
Diploma Thesis
April 21, 2006

A Quality-of-Service
Model for

Loosely-Coupled
Peer-to-Peer

Workflows
Matthias Taugwalder

of Zermatt, Switzerland (00-921-866)

supervised by

Prof. Dr. Harald Gall
Dr. Gerald Reif

Department of Informatics software evolution & architecture lab

Diploma Thesis

A Quality-of-Service
Model for

Loosely-Coupled
Peer-to-Peer

Workflows
Matthias Taugwalder

Department of Informatics software evolution & architecture lab

Diploma Thesis

Author: Matthias Taugwalder, matthias.taugwalder@bluewin.ch

Project period: October 26, 2005 - April 21, 2006

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank my supervising assistant Gerald Reif for his valuable input, the extensive
proofreading and the freedom I had while writing this thesis. Further, I thank Prof. Harald Gall
for giving me the opportunity of writing this thesis.

Many thanks also to my parents Agathe and German for their support during the last years.

Abstract

The Internet and the development of new technologies such as Peer-to-Peer networks have chan-
ged the way how companies do business together. Today anyone can provide all sorts of services
to the global community. This entails that service consumers can choose from a mass of different
service providers. But each service provider offers the service to different conditions. Also the
service requester may have specific requirements of the service. That is where the quality of a
service becomes important.

Quality of Service (QoS) is a framework for specifying service attributes which helps the ser-
vice requester to choose between different service providers. In the traditional sense this QoS
was limited to technical aspects such as network speed and failure rate. The usage of QoS in
other domains such as Web services and Workflow systems introduced additional QoS criteria.
Furthermore, different users may have different needs: While for system administrators the tech-
nical aspects of a service are important, the end-user may have additional requests and also a
totally different perception of the service and its quality.

This diploma thesis describes an open and extensible framework for specifying QoS criteria
and service attributes in the domain of Peer-to-Peer systems. The thesis introduces the termi-
nology in the domain and discusses existing QoS approaches. It further addresses necessary
considerations of the specification process, which help to produce meaningful and useful QoS
measures and results. Finally this thesis presents a proof-of-concept implementation of the pro-
posed extensible QoS model that is based on Java and RDF (Resource Description Framework)
language.

Zusammenfassung

Das Internet und die Entwicklung von neuen Technologien wie Peer-to-Peer Netzwerken haben
die Zusammenarbeit zwischen Unternehmungen verändert. Jeder kann heutzutage alle Arten
von Dienstleistungen global anbieten. Dies bringt mit sich, dass die Servicekonsumenten aus
einer Vielzahl von verschiedenen Dienstleitungsanbietern auswählen können. Jedoch bietet jeder
Anbieter seine Dienstleistung zu unterschiedlichen Konditionen an. Zudem kann der Konsument
spezifische Anforderungen an den Service haben. An dieser Stelle wird die Qualität einer Dien-
stleistung wichtig.

”Quality of Service” (kurz: QoS) bietet einen Rahmen um die verschiedenen Eigenschaften
einer Dienstleistung zu beschreiben und hilft damit dem Konsumenten der Dienstleistung bei
der Auswahl aus verschiedenen Anbietern. Im traditionellen Sinn beschränkt sich QoS auf tech-
nische Eigenschaften wie Netzwerkgeschwindigkeit oder Fehlerrate. Die Benutzung in anderen
Gebieten wie Web Services oder in Workflow Systemen hat zu zusätzlichen QoS Kriterien geführt.
Darüber hinaus können verschiedene Nutzer unterschiedliche Anforderungen haben: Während
für Systemadministratoren die technischen Eigenschaften einer Dienstleistung entscheidend sind,
können die Endnutzer zusätzliche Anforderungen haben und einen Service und die damit ver-
bundene Qualität völlig unterschiedlich wahrnehmen.

Diese Diplomarbeit beschreibt ein offenes und erweiterbares Rahmenwerk zur Beschreibung
von QoS Kriterien und Service-Attributen im Gebiet von Peer-to-Peer Systemen. Schrittweise
werden die Fachbegriffe dieses Einsatzgebiets sowie bestehende QoS Ansätze vorgestellt. Die
Arbeit befasst sich desweiteren mit Überlegungen zum Spezifikationsprozess, die dabei helfen
aussagekräftige und brauchbare QoS Messwerte und Resultate zu erzeugen. Zu guter Letzt zeigt
die Implementierung des vorgestellten Ansatzes, wie ein solches erweiterbares QoS Modell mit-
tels Java und RDF (Resource Description Framework) realisiert werden kann.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 1
1.3 Structure of this Thesis . 2

2 Theoretical Background 3
2.1 Definitions . 3

2.1.1 Service . 3
2.1.2 Quality . 4
2.1.3 Service Level Agreement (SLA) . 4
2.1.4 Class of Service . 5

2.2 Non-Functional Properties . 5
2.2.1 Availability . 6
2.2.2 Channels . 6
2.2.3 Charging Styles . 6
2.2.4 Settlement . 6
2.2.5 Payment Obligations . 8
2.2.6 Service Quality . 8
2.2.7 Security and Trust . 8
2.2.8 Ownership and Rights . 9

3 Specification Process 11
3.1 Measurement and Evaluation . 11

3.1.1 Classes of Decision-Makers . 11
3.1.2 Concerns . 12
3.1.3 Objectives . 13

3.2 Analysis Process . 13
3.2.1 Formulation . 13
3.2.2 Data Handling . 16
3.2.3 Evaluation . 17

4 Quality of Service 19
4.1 A Generic Quality of Service Model . 19

4.1.1 Intrinsic QoS . 19
4.1.2 Perceived QoS . 19
4.1.3 Assessed QoS . 20
4.1.4 Assurance of Satisfactory Level . 20

4.2 QoS in Different Domains . 20

viii CONTENTS

4.2.1 IP Networks . 20
4.2.2 Web Services . 23
4.2.3 Workflow Systems . 25
4.2.4 Peer-to-Peer Networks . 27

4.3 Summary . 28
4.3.1 Comparison . 28
4.3.2 QoS Requirements . 29

5 QoS Model and Scenarios 31
5.1 Basic QoS Model . 31
5.2 Scenarios . 32

5.2.1 Scenario A - Pizza Service . 32
5.2.2 Scenario B - Online Music and Video Store 33
5.2.3 Scenario C - Supply-Chain Management . 35

6 Implementation 37
6.1 MOTION . 37

6.1.1 Architecture Overview . 37
6.1.2 Teamwork Services Components . 38

6.2 Workflow Component . 40
6.2.1 Terminology . 40
6.2.2 Architecture Overview . 43
6.2.3 Data Distribution . 44
6.2.4 Instance Life Cycle . 45
6.2.5 Task Status . 46
6.2.6 Implementation . 47

6.3 Use Cases . 47
6.3.1 Process Management . 48
6.3.2 Task Negotiation . 48
6.3.3 Instance Execution . 49

6.4 QoS Implementation . 49
6.4.1 Used Technologies and Resources . 50
6.4.2 Architecture . 50
6.4.3 QoS Components . 50
6.4.4 JTreeTable Components . 55

7 Conclusion and Future Work 57
7.1 Summary . 57
7.2 Result . 57
7.3 Future Work . 58

7.3.1 Local Optimization and Global Planning . 58
7.3.2 Security and Trust . 58

A RDF Representation 59
A.1 Basic QoS Model . 59
A.2 Scenarios . 60

A.2.1 Scenario A - Pizza Service . 60
A.2.2 Scenario B - Online Music and Video Store 62
A.2.3 Scenario C - Supply-chain Management . 65

CONTENTS ix

List of Figures
3.1 Process for Formulating an Analytical Effort [Har01] 14

4.1 Simplified Model of Factors that Shape Perception of Quality of Service [Har01] . . 20
4.2 Comparison of QoS Approaches for IP Networks [GJS03] 21
4.3 Workflow Task Structures [KS95] . 27

6.1 Overview of the MOTION Architecture [KFRG02] 38
6.2 Teamwork Services Layer Publish/Subscribe Component Architecture [KFRG02] . 39
6.3 MOTION Communities [Sch04] . 41
6.4 Import a New Process [Sch04] . 42
6.5 Provide a New Task [Sch04] . 42
6.6 Create an Instance of a Task [Sch04] . 43
6.7 MOTION Workflow Architecture [Sch04] . 43
6.8 Instance Life Cycle [Sch04] . 45
6.9 Task Status [Sch04] . 46
6.10 Class Diagram of the eu.motion.tuv.qos Package . 51
6.11 QosLauncher Window . 52
6.12 QosGUI Assistant Window . 53
6.13 QosGUI Assistant Window, with Context Menu (Working Mode: Edit Ontology +

Change Values) . 53
6.14 QosGUI Assistant Window, with Context Menu (Working Mode: Change Values) . 54

List of Tables
5.1 Basic QoS Model . 31
5.2 QoS Model of Scenario A - Pizza Service . 33
5.3 QoS Model of Scenario B - Online Music and Video Store 34
5.4 QoS Model of Scenario C - Supply-Chain Management 36

List of Listings
A.1 RDF Schema Representation of the Basic QoS Model 59
A.2 RDF Schema Representation of Scenario A - Pizza Service 60
A.3 RDF Schema Representation of Scenario B - Online Music and Video Store 62
A.4 RDF Schema Representation of Scenario C - Supply-Chain Management 65

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

The Internet and the development of new technologies such as Peer-to-Peer networks have chan-
ged the way of doing business. Peer-to-Peer networks offer new powerful ways for providing
services. Anyone can provide a service to the global community. Service requesters can choose
from a wide variety of service providers. Hence we need extensible ways for describing these
service interactions and the quality of these services.

Therefore, to represent today’s services rich and accurate means for describing service capa-
bilities and attributes are required. That applies also to describing quality of service criteria for
these services. Most of today’s existing approaches concentrate on the technical aspects and not
on the end-user perspective. What is needed, is a extensible model which is motivated by the
every-day services that surround us.

1.2 Problem Description

The traditional concept of quality of service is insufficient for describing any service.

On the one hand, the existing approaches are too concentrated on the technical aspects. The
existing definition of quality of service has to be reconsidered and expanded to involve all service
attributes which are important to the service requester. There are several attempts in the domains
of Web Services or Workflow systems which propose such models that focus on the end-user and
comprehend the end-user’s requirements and needs.

On the other hand, today’s services are multifaceted and are hard to describe. The exist-
ing approaches for specifying the quality of a particular service are limited and not extensible.
Business-specific properties cannot be expressed using these models. An extensible, open frame-
work is required that allows to specify the quality of service parameters for any kind of services,
including non-digital ones.

2 Chapter 1. Introduction

1.3 Structure of this Thesis
This thesis focusses on the aspects and problems, that have to be addressed while specifying a
wide and extensible quality of service (QoS) model. The following chapters approach this prob-
lem step-wise.

Chapter 2 introduces the reader to the application area of loosely-coupled Peer-to-Peer net-
works and the domain of QoS. It deals with the theoretical background such as the fundamental
definitions of a service and QoS. Furthermore, it presents non-functional properties as framework
for classifying service constraints. Non-functional properties involve attributes a service can have.

In Chapter 3 we discuss the specification process itself. Having a powerful model is not
enough, we need a careful process to find the right measures to produce meaningful results.
On the one hand, the results have to be operationally meaningful to the end-users. On the other
hand, the measures should be possible to produce with minimal effort.

Chapter 4 shows a generic QoS model which will be used to classify QoS attributes from the
perspective of the end-user. After this, it presents and compares the existing approaches of qual-
ity of service models in several domains such as IP networks, Web services or Workflow systems.
Out of these different models the essential features of a model are specified, which will be used
to formalize our QoS model.

The resulting QoS model can be found in Chapter 5 as a basic QoS model for workflow ser-
vices in a Peer-to-Peer environment. The proposed model is extensible and can be extended to
the requirements of any service. Using three fictive scenarios its extensibility and expressiveness
are shown.

The MOTION Peer-to-Peer plattform builds the basic system for the implementation. Chap-
ter 6 describes these underlaying system components and the implementation of our QoS model.

Finally, in Chapter 7 we will draw a conclusion of the chosen approach and address some
potential areas of future work.

Chapter 2

Theoretical Background

The popularity of Internet technologies led to the development of complex software systems, con-
sisting of components which are distributed over the network. To keep such system maintainable,
each component is specialized on a specific task or service. Such an architecture enables that ser-
vices can be offered by different parties. To be able to choose the appropriate service, that matches
the current requirements, the quality of a service is an important criteria.

Loosely-coupled Peer-to-Peer networks solve the problem of permanent network connectivity
and limited availability between the single peers. The clients gather all required information if
they are connected to the network and store that information in a local knowledge database. This
database then provides all the necessary information if a peer is disconnected from the network.

In this chapter, we first deal with definitions of commonly used terms as ”service” or ”quality”
(see Section 2.1). After that, we will try in Section 2.2 to cover and understand what service aspects
are important to the quality of a service. Non-functional properties give an overview of different
service aspects and provide a framework for classifying such service constraints.

2.1 Definitions
The following definitions are presented in [GJS03] which concentrates mainly on the quality of
service terminology in IP networks.

2.1.1 Service
According to the International Telecommunications Union (ITU) a service in an IP environment
is defined as follows:

”A service provided by the service plane to an end user (e.g., a host [end system]
or a network element) and which utilizes the IP transfer capabilities and associated
control and management functions, for delivery of the user information specified by
the service level agreements.” [ITU01]

Most definitions are focused on the technical aspects of services. These aspects can be specified
in a formal way in a Service Level Agreement (SLA) and can easily be verified.

4 Chapter 2. Theoretical Background

In economics the definitions are mainly centered around the end-user: Services are described
as non-material equivalents of goods, the customer takes part in the process of service provision.

On the other hand, in the domain of Web services a ”Web service” is defined as:

”A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network.” [BHM+04]

A Web service has an interface described in a machine-processable format. Other systems interact
with the Web service in a manner prescribed by its description using messages. [BHM+04].

2.1.2 Quality
The term quality is in the ISO 8402 standard document defined as:

”The totality of characteristics of an entity that bear on its ability to satisfy stated
and implied needs.” [ISO94]

This term is very broad and can be therefore interpreted in different ways: Different users have
different needs and for each user different criteria is important. Also the evaluation if the service
satisfies the user’s expectations depends on various criteria. For example engineers would decide
on technical aspects while end users decide on their personal impression and in comparison to
their expectations.

2.1.3 Service Level Agreement (SLA)
In business the level of quality which providers offer and users expect is formalized using a ser-
vice level agreement. So they can be considered as binding contracts that are agreed between
a service provider and service requester. Usually there are penalties imposed in case of non-
compliance. [OEH02]

The ITU definition of a service level agreement is:

”A negotiated agreement between a customer and the service provider on levels of
service characteristics and the associated set of metrics. The content of SLA varies de-
pending on the service offering and includes the attributes required for the negotiated
agreement.” [ITU01]

According to the ITU definition, a SLA may be in form of a document containing names of the
parties signing the contract. It should be composed of service level objectives, service monitor-
ing components, and financial compensation components. Service level objectives contain QoS
parameters or the class of the service provided, service availability and reliability, authentication
issues, and so on. Service monitoring specifies the way of measuring service quality and other
parameters used to assess whether the service meets the requirements which are specified in the
SLA. The financial component may include billing options, penalties for breaking the contract,
and so forth. [ITU01]

The Internet Engineering Task Force (IETF) defines a SLA in a similar way as:

”A service contract between a customer and a service provider that specifies the
forwarding service a customer should receive.” [Cra98]

2.2 Non-Functional Properties 5

Furthermore, a SLA should be expressed in a way that the customer can understand. It includes
a description of the basic features of the service and a list of unambiguous quality criteria which
is used to assess if the service meets the stated requirements. The responsibilities of both parties
- the service provider and also the customer - are defined in this document.

Summarizing, SLA is a broad term encompassing technical features and parameters of the
service, as well as legal and charging aspects. SLA parameters and attributes define IP-based
services.

2.1.4 Class of Service

Class of service is described as set of characteristics available with a specific service. The IETF
describes it as ”The definitions of the semantics and parameters of a specific type of QoS” [Cra98]
Services belonging to the same class are described by the same set of parameters which can have
qualitative or quantitative values.

In the domain of IP networks the class of service is used to ensure different levels of service
provision. For example the IntServ architecture [BCS94] includes three classes: guaranted, con-
trolled load and best effort.

2.2 Non-Functional Properties

As shown in [Tom06], three different aspects have to be considered when talking about service de-
scriptions: (1) functional, (2) behaviour, and (3) non-functional properties. The functional description
contains the formal specification of what exactly the service can do. The behavior description con-
tains the formal specification of how the functionality of the service can be achieved. Finally, the
non-functional descriptions capture constraints over the previous two [Chu91]. For example, in case
of a train booking service, invoking its functionality (booking a train ticket) might be constrained
by using a secure connection (security as non-functional property) or by actually performing the
invocation of the services in a certain point in time (temporal availability as non-functional prop-
erty).

Among these three, the first two aspects of service description are the most investigated as-
pects. Although non-functional properties did not capture a very broad attention, one has to
recognize the big importance of describing them. This is due to their high relevance for all service
related tasks.

The non-functional properties presented in [OEH02] are based on reviews of commercial ser-
vices. Those constraints are exhibited over the functionality of the service. These non-functional
properties of services include temporal and spacial availability, channels, charging styles, settle-
ment models, settlement contracts, payment, service quality, security, trust, and ownership.

[OEH02] gives also an overview of existing solutions and approaches for each property. Fur-
ther references to related work can be found in that paper.

6 Chapter 2. Theoretical Background

2.2.1 Availability
Availability refers to temporal (i.e. when) and spatial (e.g. where) constraints of a service. It is a
complex constraint, there are services on the move (e.g. taxis, trains), services where an implicit
understanding of the advertised availability is needed (e.g. to attend a theatre you need to be in
the lobby at the right time to take your seat), or others where there is a suspension and resumption
(e.g. memberships).

Temporal and Spatial Issues

Service requesters may need to be aware of more than just the availability of service request
and delivery times. To enable accurate scheduling of multiple services, the requester may be
specially interested in the duration of the service or the approximate completion time. These may
be required when performing service discovery, advertising, composition, and when determining
service quality.

Temporal and Spatial Representation

Temporal representations need to support various granularities or alternatively represent time as
relationship (e.g. service X begins after service Y). There are different approaches for representing
these granularities. Spatial representations are used to describe topologies, orientation, shape,
size, and distance.

2.2.2 Channels
We consider service interactions to occur using a channel. When describing a channel we need to
take into considerations its endpoints, the information being transmitted, and the interaction pat-
tern that occurs over the channel. Service description initiatives can be categorized by those, that
describe service functionality or non-functional properties, and those that describe interactions
with services.

