such call should be reported.
The following code creates two different in-

stances of the find function: one parameterized with
<int*,in_range_class<int>> and the other with
<int*,int(*)(int)>.

int main() {
int p[8]={17,7,0,4,39,45,-1,7}, *q=0;
in_range_class<int> op=in_range(2,6);
q=find(p,p+8,op);
q=find(p,p+8,iszero);

}

The functions instantiated from the above code are
shown in Figure 5. These functions are linked in a list of
tree_list nodes. The chan attribute gives a link to the
next instantiation, the valu attribute points to the actual in-
stantiation, and the purp attribute specifies the types with
which the function has been parameterized with.

4.2. Class Templates

Records and classes are other interesting programming
language constructs that need to be analyzed. GCC does
not differentiate between records and classes. The follow-
ing shows a simple function object (in_range_class) that
can be used in combination with our find function and a
helper function (in_range) that enables the function ob-
ject’s transparent instantiation (see [15] for details).

template <class T>
struct in_range_class {
T x, y;
in_range_class(T a, T b): x(a),y(b) {}
int operator()(int z) {

return x<z && z<y;
}

};

template <class T> inline
in_range_class<T> in_range(T a, T b) {
return in_range_class<T>(a,b);

}

GCC’s representation of this code is shown in Figure 6.
As for function declarations, the template declaration node
points to the generic type (type), the generic implementa-
tion (rslt), and the individual instantiations (inst) of the
record.
Based on the record’s generic representation (@68), the

fields of a given record can be easily identified through the
flds attribute of the record_type node. This node at-
tribute points to a list of var_decl nodes which are linked
through a series of chan attributes. Member functions can
be obtained by following the record_type’s fncs at-
tribute. In case of our function object, we can identify first
the record’s constructor (@70). In this case, it is the de-
fault constructor generated (hence, the node is marked as
artificial) by GCC since none has been provided by us.
By following the chan attributes one can identify our own
constructor, as well as the function call operator ().
The instantiations of the class template are structured ex-

actly the same way as its generic counterpart except that
the type parameters are replaced with concrete types and
generic function invocations with function invocations cor-
responding to the template parameter types.

5. Inheritance

Another challenge that we have shown in Section 2 is
that even virtual function calls may depend on the instanti-
ation of C++ templates. Since traditional tools are unable to
analyze template instantiations, they also miss these virtual
method calls. Hence, in order to be able to analyze com-
plex projects such as Mozilla, TUAnalyzer not only has to
cope with templates but also with the invocation of virtual
functions.
Discussing the extraction of virtual function calls on ba-

sis of the Mozilla example that we have given in Figure 3
would be rather long due to the additional template instanti-
ations and would not give additional insights into the analy-
sis of C++ programs using our approach. Hence, we use the
followingmore simple example that shows a class hierarchy
(similar to the one implemented in TUAnalyzer). This ex-
ample also allows to explain how inheritance relationships

@32 identifier_node strg: x lngt: 1
@45 template_decl name: @67 type: @68 srcp: find_tmpl.cc:2

chan: @69 rslt: @70 inst: @71
prms: @72

@67 identifier_node strg: in_range_class lngt: 14
@68 record_type name: @70 size: @105 algn: 8

struct flds: @106 fncs: @107
binf: @108

@70 type_decl name: @112 type: @68 srcp: find_tmpl.cc:2
artificial chan: @113

@71 tree_list purp: @114 valu: @115 chan: @116
@106 field_decl name: @32 type: @157 scpe: @68

srcp: find_tmpl.cc:4 chan: @158
public algn: 1

@107 function_decl name: @67 type: @159 scpe: @68
srcp: find_tmpl.cc:5 chan: @160
member public constructor
pseudo tmpl args: @161 extern
body: @162

@115 record_type name: @169 size: @8 algn: 32
struct flds: @170 fncs: @171
binf: @172

Figure 6. Class Template (@45) and Instantiations (@71)

and virtual function calls can be derived from GCC’s repre-
sentation of a translation unit:

class Decl {
// ...
virtual const char *getDeclName();
virtual void dump();

