
Diploma Thesis
July 7, 2006

Semantic Clipboard

Martin Morger
of Zürich, Schweiz (00-915-363)

supervised by

Prof. Dr. Harald C. Gall
Dr. Gerald Reif

Department of Informatics software evolution & architecture lab

Diploma Thesis

Semantic Clipboard

Martin Morger

Department of Informatics software evolution & architecture lab

Diploma Thesis

Author: Martin Morger, martin.morger at gmail.com

Project period: 08.03.2006 - 08.07.2006

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank all those who supported me during the programming and writing of this
thesis: Gerald Reif, for his valuable input and support, and Sabine Locher for the proof reading.
Special thanks go also to the numerous developers of the tools and frameworks used for creating
this thesis, in particular Eclipse, Jena, iCal4j, Log4j, and TeXnicCenter.

Abstract

The Semantic Web provides a framework to share data across the boundaries of applications, enter-
prises, and communities. It uses the Resource Description Framework to provide metadata describ-
ing any resource accessible, or at least identifiable, on the Web. Current clipboard applications
allow the exchange of data between applications running on the same platform while the seman-
tics of the data are usually only retained if the source and target applications are part of a specific
application suite. Expanding the range of data sources from desktop applications to Websites,
the process of copying data from a Web resource into an application results in losing most of the
semantics of the data, as the target application recognizes the pasted data as formatted or plain
text only.
This thesis presents an implementation of the Semantic Clipboard concept using an extensible plu-
gin architecture. The implemented Java application extracts RDF metadata describing a Web
resource from accordingly annotated Websites and pastes them into a supported desktop appli-
cation, retaining the semantics of the data.
By implementing a plugin architecture, the Semantic Clipboard uses individual plugin modules
to extract ontology-specific data from the source location, to store this data temporarily in spe-
cific data containers, and to paste it into a suitable desktop application. To extend the range of
supported source ontology vocabularies and target applications, additional plugins may be devel-
oped and registered at the Semantic Clipboard. The current implementation provides a number
of plugins, supporting various ontology vocabularies as well as different desktop applications on
the Mac and Windows platforms.

Zusammenfassung

Das Semantische Web ermöglicht es, Daten über die Grenzen von Applikationen, Firmen und
Organisationen hinweg auszutauschen. Unter Verwendung des Resource Description Framework
werden dabei Metadaten erstellt, mit denen beliebige Ressourcen beschrieben werden können,
solange diese durch das Web erreichbar, oder zumindest identifizierbar sind. Gängige Clipboard-
applikationen ermöglichen den Austausch von Daten zwischen Programmen des gleichen Be-
triebssystems, wobei die Semantik der Daten meist nur beim Austausch zwischen Programmen
innerhalb von bestimmten Anwendungspaketen erhalten bleibt. Beim Kopieren von Daten aus
einer in einem Webbrowser angezeigten Webseite geht die Semantik der kopierten Daten jedoch
ganz oder teilweise verloren, da die Zielanwendung die eingefügten Daten meist nur als (un-)for-
matierten Text erkennt.
Diese Diplomarbeit beschreibt die Implementierung einer Plugin-Architektur des Semantic Clip-
board Konzeptes. Die vorliegende Java Anwendung extrahiert RDF Metadaten, die eine Web
Ressource beschreiben, aus entsprechend annotierten Webseiten und fügt diese Daten in eine un-
terstützte Desktop Anwendung ein, wobei die Semantik der Daten erhalten bleibt.
Die implementierte Plugin-Architektur verwendet einzelne Plugin-Module, um Ontologie-spezi-
fische Daten aus der ausgewählten Quelle zu extrahieren, diese in spezifischen Datenbehältern
zu speichern und sie schliesslich in eine passende Desktopanwendung einzufügen. Um die
Menge der unterstützen Ontologie-Vokabulare und Applikationen zu erweitern, können einfach
zusätzliche Plugin-Module entwickelt und zur bestehenden Konfiguration hinzugefügt werden.
Die vorliegende Implementierung umfasst eine Reihe von Plugins, die das Lesen von Daten aus
diversen Ontologien und das Einfügen dieser Daten in verschiedene Zielanwendungen der Mac
und Windows Plattformen unterstützen.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The Semantic Web and RDF . 1
1.3 Semantics of Data . 2
1.4 Functionality of the Semantic Clipboard . 3