2.2.3 Charging Styles
The styles presented here describe the charging technique applied by a service provider for the
use of its service. Three styles are identified:

• per service request or delivery (e.g. fixed price local telephone call)

• by unit of measure and granularity (e.g. length, volume, weight, area or time)

• on a percentage or ratio basis of some aspect of the service (e.g. by commission)

Service providers may use an aggregation of these service styles. Sometimes the charge for a
service is also redirected to another entity.

2.2.4 Settlement
Settlement is a process that reflects the mutual obligations of the provider and requester, with pay-
ment usually being an obligation of the requester, and service delivery being that of the provider.
The settlement process is normally laid down by the provider, and is included as part of their
business model. Sometimes the service process (and its sequence) is defined by the service envi-
ronment.

2.2 Non-Functional Properties 7

Settlement Models

Packaging of obligations into a defined process results in a settlement model, which reflects the
ordering and relationship between each party’s obligations. None of these settlement models
result in a transfer of ownership.

• Transactional: It can simply described as delivery for payment. It can include an one-off
delivery or multiple deliveries. The later implies a longer term relationship.

• Rental: This model is the familiar concept of being ”on loan”. Explicit and spatial constraints
may be imposed by the service provider (e.g. the rented good has to be returned by 2 pm
tomorrow). Depending on the service it may include a short-term relationship (e.g. holiday
unit) or long-term relationship (e.g. local video store membership).

Special forms of the transactional model are:

• Subscription: Implies a long-term relationship.

• Metered: It is almost identical to the basic transactional model, tracks consumption of the
service except that the relationship may also impose restrictions making it difficult to change
to another service provider.

• Facilitated: The provider acts as a conduit or facilitator to another service provider (e.g. a
broker).

• Escrow: This is used when there is an identified trust issue, and where parties lodge their
obligation with the escrow organisation.

• Swap: Parties agree that the services being traded are of equal value, and no payment is
involved.

Multi-party settlements vary in the degree of binding between the parties involved. A tightly
bound third-party might include a credit card provider (e.g. a bank) and a loosely bound third-
party might include a company that provides software used during service provision.

Settlement Contracts

Terms and conditions which may be attached to a service are formalized in a contract and govern
the responsibilities of all parties involved. Types of settlement contracts in an offline environment
include

1. a Bill of Lading, which defines details of transportation (e.g. who, what, where) and what
happens if something should go wrong.

2. a Promissory Note, which outlines the terms and conditions of a loan (e.g. required repay-
ments, interest rate, and policies surrounding the loan).

Both parties must be agreeable with respect to the contract before it is invoked.

Recourse is available in some cases to either of both parties. In cases where obligations of
either party are not realised there may be some level of re-negotiation performed.

8 Chapter 2. Theoretical Background

2.2.5 Payment Obligations
Payment obligations may be required at any stage in the service invocation, provision, and ex-
ecution process. These obligations are usually outlined to the service requester as part of the
negotiation process. Service providers or their surrounding environment determine a valid set
of payment instruments that are used to fulfill this obligation of the service requester. Further
information about payment models can be found at [PASW97].

2.2.6 Service Quality
Service quality is a measure of the difference between expected and actual service provision. From
the viewpoint of the requester, it measures the competence of the provider to deliver a service.

SERVQUAL [PZB88] is a way to measure these customer perceptions of the perceived service
quality along five dimensions:

• Reliability: Dependability and accuracy of the service.

• Responsiveness: Promptness and willingness of the staff to assist.

• Assurance: Attributes of staff as knowledge and courtesy that convey trust and confidence
to the user.

• Empathy: Level of caring and personalized attention provided to the requester.

• Tangibles: Concrete and physical aspects of the service, such as cleanliness.

Service providers may commit a certain level of quality. This commitment is sometimes for-
malized using Service Level Agreements (see Chapter 2.1.3).

2.2.7 Security and Trust
Security and trust are basic properties for electronic services.

Security

Security is increasingly being seen as a mandatory component for facilitating electronic com-
merce. It alleviates concerns relating to identity, privacy, alteration, and repudiation of informa-
tion transferred between parties. Usually we think about ”on-the-wire” security that pertains to
the request and delivery channels of a service, especially when the payment obligation of the
service requester is being finalised. Common approaches for Security Protocols involve the im-
plementation of a Public Key Infrastructure (PKI).

[OEH02] proposes that the individual aspects of service descriptions should be secured. For
example used for distinct service descriptions for retail and wholesale clients, which will have
different pricing and payment conditions. Alternatively, multiple advertisements could be gen-
erated by a service provider with access controls applied based on the type of requester accessing
the information.

In the context of sub-services security becomes a more complex property. The following ques-
tions arise:

1. Should the client authenticate to all of the sub-services?

2.2 Non-Functional Properties 9

2. How can a service be stopped from being composed within another service?

3. What are the implications for a service if some sub-services require security and others do
not?

4. What happens when sub-services have differing policies?

5. What constitutes an infringement of a security promise? How are infringements managed
(e.g. penalty payment or removal from a composition)?

Trust

Trust can be defined as a reinforcing attribute that balances perceived risk, cost, and benefit
[Mar94]. The same concerns are present in the service provision process. Trust can be mutual
(i.e. both parties do not trust each other) or exclusive (e.g. the service provider trust the service
requester but the service requester does not trust the provider).

Reputation mechanisms are an attempt to embody trust. The implementation of such mecha-
nisms may be useful but concepts from non-electronic service provision may prove useful. People
tend to be satisfied that when acting within a group they will be able to increasingly trust a service
provider.

The following questions arise with respect to trust in service provision.

1. How do you represent trust of service providers or services requesters?

2. In a decentralised system how is knowledge relating to trust distributed, particularly changes
to the perception of trust for a party? How do you trust a composition of services? Can an
external party validate a service and/or provide a level of reputation based on previous
interactions?

3. What are the implications or penalties for parties that are distrustful?

4. Does access to the past performance of a service provider reduce the perceived risk of the
service requester?

2.2.8 Ownership and Rights
Provision of goods usually results in a change of ownership from the service provider to the
service requester. Services do not involve a transfer of ownership. However, service requesters
do have a limited set of rights that are associated with a service. These rights provide a degree of
control over the request and consumption of the service. The rights available to service requesters
are the following:

• The right to comprehend: service requesters should be able to question the provider with
the intention of better understanding the service.

• The right to retract: once an advertised service offer has be refined in a service contract, via
negotiation between service provider and service requester, the service requester can choose
not to request an instance of that service. He maintains the right to request the service from
another service provider.

10 Chapter 2. Theoretical Background

• The right of premature termination: requesters may have the ability to prematurely termi-
nate a service. The service provider may continue provision of the service and may choose
to apply some form of penalty for partial consumption.

• The right of suspension: interrupting the delivery and therefore the consumption of a ser-
vice can act as a useful method for extending the service provision process (e.g. a milkman
who does not deliver while you are on holidays).

• The right to resumption: continues the delivery and consumption of a previously sus-
pended service.

Chapter 3

Specification Process

One key issue for analyzing the QoS of a specific service is to find the right measures. On the
one hand, they have to be defined in ways that are operationally meaningful and useful to the
end-users who are using the service. On the other hand, the measurement and analysis should be
possible to achieve with a minimum investment in time and money.

The following sections are based on [Har01] which concentrates on the measurement and eval-
uation of telecommunications quality of service. But the suggested analysis process can easily be
extended and adapted to all kinds of services.

The analysis is a process whose result is to produce specific answers to specific questions. The
analyst should address before specifying any measures the following questions:

• Audience: Which end-users will utilize the results of the analysis process?

• Utility: What kinds of decisions are to be facilitated? How must measurements be evaluated
to produce information that can be used of those decisions?

• Concerns: What are the questions that those users are likely to want to have answered?

• Objectives: What are the courses of action that will be decided or determined by appeal to
the results of the analysis?

3.1 Measurement and Evaluation

3.1.1 Classes of Decision-Makers
For telecommunications services there are at least five distinct classes of decision-makers who
might be responsible for decisions. They can have a totally different user perception of QoS and
the evaluation of measures needed to make the results useful is in each case different.

Service users

These are the actual users of the service. Experienced difficulties will affect at the end whether the
perceived QoS is sufficient, thereby producing a subjective assessment of perceived quality. If the
quality is unsatisfactory the user will not continue to use the service. These users are the ultimate
decision-makers, their concerns are the principal focus of QoS measurement.

12 Chapter 3. Specification Process

User Representatives

The end-users usually represent themselves in activities as choosing among competing providers
of the chosen services and negotiating prices. These decision-makers are responsible for choosing,
acquiring and maintaining services for a large body of users. Their primary interest are the user
satisfaction with the selected services and therefore the perceived quality of service. Since their
role is also one of assuring their management of economy of services, their perspective on QoS
will be one of trying to assess cost-benefit trade-offs and they will be much more concerned with
questions of billing and customer support.

Service Provider Sales and Marketing Personnel

The sales and marketing personnel are not necessarily decision-makers, but must respond to con-
cerns with QoS raised by the end-users and the user representatives. The analysis must also
show how quality of services they sell compares with that of competing services offered by other
providers.

Service Operations and Maintenance Personnel

The service provider’s operations and maintenance personnel are responsible for monitoring the
day-to-day performance to assure that QoS is maintained at acceptable levels. Their focus is nec-
essarily on intrinsic quality of service and their principal questions will be ones of the relationship
between measures of intrinsic and perceived QoS. Analysis of perceived QoS has furthermore to
produce derived indicators of specific conditions that must be corrected to avoid deleterious ef-
fects on the service user’s assessment of perceived quality.

System Architects and Engineers

That are the part of the service provider’s personnel who must make the decisions as to the tech-
nology to be employed in implementing the specific service and the way various assets are to be
configured. Like operations and maintenance personnel, they are concerned with intrinsic quality
and are responsible to for deciding the characteristics of the infrastructure and the allocation of
resources that will achieve intrinsic quality adequate to assure a high likelihood that perceived
quality will be acceptable. To do this, they must have hard and fast requirements that can be used
as basis of system design and configuration. Notions of subjectivity and perception must be to-
tally factored out of the equations and the fuzzy indicators that might be used for operations and
maintenance management must be replaced by criteria for acceptability of variations of intrinsic
quality that are technical, concrete, specific and completely unambiguous.

3.1.2 Concerns
If measures and quantifiers describe the what and how of measurement, then concerns explain the
why. The term ”concern” is used here as the rubric for an uncertainty that must be addressed in
the evaluation of measurements. To make them concrete, such concerns will usually be described
as a set of questions posed as to the likelihood of occurrence of undesirable events or conditions.
The description of the concern nearly always defines the attribute to be measured so that in most
cases we can use the same name for the measure and the concern, thereby making this association
explicit.

3.2 Analysis Process 13

3.1.3 Objectives
Finally, if concerns explain the reason for conducting an analysis, the objective(s) characterizes
its envisioned utility to the intended audience. The term ”objective” does not refer to what the
analyst is to accomplish, or what the analysis of QoS is to show. Rather, it is a description of the
decisions to be made that generated the concerns to be addressed in the first place. Such objec-
tives will then be described by completing the sentence: ”The results of this analysis will be used
in deciding/determining where ... by ...”.

Just a formal description of concerns serves as a guide to selection of measures that will ensure
an analysis of quality of service that is effective for its intended purpose. Selecting quantifiers of
those measures based on a clear understanding of the objectives of the analysis will lead to the
selection of the most cost-effective quantifiers for the defined measures. So before deciding what
data is to be accumulated, there are two questions that must be answered:

• Who is likely the audience (decision-makers)?

• What are the objectives?

3.2 Analysis Process
Like the analysis, the process by which analysis comprising measurement and evaluation are
conducted can be thought of as comprising multiple phases. The phases in this case are:

• Formulation, during which the audience, decisions supported, etc. are clarified and used as
the basis for determining and specifying measurement requirements.

• Data handling, during which the data elements needed to quantify each measure are ac-
quired, organized and manipulated.

• Evaluation, during which values of the measures are calculated and interpreted as necessary
to address the specific concerns of the intended audience.

3.2.1 Formulation
In [Har01] a formal process is suggested that should be followed in structuring any analytical
effort to assure that the end results will be operationally meaningful, useful to decision-makers,
and achieved with a minimum investment in time and money. The principal steps are described
in Figure 3.1, which displays the relationships among the six principal steps and the structure of
a decision loop for selecting quantifiers.

The six steps are as follows.

Identify the Audience

As suggested in Figure 3.1 the first step in formulating any analytical effort is to determine the
intended users of its results.

14 Chapter 3. Specification Process

3.1.1 Identify the Audience

As suggested in Figure 3.1, the recommended first step in formulating any

analytical effort is to determine the intended users of its results. In Part II of

this book, for example, the audience interested in the analysis of QoS is at the

outset presumed to be the service users, whose proximate concerns are

perceived QoS, and the development of measures and quantifiers are extended

to serve the needs of other audiences whose principal concerns are with

intrinsic or assessed QoS only where it appears to be useful. Whenever such

extensions occur, it will be seen that the new measures discussed would seem

The Analysis Process22

Figure 3.1 Process for formulating an analytical effortFigure 3.1: Process for Formulating an Analytical Effort [Har01]

Determine Decision-Making Responsibilities

Once the target audience is identified, the next step in the structured approach recommended is
a conscious determination of the decisions or general kinds of decisions that will be facilitated
by its results. As suggested earlier, those decisions will be some course of action with respect to
the service, such as its purchase, continued use, marketing, operation and maintenance, or design.

For example, the basic user decision with respect to QoS is whether to keep the current service
or shift to another. The alternative may simply be the same kind of service offered by a competing
provider, or a new kind of service for meeting old requirements. The basic question to be made is
always the same: Should I stick with the service I have or switch to something different?

Specify Analysis Objectives

A third step in the process, but not necessarily the third in order, is to review the decision-making
responsibilities of the audience to formulate specific analysis objectives.

3.2 Analysis Process 15

In our example before, the analysis of QoS should support the decision to buy or keep a partic-
ular service. The results of the analysis should enable users to make objective decision if a service
that has not been experienced is satisfactory or not.

Identify Concerns

Having identified the decision-makers comprising the target audience and the decision that will
be supported, it is also necessary to articulate the specific uncertainties that are likely to impede
decision-making. Those uncertainties have been defined before as concerns, usually expressed in
a form that can be readily understood by almost everyone.

Adopting only the measures of QoS targeted for a special user group, such as technically
knowledgeable persons might be dangerous. The results of the analysis would not be likely con-
vincing or helpful for the users’ purposes of deciding what service to buy and how long to keep
it. The reason is that users seldom buy, and frequently do not even understand, technology. Their
perceptions of the quality of a service are instead based on how well that service meets their ex-
pectations and satisfies their needs when they use it. Thus, if the users cannot readily tell from
an analysis based on technical measures what to expect from day-to-day use of the service, the
results of the analysis will simply replace one set of uncertainties by another one, that are even
harder to resolve.

Define Measures

As suggested in Figure 3.1, the definition of measures to be used in any analysis should be de-
ferred until the relevant concerns of the intended audience have been identified. The time in-
vested in the orderly formulation of the analysis will be amply rewarded by the ease with which
useful, meaningful measures can be defined at this step. This effort should be so intuitive and
natural that the attributes of the service to be measured will probably be identified in the descrip-
tion of the concerns, and the name of that attribute can readily be applied both to the concern and
the measure without ambiguity.

Select Quantifiers

Once the measures have been defined and the analysis objectives have been clarified, it is then
relatively easy to select the most cost-effective quantifier for each measure. The iterative steps in
Figure 3.1 can be described as follows:

1. Identify feasible quantifiers: The objectives specified for the analysis will determine for each
measure the possible acceptable forms or modes of quantifiers, determining, for example:
whether a precise value is needed or an indicator will suffice; whether it will be more ef-
ficient to quantify the measure directly, or by estimating it as a function of sub measures,
to ensure the ability to related observed values of the measure to measures of contributing
factors that must be distinguished, etc.

2. Then, to assess the cost-effectiveness of each of the feasible quantifiers, each member of a
set of acceptable quantifiers for a measure is considered in turn to: Enumerate data elements
required to assign a value to the measure in accordance with the definition of the quantifier;
and Research data sources to determine the ease with which the necessary data elements can
be acquired.

16 Chapter 3. Specification Process

3. On basis of the assessments in step (2), the quantifier for each measure is selected as the
one among the feasible quantifiers for which the data elements can be most easily or most
quickly acquired, depending on whether speed or ease of production of the analysis is the
greater concern for the intended audience.

3.2.2 Data Handling
The first step in the analysis process produces a list of the data elements that are needed for
the analysis. In the second phase of the process all those data will be acquired, organized and
manipulated.

Data Acquisition

Enough of the right data has to be aggregated to support meaningful analysis and interpretation
of the values selected for the analysis. We have defined yet what data sets are to be created and
where the data comes from. Now has to be fixed how much data will be enough. This depends
from how easy the data can be collected. If it comes from automatic sensors we will probably
need all of that. On the opposite site, surveys or labor intensive observation processes have high
data acquiration costs. In this case the question is, what amount of data will suffice the purposes
of the analysis.

Data Organisation

Once questions of what data elements and sample sizes have been answered, the next major step
is to begin to acquire the data and organize the samples into coherent databases where it can eas-
ily be retrieved from.

There are several ways to do this. [Har01] advises against using a DBMS (DataBase Manage-
ment System) for storing the data. The data samples should be saved in raw mode if possible
and queries are run over this data. Another approach is presented as using APL (A Programming
Language), a programming language which first described in [Ive62] in 1962, implemented in
1966 and is still one of the fastest programming languages for rapid applications development.

Data Manipulation

Computer accessible databases remove the barriers to transforming the data to facilitate its un-
derstanding. The tools for such examination of data provide, for example:

• Visualization aids, which transform data into graphical displays, such as scatter diagrams,
histograms, or time series charts.

• Calculation of distribution statistics, which transforms the data into numbers that describe
how the data is distributed.

• Data fitting, comprising utilities to produce the best fit of data sets to a ”smooth” mathe-
matical function. Such capabilities include for example linear regression.

• Data filtering, which is a process by which entire data sets are transformed by eliminating
suspect, clearly erroneous, or useless elements. The objective is to ”clean up” data sets in
order to make sure that all values are free of errors in data acquisition and represent what
they are supposed to represent.

3.2 Analysis Process 17

3.2.3 Evaluation
What was derived from the first two phases will now be interpreted to produce answers to specific
questions posed by the decision makers. The results of this process will address questions related
to the incidence and occurrence of undesirable conditions, outcomes or events by describing a
likelihood of their occurrence. These undesirable conditions may be described in:

• Subjective, qualitative terms, such as: ”How often will we experience outages that will
severely inconvenience our customers?”.

• Equivalent expressions with concrete examples, such as: ”How often will we experience
outages of an hour and more?”.