};

class Expr {
// ...
virtual const char *getExpr()=0;
virtual void dump() { /* ... */ }

};

struct VarDecl
: public Decl, public Expr {
VarDecl(const char *v) : Decl(v) {}
/* default getDeclName is OK */
virtual const char *getExpr() {

return getDeclName();
}
virtual void dump() { /* ... */ }

};

int main() {
// ...
decl->dump();

}

The interesting parts of GCC’s representation of this
translation unit are shown in Figure 7. The figure shows,

how inheritance relationships can be identified using GCC.
For instance, the record described by node @69 shows the
base classes specified using the base attribute. An interest-
ing thing to note here is that the base attribute may occur
multiple times.

Figure 7 also shows the binf attribute which points to
a structure that may allow reverse engineers to derive the
layout of the virtual method table. Analyzing this struc-
ture is fairly complex since it requires a deep understand-
ing of GCC’s internal data structures. Fortunately, GCC can
also dump the class hierarchy and the layout of the virtual
method tables in a format that can be understood more eas-
ily (using the --fdump-class-hierarchy switch). The output
for the VarDecl class is shown in Figure 10.

As mentioned previously, the extraction of virtual func-
tion calls was the most challenging part in the implemen-
tation of TUAnalyzer. Within GCC’s translation unit, these
method calls are stored in a form suitable for the subse-
quent code generation phase but not suitable for any kind
of code analysis purposes. That is, they are invoked indi-
rectly by accessing the class’s artifical virtual method table
field, computing the function’s entry, and by calling the ad-
dress stored at that entry.

Figure 9 shows GCC’s representation of a function
call (@524). Since this is a virtual function, the fn at-
tribute points to an indirect_ref node (instead of a
function_decl node) which points to a plus expres-
sion.

@53 type_decl name: @68 type: @69 srcp: virtual_mult.cc:17
artificial chan: @70

@68 identifier_node strg: VarDecl lngt: 7
@69 record_type name: @53 size: @82 algn: 32

vfld: @83 base: @84 public
base: @85 public struct
flds: @86 fncs: @87 binf: @88

@84 record_type name: @112 size: @32 algn: 32
vfld: @113 struct flds: @113
fncs: @114 binf: @115

@85 record_type name: @91 size: @111 algn: 32
vfld: @116 struct flds: @116
fncs: @117 binf: @118

Figure 7. Inheritance Relationships (@53)

@108 identifier_node strg: _vptr$Decl lngt: 10
@109 identifier_node strg: $vf lngt: 3
@113 field_decl name: @108 mngl: @109 type: @110

scpe: @84 srcp: virtual_mult.cc:1
artificial chan: @148 public
size: @111 algn: 32 bpos: @81

@236 var_decl name: @291 type: @256 scpe: @28
srcp: virtual_mult.cc:28 chan: @292
init: @293 size: @111 algn: 32
used: 1

@256 pointer_type size: @111 algn: 32 ptd : @84
@291 identifier_node strg: decl lngt: 4
@630 nop_expr type: @256 op 0: @690
@688 component_ref op 0: @752 op 1: @113
@690 nop_expr type: @256 op 0: @753
@752 indirect_ref op 0: @630
@753 nop_expr type: @256 op 0: @806
@806 non_lvalue_expr type: @256 op 0: @236

Figure 8. Member Access (@688)

@63 void_type name: @77 algn: 8
@524 call_expr type: @63 fn : @574 args: @575
@574 indirect_ref op 0: @629
@575 tree_list valu: @630
@629 plus_expr type: @110 op 0: @688 op 1: @689
@689 integer_cst type: @110 low : 4

Figure 9. Virtual Function Invocation (@524)

Vtable for VarDecl
VarDecl::_ZTV7VarDecl: 9 entries
0 0
4 &_ZTI7VarDecl
8 Decl::getDeclName()
12 VarDecl::dump()
16 VarDecl::getExpr()
20 0fffffff8
24 &_ZTI7VarDecl
28 VarDecl::_ZThn8_N7VarDecl7getExprEv()
32 VarDecl::_ZThn8_N7VarDecl4dumpEv()