2 Implementation 5
2.1 Architecture . 5
2.2 Technologies . 6
2.3 Implemented Ontologies . 8

2.3.1 vCard . 8
2.3.2 FOAF . 9
2.3.3 iCal . 9

2.4 RDF Source Reader . 10
2.5 Plugin Manager . 11

2.5.1 Manifest Files . 11
2.5.2 Plugin Configuration . 13
2.5.3 Plugin Instantiation . 13

2.6 Plugin Modules . 14
2.6.1 Reader Plugins . 14
2.6.2 Data Container Plugins . 15
2.6.3 Application Plugins . 17

2.7 User Interface . 19
2.7.1 Main Window . 19
2.7.2 Wizard Interface . 20

2.8 Workflow . 21
2.8.1 Specifying the RDF Source . 21
2.8.2 Selecting the Target Application . 22
2.8.3 Selecting the Data to be pasted . 23

2.9 Installation . 23

3 Conclusion and Future Work 27
3.1 Conclusion . 27
3.2 Future Work . 28

3.2.1 Browser Integration . 28
3.2.2 Embedded RDF Data . 28

viii CONTENTS

List of Figures
1.1 An RDF graph describing the person John Doe. 2
1.2 Exporting the data of a bank account statement into different applications. 4

2.1 Data Flow and Plugin Component Structure. 6
2.2 Package Structure of the Semantic Clipboard. 7
2.3 Inheritance structure of the reader, data container, and application plugins. 14
2.4 Main application window showing the Wizard interface. 20
2.5 Specifying the RDF source in the first Wizard panel. 22
2.6 Selecting the target application in the second Wizard panel. 23
2.7 The third Wizard panel showing the data to be pasted into the target application. . 25
2.8 A message box displaying the contents of the selected vCard component. 25

List of Tables
2.1 Mapping of FOAF to vCard properties. 15
2.2 VEvent properties implemented by ICalContainer. 16
2.3 vCard properties implemented by VCardContainer. 17

List of Listings
2.1 A simple vCard. 8
2.2 vCard data represented in RDF. 9
2.3 RDF embedded in HTML. 10
2.4 RDF manifest for the iCal application plugin. 12
2.5 Dublin Core Metadata containing vCard data. 15
2.6 An HTML document containing embedded RDF data. 21
2.7 Shell commands to start the Semantic Clipboard on Mac OS X. 24

Chapter 1

Introduction

1.1 Motivation
The goal of a Semantic Clipboard, as it was first introduced in [Pai05] and is presented in this
thesis, is to enable the exchange of data between applications without the semantics of the data
being lost. Even within homogeneous environments such as the Windows or Mac OS operating
systems, the operating system clipboard usually provides only a partial implementation of this
functionality. Text being copied into the system clipboard keeps its formatting when it is pasted
into another application. Its semantics however, e.g. the fact that the copied text represents a
person entry in an address book, is lost as the data is treated only as a piece of formatted text by
the target application.
Extending the range of possible data sources from local applications to any Website on the World
Wide Web, the recognition of semantics is even worse, as current Web Browser applications rep-
resent most information found on Websites simply as formatted text. A human user assigns the
applicable semantics of the text based on the context the information; i.e. the user knows how a
postal address looks like, so he interprets a piece of text containing a name, street, zip code and
city as an address. When the user copies this particular information from the Website, the system
clipboard though threats the copied data as (formatted) text only. In order to paste the address
information into an address book application, the user has to manually create a new address en-
try and paste the copied data into the respective address fields.

1.2 The Semantic Web and RDF
The Semantic Web is a collaborative effort led by the World Wide Web Consortium (W3C)1 with
participation from a large number of researchers and industrial partners. It provides a common
framework that allows data to be shared and reused across application, enterprise, and com-
munity boundaries. The Semantic Web is based on the Resource Description Framework (RDF)
[Con06b], which integrates a variety of applications using the Extensible Markup Language (XML)2

for syntax and Uniform Resource Identifiers (URI)3 for naming [Con06c, AvH04]. RDF is intended
to represent metadata describing World Wide Web resources, such as information about the au-
thor, title or modification date of a Website. Generalizing the concept of a Web Resource, RDF can

1http://www.w3.org/Consortium/
2http://www.w3.org/XML/
3http://www.ietf.org/rfc/rfc1630.txt

http://www.w3.org/Consortium/
http://www.w3.org/XML/
http://www.ietf.org/rfc/rfc1630.txt

2 Chapter 1. Introduction

be used to represent descriptions of any resource that can be identified on the Web, whether the
resource is accessible trough the Web or not. Such a resource may be a person, a product in a store
or any other real or virtual object.
Using RDF, a resource can be described by Statements, which resemble statements of a natural
language and consist of a subject (the resource to be described), a predicate, and an object, each
identified by a specific URI. As an example, it is assumed that there is a person, identified by the
URI http://seal.ifi.unizh.ch/people/doe, whose name is John Doe and whose email
address is john.doe@ifi.unizh.ch. This group of statements might be represented as an
RDF graph as shown in Figure 1.1

Figure 1.1: An RDF graph describing the person John Doe.