Chapter 4

Quality of Service

Before specifying our quality of service model for loosely-coupled Peer-to-Peer workflows, we
first discuss QoS definitions in the related work. After the discussion of the QoS definitions in
different domains we introduce a categorization of QoS models. This categorization will be the
basis for the definition of our QoS model in Chapter 5.

4.1 A Generic Quality of Service Model
As described in [Har01] many possible attributes of a service may shape a user’s perception of
quality. The attributes are independent so that inability to meet user expectations with respect to
any one of them cannot be offset by exceeding user expectations with respect to others. In prac-
tical terms, this means that effective measurement of QoS will necessarily involve a collection of
measures, rather than ”the” measure of QoS, to serve as a basis for gauging likely user perception
of service quality.

The other complication of the notion of ”quality” is one of perspective. The essential distinc-
tions can be seen in Figure 4.1. When looking at these factors there are at least three distinct, but
interrelated notions of ”quality of service” that might come into play in the evaluation: intrinsic,
perceived and assessed QoS.

4.1.1 Intrinsic QoS
Intrinsic QoS belongs to service features from technical aspects. Thus, intrinsic quality can be
determined by a transport network design and provisioning of network access, terminations and
connections. The required quality can achieved using the right transport protocols and QoS as-
surance mechanisms. It can be easily evaluated by the comparison of measured and expected
performance characteristics. User perception does not influence the intrinsic QoS rating.

4.1.2 Perceived QoS
Perceived QoS reflects the customer’s experience using a specific service. It is influenced by
the customer’s expectations compared to the observed performance of the service. The user’s
expectations are affected by his experience of similar services he has used and the opinions of
other customers. Thus, the QoS with the same intrinsic features may be perceived differently by
various customers. So only ensuring the technical parameters of a service is not enough. Also

20 Chapter 4. Quality of Service

in the boxes have been changed to conform to modern terminology, and a lot

has been left off, but the thrust of the message remains the same. When you

look at the factors that will determine whether a customer will buy a particular

telecommunications service and stay with it, there are at least three distinct,

but interrelated notions of ‘‘quality of service’’ that might come into play in the

evaluation:

† The first is what might be thought of as an intrinsic quality of service. Such

intrinsic quality is achieved via:

– The technical design of the transport network and terminations, which

determine the characteristics of the connections made through the

network, and

– Provisioning of network accesses, terminations, and switch-to-switch

links, which determines whether the network will have adequate capa-

city to handle the anticipated demand.

Since the goal is to be able to implement within that network various

telecommunications services whose quality should be competitive in the target

marketplace, intrinsic service quality is usually gauged by expected values of

measures of operational performance characteristics and verified by demon-

stration that those scores compare favorably with analogous scores of compet-

ing services.

Quality of Service 5

Figure 1.1 Simplified model of factors that shape perception of quality of service

Figure 4.1: Simplified Model of Factors that Shape Perception of Quality of Service [Har01]

non-technical parameters which are important to the user have to be considered and are finally
relevant for particular expectations.

4.1.3 Assessed QoS
Assessed QoS starts to be seen when a customer decides whether to continue using the service
or not. This depends on the perceived quality, service price and responses of the provider to
submitted user complaints and problems. It follows that even a customer service representative’s
attitude to a client may be an important factor in rating the assessed QoS.

4.1.4 Assurance of Satisfactory Level
The assurance of satisfactory level of the intrinsic, perceived and assessed QoS is considered sep-
arately. Assuring the intrinsic QoS lies in the responsibility of the network provider and depends
on network architecture, planning and management. It is mainly a technical problem dealt with
by engineers, designers and operators. To assure the perceived QoS the intrinsic QoS capabilities
have to be adjusted to each particular service offered and the users have to be questioned about
their experiences using the service. The assessed QoS mainly depends on the charging policy of
a provider, reliable customer service representatives and technical support.

4.2 QoS in Different Domains

4.2.1 IP Networks
As noted in [GJS03] there are for IP networks three concepts to QoS definition: The International
Telecommunications Union (ITU), European Telecommunications Standards Institute (ETSI) and
the Internet Engineering Task Force (IETF) approach.

4.2 QoS in Different Domains 21

154 IEEE Communications Magazine • March 2003

commonly used in assessing whether the service
satisfies the user’s expectations. The evaluation,
however, depends on various criteria related to
the party rating the service. Customers assess it
on the basis of a personal impression and in
comparison to their expectations, while an engi-
neer expresses quality in terms of technical
parameters. This discrepancy may sometimes
lead to misunderstandings. Hence, the term QoS
is used in many meanings ranging from the user’s
perception of the service to a set of connection
parameters necessary to achieve particular ser-
vice quality. This problem is also reflected in the
literature. To reconcile all points of view we will
briefly discuss the general QoS model provided
in [3] and use it as a reference to present the
ITU, ETSI, and IETF approaches.

THE GENERAL MODEL
There are three notions of QoS defined in [3] —
intrinsic, perceived, and assessed — that consti-
tute the general model (Fig. 1).

Intrinsic QoS pertains to service features
stemming from technical aspects. Thus, intrin-
sic quality is determined by a transport net-
work design and provisioning of network
access, terminations, and connections [3]. The
required quality is achieved, among other
things, by an appropriate selection of transport
protocols, the QoS assurance mechanisms, and
related values of parameters. Intrinsic QoS is
evaluated by the comparison of measured and
expected performance characteristics. User
perception of the service does not influence
the intrinsic QoS rating.

Perceived QoS reflects the customer’s experi-
ence of using a particular service. It is influenced
by the customer’s expectations compared to
observed service performance. In turn, personal
expectations are usually affected by the cus-
tomer’s experience with a similar telecommuni-
cations service and other customers’ opinions.
Thus, the QoS with the same intrinsic features
may be perceived differently by various cus-
tomers . It follows that just ensuring particular
service (network) parameters may not be suffi-
cient to satisfy customers who are not concerned
with how a service is provided. The QoS offered

by a provider must reflect the intrinsic QoS as
well as some nontechnical parameters that are
meaningful to the customer and relevant to a
particular community’s expectations.

The assessed QoS starts to be seen when the
customer decides whether to continue using the
service or not [3]. This decision depends on the
perceived quality, service price, and responses of
the provider to submitted complaints and prob-
lems. It follows that even a customer service rep-
resentative’s attitude to a client may be an
important factor in rating the assessed QoS. Nei-
ther ITU nor ETSI nor IETF deal with the
assessed QoS.

The assurance of a satisfactory level of intrin-
sic, perceived, and assessed QoS may be consid-
ered separately. The first is the responsibility of
a network provider and depends on network
architecture, planning, and management. It is
mainly a technical problem dealt with by engi-
neers, designers, and operators. An appropriate
use of the intrinsic QoS capabilities adjusted to a
particular service offered, together with market
analysis, are necessary to ensure a high level of
perceived QoS. This is the duty of the service
provider. Advertising and marketing efforts have
an impact on perceived QoS as well. The
assessed QoS mainly depends on the charging
policy of a provider as well as reliable customer
service representatives and technical support.

THE ITU/ETSI APPROACH
The ITU and ETSI approaches to QoS-related
terminology are almost the same. In fact, both
organizations adopted the concepts of each
other while developing the notion of QoS (com-
pare ETSI [4] and ITU [5–8] documents). They
use the same basic definition of QoS expressed
for the first time in [5] as “the collective effect of
service performance which determine the degree of
satisfaction of a user of the service.” Some minor
differences between the ITU and ETSI
approaches can be seen, but they are out of the
scope of this article and do not affect the under-
standing of the topic.

As the above definition suggests, QoS in the
ITU/ETSI approach adheres mainly to per-
ceived rather than intrinsic QoS. Besides, they

� Figure 1. The general QoS model, and ITU/ETSI and IETF approaches.

QoS

Network performance (NP) Quality of service

General model ITU/ETSI approach IETF approach

Assessed QoS

Perceived QoS

Intrinsic QoS

QoS perceived
by the customer

QoS requirements
of the customer

QoS achieved
by the provider

QoS offered
by the provider

The intrinsic QoS

pertains to service

features stemming

from technical

aspects. Thus, the

intrinsic quality is

determined by a

transport network

design and

provisioning of

network access,

terminations and

connections.
Figure 4.2: Comparison of QoS Approaches for IP Networks [GJS03]

Based on the generic QoS model which was presented in Chapter 4.1 these three approaches
can be categorized as in Figure 4.2.

ITU/ETSI Approach

The ITU and ETSI approaches are almost the same. Both organisations adopted the concept of
each other while developing their standards. They use the same basic definition of QoS as:

”The collective effect for service performance while determine the degree of satis-
faction of a user of the service.” [ITU]

That definitions suggests that QoS in the ITU/ETSI approach concentrates mainly to perceived
rather than intrinsic QoS. They introduce the notion of network performance (NP) to cover tech-
nical facts. There is a clear distinction between QoS, understood as something focused on user-
perceivable effects, and network performance, which contains all necessary network functions to
provide the service. From this follows that QoS parameters are user-oriented and do not directly
translate into network parameters. On the other side network parameters can determine the qual-
ity which is perceived by the customers but they do not have to be meaningful for them.

Network performance corresponds to intrinsic QoS. It is defined as:

”The ability of a network or network portion to provide the functions related to
communications between users.” [ITU]

NP is defined and measured in terms of parameters of particular network components involved
in providing a service. A high level of NP can be achieved by appropriate system design, configu-
ration, operation and maintenance. To cover specific points of views of QoS, the both approaches
distinguish four particular definitions:

• QoS requirements of the customer

• QoS offered by the provider

22 Chapter 4. Quality of Service

• QoS achieved by the provider

• QoS perceived by the customer

The requirements of the customers state their preferences for a particular service quality. These
constraints can be expressed in technical or nontechnical language which is understandable to
both - the customer and the service provider. But the QoS offered by the service provider may not
always meet the requirements of the customer and may be influenced by the provider’s strategy,
benchmarking, service deployment cost, and other factors. This is expressed by parameters un-
derstandable to the customer, e.g. ”Service availability of 99.9% per year”. The QoS achieved can
then stated by the same set of parameters. The comparison of both - specified and achieved QoS -
will result in a preliminary rating to the perceived QoS. But the most important rating are the QoS
perceived by the customer, who finally rates the service quality according to his own experiences.

QoS and NP are interrelated. Ensuring high network performance is crucial to a successful
service provision. Parameters of QoS can be categorized as network- and non-network-related.
Network-related parameters can then be further translated into NP parameters. Target values of
these parameters can be assigned which then will be measured and compared to the resulting
values. The combination of the NP achieved and non-network-related QoS constitutes the QoS
achieved.

IETF Approach

The IETF approach concentrates on intrinsic QoS and does not deal with perceived QoS. It stems
from the main objectives of IETF, concerned with the Internet architecture and its development,
dependability and effectiveness. QoS is understood by IETF as:

”A set of service requirements to be met by the network while transporting a flow.”
[Cra98]

It is closely equivalent to the definition of network performance (NP) in the ITU/ETSI approaches.

The IETF has developed various QoS mechanisms for the QoS assurance in IP networks and
the Internet. It proposed two significant network architectures as IntServ [BCS94] and DiffServ
[ea98]. It standardized the Resource Reservation Protocol (RSVP) signaling protocol and also
developed the notion of IP-QoS architecture as comprehensive approach to QoS and proposed
several solutions.

IETF defines some architecture-independent QoS parameters as well as specific parameters of
network components, such as traffic meters, packet markers, droppers or schedulers constituting
a particular network architecture. There is a close relationship between these parameters and the
”quality” experienced by packets.

QoS Parameters

Out of the comparison of the ITU/ETSI approaches the following QoS parameters can be found
[GJS03].

Intrinsic QoS is defined by specific parameters for IP-based services:

• Bit rate of transferring user data available or target throughput that may be achieved.

4.2 QoS in Different Domains 23

• Delay experienced by packets while passing through the network. It can be considered as
end-to-end relation or with regard to a particular network element.

• Jitter - variations in the IP packet transfer delay. Can be applied as end-to-end relation or
for a single network element.

• Packet loss rate, defined as the ratio of the number of undelivered packets to sent ones.

These parameters describe the treatment of IP packets. They can be translated into particular
network parameters which then can be used for ensuring a particular QoS level. Additionally
intrinsic QoS may have the following attributes depending on the network architecture and the
application demands:

• End-to-end (as the IntServ model) or limited to a particular domain for domains (e.g. the
DiffServ model).

• Applied to all traffic or just a particular session or sessions

• Unidirectional or bidirectional

• Guaranted or statistical

QoS is usually an end-to-end characteristic of communication between end hosts. It should be
assured along the whole path between peers, but the path may cross several other systems be-
longing to various network providers. Then performance of all autonomous systems contribute
to the final service quality.

Parameters of perceived QoS are more difficult to define. They do not only depend on the
network architecture, technique or mechanisms used to ensure service quality. They are usually
expressed in different terms but should always be translatable into specific network parameters
regardless of network architecture. An example of an extensive set of parameters of the perceived
QoS is provided by ITU [ITU]. Parameters are grouped into four subsets regarding aspects of:

• Service support

• Service operability

• Service servability

• Service security

Service support reflects the provider’s ability to provide a service and assist in its utilization.
Parameters related to service operability determine the service ability to be operated by a user.
Servability related parameters determine the service ability to be obtained when requested by the
user and continue to be provided without excessive impairment for a requested duration. Service
security specifies the level of a service’s protection against unauthorized monitoring, fraudulent
use, natural disaster and other impairments [ITU].

4.2.2 Web Services
Web services caused a paradigmatic shift from a Web of manual interactions to a Web of program-
matic interactions. The work in [ZBN+04] and [LNZ04] concentrates on the choice between differ-
ent web services according to their functionality and different QoS. To enable this quality-driven
web service selection a framework is presented. They also go into the issue of computation and
optimization by Local Optimization and Global Planning approaches which are out of the scope

24 Chapter 4. Quality of Service

of this thesis.

The presented criteria can also be used for Composite Services. The difference is that the ag-
gregation functions for the following QoS criteria consider the whole execution path rather than
only one execution step.

The proposed QoS model is extensible and includes generic and domain- or business-specific
criteria. The generic criteria are applicable to all web service, for example, their pricing and
execution duration. New criteria can be added to the existing model without fundamentally
altering the underlaying computation mechanism. It is possible to extend the quality model to
integrate non-functional service characteristics or other service QoS metrics.

Generic Criteria

As generic criteria which can be measured objectively for elementary services three parameters
are considered: execution price, execution duration, and reputation. Criteria such as availability
and reliability is not required in the model in [ZBN+04] due to the use of active user feedback and
execution monitoring. The following parameters are proposed:

Execution price This is the amount of money which a service requester has to pay to the service
provider to use his web service. Web service providers either directly advertise the execution
price of their services, or they provide means for potential requesters to inquire about it.

Execution duration The execution duration measures the expected delay in seconds between
the moment when a request is sent and the moment when the service is rendered. It consists of
the progressing time and the transmission time.

Reputation The reputation is a measure for the service’s trustworthiness. It mainly depends
on the user’s experiences of using a particular service. Different end users may have different
opinions on the same service. The value of the reputation is defined as average ranking given to
the service by end users.

Additional Criteria

Additionally to these criteria the work in [ZBN+04] contains two additional criteria for elemen-
tary services:

Successful execution rate The successful execution rate is the probability that a request is cor-
rectly responded. That means the operation is completed and a notification message of the com-
pletion has reached the end-user correctly within the maximum expected time-frame indicated.
This measure is related to hardware and/or software configuration and the network connection
between service requester and service provider. The value of the success rate can be computed
from data of past invocations.

Availability The availability of a service is the probability that the service is accessible. It is
computed as the total amount of time a service was available over the total duration of the moni-
toring time span. This time span can vary depending on the particular application. For example
in applications where services are more frequently accessed, a small value give a more accurate

4.2 QoS in Different Domains 25

approximation for the availability of the service. If the service is less frequently accessed using a
larger time-frame is more appropriate.

Business-Related Criteria

But there is also business-related criteria involved which can vary in different domains. For ex-
ample in the application chosen in [LNZ04] the following criteria is used:

Transaction support This is used for maintaining data consistency. In prior QoS models, no
transactional criteria is being used in the computation of the QoS value. But for some uses it could
be important if a Web service provides an undo procedure to rollback the service execution or not.
This transactional property can be evaluated by two dimensions: whether an undo procedure is
supported and what the time constraints on undo procedures are.

Compensation rate The compensation rate indicates the percentage of the original execution
price that will be refunded when the service provider can not meet the committed service quality.

Penalty rate It indicates what percentage of the original price service requesters need to pay
to the provider when they want to cancel the committed service or ordered commodity after the
time out period for transaction to roll back is expired.

4.2.3 Workflow Systems
[CSM+04] presents a comprehensive model for the specification of workflow QoS as well as meth-
ods to compute and predict QoS. It does not only target the time dimension, but also investigate
other dimensions required to develop an usable workflow QoS model. In a second part also the
needed enhancements are described which are needed for existing workflow systems to support
processes constrained by QoS requirements. The enhancements include the implementation of
a QoS model, the implementation of algorithms to compute and predict workflow QoS, and the
implementation of methods to record and manage QoS metrics.

Workflow QoS represent the quantitative and qualitative characteristics of a workflow ap-
plication necessary to achieve a set of initial requirements. Quantitative characteristics can be
evaluated in terms of concrete measures such as workflow execution time, cost, etc. Qualitative
characteristics specify the expected services offered by the system, such as security and fault-
tolerance mechanisms.

Workflow Characteristics

One of the most popular workflow classifications distinguishes between ad hoc workflows, ad-
ministrative workflows, and production workflows. This classification was first mentioned in
[McC92]. The main differences between these types include structure, repetitiveness, predictabil-
ity, complexity, and degree of automation.

The presented QoS model in [CSM+04] is better suited for production workflows since they
are more structured, predictable and repetitive. Production workflows involve complex and
highly-structured processes, whose execution requires a high number of transaction accessing
different information systems. In the case of ad hoc workflows the information, the behavior, and

26 Chapter 4. Quality of Service

the timing of tasks are largely unstructured, which makes constructing a good QoS model more
difficult.

QoS Dimensions

Task time Time is a common and universal measure for performance. Time is critical competi-
tive advantage for most businesses: Shorter workflow execution time allows a faster production
of new products. The first measure of time is task response time (T). Task response time corre-
sponds to the time an instance takes to be processed by a task. It can be broken down into two
components: delay time (DT) and process time (PT).

T (t) = DT (t) + PT (t)

Delay time (DT) refers to the non-value-added time needed for an instance to be processed by
a task. This includes the instance queuing delay and setup time of the task. Those two metrics
are part of the task operation, but they do not add any value to it. It can be further broken down
into queuing delay and setup delay. Queuing delay is the time instances spend waiting in a task list,
before they are selected for processing. Setup delay is the time an instance spends waiting for the
task to be set up. Another time metric that may be considered is the synchronisation delay, which
corresponds to the time a workflow instance waits for other instances in an and-join task (syn-
chronisation). This metric is not part of this proposed QoS model.