Class VarDecl
size=12 align=4

VarDecl (0x10094280) 0
vptr=((&VarDecl::_ZTV7VarDecl)+8)

Decl (0x100942c0) 0
primary-for VarDecl (0x10094280)

Expr (0x10094300) 8 nearly-empty
vptr=((&VarDecl::_ZTV7VarDecl)+28)

Figure 10. Class Hierarchy Dump

The first argument to the plus expression is the address
of the virtual function table field obtained through a mem-
ber access shown in Figure 8. The reference to a field of a
record is identified by a component_ref node. The op 0

attribute refers to an object whose field is to be accessed and
the op 1 attribute refers to the name of the field which is to
be accessed.
The second argument is the immediate value 4, the func-

tion’s index in the table. This is dependent on the proces-
sor architecture. The size of function pointers and the align-
ment of functions, however, can also be identified by us-
ing GCC’s representation of the translation unit. Hence, one
does not have to know the architecture on which the dump
has been generated.
Once the type of the object has been identified through

the component_ref’s op 0 attribute we can look up the
method to be called on the basis of GCC’s class hierar-
chy dump which is shown in Figure 10. One thing that
has to be noted, is that the object’s virtual function table
pointer points already to the third element of the virtual ta-
ble dumped by GCC. That is the Decl::getDeclName()
entry in the case of our example.

6. Validation

We empirically validated TUAnalyzer using the exam-
ples presented throughout this paper. Figure 11 shows a
simplified version of the RSF data generated by TUAna-
lyzer. The output has been simplified to make it more read-
able and reduced to show only the essential parts. Besides

the information shown, we also extract classes, their mem-
bers, and accesses to the fields of a class.
As shown by the output, the method signatures gener-

ated are slightly different from those expected by a C/C++
compiler. The output shows also how GCC internally rep-
resents constructors and methods. That is, the first param-
eter of a method is used to pass the parameter. This prob-
lem, however, does not affect the analysis of the program
and will be dealt with in a future version of TUAnalyzer.
The effort to use and integrate TUAnalyzer to reverse en-

gineer C/C++ programs is rather small: one has to use GCC
on the source basis in a regular build and enable the addi-
tional compiler switches as described in Section 3. Then our
TUAnalyzer is applied on the translation unit of GCC. The
output that is generated contains all resolved template defi-
nitions and virtual method call information from the source
code and is in FAMIX compliant RSF format.
One limitation of the current version of TUAnalyzer is

that it only extracts function calls and the access of a class’s
attributes whereas many of the commercial tools provide
other information about a program such as the local vari-
ables used in a given routine as well as their types or other
such information. This problem, however, can be solved by
using our tool along with such commercial tools and by in-
tegrating the results of our tool into a fact database gener-
ated by a traditional reverse engineering tool and thereby
completing the fact base (i.e. source code model graph).
Consequently, the quality of the fact base is improved and
more detailed analyses are facilitated.
Since many—even commercial—reverse engineer-

ing tools fail due to incomplete C/C++ source code parsing
and representation, our TUAnalyzer provides an impor-
tant solution for a broad range of tools that can use its
results. For instance, we use grok [3] for querying and an-
alyzing the more complete source code model graphs and
Rigi [16] and the Graphviz tool kit [5] for graph visualiza-
tion.
Our next steps will concentrate on large open source

projects such as Mozilla, to evaluate our tool and the under-
lying technique in detail to distill benefits and constraints of
our approach. For this paper, the proof of concept has been
described, more evaluations are beyond the scope of this pa-
per.