Using RDF to describe the data of a Website, the content of the World Wide Web can be “under-
stood” by computers, i.e. programs can identify the particular semantics of the data and process
it accordingly. This opens up a whole new field of possible Web applications: Instead of only
indexing the content of the Web and letting the user search for keywords, Semantic Web applica-
tions can actively search for specific kind of data.
An example for such an application, as described in [BLHL01], is a program that searches the
Web for a certain kind of medical specialist that has his practice within a defined range from the
residence of the user. After looking up the published list of available appointment times and
comparing it to the free entries in the user’s agenda, the program schedules an appointment with
the Semantic Web application of the medical specialist and informs the user about the appoint-
ment. Although the information about the doctor’s field, address and available appointment
times might also be available on a traditional text-based Website, a computer program, unlike a
human Web-user, would not be able to recognize the semantics of the data.

1.3 Semantics of Data
The semantics of some piece of data are highly dependent on the target application the data will
be processed with. A bank account statement shown on an electronic banking Website whose
content can be exported into different target applications serves as an example to explain this
idea as shown in Figure 1.2. The account statement is supposed to show a list of cash transfers
into and out of the bank account, specifying its date and value, the name and address of the
sender or receiver of the money, and a short description of the purpose of the transfer.
Exported to a home accounting application such as Microsoft Money, the semantics of the data
will be a series of accounting records resulting from the cash transfers containing the date and
value of the transfers. The same data may be represented in a sheet of a spreadsheet calculation
program as Microsoft Excel. In a calendar application such as Apple iCal, the resulting semantics are
a list of events which tell when the particular transfers took place. Using a contact management

1.4 Functionality of the Semantic Clipboard 3

application like Microsoft Outlook, the semantics may be a list of person entries which represent
the persons that have sent or received the money transfers.

1.4 Functionality of the Semantic Clipboard
The Semantic Clipboard implemented in this thesis allows to extract information provided as
RDF metadata annotations from a Website and to paste it into a local desktop application that can
handle the semantics of the data.
To ensure a high degree of flexibility regarding the number of different source data ontologies and
target applications the Semantic Clipboard can support, an extensible plugin architecture has been
implemented. The functionality for extracting and processing the source data and pasting them
into the target application is provided by plugin modules, which are developed individually for
each ontology vocabulary and target application to be supported and are registered at the main
clipboard application using an RDF manifest file.
The user interface of the application consists of a Wizard dialog window, which allows to display
the different interface components required for user interaction in a consistent layout, following
the work flow of the application, which includes the following steps: After the initialization pro-
cess of the application, the user is requested to specify the Uniform Resource Locator (URL) referring
to the RDF source data. The application then extracts the RDF source from the specified location
and passes the data on to its plugin classes, which will try to process the data. If the process-
ing has been successful, a list of applicable applications is presented to the user, who then can
choose the target application the data should be pasted in. Finally the data is being pasted into
the selected target application using platform and application specific methods like application
or command line scripting.

4 Chapter 1. Introduction

Figure 1.2: Exporting the data of a bank account statement into different applications.

Chapter 2

Implementation

2.1 Architecture
A main requirement imposed on the design of the Semantic Clipboard was the possibility to ex-
tend the number of supported ontologies and target applications by developing additional plugin
modules. The current Semantic Clipboard application fulfills this requirement by implementing
an extensible plugin-architecture, as shown in Figure 2.1. Functionality such as managing the
configuration of available plugins, retrieving the source RDF data and displaying the graphical
user interface is provided by commonly used core components. The tasks of extracting ontology-
specific data from the source, storing this information in ontology-specific containers, and pasting
it into a suitable target application are carried out by the respective plugin classes.
To allow all involved classes to access the references of shared objects, such as the user interface
and dynamically instantiated plugin classes, the Session object provides functionality to store and
retrieve references of objects.