Process time (PT) is the time a workflow instance takes at a task while being processed. In other
words, it corresponds to the time a task needs to process an instance.

Task cost Task cost represents the cost associated with the execution of workflow tasks. Prior
to workflow instantiation and during workflow execution, it is necessary to estimate the cost of
the execution in order to guarantee that financial plans are followed. The cost of executing a
task includes the cost of using equipment, the cost of human involvement, and any supplies and
commodities needed to complete task. Task cost (C) is the cost charged when a task t is executed.
It can be broken down into two components: enactment cost and realization cost.

C(t) = EC(t) + RC(t)

Enactment cost (EC) is the cost associated with the management of the workflow system and
with the monitoring of workflow instances.

Realization cost (RC) is the cost associated with the runtime execution of the task. It can be
broken down into: direct labor cost, machine cost, direct material cost, and setup cost. Direct labor cost is
the cost associated with the person carrying out the execution of a workflow human task, or the
cost associated with the execution of an automatic task with partial human involvement. Machine
cost is the cost associated with the execution of an automatic task. This corresponds to the cost
of running a particular piece of software or the cost of operating a machine. Direct material cost is
the cost of the materials, resources, and inventory used during the execution of a workflow task.
Setup cost is the cost to set up any resource used prior to the execution of a workflow task.

Task reliability The model for the reliability dimension of workflows in [CSM+04] is based on
concepts from system and software reliability theory. Task reliability (R) models what can be con-
sidered the most important class of workflow failures and task failures (also known as activity

4.2 QoS in Different Domains 27

failures). Task failures can be organized into two main classes: system failures and process failures.

System failures consist of information technology and software failures which lead to a task
terminating abnormally.

Process failures consist of business process exceptions which lead to an anomalous termination
of a task. As presented in [KS95] in a workflow, task structure has an initial state, an execution
state, and two distinct terminating states. For non-transactional tasks, one of the terminating
states indicates that a task has failed, while the other state indicates that a task is done (see Fig-
ure 4.3). For transactional tasks, the terminating states are aborted and committed. That means,
that only one starting point exists when performing a task, but two different states can be reached
upon its execution.

analyzed using similar functions applied to RBD. The first step is to model the reliability
of an individual task.

Task reliability (R) models what can be considered the most important class of
workflow failures, task failures (Eder and Liebhart 1996) (also known as activity
failures). Task failures can be organized into two main classes: system failures and
process failures ((Eder and Liebhart) calls this second type of failures, semantic failures).

System failures. These consist of information technology and software failures which
lead to a task terminating abnormally. Information technology and software include
operating systems, communication protocols, hardware, etc. For example, a task manager
is not able to contact its task because the CORBA server managing the task has failed due
to a system breakdown is a system failure.

Process failures. These consist of business process exceptions which lead to an
anomalous termination of a task. In a workflow, task structure (Krishnakumar and Sheth
1995) has an initial state, an execution state, and two distinct terminating states. For non-
transactional tasks, one of the terminating states indicates that a task has failed, while the
other state indicates that a task is done (). For transactional and open 2PC tasks,
the terminating states are aborted and committed. The model used to represent each task
indicates that only one starting point exists when performing a task, but two different
states can be reached upon its execution. For example, a database access task fails
because of an invalid user password. The task enters the aborted state.

Figure 2

Figure 2 - Two task structures (Krishnakumar and Sheth 1995)

To describe task reliability we follow a discrete-time modeling approach. We have
selected this solution since workflow task behavior is most of the time characterized in
respect to the number of executions. Discrete-time models are adequate for systems that
respond to occasional demands, such as database systems (i.e, discrete-time domain).
This dimension follows from one of the popular discrete-time stable reliability models
proposed in (Nelson 1973) and it is shown below.

R(t) = 1 – (system failure rate + process failure rate)

System failure rate is the ratio between the numbers of time a task did not perform for

its users and the number of times the task was called for execution, i.e. #(unsuccessful
executions)/#(called for execution). Process failure rate provides information concerning
the relationship between the number of times the state done/committed is reached and the

 10

Figure 4.3: Workflow Task Structures [KS95]

Task reliability is described using a discrete-time modeling approach. This approach was se-
lected, since workflow task behavior is mostly characterized in respect to the number of execu-
tions. It can be computed as follows:

R(t) = 1− (systemfailurerate + processfailurerate)

System failure rate is the ratio between the numbers of time a task did not perform for its users
and the number of times the task was called for execution. Process failure rate provides infor-
mation concerning the relationship between the number of times the state done/committed is
reached and the number of times the failed/aborted state is reached after the execution of a task.

Alternatively, continuous-time reliability models can be used when the failures of the malfunc-
tioning equipment or software can be expressed in terms of times between failures, or in terms of
the number of failures that occurred in a given time interval.

4.2.4 Peer-to-Peer Networks
Peer-to-Peer computing grids consist of peer nodes that communicate directly among themselves
through wide-area networks and can act as both clients and servers. [GN02] describes a scal-
able QoS service aggregation model for Peer-to-Peer computing grids. Peer-to-Peer networks are
attractive since they promote resource sharing such as sharing of processing cycles and disk stor-
age, without any administration cost or centralized infrastructure support.

Most of the proposed approaches for QoS models for Peer-to-Peer networks present the fol-
lowing major limitations. First, they lack generic QoS support for coordinating arbitrary inter-
actions between service instances. Second, they do not provide dynamic peer selection scheme

28 Chapter 4. Quality of Service

since all services are assumed to be provided by dedicated servers. Third, they often assume
a global view of the entire system in terms of performance information, which is impossible in
Peer-to-Peer system due to the scalability requirement. Fourth, they do not consider the dynamic
topological variation caused by arbitrary peer arrivals/departures in Peer-to-Peer systems.

Due to the inherent redundancy property of Peer-to-Peer systems, a service instance can also
have multiple replications, which are provided by different peers. The system has to decide the
specific peers where the service instances are actually executed. To consider topological variation,
caused by arbitrary peer arrivals/departures, peer’s uptime is proposed to be used as one of the
selection metrics.

A QoS-aware service aggregation (QSA) model should meet the following challenges:

1. Decentralization: The solution must be fully distributed and only involve local computation
based on local information.

2. Scalability: The solution must scale well in the presence of a large number of peer nodes.

3. Efficiency: The solution should be able to utilize resource pools provided by the Peer-to-
Peer systems efficiently so that it can admit as many user requests as possible.

4. Load balance: Although each peer makes decisions based on only local information, the
solution should achieve the desired global properties such as load balance in Peer-to-Peer
systems.

4.3 Summary
After the discussion of several QoS models and approaches, we will now compare the different
approaches and specify requirements for a QoS model. Based on these specified service attributes
we will then construct our QoS model in Chapter 5.

4.3.1 Comparison
If we compare the different QoS approaches and domains where QoS is used today, we can outline
the following:

Generic QoS Model

The generic QoS model in Section 4.1 provides an useful scheme for categorizing QoS criteria. It
is not only focused on the technical aspects (intrinsic QoS) of a service, but also on the requester’s
view (perceived and assessed QoS). This model allows us to describe every-day services in a
matter which is close to the end-user’s perspective.

IP Networks

The QoS approaches in the domain of IP networks are mainly focused on technical aspects (see
Section 4.2.1). Both, the ITU as well as the ETSI model, introduce the term of network performance,
which covers the technical aspects of a network (such as system design, configuration, operation
and maintenance). To cover specific points of views of QoS, both models distinguish between:
QoS requirements of the customer, QoS offered by the provider, QoS achieved by the provider

4.3 Summary 29

and QoS perceived by the customer. The different parameters which can be gained of the these
two approaches are listed in Section 4.2.1.

The IETF approach on the other side concentrates on intrinsic QoS and does not include per-
ceived QoS. Its definition of QoS is closely equivalent to the definition of network performance in
the ITU/ETSI approach.

Web Services

As outlined in Section 4.2.2 there are several papers which concentrate on the choice between
different Web services by their functionality and QoS. As noted there the topics of Local Opti-
mization and Global Planning are out of the scope of this thesis. The presented QoS criteria can
also be used for Composite Services. The proposed QoS model contains generic and domain- or
business-specific criteria. It is also extensible according to the actual needs of a service.

The presented open, extensible framework is a handy approach which we will use. Its QoS
parameters can be almost completely mapped to our workflow system. But with one exception,
availability is not appropriate, since in a Peer-to-Peer environment users can disappear and reap-
pear at any time.

Workflow Systems

The QoS dimensions in Section 4.2.3 are specially adapted to Workflow systems. The different
parameters such as task time, delay time and task cost, and their further fragmentations can be
integrated in our model.

Peer-to-Peer Networks

Finally, the comments in Section 4.2.4 show the specialties of QoS in Peer-to-Peer environments.
Peer-to-Peer networks are a bit different: First, they cannot provide a global view of the entire
system because of scalability issues. Second, peers can arrive and depart at any time. This must
be considered when a service is requested. Additionally the approach may only involve local
computation based on local information. Further, each peer’s uptime can be used as a selection
criteria between different peers.

4.3.2 QoS Requirements
Out of the comparison of different QoS approaches in Section 4.3.1, we can identify the key fea-
tures of a QoS model for workflow systems in Peer-to-Peer environments that meets our needs.
These features are:

Extensible Criteria

The criteria can consist of different non-functional properties, as presented in Section 2.2. To en-
sure that the end-user’s perspective is taken into account, the business aspects should be in focus,
not only technical aspects. The QoS model has to meet the following terms:

30 Chapter 4. Quality of Service

First, the criteria must be based on the generic QoS model which was presented in Section 4.1.
This allows us to distinguish between intrinsic QoS, perceived QoS and assessed QoS. For per-
ceived and assessed QoS criteria we can use active user feedback through ratings.

Second, to include domain- and business-specific criteria the model has to be extensible. This
can be achieved using RDF technology, which will be the base technology for modeling our QoS
model and ontology. Our approach will include some generic criteria (such as execution price,
execution duration, and reputation) which is feasible for all kinds of services. If additional spe-
cific criteria is needed, this can be added through the extension of the given QoS base model.

Third, the chosen criteria has to be optimal. That means it can be collected easily and cost-
effective, as outlined in the specification process in Section 3.2.1.

Support for Different Decision-Makers

As mentioned in Section 3.1.1, there are different groups of decision-makers which will use QoS.
The actual users of the service may other concerns than the system architects and engineers. They
can have a totally different perception of QoS and the evaluation has to be different for each case.

For each single service, service requester and service provider may have different views of
the QoS. To compare several service providers, each criteria could be weighted on a scale from
0 to 5. Where 0 means not needed, and 5 gives the highest ranking. A comparison of different
service providers could then be easily achieved by adding the products of each criteria’s rating
and value. This method is only applicable for numeric parameters, therefore we will not use it for
our model.

Support for Workflow Systems

The QoS model has to involve QoS criteria which meets the requirements of Workflow systems.
Especially the time, cost and reliability parameters must have the sufficient granularity to mea-
sure the performance of the workflow.

The formulation of workflows using the BPEL description language brings along that tempo-
ral representation as stated in Section 2.2.1 can be expressed (e.g. service X begins after service Y).
Additionally the settlement process as described in Section 2.2.4 is also supported: The mutual
obligations of the provider (service delivery) and requester (usually payment) can be modeled
using BPEL’s input and output document approach.

Support for Peer-to-Peer Systems

Since our QoS will be used in a Peer-to-Peer environment, it has to support the corresponding
requirements. Active monitoring of the peers involved will not be used to prevent an unnecessary
network overload. One could use the peer’s uptime additionally to the other selection metrics.

Security and Trust

As soon as real-world services will be provided through our service platform, security becomes
an issue. In our QoS model we will not implement any kind of security mechanism. Trust on the
other side is crucial, it can be easily implemented using reputation mechanisms, such as the one
described for Web services (Section 4.2.2) or Workflow systems (Section 4.2.3).

Chapter 5

QoS Model and Scenarios

In the following sections the proposed QoS model is introduced step by step and adapted to our
requirements. Each model is described using RDF Schema [BG04] in combination with basic data
types provided by XML Schema [BM01]. The complete RDF representation listings can be found
in the appendix in Section A.

5.1 Basic QoS Model
Based on the requirements obtained from comparing different QoS approaches in Section 4.3 we
will now compose our QoS model. It will be modeled using RDF technology [BM04] which also
allows to include some basic data types of XML Schema [BM01].

Criteria

Our basic model includes parameters to model cost, delegation, reputation, and time of a work-
flow task. Table 5.1 shows a graphical representation.

Description Data type
Cost xsd:float
Delegation xsd:boolean
Reputation -

Process failures xsd:positiveInteger
Rating xsd:positiveInteger
System failures xsd:positiveInteger

Time -
Delay time xsd:positiveInteger
Task time xsd:positiveInteger

Table 5.1: Basic QoS Model

The following parameters are involved, each one’s data type is noted in brackets.

Cost How much a specific service costs (data type: float).

Delegation Shows whether delegation of a task is allowed or not (data type: boolean).

32 Chapter 5. QoS Model and Scenarios

Reputation Reputation is a combined criteria consisting of:

• Process failures: Number of process failures that occurred during the execution of a process
or task (data type: positive integer).

• Rating: Indicates how satisfied a service requester was with the service. Rated on a scale
from 1 to 5, where 1 means totally unsatisfied and thus 5 totally satisfied. (data type: posi-
tive integer).

• System failures: Number of system failures that occurred during the execution of a process
or task (data type: positive integer).

Time To support in particular workflow process (see Section 4.2.3), time is split up into:

• Delay time: Delay time includes queuing and setup delay of a specific task (data type: posi-
tive integer, time in milliseconds).

• Process time: Process time is the time a task takes to be executed (data type: positive integer,
time in milliseconds).

5.2 Scenarios
We will use the following real-world scenarios to show the extensibility of the proposed QoS
model. For that we use a shorter version of the specification process described in Section 3.2.
First, the audience which uses the QoS criteria and the objectives of the actors in our workflow
process will be described. Second, we will specify additional QoS criteria.

5.2.1 Scenario A - Pizza Service
The first scenario deals with a common pizza service, where people can order pizzas from and
get them delivered to their homes.

Audience and Objectives

For a pizza service the audience consists of two parties:

Customer The customer wants the best pizza he can find, as fast as possible. He is interested
in the total waiting time (delay time + process time + delivery time) and the range of different pizza
toppings. Furthermore the pizza rating by other customers is an useful indicator what quality one
can expect. Finally, also billing issues are important.

Pizza shop The personnel and the owner of the pizza shop are interested if a pizza meets the
customers’s expectations. Additionaly to the rating in the reputation parameter, which describes
the overall rating of the service, pizza rating is introduced. To monitor and improve the service
performance the fine granularity of the time parameter is fundamental: It can even be extended
by delivery time as third parameter.

5.2 Scenarios 33

Description Data type
Billing none, can contain further RDF resources
Cost xsd:float
Delegation xsd:boolean
Pizza rating xsd:positiveInteger
Pizza toppings none, can contain further RDF resources
Reputation -

Process failures xsd:positiveInteger
Rating xsd:positiveInteger
System failures xsd:positiveInteger

Time -
Delay time xsd:positiveInteger
Delivery time xsd:positiveInteger
Task time xsd:positiveInteger

Table 5.2: QoS Model of Scenario A - Pizza Service

Criteria

This scenario involves the following criteria as shown in Table 5.2 (scenario-specific parameters
are highlighted in italic).

The extensibility of RDF permits to define open criteria properties. For example, we could
define a shop-specific RDF ontology of available pizza toppings. Using the basic RDF constructs
as rdf:Bag these resources can directly be refered to.

The extend QoS model of our pizza scenario (see Table 5.2) contains additionally to the basic
criteria in Section 5.1 the following parameters:

Billing Contains a collection of billing alternatives such as cash or credit card, given as strings
(data type: none, can contain further RDF resources).

Pizza rating Rating of the pizza quality on a scale from 1 to 5, where 1 means totally unsatisfied
and thus 5 totally satisfied. (data type: positive integer).

Pizza toppings Contains a collection of different toppings a customer can select from, specified
as strings (data type: none, can contain further RDF resources).

Time The time parameter is extended by:

• Delivery time: Time required to deliver a finished pizza from the pizza shop to the cus-
tomer’s home (data type: positive integer, time in milliseconds). To allow a comparison of
different delivery times, this parameter needs to be divided by the distance in km.

5.2.2 Scenario B - Online Music and Video Store
This scenario contains an online music and video store where Internet users can download from
songs or movies in different formats and qualities.

34 Chapter 5. QoS Model and Scenarios

Audience and Objectives

We can distinguish between the following actors:

Internet user To make a selection of different online music and video stores, Internet users are
mostly interested in the quality of the provided goods. For movies the movie dimensions (movie
width and height) and the movie frame rate are important. For songs on the other side, the song bit
rate is important. Additionally to that the products property delivers information about how big
the range of products is (number of movies or number of songs) or how popular a service is (number
of downloads).

Service provider The service provider is mainly interested how popular his service is (number
of downloads). It would be interesting to have this number itemized by each single movie or song.
To simplify matters we will just consider the total number of downloads.

Criteria

This scenario contains the following service parameters (scenario-specific parameters are high-
lighted in italic):

Description Data type
Cost xsd:float
Delegation xsd:boolean
Movie quality -

Movie dimensions -
Movie height xsd:positiveInteger
Movie width xsd:positiveInteger

Movie frame rate xsd:positiveInteger
Products -

Number of downloads xsd:positiveInteger
Number of movies xsd:positiveInteger
Number of songs xsd:positiveInteger

Reputation -
Process failures xsd:positiveInteger
Rating xsd:positiveInteger
System failures xsd:positiveInteger

Song quality -
Song bit rate xsd:positiveInteger

Time -
Delay time xsd:positiveInteger
Task time xsd:positiveInteger

Table 5.3: QoS Model of Scenario B - Online Music and Video Store

Since this service will be provided in a Peer-to-Peer environment, the traditional QoS param-
eters from the domain of IP networks (such as streaming bit rate and jitter) can not be directly
applied to this service. This example also shows how easily composite QoS parameters such as
movie quality can be expressed using RDF.

The QoS model for this scenario involves the following parameters:

5.2 Scenarios 35

Movie quality Describes the quality of movies by meaning of

• Movie dimensions: Width and height of a movie in pixels (data type: positive integer).

• Movie frame rate: Movie frame rate in frames per second (data type: positive integer).

Song quality Describes the quality of songs by meaning of

• Song bit rate: Bit rate of the song in kilobytes (data type: positive integer).

Products To describe the range of products and their popularity we use

• Number of downloads: Indicates how many times a movie or a song was downloaded
(data type: positive integer).