7. Related Work

Several commercial and publicly available parsing tools
exist that address fact extraction from C/C++ source code.
There is no doubt that there is at least one parser that han-
dles nearly all C/C++ specific language constructs such as
templates—that is the GCC. However, the output produced
by GCC cannot directly be used by reverse engineering

a) find.cc

invokes "int main()" "*(int) find(*(int),*(int),in_range_class<int>)"
invokes "int main()" "*(int) find(*(int),*(int),*(int(int)))"
type "int main()" "Function"
invokes "*(int) find(*(int),*(int),*(int(int)))" "*(int(int))"
type "*(int) find(*(int),*(int),*(int(int)))" "Function"
invokes "*(int) find(*(int),*(int),in_range_class<int>)"

"int operator(*(in_range_class<int>),int)"
type "*(int) find(*(int),*(int),in_range_class<int>)" "Function"

b) dist_tmpl.cc

invokes "int main()" "int dist(*(int),*(int))"
type "int main()" "Function"
invokes "int dist(*(int),*(int))" "int dist(*(int),*(int),random_access_iterator_tag)"
type "int dist(*(int),*(int))" "Function"

c) virtual_mult.cc

invokes "int main()" "void __comp_ctor(*(VarDecl),*(char))"
type "int main()" "Function"
invokes "int main()" "void dump(*(Decl))"
type "void __comp_ctor(*(VarDecl),*(char))" "Method"
type "void dump(*(Decl))" "Method"

Figure 11. Output of TUAnalyzer

tools. Furthermore, not all the information produced by the
GCC is needed.
Imagix-4D [9] is a reverse engineering tool that concen-

trates on browsing, navigating, and analyzing C/C++ source
code. The parser of Imagix-4D derives source code facts of
reasonable quality. As we have explained, however, regard-
ing C/C++ templates the parser lacks of important informa-
tion about method/function calls which is due to the inabil-
ity of interpreting template parameters. This drawback is
handled by TUAnalyzer.
A related approach that uses the GCC translation units to

extract C/C++ source code facts is CPPX [2]. CPPX derives
and generates parsing results in the Graph eXchange Lan-
guage (GXL) [8] format. Although, the resulting graphs in-
clude information about templates, the extraction of this in-
formation and virtual method call facts that conform to a
fact meta model such as FAMIX or Datrix is not yet sup-
ported. Hence, the user has to reconstruct this information
from the output graph in a way similar as presented in this
paper.
Another tool that takes a similar approach is XOGAS-

TAN [1]. A drawback of XOGASTAN is, however, that
in its current stage it only converts GCC’s translation unit
dump file into an XML representation. Its analysis capabil-
ity of the abstract syntax tree itself, however, is limited.
The approach of Fowler et al. presented in [11] also is

based on GCC. It uses a modified version of bison (the

parser generator used by GCC) that generates an XML en-
riched version of the compiler’s parse tree. This helps tools
to understand the structure of C/C++ programs. However, in
order to perform analyses tasks such as analyzing the call or
dependency graph, one has to analyze the whole GCC parse
tree. To filter out information from the parse tree Fowler et
al. introduced the gccXfront tool [7]. However, the filtering
capabilities of this tool are limited and do not take into ac-
count template instantiations and virtual method calls.

Yet another tool taking this approach is GCC XML [6].
GCC XML derives an XML representation of the class,
function, and namespace declarations that is easier to parse
but does not take function/methodbodies into account. Con-
sequently, GCC XMLmisses all call graph information that
is needed for a detailed analysis of software systems.

8. Conclusions

Currently available reverse engineering tools such as
Imagix-4D are only able to indicate an invocation through a
template argument but are unable to resolve the function to
which the invocation resolves during compilation time. As
we have shown in this paper, our approach which we have
implemented in TUAnalyzer solves this problem by analyz-
ing GCC’s internal representation of translation units and
class hierarchies.