There are three types of plugin modules designed to carry out their specific tasks:

• Reader plugins for each ontology vocabulary, see Section 2.3, such as information about a
person stored in an electronic business card format, information about an event, or about a
music title. Each reader plugin extracts the information of its specific ontology and creates
a data container object using the extracted data.

• Data Container plugins which provide a storage container for a concept of the real world
such as an address or a calendar event. The containers are filled with the data extracted
from the RDF description by the reader plugin.

• Application plugins for each target desktop application such as Microsoft Outlook or the Apple
iCal calendar application. Each application plugin implements the functionality to paste
data contained in one ore more data containers into a specific target application. To paste the
data into the target application, the plugin may implement platform and application specific
means like application scripting such as Apple Script, or create a temporary file which is then
being imported into the application using command line scripting.

This plugin-architecture is reflected in the Java package structure, consisting of the three main
packages core, plugins, and shared, each containing a number of sub-packages, as shown in
Figure 2.2.

Core Package The classes in this package provide the core functionality of the Semantic Clip-
board, i.e. initializing and managing the configuration of the available plugins, retrieving
and reading the RDF source data, and displaying a graphical user interface.

6 Chapter 2. Implementation

Figure 2.1: Data Flow and Plugin Component Structure.

Plugin Package Contains the reader, data container, and application plugin classes which extract
its ontology-specific data from the RDF source, store it temporarily, and paste the data into
target applications.

Shared Package Provides functionality used by modules from both the core and main packages,
such as the Session class, Exception classes, ontology vocabularies, and some utility
classes.

2.2 Technologies
The following technologies and libraries have been used to develop the Semantic Clipboard:

Java Software Development Kit (J2SE), Version 1.4.2 for Mac The Semantic Clipboard applica-
tion is implemented in the JavaTM programming language1. Being a relatively young lan-
guage, Java has rapidly become one of the major languages for object oriented program-
ming. Its virtual machine architecture allows programmers to write once, run everywhere, as
the the Java compiler will generate a platform-independent byte-code, that can be run on
any platform that provides a Java virtual machine. In addition to being a modern object
oriented language, its community provides a large amount of freely available libraries.

Eclipse IDE The Eclipse Integrated Development Environment (IDE)2 has been used to support
the development process. The Eclipse IDE provides a large array of coding assisting, refac-
toring, and debugging functionality, and its license allows anyone to use the program free of

1http://java.sun.com/
2http://www.eclipse.org/

http://java.sun.com/
http://www.eclipse.org/

2.2 Technologies 7

Figure 2.2: Package Structure of the Semantic Clipboard.

charge. Its plugin architecture allows the IDE to be extended with additional functionality,
its community contributes also a wide range of freely available plugin modules.

Jena Semantic Web Framework Jena3 is a Java framework for building Semantic Web applica-
tions. It provides a programmatic environment for RDF, RDFS4, OWL5, and SPARQL, which
is described in [Con06d], as well as a rule-based inference engine. The framework has orig-
inally been developed by HP Labs Semantic Web Research and is now available under an
Open Source license. The Semantic Clipboard uses Jena RDF functionality to read the RDF
source data and plugin manifest files, creating a Jena model from it, and applying queries
on the model.

Apache log4j Logging Package The log4j6 package provides efficient logging using hierarchical
logging levels which allow to customize the logging output at runtime without modify-
ing the application source code. In the Semantic Clipboard application, log4j is used to
log warning and error messages as well as debugging information to the system console.
The priority of logging messages to be displayed can be customized using command line
parameters specified at the application startup.

3http://jena.sourceforge.net/
4RDF Schema
5Web Ontology Language
6http://logging.apache.org/log4j/

http://jena.sourceforge.net/
http://logging.apache.org/log4j/

8 Chapter 2. Implementation

Xerces2 Java Parser The functionality to parse HTML7 files containing linked or embedded RDF
content is provided by the Xerces28 parser which is part of the Apache XML project.

iCal4j iCalendar API The iCal4j Java library9 provides a Java API to read, process, and output
iCalendar data. The ICalContainer data container plugin, see Section 2.6.2 on Page 16,
uses iCal4j to internally store a representation of iCalendar objects and to create the contents
of iCalendar files to be imported into target applications.

dom4j XML The dom4j library10 provides an Open Source library for working with XML, XPath,
and XSLT on the Java platform using the Java Collections Framework and with full support
for DOM, SAX, and JAXP. The GeoContainer data container plugin, which is described in
Section 2.6.2 on page 17, creates its XML output to be imported into the target application
using the XML functionality provided by dom4j.