• Number of movies: Total number of movies to choose from (data type: positive integer).

• Number of songs: Total number of songs to choose from (data type: positive integer).

5.2.3 Scenario C - Supply-Chain Management
This scenario represents a classic supply-chain management process in the engineering industry.
An assembler orders required elements from a distributor who deals with two manufacturers.

Audience and Objectives

As stated above in this scenario we have three types of actors:

Assembler The assembler is mainly interested in the quality of the delivered goods (production
failure rate) and the overall delivery time (delivery time + production time).

Distributor The distributor needs to have information about the production time of a specific
good. Furthermore, he has to know if this task can be delegated to another company (delegation).

Manufacturer Depending on the priorization of an order the manufacturer will immediately pro-
duce the ordered item or queue it. For optimizing the production process measures as production
failure rate and production time might be useful.

Criteria

A scenario of a supply-chain environment could consist of the criteria shown in Table 5.4 (scenario-
specific parameters are highlighted in italic).

Additionally, some business-specific parameters are added, such as penalty rate which de-
scribes the amount of money the provider is obligated to pay in case of delay. In this case delega-
tion is allowed, so the delegation flag will be set to true. The criteria involves:

Penalty rate The amount of money the service provider has to pay if the agreed delivery time
cannot be met (data type: positive integer).

36 Chapter 5. QoS Model and Scenarios

Description Data type
Cost xsd:float
Delegation xsd:boolean
Penalty rate xsd:positiveInteger
Reputation -

Process failures xsd:positiveInteger
Rating xsd:positiveInteger
System failures xsd:positiveInteger

Time -
Delay time xsd:positiveInteger
Delivery time xsd:positiveInteger
Production time xsd:positiveInteger
Task time xsd:positiveInteger

Table 5.4: QoS Model of Scenario C - Supply-Chain Management

Production failure rate Percentage of produced items which is defective or does not meet the
specified requirements (data type: float).

Priorization This parameters allows to indicate the priority of a specific order. It can e.g. be
used to differ if the manufacturer deals with a common customer or a company which has special
conditions.

Time The time parameter is extend by

• Delivery time: Time required to deliver an ordered item from the storehouse to the clients’
company (data type: positive integer, time in milliseconds). To allow a comparison of dif-
ferent delivery times, this parameter needs to be divided by the distance in km.

• Production time: Time required to produce an item (data type: positive integer, time in
milliseconds).

Chapter 6

Implementation

The following chapter deals with the implementation of the proposed QoS model for Peer-to-
Peer workflows into the MOTION [KFRG02] platform. First, the architecture of the MOTION
middleware is shortly explained, and after that the MOTION workflow component which was
contributed by Daniel Schwarz [Sch04]. Finally, the implementation of the QoS component is
described.

6.1 MOTION
The MOTION (MObile Teamwork Infrastructure for Organisations Networking) [KFRG02] mid-
dleware is a platform for mobile teamwork and collaboration. The MOTION service architecture
supports mobile teamwork by taking into account the different connectivity modes of users, pro-
vides access support for various devices such as laptop computers and mobile phones, and uses
XML meta-data and the XML Query Language (XQL) for distributed searches and subscriptions.

MOTION uses the following terminology:

• Artifact: Any document or file in the MOTION system.

• Peer: Any computing device connected to the MOTION system.

• Community: A collection of users in the MOTION system that are interested in a specific
topic and have a common property.

6.1.1 Architecture Overview
The MOTION middleware has a layered architecture as shown in Figure 6.1. The system is com-
posed of peers which act as peers and can host services. MOTION configurations can consist
of desktop computers, laptops, PDAs that host services, and clients such as Web browsers and
WAP-enabled mobile phones, that are only used to remotely access the provided services.

The lowest layer of the architecture is the communication middleware. It provides basic com-
munication services as Peer-to-Peer file sharing through distributed search and publish/subscribe
mechanisms to the layers above. In the current implementation of MOTION this functionality is
provided by Peerware [CP01].

38 Chapter 6. Implementation

TWS API

Team Work Services
Business Specific Services

Presentation Layer

Communication Middleware

Distributed
Search

Publish/
Subscribe

Artifact
Management

Peer−to−Peer File Sharing

TWS
Layer Access

Control

User
Management Management

Community
Repository Messaging

DUMAS

Event based System

Figure 1: Overview of the MOTION Architecture

2. MOTION SERVICE ARCHITECTURE
In this section, we give a brief overview of the layered archi-

tecture of the MOTION system and provide details about the main
components in the following sections. Figure 1 depicts the MO-
TION architecture.

The MOTION system is composed of peers. Some host services
and some only act as clients. Any peer that is able to run the MO-
TION libraries can act as a service host. A typical MOTION con-
figuration consists of desktop computers, laptops (i.e., notebooks
and sub-notebooks) and PDAs that host services and clients such
as Web browsers and WAP-enabled mobile phones that do not host
services, but can only be used to remotely access them.

The lowest layer of the architecture is the communication mid-
dleware. It offers basic communication services such as peer-to-
peer file sharing through distributed searches and publish/subscribe
(i.e., event-based system) mechanisms to the layers above. In the
prototype implementation of the MOTION platform, this function-
ality is provided by PeerWare[17]. The communication layer, how-
ever, can be replaced by any other suitable middleware that pro-
vides distributed search and publish/subscribe support (e.g., dis-
tributed searches with JTella[13] and publish/subscribe with JEDI[3]).
We chose to use PeerWare in the prototype implementation because
we had access to its source code and could experiment with it. Fur-
thermore, PeerWare has support for both distributed searches and
publish/subscribe, and thus covers all the requirements of the low-
est layer in the architecture.

The Teamwork Services (TWS) layer is situated directly above
the communication middleware. This layer integrates the basic sys-
tem components such as the repository and DUMAS (see next sec-
tion) and provides an Application Programming Interface (API) to
the teamwork services. This is a Java API in our prototype.

The TWS API offers services such as (1) storing artifacts and
their meta-data (profile) in the local repository, (2) managing re-
sources (artifacts, users, and communities), (3) sharing artifacts
with other users in communities, (4) subscription to specific events
in the MOTION system, (5) sending and receiving messages from
other users or from the system, (6) managing access rights on re-
sources, (7) and searching for resources based on their profile in-
formation.

An application programmer can build business specific services
(BSS) on top of the TWS API. By using the functionality provided
by the API, the programmer can implement new functionality ac-
cording to the end-users’ business requirements. Hence, the basic

set of services provided by the TWS API can be customized and
extended by businesses and organizations. For example, a com-
pany might be interested in integrating workflow support for tran-
sistor design into the platform whereas another might be interested
in having document versioning support for artifacts.

The top layer of the architecture is the presentation layer. It pro-
vides a user interface to the services provided by the MOTION sys-
tem. The presentation layer is built using the TWS API. Because of
the need for mobility, a typical configuration has a number of user
interfaces for different devices such as desktop computers, laptops,
Personal Digital Assistants (PDAs), Web Browsers and WAP. In
the current prototype, we have a native Java user interface that pro-
vides full functionality and an experimental lightweight Java PDA
interface.

3. TEAMWORK SERVICES COMPONENTS
In this section, we describe the components of the MOTION

Teamwork services layer.

3.1 The Dynamic User Management and Ac-
cess Control Component (DUMAS)

Confidentiality, security and privacy are important in many dis-
tributed multi-user applications. This has motivated the design
and implementation of a number of access control models (e.g.,
[7, 20]). In most cases, the access control model is chosen by the
software/security engineer and is hard-coded into the application.
Hence, users of these applications have little or no support at all for
customizing and adapting the security settings to requirements that
may change over time.

DUMAS[5, 6] is an access control component that is formally
specified, verified, and implemented. Its goal was the creation of
a generic, customizable component that satisfies different security
requirements. This access control component provides support for
managing users and roles (e.g., by creating, deleting, etc.) and as-
signing users to roles. Furthermore, generic permissions can be
created, assigned to users and bound to specific operations (e.g., a
user X has a permission Invoke on operation SendMessage()). The
functionalities of DUMAS are grouped in three sub-components:
a user management component, a community management compo-
nent and an authorization component. These sub-components are
strongly connected in the sense that each of them is necessary for
the two other sub-components to operate.

Considering the number of external requests, DUMAS is one of

- SEKE ’02 - 514 -

Figure 6.1: Overview of the MOTION Architecture [KFRG02]

The Teamwork Services (TWS) layer is situated directly above the communication middle-
ware. This layer integrates the basic system components such as the repository and DUMAS
(see Section 6.1.2) and provides the Application Programming Interface (API) to the teamwork
services. The TWS API provides services such as:

• storing artifacts and their meta-data (profile) in the local repository,

• managing resources (artifacts, users, and communities),

• sharing artifacts with other users in communities,

• subscription to specific events in the MOTION system,

• sending and receiving messages from other users or from the system,

• managing access rights on resources,

• and searching for resources based on their profile information.

The top layer of the architecture is the presentation layer which provides an user interface to
the services provided. This layer is using the TWP API.

6.1.2 Teamwork Services Components
The MOTION Teamwork services layer consists of the following components (see Figure 6.1):

Dynamic User Management and Access Control Component (DUMAS) component

DUMAS [Fen00, FGRK01] is the access control component of the system. It is a generic, cus-
tomizable component that satisfies different security requirements. DUMAS provides support
for managing users and roles (e.g., by creating, deleting, etc.) and assigning users to roles. For
performing any security sensitive operation (e.g. creating a user, downloading an artifact, etc.) it
must be consulted to find out whether the user is permitted to invoke this operation.

DUMAS can also customized to run on a variety of mobile devices.

6.1 MOTION 39

Messaging Component

The integrated MOTION Messaging service enables users to communicate and exchange informa-
tion. Notifications based on subscriptions to the offered topics are also delivered by this service.
It distinguishes between the following types of messages: System-to-User, System-to-Community,
User-to-User, and User-to-Community messages.

• System-to-User and System-to-Community messages are sent by the MOTION system as noti-
fications of subscriptions.

• User-to-User messages are sent by users to other users.

• User-to-Community messages are sent by one user to a community. In the MOTION system
each user is referenced by his login name. The users can also specify the medium under
which they are available.

The MOTION messaging component consists of five main components: the SMS gateway, the
SMTP gateway, the standard messages gateway, the WAP gateway, and the MOTION frontend
component (see Figure 6.1). The MOTION frontend component builds the interface between
business processes and the MOTION messaging component.

Publish/Subscribe Component

This service bridges the gap between the underlaying middleware and the business-specific ser-
vices. Publish/subscribe systems such as Peerware [CP01] allow components to subscribe and
react to specific events. In Peerware the subscriber specifies an object for callback.

WAP GSM SMTP

WAP Phone GSM Phone E−Mail Client

Messaging System
 Front End

SMTP GatewaySMS GatewayWAP Gateway

Repository

M
O

T
IO

N
 M

es
sa

gi
ng

 S
ys

te
m

 Gateway
Desktop MessagesPublish/Subscribe

(Middleware)

Services

Presentation Layer + Business Specific

Figure 2: The MOTION Messaging Architecture

the most demanded components of the Teamwork Services Layer.
For performing any security sensitive operation (e.g. creating a
user, downloading an artifact, etc.) DUMAS must be consulted to
find out whether the user is permitted to invoke this operation. In
this sense, DUMAS is a service provider. DUMAS, however, is
also a service consumer as it needs to store data and publish events.
The publish/subscribe support of the underlying middleware is used
for distributing events across peers.

DUMAS follows an architecture driven by (1) the the Peer-to-
Peer model of the underlying file sharing system and (2) the re-
quirement for mobility support.

In the first case, access control data (ACD) are divided in two
types. First, ACD on artifacts are stored with these artifacts and are
therefore distributed across peers. Second, ACD on other entities
such as users and communities are stored on distributed servers.
Each DUMAS component can be configured to behave as such a
server.

As far as mobility is concerned, DUMAS can be customized to
run on a variety of mobile devices (e.g., Java-enabled PDAs such
as the Nokia Communicator and the Compaq iPAQ). � DUMAS is
the lightweight implementation of DUMAS for such devices. This
version is based on the remote invocation of implementations avail-
able on more powerful peers (i.e. desktop computers and laptops).
The communication between a � DUMAS and a DUMAS instance
is performed by publishing an XML event using the underlying
middleware. The � DUMAS component does not need to know the
actual instance or the location of the server it is communicating
with. The XML event is simply published and the DUMAS com-
ponent configured to address such requests executes the specified
operation and publishes the result back. This technique allows us
to explicitly deal with device and user mobility in the sense that the
instance of DUMAS to which a � DUMAS instance connects can
be anyone. For example, a user can move from Montreal to Vienna
without the need for re-configuring her system. Further, if the peer
on which the DUMAS instance is running is not available for some
technical reason, or there is a connection problem as it is often the
case in mobile computing, the publish/subscribe system will queue
the XML event and deliver it whenever possible.

3.2 MOTION Messaging Component
MOTION Messaging is an integrated messaging service that en-

ables users to communicate and exchange information. Notifica-
tions based on subscriptions are also delivered by this messaging
service. MOTION messages are sent to users using technologies

such as lightweight push1, email (i.e., SMTP), GSM short mes-
sages (SMS), and wireless application protocol service indication
(WAP SI)[8].

MOTION Messaging enables employees to stay in direct and
constant contact no matter what devices they are using and where
they are.

From the point of view of the originator and the recipient, there
are System-to-User, System-to-Community, User-to-User, and User-
to-Community messages. On the other hand, messages can also be
categorized based on the delivery mechanism; we distinguish be-
tween SMTP, SMS, WAP SI, and desktop messages.

System-to- User and System-to- Community messages are mainly
sent by the MOTION system as notifications of subscriptions (see
Section 3.3). Whenever a document on transistor design, for exam-
ple, is available in the system, a community of users interested in
transistor design will receive a notification.

User-to-User messages are messages sent by users to other users.
In order to set up a meeting, for example, two users may commu-
nicate using this type of messages.

User-to-Community messages are sent by one user to a com-
munity (e.g., community of users interested in transistor design).
In this sense, User-to-Community messages are similar to mailing
lists. In MOTION, however, User-to-Community messages pro-
vide some added value such as the ease of address management
and the support for mobility. In common mailing lists, managing
addresses is not always an easy task. For instance, an address might
expire, but may still be referred to in the mailing list. This means
that the user has to inform the mailing list administrators that the
address is no longer available, or the administrator has to regularly
check to see if the addresses in the list are valid. Such problems
do not exist in the MOTION system. Users are referenced with
their login names (i.e., user names). This identifier is used in the
MOTION system as the address of the user (or community). Each
user can also specify the medium under which she is available. For
example, a user Hakkinen might specify that he wishes to receive
all messages where the sender’s name contains the string “speed”
via SMS, whereas messages that contain the subject string “Tyres”
should be sent to the address “hakkinen@infosys.tuwien.ac.at”.

In order to deal with memory and message size limitations, mes-
sages that are addressed to mobile phones are automatically split
into a suitable number of SMSs or WAP SIs (e.g., SMS messages
can only be about 160 characters in size). In our prototype, this is

�
Lightweight push differs from normal push systems in that only

the locations (URLs) of artifacts are sent to users, and not the entire
artifact contents.

− SEKE ’02 − 515 −

Figure 6.2: Teamwork Services Layer Publish/Subscribe Component Architecture [KFRG02]

In MOTION this functionality is implemented through subscription gateways and user special-
ized callbacks (see Figure 6.2). A user specialized callback is a component that handles subscriptions
of a specific user. It handles the user’s subscriptions and informs the single callbacks if the spec-
ified event occurs. The set of callback components running on a particular peer is referred to as
subscription gateway.

To hide differences between different middleware platforms the XML Query Language (XQL)
is used to bridge between business services and the middleware. This enables business processes

40 Chapter 6. Implementation

to query complex XML events. The Teamwork Services Layer Publish/Subscribe Component
provides the business specific services with the capability of subscribing to users, artifacts, and
communities in the system.

Repository Component

Every peer that runs MOTION services contains a repository that is used to store artifacts and
profile information about users, communities and artifacts. It consists of two parts a XML and an
artifact repository. The XML repository is used to store XML profile information. The artifact repos-
itory stores artifacts that belong to an user. In the MOTION prototype artifacts and the artifacts
repository are stored on the local file system.

Inserting, editing, and deleting artifacts will be done in the user’s own resource space. In order
to share an artifact in a community, this artifact is tagged as belonging to the specific community
and is visible to other users as long as the owner is online. If the user wishes to make an artifact
persistent, it can be copied to the so called community cabinet.

Artifact Management Component

The artifact manager component consists of the MOTION repository component and the repository
manager. The repository manager maps remote transfer requests to commands in the repository.
It manages the information in the repository and provides the communication between peers.

The Artifact Manager component acts as a wrapper to the MOTION repository and the reposi-
tory manager. It provides artifact management API calls in the TWS API.

Distributed Search Component

The TWS API provides mechanisms to search the artifacts that are in the MOTION system, and
provides an advanced search support with a fine granularity (using XQL queries).

6.2 Workflow Component
The MOTION workflow component was implemented by Daniel Schwarz [Sch04]. It is integrated
in the MOTION system (see Section 6.1).

6.2.1 Terminology
The MOTION workflow component [Sch04] uses the following terminology for modeling work-
flow processes:

Communities

The concept of the MOTION system is based on communities. A community is a collection of
several peers (so called community members) which semantically share the same interests. A
peer can be a member of several different communities, that means communities can overlap.

As noted in [Sch04], the following three notions can be distinguished (see Figure 6.3):

6.2 Workflow Component 41

Chapter 3. Conceptual Design 30

3.3 Communities

A main concept in the MOTION middleware is the notion of community. It
is a collection of several peers (community members) which semantically
share the same interests. A peer can be member of several communities.
This leads to the fact, that communities can overlap.

We use this concept at three different levels, which are illustrated in fig-
ure 3.2:

Peer

Community

instance
community B

instance
community C

instance
community A

airline community

railway community

WFCommunity

Figure 3.2: Community structure

WFCommunity, a meta community. All participants of the workflow sys-
tem have to be member of the top-level community WFCommunity. It
serves as the basic communication platform. Messages of global interest
are announced here. It is created during installation of the workflow sys-
tem and can’t be modified or deleted.

Process communities. We also use communities to group peers with
similar interests. Taking into account our example, it is suitable to create
a community for airline reservation issues. Any peer which wants to
take part in the execution of an airline process has to become member of
this community. Any communication concerning this process is carried
out within the airline community. This concept shields peers which are
not members of this interest group from receiving unsolicited messages.
Process communities can be created by any peer who wants to set up a

Figure 6.3: MOTION Communities [Sch04]

WFCommunity This is a meta community of the whole workflow system. All participants of
single workflow communities have to be members of this top-level community. It serves as a
communication platform: Messages of global interest can be announced here.