We have based TUAnalyzer on the GCC compiler since
the compiler has to generate the machine code for each indi-
vidual template instantiation. These instantiations can also
be found in GCC’s representation of a translation unit. We
have described, how our tool makes use of this data to re-
solve template instantiations and virtual method calls. TUA-
nalyzer produces FAMIX compliant RSF format as output
such that other tools and approaches can exploit our tem-
plate analysis. For our reverse engineering tasks, we feed
these results into tools such as Rigi or Graphviz for com-
plete call and dependence graph visualization. In addition,
the output format enables other approaches to understand
GCC’s representation of a translation unit and hence allow
to build upon our template analysis results for their further
analysis purposes.
We also discussed how large C++ applications such as

the Mozilla open source browser or the C++ Standard Tem-
plate Library, are using templates as well as the limitations
of the currently available tools. We have used examples
taken from these systems to validate our claim that TUA-
nalyzer template analysis capabilities are superior to those
found in other reverse engineering tools. The validation re-
sults demonstrated that our tools is indeed able to identify
invocations depending on template arguments.
In the future, we plan to use our tool to analyze the struc-

ture of the entire Mozilla web browser which makes heavy
use of C++ templates and evaluate how our tool performs
when used in combination with a large software project and
to demonstrate how source code analysis can benefit from
our template analysis capability.

References

[1] G. Antoniol, M. Di Penta, G. Masone, and U. Villano. XO-
gastan: XML-oriented GCC AST analysis and transforma-
tion. In Proceedings of the Third International Workshop on
Source Code Analysis and Manipulation (SCAM’03). IEEE,
2003.

[2] T. R. Dean, A. J. Malton, and R. C. Holt. Union schemas as a
basis for a C++ extractor. In Proceedings of the Eighth Work-
ing Conference on Reverse Engineering (WCRE’01). IEEE,
Oct. 2001.

[3] H. Fahmy and R. C. Holt. Software architecture transfor-
mations. In Proceedings of the International Conference
on Software Maintenance, pages 88–96, San Jose, CA, Oct.
2000. IEEE.

[4] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy.
Columbus—reverse engineering tool and schema for C++.
In Proceedings of the International Conference on Software
Maintenance (ICSM’02). IEEE, 2002.

[5] E. R. Gansner and S. C. North. An open graph visual-
ization system and its applications to software engineering.
Software-Practice & Experience, 30(11):1203–1233, Sept.
2000.

[6] GCC XML. http://www.gccxml.org/HTML/
Index.html, May 2004.

[7] M. Hennessy, B. A. Malloy, and J. F. Power. gccXfront:
Exploiting gcc as a front end for program comprehension
tools via XML/XSLT. In International Workshop on Pro-
gram Comprehension (IWPC’03). IEEE, 2003.

[8] R. C. Holt, A. Walter, and A. Schürr. GXL: Toward a stan-
dard exchange format. In Proceedings of the Seventh Work-
ing Conference on Reverse Engineering (WCRE’00), pages
162–171. IEEE, Nov. 2000.

[9] Imagix Corporation. Imagix-4D 4.3.3. http://www.
imagix.com/, May 2004.

[10] ISO/IEC. ISO/IEC14882: Programming Languages—C++,
1st edition, July 1998.

[11] J. F. Power and B. A.Malloy. Program annotation in XML: A
parse-tree based approach. In Proceedings of the Ninth Work-
ing Conference on Reverse Engineering (WCRE’02). IEEE,
2002.

[12] Software Composition Group, University of Berne.
The FAMIX 2.0 Specification, 2.0 edition, Aug. 1999.
http://www.iam.unibe.ch/˜scg/Archive/
famoos/FAMIX/.

[13] Source navigator 5.1.4. http://sourcenav.
sourceforge.net/, June 2003.

[14] R. M. Stallman. Using GCC: The GNU Compiler Collection
Reference Manual. GNU Press, Oct. 2003.

[15] B. Stroustrup. The C++ Programming Language. Addison-
Wesley, 3rd edition, 1997.

[16] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Müller.
Programmable reverse engineering. International Jour-
nal of Software Engineering and Knowledge Engineering,
4(4):501–520, Dec. 1994.

[17] T. L. Veldhuizen. C++ templates are Turing Complete. Tech-
nical report, Indiana University, 2003.

[18] The Mozilla open source web browser. http://www.
mozilla.org/, May 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