Process communities Peers with similar interests are grouped into process communities. Any
peer which wants to participate in e.g. an airline reservation process would have to join the
corresponding process community.

Instance communities Upon creation of a process instance an instance community will be es-
tablished automatically. The peers which take part in this process execution, will become auto-
matically members of this community.

Processes

Business processes are modeled using the BPEL description language [CGea02]. To import a new
process into the MOTION workflow system, the peer has to choose the corresponding BPEL de-
scription file and must select a community which the process will be published in. The Workflow
Coordinator stores that information in the Workflow Database and creates a MOTION artifact for the
BPEL file. This artifact is added to the given community. These steps are illustrated in Figure 6.4.

Once a new process has been created and its BPEL file has been published to a community,
members of this community can download the BPEL file to their local repository.

Tasks

Since processes can contain several parts, a process has to be split into single tasks. These single
tasks can then also be distributed to different peers for completion. The BPEL process description
contains detailed information about these tasks, such as:

• Dependencies between tasks: Sequence in which the tasks have to be executed.

42 Chapter 6. Implementation

Chapter 3. Conceptual Design 32

3.4 Processes, Tasks, and Instances

3.4.1 Process

As discussed earlier, we want to model business processes. The formal
description of its structure is specified using a BPEL document. It defines
the tasks involved, the relationship between the tasks, parameters and data
flow. In order to work with this model, it has to be imported into our work-
flow system by a peer. Once this is done, it is available to all peers an is
referred to as a process. To import a new process, the peer has to choose a
BPEL document containing the description and must select a community
which the process will be published in. The Workflow Coordinator stores
the information into the Workflow Database and creates a MOTION arti-
fact for the BPEL file. The artifact is then added to the given community
and can be downloaded by other peers. An illustration of these steps can
be seen in figure 3.4.

:Coordinator
 :MOTION
 c:Community

provideFile(BPEL)

createArtifact(BPEL)

publish()

:LocalRepository

store()

:User

chooseCommunity()

return(c)

Figure 3.4: Import a new process

To publish the AirlineReservation process, the coordinator will add the pro-
cess description to the AirlineCommunity. From this time, the members of
this community have access to the description and can download it to their
local repository on demand which is illustrated in figure 3.5.

3.4.2 Task

In order to distribute pieces of a whole process to several peers, we need to
divide the process into several parts. We call these parts tasks. The process
description gives us a detailed definition of the tasks which includes:

Figure 6.4: Import a New Process [Sch04]

• Required input data: Data which is either provided by the Coordinator Peer or output data
of a preceding task.

• Produced output data: It can be passed to a following task or be the output data of the task.

All parts of a process are distributed to other peers for execution. If a peer wants to provide
a particular task it has to announce it to the corresponding community (see Figure 6.5). This
includes also the QoS parameters.
Chapter 3. Conceptual Design 34

:Coordinator
 :Community
:LocalRepository
:User

chooseTask()

inputQoS()

[else] downloadDescription()

[task description available] loadDescription()

publish()

Figure 3.6: Provide a task

If we take a look at our example, the airline reservation process is divided
into several tasks. In a scenario with three peers acting as a traveler, agent,
and airline respectively we will have a partition of the tasks as shown in
figure 3.7. In order to participate in an instance execution, they will have
to provide each of the tasks they are supposed to do. Before this can take
place, the peers have to ensure that they have downloaded the process de-
scription file to their local database.

Traveler Agent Airline
Plan Trip Receive Order Receive Ticket
Submit Order Select Legs Reserve Seats
Receive Itinerary Order Tickets Charge Credit Card
Receive eTicket Receive Confirmation Confirm Flights

Generate Itinerary Issue eTicket
Issue Itinerary

Figure 3.7: Task partition of the airline reservation example

Figure 6.5: Provide a New Task [Sch04]

Instances

If a process should be executed, a peer can create an instance of it. The peer becomes coordinator
of this instance and is responsible for the assignment of the tasks and providing the required input
data (see Figure 6.6). An instance contains data concerning the execution, like

6.2 Workflow Component 43

• assigned peers and details about their tasks,

• workflow status of the tasks,

• documents involved.

The peers that participate in the execution are grouped together into a private community, so
called Instance Community.

To create an instance the coordinator has to choose a process which it was to execute. The
Workflow Coordinator creates an instance community for this instance in which the relevant infor-
mation will be exchanged. After that the new instance will be published to the process commu-
nity.
Chapter 3. Conceptual Design 36

:Coordinator
 processCommunity:Community

instanceCommunity:Community

:LocalRepository
:User

chooseProcess()

createCommunity()

publish()

store()

Figure 3.9: Create an instances

To execute our AirlineReservation example, the coordinator chooses the pro-
cess which has already been added to the corresponding process commu-
nity. An instance community is being set up and the required environment
is established.

Figure 6.6: Create an Instance of a Task [Sch04]

6.2.2 Architecture Overview
In the current implementation of the MOTION workflow component lies atop the MOTION layer
(see Figure 6.7).

Chapter 3. Conceptual Design 28

3.2 Software Architecture

To implement a peer-to-peer workflow system we have chosen to use the
MOTION middleware which is based on PeerWare. It provides us with
some useful concepts which will be discussed later.

PDOM/XQL

Application Layer

Workflow Coordinator

MOTION

PeerWare

local file
storage

TCP/IP

Workflow Database

Figure 3.1: Software Architecture

Our approach consists of two major components: The Workflow Coordinator
and the Workflow Database.

3.2.1 Workflow Coordinator

It is built on top of the MOTION middleware and is the central part of the
peer-to-peer workflow engine. The Workflow Coordinator provides most
of the functionality which is required by an application layer, like

• User Management

• Community Management

• Process/Instance Management

• Communication between peers

It is tightly coupled to the Workflow Database which holds information of
all known peers. To ensure that the peers are loosely coupled, it retrieves
all data from the database, if available, and avoids to actively query other
peers if not necessary.

Figure 6.7: MOTION Workflow Architecture [Sch04]

The system consists of two mayor components:

44 Chapter 6. Implementation

Workflow Coordinator

The Workflow Coordinator is the central part of the workflow engine. It provides most of the func-
tionality which is required by the application layer, such as: user management, community man-
agement, process and instance management, and communication between peers. It is tightly cou-
pled to the Workflow Database where all the data is retrieved from. This ensures a loosely coupling
of the peers.

Workflow Database

The Workflow Database stores and retrieves information of all known peers. It listens to messages
of the MOTION system, and adds if necessary the relevant data to the database.

Data can be distinguished between process data and user data. Process data holds a description
of all known processes, such as the structure of involved task and input/output data. User data
contains a collection of all known users, including each user’s announced tasks and processes
instances.

The data is persistently stored in the local repository and accessed using PDOM and XQL
technology.

6.2.3 Data Distribution
The communication between peers is based on message delivery and the exchange of data files
wrapped into MOTION artifacts [Sch04]. The concept of communities (see Section 6.2.1) helps to
ensure low bandwidth consumption and to avoid sending unnecessary messages.

Messages

Messages can be sent from one peer to another or to a community. Messages help to control the
workflow process and distribute actively information to the peers. Depending on the message’s
scope we can distinguish the following types:

Global messages These are global announcements which are sent to the top-level community
WFCommunity. There are two types of messages in this section:

• Create/Remove a process community: When a process community is created, this is an-
nounced to all members of the Workflow system. The peers can then decide whether they
want to join this new community or not.

• Global search for task announcements: This is used by peers which are not permanently
connected to the network. A global search queries all peers if they offer a specific task and
updates the actual view of online peers.

Process Community messages These messages are sent to process communities and informs
the peers which are subscribed to this community. There is one type:

• Provide/Revoke task announcement: If a peer decides to newly provide a task, to change
its QoS attributes, or to stop providing a task, it has to inform the community.

6.2 Workflow Component 45

Direct Peer-to-Peer messages These messages are only sent from one peer to another. They are
used for communication between a coordinator of an instance and the involved peers. Two types
appear:

• Negotiation of peer assignments: If a coordinator wants a peer to execute a task, it will ask
the potential partner if it is willing to participate in this instance.

• Update of a task’s status: A peers which is assigned to a task has to inform the coordinator
of the status of this work. If a new status is reached, a notification message is sent to the
coordinator peer.

Data Files

To distribute data files between peers MOTION artifacts are used. An artifact is a wrapper for
data files which can be published to a specific community. The members of that community can
then decide if they want to download the artifact or not. There are two cases in which data files
are published to the workflow system:

Process description files Process description files are provided as BPEL files [CGea02]. A co-
ordinator, which introduces a new process, also publishes the corresponding BPEL file to the
community he wants the process to execute in. Potential process participants can then download
the process description file to their local repository.

Instance data files For exchanging data involved in a workflow execution instance data files
are used. Single tasks in the workflow process may need input documents and provide output
documents when the task is finished. All these documents are published using MOTION artifacts
into the matching instance community, where the participating peers can download them.

6.2.4 Instance Life Cycle
As it has be mentioned before, business processes are executed in process instances. There are the
following steps in the lifetime of an instance.

Chapter 3. Conceptual Design 40

3.7 Instance lifecycle

As we have seen, process instances are environments for executing pro-
cesses. One is created when a coordinator decides to carry out a process
and is removed from the workflow system when it is finished and the out-
put data is collected. In general we have consecutive five steps in the life of
an instance (figure 3.10):

Create instance Create community Provide input data

Collect ouput dataRemove instance Assign peers

Figure 3.10: Instance lifecycle

1. Create instance. A coordinator invokes the creation by specifying the
process he wants to be performed.

2. Create community. Automatically an instance community is created
which encapsulates the instances messaging and environment.

3. Provide input data. If any data is required for the execution, it has to
be supplied before the tasks can start.

4. Assign peers. For each task a peer has to be assigned which is re-
sponsible for performing the specific part of the process.

5. Collect output data. The coordinator collects the output data speci-
fied by the process description, which is the result of the overall work.

6. Remove instance. Having successfully received the output docu-
ments, the instance and its community are automatically removed
from the workflow system.

Figure 6.8: Instance Life Cycle [Sch04]

1. Create an instance: The coordinator peer invokes the instantiation by choosing the process
he wants to execute.

46 Chapter 6. Implementation

2. Create a community: Automatically an instance community is created which contains the
instances’ messaging and data files.

3. Provide input data: If input data is required, it has to be supplied before the tasks can start.

4. Assign peers: For each task a peer has to be assigned which is responsible for performing
the specific task.

5. Collect output data: The coordinator collects the output data which is the result of the over-
all work.

6. Remove an instance: After the process in completed, the instance and its instance commu-
nity are automatically removed from the Workflow system.

6.2.5 Task Status
When a published task is requested by an coordinator peer the negotiation process starts. If the
coordinator peer and the potential worker peers agree to work together, the execution of the task
will start. From the coordinator’s request to the delivery of the final result, each task goes through
several stages.

Chapter 3. Conceptual Design 42

one to carry out this part of the process. He informs the Worker of his
decision and the status turns to REFUSED.

4. When the Worker has all required input documents and doesn’t depend
on another peer any more, it immediately starts work and marks the
task as STARTED.

5. Upon finishing the work and delivering any output documents, we have
reached the final status FINISHED.

Requested

Refused

Accepted Assigned

Started

Finished

Figure 3.12: Task statusFigure 6.9: Task Status [Sch04]

As shown if Figure 6.9 the following transitions are possible:

• If a coordinator peer wants to execute a task, it has to send requests to the peers which are
offering it. The task will then be marked as REQUESTED.

• The status will change to ACCEPTED if a worker peer agrees to perform the task.

• The worker peer can also refuse to execute a task. The task will then be marked as RE-
FUSED.

• If the worker peer agreed, the coordinator peer assigns the task. It will be marked as AS-
SIGNED.

• The coordinator peer can also refuse to assign a task to a worker peer. The status changes to
REFUSED.

• When all required input documents are available and all preceding tasks are finished, the
execution of the task starts and it is marked as STARTED.

• Upon finishing the execution and delivering the output documents, the final state FIN-
ISHED is reached.

6.3 Use Cases 47

6.2.6 Implementation
The current implementation of the MOTION workflow component consists of the following parts:

WFCoordinator

The WFCoordinator class is the main class of the workflow component and provides an inter-
face for the application layer. It sends messages through the MOTION middleware and provides
access to the local database.

WFDatabase

The WFDatabase class is responsible for the management of users, processes, and instances. It
provides methods to access objects in the local database.

WFTask, WFData and WFTaskQos

Processes and tasks are both stored as WFTask objects. If a WFTask object is no subtask of another
one, it is a process, else a task. WFData acts as data container for the documents associated to
a specific container. At the moment WFTaskQoS provides basic QoS attributes as duration,
price and delegate, which is a flag if a task can be delegated to another peer.

WFUser

WFUser contains a list of user coordinates and a list of all tasks the user provides. Tasks are
grouped by the specific communities.

WFInstance

WFInstance contains information about instances where the user is involved in, and where a
process has been published and instantiated.

WFInstanceTask

For each task a user is involved in, a WFInstanceTask object is stored in the database.

WFEventHandler

WFEventHandler listens to subscriptions of a specific WFInstanceTask. If an artifact matches
the subscription, the artifact is automatically downloaded and the corresponding WFData object
updated.

6.3 Use Cases
We will now define our QoS-related use cases, which will be an extended version of the use cases
of the current MOTION workflow component [Sch04]. The existing use cases will be shortly
described. After that changes to existing use cases and additional use cases will be discussed in
detail.

48 Chapter 6. Implementation

6.3.1 Process Management
The current MOTION workflow component involves the following use cases:

• Create community: Add a new community, all workflow system members are informed and
can subscribe to it.

• Remove community: Remove a community which is no longer required from the system.

• Load process description: A new process description (in BPEL format) is uploaded to the
system as artifact and can be downloaded by the users.

• Add process to community: To make a process visible, it has to be added to a community.
Community members are informed and can download its description file.

• Create process instance: Create a process instance and a corresponding instance community
for communication.

• Download process description: Download artifact with BPEL process specification file from
the coordinator to the local repository.

• Provide task: A peer can provide a task which must be a part of a known process.

• Define QoS attributes: The peer states the QoS parameters on which it will provide the
service.

• Subscribe to community: To receive messages from a specific community, a peer can sub-
scribe to it.

For our QoS implementation we will make the following changes:

• Provide task: If a peer wants to provide a service, it also has to specify the QoS ontology
which should be used for that task. After the QoS model is loaded, the peer can make
changes such as add or remove criteria. For each criteria property the values are required
by which the peer can provide the task.

6.3.2 Task Negotiation
Task negotiation includes:

• Search provided tasks: Query all peers of a task the coordinator peer needs. Peers which
can provide the task reply with an announcement to the sender.

• Request task from peer: Look up in the database for peers which provide the specific task,
compare the different candidates by their QoS attributes and send a task request to the
chosen peer.

• Accept task: Decide if to accept a received task request. If yes, send an acceptance message
to the coordinator.

• Refuse task: Both, worker and coordinator peer, can refuse a task.

• Assign task: If a worker peer has accepted a task request, the coordinator peer finally assigns
him to definitely execute the task.

The following extension has to be made:

• Request task from peer: For each service provider candidate the peer can check the corre-
sponding QoS values of passed task invocations.

6.4 QoS Implementation 49

6.3.3 Instance Execution
Instance execution involves the following use cases:

• Provide instance input data: Before the worker peers can execute the tasks, the coordinator
peer has to provide the required input documents. The documents will be wrapped into
artifacts and published to the system where they can be downloaded from.

• Check availability of task input data: Check whether input data for a specific task is avail-
able or not.

• Download input data: Download input documents to the local repository.

• Start task: Start the specified task, this includes that the task has been assigned to the peer
and all required documents are downloaded.

• Execute task: Execute specified task, process input documents and create output docu-
ments.

• Create task output data: Make output documents available to the system. Wrap them into
artifacts and publish it to the instance community.

• Check completeness of task output data: Ensure that all required output documents are
available by querying the instance community.

• Finish task: Set status of the task as finished and inform coordinator peer about successful
execution.

• Check availability of instance output data: The coordinator queries the instance community
for the required output documents which should have been published by the worker peers.

• Retrieve instance output data: If documents have successfully been retrieved, download
them to the local repository.

• Finish instance: When all peers have finished the task execution and all output documents
were gathered, the coordinator peer sets the task to FINISHED.

The following changes will be made:

• Finish instance: After task completion the service requester will send the QoS feedback to
the service provider. After receving this information, the service provider adds this data to
his QoS archive of past task invocations.

6.4 QoS Implementation
The following sections describe the implementation of our QoS model which was specified in
Section 5.

During the implementation phase it became apparent that the current implementation of the
MOTION workflow component (see Section 6.2) was not cleanly layered. This caused problems
with the MOTION messaging component. A total reenginering of the MOTION system and
its workflow component was out of the scope of this thesis, therefore our QoS component was
not completely implemented into the MOTION system. The following sections concentrate on a
proof-of-concept implementation using a dummy class which emulates the Workflow system.

50 Chapter 6. Implementation

6.4.1 Used Technologies and Resources
The MOTION platform and also its workflow component were both implemented in Java [Inc].
Therefore our QoS component will also be implemented in Java. Additionally the following tech-
nologies and resources were used:

RDF

The Resource Description Framework (RDF) [MM04] is a language for representing information
about resources in the World Wide Web. RDF is intended for situations in which this information
needs to be processed by applications, rather than being only displayed to people. It provides a
common framework for expressing this information so it can be exchanged between applications
without loss of meaning. Since it is a common framework, application designers can leverage the
availability of common RDF parsers and processing tools. The ability to exchange information
between different applications means that the information may be made available to applications
other than those for which it was originally created.

RDF Schema

RDF Schema [MM04, BG04] can be used to describe a RDF vocabulary. RDF Schema does not
provide application-specific ontologies to describe specific things (like the QoS parameters in our
example). Instead, it provides the facilities needed to describe such classes and properties, and
to indicate which classes and properties are expected to be used together. In other words, RDF
Schema provides a type system for RDF.

Jena

Jena [LP] is a Java framework for building Semantic Web applications. It provides methods to
read, create, manipulate and write RDF and RDF Schema files.

JTreeTable

To enable an user-friendly interface for the ontology editor component, the JTreeTable [Mil06]
layout component was used as a starting point and step-wise adapted to our QoS model in RDF.
It is a combination of Java’s build-in JTree and JTable layout components, which allows a clear
presentation of hierarchical data such us our QoS ontologies.

6.4.2 Architecture
Figure 6.10 illustrates the class diagram of the eu.motion.tuv.qos package.

6.4.3 QoS Components
The basic components are build on the basis of the Model-View-Controller metaphor. The core of
our QoS implementation consists of three classes: QosLauncher, QosGUI, and QosCriteria.

QosLauncher provides a dummy class where three buttons can be used to access the use cases
where QoS criteria will be used (see Section 6.3). QosGUI provides the graphical user interface

6.4 QoS Implementation 51

AbstractCellEditor

getCellEditorValue() : Object
isCellEditable(e : EventObject) : boolean
shouldSelectCell(anEvent : EventObject) : boolean
stopCellEditing() : boolean
cancelCellEditing() : void
addCellEditorListener(l : CellEditorListener) : void
removeCellEditorListener(l : CellEditorListener) : void
fireEditingStopped() : void
fireEditingCanceled() : void

listenerList : EventListenerListAbstractTreeTableModel

AbstractTreeTableModel(root : Object)
getRoot() : Object
isLeaf(node : Object) : boolean
valueForPathChanged(path : TreePath,newValue : Object) : void
getIndexOfChild(parent : Object,child : Object) : int
addTreeModelListener(l : TreeModelListener) : void
removeTreeModelListener(l : TreeModelListener) : void
fireTreeNodesChanged(source : Object,path : Object[],childIndices : int[],children : Object[]) : void
fireTreeNodesInserted(source : Object,path : Object[],childIndices : int[],children : Object[]) : void
fireTreeNodesRemoved(source : Object,path : Object[],childIndices : int[],children : Object[]) : void
fireTreeStructureChanged(source : Object,path : Object[],childIndices : int[],children : Object[]) : void
getColumnClass(column : int) : Class
isCellEditable(node : Object,column : int) : boolean
setValueAt(aValue : Object,node : Object,column : int) : void

root : Object
listenerList : EventListenerList

TreeTableCellRenderer

TreeTableCellRenderer(model : TreeModel)
setBounds(x : int,y : int,w : int,h : int) : void
paint(g : Graphics) : void
getTableCellRendererComponent(table : JTable,value : Object,isSelected : boolean,hasFocus : boolean,row : int,column : int) : Component

visibleRow : int

TreeTableCellEditor

getTableCellEditorComponent(table : JTable,value : Object,isSelected : boolean,r : int,c : int) : Component

JTreeTable

JTreeTable(treeTableModel : TreeTableModel)
getEditingRow() : int

tree : TreeTableCellRenderer

QosCriteria

QosCriteria(defaultModelFile : String,modelFile : String,dataFile : String)
getModel()
getDataModel()
print() : void
add(parentURI : String,criteriaURI : String) : void
add(parentURI : String,criteriaURI : String,datatypeURI : String) : void
delete(criteriaURI : String) : void
init(defaultModelFile : String) : void
load(targetModel : Model,modelFile : String) : void
store() : void

RDF_NAMESPACE : String
RDFS_NAMESPACE : String
RDF_DOMAIN : String
RDF_RANGE : String
RDF_TYPE_CLASS : String
RDF_TYPE_PROPERTY : String
XSD_NAMESPACE : String
XSD_DATATYPES : Object[]
QOS_NAMESPACE : String
ROOT_RESOURCE : String
DEFAULT_CHARSET : String
defaultModelFile : String
modelFile : String
dataFile : String

QosGUI

QosGUI(workMode : int,defaultModelFile : String,modelFile : String,dataFile : String)
show() : void
loadTreeTable() : void
mousePressed(e : MouseEvent) : void
mouseReleased(e : MouseEvent) : void
showPopup(e : MouseEvent) : void

MODE_EDIT_ONTOLOGY_AND_CHANGE_VALUES : int
MODE_CHANGE_VALUES : int
MODE_VIEW : int
workMode : int
qos : QosCriteria
popupMenuCriteriaGroup : JPopupMenu
popupMenuCriteriaProperty : JPopupMenu
frame : JFrame
treeTable : JTreeTable
addCriteriaGroup : JMenuItem
addCriteriaProperty : JMenuItem
deleteCriteria : JMenuItem
changeValue : JMenuItem

QosLauncher

QosLauncher()
initComponents() : void
provideTask(evt : ActionEvent) : void
viewTaskQos(evt : ActionEvent) : void
finishTask(evt : ActionEvent) : void
main(args : String[]) : void

defaultQosOntology : String
rdfSchemaFile : File
rdfDataFile : File
buttonProvideTask : JButton
buttonViewTaskQos : JButton
buttonFinishTask : JButton
labelRdfSchema : JLabel
labelRdfData : JLabel
titleLabel : JLabel
labelPanel : JPanel
buttonPanel : JPanel
mainPanel : JPanel
displayRdfDataFile : JLabel
displayRdfSchemaFile : JLabel

RdfModel

RdfModel(resourceURI : String)
getChildren(node : Object) : Object[]
getChildCount(node : Object) : int
getChild(node : Object,i : int) : Object
isLeaf(node : Object) : boolean
getColumnCount() : int
getColumnName(column : int) : String
getColumnClass(column : int) : Class
getValueAt(node : Object,column : int) : Object

cNames : String[]
cTypes : Class[]

RdfModelNode

RdfModelNode(resourceURI : String)
toString() : String
getResourceURI() : String
getName() : String
getDatatype() : String
getValue() : String
setValue(value : String) : void
isProperty() : boolean
getChildren() : Object[]

resourceURI : String
resourceName : String
resourceDatatype : String
isProperty : boolean
value : String
children : Object[]

<<interface>>
ITreeTableModel

TreeTableModelAdapter

TreeTableModelAdapter(treeTableModel : TreeTableModel,tree : JTree)
getColumnCount() : int
getColumnName(column : int) : String
getColumnClass(column : int) : Class
getRowCount() : int
nodeForRow(row : int) : Object
getValueAt(row : int,column : int) : Object
isCellEditable(row : int,column : int) : boolean
setValueAt(value : Object,row : int,column : int) : void

tree : JTree
treeTableModel : TreeTableModel

Figure 6.10: Class Diagram of the eu.motion.tuv.qos Package

(GUI) to view and edit the specified QoS ontology. Finally, QosCriteria provides all necessary
methods to load and manipulate QoS ontologies.

QosLauncher

The QosLauncher class is our dummy class which starts the QoS assistant prototype and emu-
lates our three use cases. It provides (among others) the following methods:

main() The main method takes as argument the file path of our basic QoS ontology and starts
our QoS Launcher application (see Figure 6.11). After a QoS ontology has been loaded, the file
paths of this RDF file and its corresponding RDF data file (containing the data values) are also
shown in the QosLauncher window.

provideTask() This method reacts on a click on the ”Provide task” button. To provide a new
task an existing RDF Schema file has to be selected. The selected QoS ontology is loaded and after
that the QosGUI will be displayed. This enables the user to edit the specified QoS ontology and

52 Chapter 6. Implementation

Figure 6.11: QosLauncher Window

enter the default values, by which a task can be provided. These entered values will be written in
a RDF data file, which resides in the same directory as the given RDF schema file.

viewTaskQos() After a RDF Schema file was specified, the given ontology can be viewed at any
time of the workflow process. In our dummy QoSLauncher class the ontology can be viewed
by a click on the ”View task QoS” button. In this mode no alteration of the QoS ontology or
the assigned values is possible. The user is only allowed to view the task’s QoS ontology and
attributes.

finishTask() When a task is finished, the service requester peer has finally to rate the consumed
service. The corresponding editor window can be opened with a click on the ”Finish task” button.
In this case the user can only enter the values for each property, an alteration of the QoS ontology
is not allowed.

QosGUI

The QosGUI class forms the graphical user interface (GUI) of our QoS ontology editor. It is based
on the JTreeTable layout component (see Section 6.4.1).

There are three working modes for our GUI component:

MODE EDIT ONTOLOGY AND CHANGE VALUES This working mode allows the user to
edit the QoS ontology and to enter values for each QoS property in the ontology.

MODE CHANGE VALUES In this case the user is only allowed to enter values for each QoS
property.

MODE VIEW Finally, in this mode any alteration of the ontology or property values is prohib-
ited. The user can only view the entered data.

These modes also reflect the architecture of the QosGUI class. The important methods in this
class are:

QosGUI() The constructor method creates a new QosGUI object. It takes as arguments the
working mode (see paragraph above), the default model file path (specified as command line
parameter to QoSLauncher, see Section 6.4.3) and the file paths to the model file and data file.

6.4 QoS Implementation 53

Figure 6.12: QosGUI Assistant Window

show() This method loads the layout components and displays the QoS assistant window for
the specified QoS ontology (see Figure 6.12). Composite criteria groups can be folded out by
clicking on the folder icons in front of each criteria group.

mousePressed(), mouseReleased() This two methods react on the user’s actions. On the one
hand, they display the popup context menu for the selected table row (see the showPopup()
method). On the other hand, they invoke the necessary methods to alter the QoS ontology (pro-
vided by the QosCriteria class), after prompting for necessary information such as criteriaU-
RIs, data types or input values.

By selecting a criteria row in the QoS assistant window and clicking on the right mouse button,
the following context menu opens (see Figure 6.13):

Figure 6.13: QosGUI Assistant Window, with Context Menu (Working Mode: Edit Ontology + Change Values)

It shows the following options:

54 Chapter 6. Implementation

Add criteria group Add a new criteria group to the QoS ontology. A prompt for the criteria
group name will be shown.

Add criteria property Add a new criteria property to the selected criteria group. Two prompts
for the property’s name and its data type will be shown.

Delete Delete the selected criteria group or criteria property from our RDF ontology.

Change value Change the value of the selected criteria property. This option is only applicable
to criteria properties, not to criteria groups.

The options shown in the context menu depend on the working mode, under which the Qos-
GUI assistant window runs. The options above will be shown if the alteration of the QoS ontol-
ogy and the entering of values is allowed. If the user is only allowed to enter values, then just the
”Change value” option is shown (see Figure 6.14). If the GUI runs in the ”view task QoS” mode,
no context menu will be shown.

Figure 6.14: QosGUI Assistant Window, with Context Menu (Working Mode: Change Values)

QosCriteria

On the ground of our Model-View-Controller approach the QosCriteria class contains all nec-
essary methods for the alteration of our QoS ontology.

QosCriteria() The constructor of the QosCriteria class takes the different file paths (default
model file, model file and data file) as attributes.

add() By specifying the URI (Unique Resource Identifier) of the parent resource we can add new
criteria to our RDF model. There are two different methods: One for adding a new criteria group
(takes parentURI and criteriaURI as arguments) and the other for creating a new criteria property
(needs parentURI, criteriaURI and the criteria’s data type as arguments).

6.4 QoS Implementation 55

delete() Delete the specified criteria group or criteria property from our RDF model. A criteria
group may only deleted, if there are no existing sub properties in this group anymore.

init() Init our QoS ontology model by loading the default model file.

load() Load the specified RDF and RDF Schema file into the given target model.

store() Store the current model tree to the specified output file. This method is called after each
invocation of the add() or delete() methods.

6.4.4 JTreeTable Components
As stated before the user-friendly QoS assistant component is based on the JTreeTable compo-
nent [Mil06]. It consists of the classes below:

ITreeTableModel

A new interface, extending the TreeModel interface, which describes the kind of data that can
be drawn by a TreeTable.

AbstractTreeTableModel

A base class for TreeTableModels. This class handles the list of listeners.

TreeTableModelAdapter

A wrapper class that implements the TableModel interface, given both TreeTableModel and
a JTree.

AbstractCellEditor

A base class for CellEditors. This class handlers the list of listeners.

JTreeTable

A subclass of JTable, this class can render data from a TreeTableModel.

RdfModel

A model of our QoS RDF model, implemented as a concrete subclass of AbstractTreeTableModel.
This class implements the ITreeTableModel interface.

RdfModelNode

An inner class of RdfModel which recursively browses our RDF model for children and sub
nodes.

56 Chapter 6. Implementation

TreeTableCellRenderer

The renderer used to display the tree nodes, a JTree.

TreeTableCellEditor

The editor used to interact with tree nodes, a JTree.

Chapter 7

Conclusion and Future Work

Specifying QoS criteria in the domain of Peer-To-Peer networks is still virgin soil. Since it is a
totally new area where almost no reference work exists, a formal step-wise approach was chosen.

7.1 Summary
This thesis introduced step by step the theoretical backgrounds and a formal specification process
(see Chapter 2 and Chapter 3). Furthermore, a detailed overview of the existing QoS approaches
was given in Chapter 4. Out of this wide spread criteria, which was proposed in literature, the
most important parameters were gained and specified as a basic QoS model in Chapter 5. This
thesis showed an open, extensible framework for specifying quality of service criteria. The pre-
sented approach used today’s state-of-the-art technologies like RDF and RDF Schema, which en-
able the user the extend existing models. Additionally, it is crucial that the chosen criteria is
motivated by every-day service and not only technical service aspects. In Chapter 6 the under-
laying MOTION Peer-to-Peer system and a proof-of-concept implementation of the proposed QoS
model were described.

7.2 Result
The result of this thesis is an open and extensible framework for specifying service attributes and
QoS parameters in a Peer-to-Peer environment. To produce meaningful and useful results, dif-
ferent groups of decision-makers have to be addressed. It is crucial that the specification of QoS
attributes concentrates on the end-user perspective of a service, and not only on the technical
aspects. The presented approach of QoS criteria classification and the proposed specification pro-
cess can be used in any domain to formulate QoS criteria for a particular service.

The RDF (Resource Description Framework) language is the best choice for formulating such
extensible ontologies. RDF is intended to formulate information which can also be processed by
applications. In the domain of Web services there exist yet different approaches which propose
standards for describing service interactions and service attributes.

Currently, it is unclear which technology for service interactions will prevail and become ac-
cepted. It is likely that an universal standard for QoS specification will be developed. However,
with the increasing use of distributed networks the specification of QoS criteria of digital and
non-digital services will become an important issue in the near future. It is only a matter of time.

58 Chapter 7. Conclusion and Future Work

7.3 Future Work
During the work the following topics turned out to be the potential area of future work:

7.3.1 Local Optimization and Global Planning
A powerful model for expressing and specifying QoS criteria builds the basis for further an op-
timization of tasks. The area of Local Optimization and Global Planning deals with the problem
of optimization of task executions which can be conducted based on the specified QoS criteria.
There are some existing approaches in the area of Web services for dynamic peer selection.

The domain of Peer-To-Peer networks has some extra characteristics which have to be consid-
ered: For example there is no global view of the entire system due to complexity issues and the
assumption that peers can spontaneously depart from and reconnect to the system. That means
that computation may only be done based on local information.

The Workflow system, in which all services are provided and executed, could also provide
automatic measurement for some criteria properties. The RDF language provides for this pur-
pose the necessary basis to exchange information between applications and to process this data
automatically by other applications.

7.3.2 Security and Trust
The presented approach supposes that each user can view and edit all parameters. The real-world
is usually different: Service are delegated to third-party service providers which do not need to
know all information. In addition to that encryption and a kind of autorisation mechanism for
the transfered data could become necessary.

Another area is trust. Who tells a service requester that the stated QoS values given by the ser-
vice provider are accurate and representative? The approach of this thesis bypasses this problem
by introducing a rating mechanism by which the service requester can finally judge the service
after it is completed. For Peer-To-Peer networks a central database with the QoS values of all
service providers is not practicable. It could be possible to query other peers for QoS information
about a particalar peer, if they have consumed its service before. But this would increase network
load.

Appendix A

RDF Representation

A.1 Basic QoS Model

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [

3 <!ENTITY qos "http://seal.ifi.unizh.ch/qos#">

4 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

5 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

6]>

7 <rdf:RDF

8 xmlns="http://seal.ifi.unizh.ch/qos#"

9 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

10 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

11 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

12 xml:base="http://seal.ifi.unizh.ch/qos#">

13 <rdfs:Class rdf:ID="TimeCriteria">

14 <rdfs:subClassOf>

15 <rdfs:Class rdf:ID="Criteria"/>

16 </rdfs:subClassOf>

17 </rdfs:Class>

18 <rdfs:Class rdf:ID="ReputationCriteria">

19 <rdfs:subClassOf rdf:resource="&qos;Criteria"/>

20 </rdfs:Class>

21 <rdf:Property rdf:ID="cost">

22 <rdfs:range rdf:resource="&xsd;float"/>

23 <rdfs:domain rdf:resource="&qos;Criteria"/>

24 </rdf:Property>

25 <rdf:Property rdf:ID="delayTime">

26 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

27 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

28 </rdf:Property>

29 <rdf:Property rdf:ID="time">

60 Chapter A. RDF Representation

30 <rdfs:domain rdf:resource="&qos;Criteria"/>

31 <rdfs:range rdf:resource="&qos;TimeCriteria"/>

32 </rdf:Property>

33 <rdf:Property rdf:ID="processFailures">

34 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

35 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

36 </rdf:Property>

37 <rdf:Property rdf:ID="rating">

38 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

39 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

40 </rdf:Property>

41 <rdf:Property rdf:ID="delegation">

42 <rdfs:domain rdf:resource="&qos;Criteria"/>

43 <rdfs:range rdf:resource="&xsd;boolean"/>

44 </rdf:Property>

45 <rdf:Property rdf:ID="taskTime">

46 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

47 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

48 </rdf:Property>

49 <rdf:Property rdf:ID="systemFailures">

50 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

51 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

52 </rdf:Property>

53 <rdf:Property rdf:ID="reputation">

54 <rdfs:range rdf:resource="&qos;ReputationCriteria"/>

55 <rdfs:domain rdf:resource="&qos;Criteria"/>

56 </rdf:Property>

57 </rdf:RDF>

Listing A.1: RDF Schema Representation of the Basic QoS Model

A.2 Scenarios

A.2.1 Scenario A - Pizza Service

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [

3 <!ENTITY qos "http://seal.ifi.unizh.ch/qos#">

4 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

5 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

6]>

7 <rdf:RDF

8 xmlns="http://seal.ifi.unizh.ch/qos#"

9 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

10 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

A.2 Scenarios 61

11 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

12 xml:base="http://seal.ifi.unizh.ch/qos#">

13 <rdfs:Class rdf:ID="TimeCriteria">

14 <rdfs:subClassOf>

15 <rdfs:Class rdf:ID="Criteria"/>

16 </rdfs:subClassOf>

17 </rdfs:Class>

18 <rdfs:Class rdf:ID="PizzaToppings">

19 <rdfs:subClassOf rdf:resource="&qos;Criteria"/>

20 </rdfs:Class>

21 <rdfs:Class rdf:ID="ReputationCriteria">

22 <rdfs:subClassOf rdf:resource="&qos;Criteria"/>

23 </rdfs:Class>

24 <rdfs:Class rdf:ID="BillingCriteria">

25 <rdfs:subClassOf rdf:resource="&qos;Criteria"/>

26 </rdfs:Class>

27 <rdf:Property rdf:ID="pizzaToppings">

28 <rdfs:range rdf:resource="&qos;PizzaToppings"/>

29 <rdfs:domain rdf:resource="&qos;Criteria"/>

30 </rdf:Property>

31 <rdf:Property rdf:ID="deliveryTime">

32 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

33 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

34 </rdf:Property>

35 <rdf:Property rdf:ID="time">

36 <rdfs:domain rdf:resource="&qos;Criteria"/>

37 <rdfs:range rdf:resource="&qos;TimeCriteria"/>

38 </rdf:Property>

39 <rdf:Property rdf:ID="processFailures">

40 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

41 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

42 </rdf:Property>

43 <rdf:Property rdf:ID="taskTime">

44 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

45 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

46 </rdf:Property>

47 <rdf:Property rdf:ID="pizzaRating">

48 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

49 <rdfs:domain rdf:resource="&qos;Criteria"/>

50 </rdf:Property>

51 <rdf:Property rdf:ID="cost">

52 <rdfs:range rdf:resource="&xsd;float"/>

53 <rdfs:domain rdf:resource="&qos;Criteria"/>

54 </rdf:Property>

55 <rdf:Property rdf:ID="delayTime">

62 Chapter A. RDF Representation

56 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

57 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

58 </rdf:Property>

59 <rdf:Property rdf:ID="rating">

60 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

61 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

62 </rdf:Property>

63 <rdf:Property rdf:ID="delegation">

64 <rdfs:domain rdf:resource="&qos;Criteria"/>

65 <rdfs:range rdf:resource="&xsd;boolean"/>

66 </rdf:Property>

67 <rdf:Property rdf:ID="billing">

68 <rdfs:domain rdf:resource="&qos;Criteria"/>

69 <rdfs:range rdf:resource="&qos;BillingCriteria"/>

70 </rdf:Property>

71 <rdf:Property rdf:ID="systemFailures">

72 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

73 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

74 </rdf:Property>

75 <rdf:Property rdf:ID="reputation">

76 <rdfs:range rdf:resource="&qos;ReputationCriteria"/>

77 <rdfs:domain rdf:resource="&qos;Criteria"/>

78 </rdf:Property>

79 </rdf:RDF>

Listing A.2: RDF Schema Representation of Scenario A - Pizza Service

A.2.2 Scenario B - Online Music and Video Store

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [

3 <!ENTITY qos "http://seal.ifi.unizh.ch/qos#">

4 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

5 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

6]>

7 <rdf:RDF

8 xmlns="http://seal.ifi.unizh.ch/qos#"

9 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

10 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

11 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

12 xml:base="http://seal.ifi.unizh.ch/qos#">

13 <rdfs:Class rdf:ID="TimeCriteria">

14 <rdfs:subClassOf>

15 <rdfs:Class rdf:ID="Criteria"/>

16 </rdfs:subClassOf>

17 </rdfs:Class>

A.2 Scenarios 63

18 <rdfs:Class rdf:ID="ProductsCriteria">

19 <rdfs:subClassOf rdf:resource="&qos;Criteria"/>

20 </rdfs:Class>

21 <rdfs:Class rdf:ID="MovieDimensionsCriteria">

22 <rdfs:subClassOf>

23 <rdfs:Class rdf:ID="MovieQualityCriteria"/>

24 </rdfs:subClassOf>

25 </rdfs:Class>

26 <rdfs:Class rdf:ID="ReputationCriteria">

27 <rdfs:subClassOf rdf:resource="&qos;Criteria"/>

28 </rdfs:Class>

29 <rdfs:Class rdf:ID="MovieQualityCriteria">

30 <rdfs:subClassOf rdf:resource="&qos;Criteria"/>

31 </rdfs:Class>

32 <rdfs:Class rdf:ID="SongQualityCriteria">

33 <rdfs:subClassOf rdf:resource="&qos;Criteria"/>

34 </rdfs:Class>

35 <rdf:Property rdf:ID="products">

36 <rdfs:range rdf:resource="&qos;ProductsCriteria"/>

37 <rdfs:domain rdf:resource="&qos;Criteria"/>

38 </rdf:Property>

39 <rdf:Property rdf:ID="time">

40 <rdfs:domain rdf:resource="&qos;Criteria"/>

41 <rdfs:range rdf:resource="&qos;TimeCriteria"/>

42 </rdf:Property>

43 <rdf:Property rdf:ID="processFailures">

44 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

45 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

46 </rdf:Property>

47 <rdf:Property rdf:ID="songQuality">

48 <rdfs:range rdf:resource="&qos;SongQualityCriteria"/>

49 <rdfs:domain rdf:resource="&qos;Criteria"/>

50 </rdf:Property>

51 <rdf:Property rdf:ID="taskTime">

52 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

53 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

54 </rdf:Property>

55 <rdf:Property rdf:ID="productsNmbOfDownloads">

56 <rdfs:domain rdf:resource="&qos;ProductsCriteria"/>

57 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

58 </rdf:Property>

59 <rdf:Property rdf:ID="movieWidth">

60 <rdfs:domain rdf:resource="&qos;MovieDimensionsCriteria"/>

61 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

62 </rdf:Property>

64 Chapter A. RDF Representation

63 <rdf:Property rdf:ID="cost">

64 <rdfs:range rdf:resource="&xsd;float"/>

65 <rdfs:domain rdf:resource="&qos;Criteria"/>

66 </rdf:Property>

67 <rdf:Property rdf:ID="productsNmbOfSongs">

68 <rdfs:domain rdf:resource="&qos;ProductsCriteria"/>

69 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

70 </rdf:Property>

71 <rdf:Property rdf:ID="delayTime">

72 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

73 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

74 </rdf:Property>

75 <rdf:Property rdf:ID="movieFrameRate">

76 <rdfs:domain rdf:resource="&qos;MovieQualityCriteria"/>

77 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

78 </rdf:Property>

79 <rdf:Property rdf:ID="rating">

80 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

81 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

82 </rdf:Property>

83 <rdf:Property rdf:ID="delegation">

84 <rdfs:domain rdf:resource="&qos;Criteria"/>

85 <rdfs:range rdf:resource="&xsd;boolean"/>

86 </rdf:Property>

87 <rdf:Property rdf:ID="movieHeight">

88 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

89 <rdfs:domain rdf:resource="&qos;MovieDimensionsCriteria"/>

90 </rdf:Property>

91 <rdf:Property rdf:ID="movieDimensions">

92 <rdfs:range rdf:resource="&qos;MovieDimensionsCriteria"/>

93 <rdfs:domain rdf:resource="&qos;MovieQualityCriteria"/>

94 </rdf:Property>

95 <rdf:Property rdf:ID="productsNmbOfMovies">

96 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

97 <rdfs:domain rdf:resource="&qos;ProductsCriteria"/>

98 </rdf:Property>

99 <rdf:Property rdf:ID="systemFailures">

100 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

101 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

102 </rdf:Property>

103 <rdf:Property rdf:ID="songBitRate">

104 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

105 <rdfs:domain rdf:resource="&qos;SongQualityCriteria"/>

106 </rdf:Property>

107 <rdf:Property rdf:ID="movieQuality">

A.2 Scenarios 65

108 <rdfs:domain rdf:resource="&qos;Criteria"/>

109 <rdfs:range rdf:resource="&qos;MovieQualityCriteria"/>

110 </rdf:Property>

111 <rdf:Property rdf:ID="reputation">

112 <rdfs:range rdf:resource="&qos;ReputationCriteria"/>

113 <rdfs:domain rdf:resource="&qos;Criteria"/>

114 </rdf:Property>

115 </rdf:RDF>

Listing A.3: RDF Schema Representation of Scenario B - Online Music and Video Store

A.2.3 Scenario C - Supply-chain Management

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [

3 <!ENTITY qos "http://seal.ifi.unizh.ch/qos#">

4 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

5 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

6]>

7 <rdf:RDF

8 xmlns="http://seal.ifi.unizh.ch/qos#"

9 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

10 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

11 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

12 xml:base="http://seal.ifi.unizh.ch/qos#">

13 <owl:Ontology rdf:about=""/>

14 <rdfs:Class rdf:ID="TimeCriteria">

15 <rdfs:subClassOf>

16 <rdfs:Class rdf:ID="Criteria"/>

17 </rdfs:subClassOf>

18 </rdfs:Class>

19 <rdfs:Class rdf:ID="ReputationCriteria">

20 <rdfs:subClassOf rdf:resource="&qos;Criteria"/>

21 </rdfs:Class>

22 <rdf:Property rdf:ID="time">

23 <rdfs:domain rdf:resource="&qos;Criteria"/>

24 <rdfs:range rdf:resource="&qos;TimeCriteria"/>

25 </rdf:Property>

26 <rdf:Property rdf:ID="deliveryTime">

27 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

28 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

29 </rdf:Property>

30 <rdf:Property rdf:ID="processFailures">

31 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

32 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

33 </rdf:Property>

66 Chapter A. RDF Representation

34 <rdf:Property rdf:ID="productionFailureRate">

35 <rdfs:domain rdf:resource="&qos;Criteria"/>

36 <rdfs:range rdf:resource="&xsd;float"/>

37 </rdf:Property>

38 <rdf:Property rdf:ID="taskTime">

39 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

40 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

41 </rdf:Property>

42 <rdf:Property rdf:ID="cost">

43 <rdfs:range rdf:resource="&xsd;float"/>

44 <rdfs:domain rdf:resource="&qos;Criteria"/>

45 </rdf:Property>

46 <rdf:Property rdf:ID="priorization">

47 <rdfs:range rdf:resource="&xsd;boolean"/>

48 <rdfs:domain rdf:resource="&qos;Criteria"/>

49 </rdf:Property>

50 <rdf:Property rdf:ID="penaltyRate">

51 <rdfs:domain rdf:resource="&qos;Criteria"/>

52 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

53 </rdf:Property>

54 <rdf:Property rdf:ID="delayTime">

55 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

56 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

57 </rdf:Property>

58 <rdf:Property rdf:ID="rating">

59 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

60 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

61 </rdf:Property>

62 <rdf:Property rdf:ID="delegation">

63 <rdfs:domain rdf:resource="&qos;Criteria"/>

64 <rdfs:range rdf:resource="&xsd;boolean"/>

65 </rdf:Property>

66 <rdf:Property rdf:ID="systemFailures">

67 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

68 <rdfs:domain rdf:resource="&qos;ReputationCriteria"/>

69 </rdf:Property>

70 <rdf:Property rdf:ID="productionTime">

71 <rdfs:domain rdf:resource="&qos;TimeCriteria"/>

72 <rdfs:range rdf:resource="&xsd;positiveInteger"/>

73 </rdf:Property>

74 <rdf:Property rdf:ID="reputation">

75 <rdfs:range rdf:resource="&qos;ReputationCriteria"/>

76 <rdfs:domain rdf:resource="&qos;Criteria"/>

77 </rdf:Property>

A.2 Scenarios 67

78 </rdf:RDF>

Listing A.4: RDF Schema Representation of Scenario C - Supply-Chain Management

68 Chapter A. RDF Representation

References

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:
An Overview, 1994.

[BG04] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, February 2004. http://www.w3.org/TR/
rdf-schema/.

[BHM+04] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris
Ferris, and David Orchard. Web Services Architecture - What is a Web service? W3C
Working Group Note, February 2004. http://www.w3.org/TR/ws-arch/.

[BM01] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes.
W3C Recommendation, May 2001. http://www.w3.org/TR/2001/
REC-xmlschema-2-20010502/.

[BM04] Dave Beckett and Brian McBride. RDF/XML Syntax Specification (Re-
vised). W3C Recommendation, February 2004. http://www.w3.org/TR/
rdf-syntax-grammar/.

[CGea02] Francisco Cubera, Yaron Goland, and Johannes Klein et al. Business Process Execu-
tion Language for Web Services, August 2002. http://msdn.microsoft.com/
library/default.asp?url=/library/enus/dnbizspec/html/bpel1-0.
asp.

[Chu91] Lawerence Chung. Representation and Utilization of Non-functional Requirements
for Information System Design. In CAiSE ’91: Proceedings of the third international con-
ference on Advanced information systems engineering, pages 5–30, New York, NY, USA,
1991. Springer-Verlag New York, Inc.

[CP01] G. Cugola and G. Picco. PeerWare: Core Middleware Support for Peer-To-Peer and
Mobile Systems, 2001.

[Cra98] E. Crawley. A Framework for QoS-Based Routing in the Internet. IETF RCF 2386,
August 1998.

[CSM+04] Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and Krys Kochut. Quality
of Service for Workflows and Web Service Processes. Web Semantics: Science, Services
and Agents on the World Wide Web, 1(3):281–308, April 2004.

[ea98] S. Blake et al. An Architecture for Differentiated Services. Request for Comments (Infor-
mational) RFC 2475, Internet Engineering Task Force, December 1998.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnbizspec/html/bpel1-0.asp
http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnbizspec/html/bpel1-0.asp
http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnbizspec/html/bpel1-0.asp

70 REFERENCES

[Fen00] P. C. Fenkam. Dynamic User management System for Web Sites. Master’s thesis,
Graz University of Technology and Vienna University of Technology, Austria, 2000.

[FGRK01] P. Fenkam, H. Gall, G. Reif, and E. Kirda. A Dynamic and Customizable Access con-
trol System for Distributed Applications. Technical report, Distributed System Group,
Technical University of Vienna, December 2001.

[GJS03] Janusz Gozdecki, Andrzej Jajszczyk, and Rafal Stankiewicz. Quality of Service in
IP Networks. In Communications Magazine, IEEE, pages 153–159, Amsterdam, The
Netherlands, September 2003. IEEE, IEEE Computer Society.

[GN02] X. Gu and K. Nahrstedt. A Scalable QoS-Aware Service Aggregation Model for Peer-
to-Peer Computing Grids, 2002.

[Har01] William C. Hardy. QoS: Measurement and Evaluation of Telecommunications Quality of
Service. Wiley, 2001.

[Inc] Sun Microsystems Inc. Java Plattform, Standard Edition (Java SE). http://java.
sun.com/javase/index.jsp.

[ISO94] ISO 8402, Quality Management and Quality Assurance - Vocabulary, 1994.

[ITU] ITU-T Rec. E.800, Terms and Definitions Related to Quality of Service and Network
Performance in Digital Networks, Including ISDNs, March 1993.

[ITU01] Support of IP-based Services Using IP Transfer Capabilities, ITU. March 2001.

[Ive62] Kenneth E. Iverson. A Programming Language. John Wiley and Sons, January 1962.

[KFRG02] Engin Kirda, Pascal Fenkam, Gerald Reif, and Harald Gall. A Service Architecture
for Mobile Teamwork. In SEKE ’02: Proceedings of the 14th international conference on
Software engineering and knowledge engineering, pages 513–518, New York, NY, USA,
2002. ACM Press.

[KS95] Narayanan Krishnakumar and Amit P. Sheth. Managing Heterogeneous Multi-
system Tasks to Support Enterprise-Wide Operations. Distributed and Parallel
Databases, 3(2):155–186, 1995.

[LNZ04] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. QoS Computation and Policing in Dy-
namic Web Service Selection. In WWW Alt. ’04: Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters, pages 66–73, New York,
NY, USA, 2004. ACM Press.

[LP] Hewlett-Packard Development Company LP. Jena – A Semantic Web Framework for
Java. http://jena.sourceforge.net/.

[Mar94] S.P. Marsh. Formalising Trust as Computational Concept. Phd thesis, University of Ster-
ling, Sterling, 1994.

[McC92] S. McCready. There is more Than One Kind of Workflow Software. Computerworld,
2:86–90, November 1992.

[Mil06] Philip Milne. Creating TreeTables in Swing, March 2006. http://java.sun.com/
products/jfc/tsc/articles/treetable1/.

[MM04] Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, February 2004.
http://www.w3.org/TR/rdf-primer/.

http://java.sun.com/javase/index.jsp
http://java.sun.com/javase/index.jsp
http://jena.sourceforge.net/
http://java.sun.com/products/jfc/tsc/articles/treetable1/
http://java.sun.com/products/jfc/tsc/articles/treetable1/
http://www.w3.org/TR/rdf-primer/

REFERENCES 71

[OEH02] Justin O’Sullivan, David Edmond, and Arthur Ter Hofstede. What’s in a Service?
Towards Accurate Description of Non-Functional Service Properties. Distrib. Parallel
Databases, 12(2-3):117–133, 2002.

[PASW97] J. L. Abad Peiro, N. Asokan, M. Steiner, and M. Waidner. Designing a Generic Pay-
ment Service. IBM Syst. J., 37(1):72–88, 1997.

[PZB88] A. Parasuraman, V.A. Zeithaml, and L.L. Berry. SERVQUAL: A Multiple-Item Scale
for Measuring. Consumer Perceptions of Service Quality. Journal of Retailing, 64(1):12–
40, 1988.

[Sch04] Daniel Schwarz. A Loosely-Coupled Peer-To-Peer Workflow System. Master’s thesis,
Technical University of Vienna, Austria, 2004.

[Tom06] Ioan Toma. D28.4v0.1 Non-functional properties in Web services. WSML Working
Draft, March 2006. http://www.wsmo.org/TR/d28/d28.4/v0.1/.

[ZBN+04] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. QoS-Aware Middleware for Web Services Com-
position. IEEE Trans. Softw. Eng., 30(5):311–327, 2004.

http://www.wsmo.org/TR/d28/d28.4/v0.1/

	Introduction
	Motivation
	Problem Description
	Structure of this Thesis

	Theoretical Background
	Definitions
	Service
	Quality
	Service Level Agreement (SLA)
	Class of Service

	Non-Functional Properties
	Availability
	Channels
	Charging Styles
	Settlement
	Payment Obligations
	Service Quality
	Security and Trust
	Ownership and Rights

	Specification Process
	Measurement and Evaluation
	Classes of Decision-Makers
	Concerns
	Objectives

	Analysis Process
	Formulation
	Data Handling
	Evaluation

	Quality of Service
	A Generic Quality of Service Model
	Intrinsic QoS
	Perceived QoS
	Assessed QoS
	Assurance of Satisfactory Level

	QoS in Different Domains
	IP Networks
	Web Services
	Workflow Systems
	Peer-to-Peer Networks

	Summary
	Comparison
	QoS Requirements

	QoS Model and Scenarios
	Basic QoS Model
	Scenarios
	Scenario A - Pizza Service
	Scenario B - Online Music and Video Store
	Scenario C - Supply-Chain Management

	Implementation
	MOTION
	Architecture Overview
	Teamwork Services Components

	Workflow Component
	Terminology
	Architecture Overview
	Data Distribution
	Instance Life Cycle
	Task Status
	Implementation

	Use Cases
	Process Management
	Task Negotiation
	Instance Execution

	QoS Implementation
	Used Technologies and Resources
	Architecture
	QoS Components
	JTreeTable Components

	Conclusion and Future Work
	Summary
	Result
	Future Work
	Local Optimization and Global Planning
	Security and Trust

	RDF Representation
	Basic QoS Model
	Scenarios
	Scenario A - Pizza Service
	Scenario B - Online Music and Video Store
	Scenario C - Supply-chain Management