2.3 Implemented Ontologies
Each RDF graph adheres to an ontology, which is a data model that describes a domain. Using
an ontology allows reasonings about objects in a domain and the relationships between them.
RDF supports various ontology languages, such as RDF Schema11 and the Web Ontology Language
(OWL)12.
In order to extract the ontology-specific data provided in an RDF source, each reader plugin im-
plements a specific ontology vocabulary.

2.3.1 vCard
vCard is a standard for the exchange of personal data, similar to the data to be found on a pa-
per business card. The standard was defined by the Internet Society in RFC 2426 [Soc98b] and is
widely supported by mail client applications, mobile phones, and personal digital assistants.
A vCard object contains information about a person such as his name, birthday, and nicknames,
organizational data containing the name of the organization and of the business unit, postal ad-
dresses including geographical coordinates, and contact information, like email addresses and
telephone numbers. vCard data is usually stored as unformatted ASCII data. The W3C however
has developed a recommendation for a representation of vCard data using RDF [Con01], making
vCard data available to Semantic Web applications. Listing 2.1 shows a simple vCard containing
information about the person John Doe, specifying his name, telephone number, email address,
and the organization he is working for. The same information is represented as a vCard RDF
graph in Listing 2.2.

1 BEGIN:VCARD
2 VERSION:3.0
3 N:Doe;John
4 FN:John Doe

5 TEL;WORK;VOICE:+41 99 555 5555

6 ORG:Example Corp.

7http://www.w3.org/TR/REC-html40/
8http://xerces.apache.org/xerces2-j/
9http://ical4j.sourceforge.net/

10http://www.dom4j.org/
11http://www.w3.org/TR/rdf-schema/
12http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/REC-html40/
http://xerces.apache.org/xerces2-j/
http://ical4j.sourceforge.net/
http://www.dom4j.org/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/

2.3 Implemented Ontologies 9

7 EMAIL;INTERNET:john.doe@example.com
8 END:VCARD

Listing 2.1: A simple vCard.

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:vCard = "http://www.w3.org/2001/vcard-rdf/3.0#">

4 <rdf:Description rdf:about = "http://seal.ifi.unizh.ch/people/doe">

5 <vCard:FN>John Doe</vCard:FN>

6 <vCard:N rdf:parseType="Resource">

7 <vCard:Family>John</vCard:Family>

8 <vCard:Given>Doe</vCard:Given>

9 </vCard:N>

10 <vCard:ORG>Example Corp.</vCard:ORG>

11 <vCard:TEL rdf:parseType="Resource">

12 <rdf:value>+41 99 555 5555</rdf:value>

13 <rdf:type rdf:resource="http://www.w3.org/2001/vcard-rdf/3.0#work"/>

14 <rdf:type rdf:resource="http://www.w3.org/2001/vcard-rdf/3.0#voice"/>

15 </vCard:TEL>

16 <vCard:EMAIL rdf:parseType="Resource">

17 <rdf:value>john.doe@example.com</rdf:value>

18 <rdf:type rdf:resource="http://www.w3.org/2001/vcard-rdf/3.0#internet"/>

19 </vCard:EMAIL>

20 </rdf:Description>

21 </rdf:RDF>

Listing 2.2: vCard data represented in RDF.

2.3.2 FOAF
The Friend of a Friend (FOAF) project13 is about creating a web of machine-readable Websites de-
scribing people, the links between them and the things they create and do, using an RDF-based
data format [BM05]. Using the FOAF vocabulary, a person can provide information about her-
self, such as her name, interests and Website, and link to other people’s FOAF data using the
<foaf:knows> property.

2.3.3 iCal
iCalendar is a standard for calendar data exchange as defined in RFC 2445 [Soc98a]. The format
of iCalendar data resembles the vCard format, and iCalendar data is also stored as unformatted
ASCII data.
The W3C created a specification for an RDF representation of the iCalendar format, the iCal on-
tology [Con05]. The work on this was still in progress at the time of writing, as there was no final
version of the iCal ontology published.

13http://www.foaf-project.org/

http://www.foaf-project.org/

10 Chapter 2. Implementation

2.4 RDF Source Reader

In order to process the RDF data by the respective reader plugin, at first a Jena model has to
be built from the data. After the user has specified a local RDF file or the URL of an RDF-
annotated Website as source, the RDFInputReader class checks if the specified RDF source can
be assumed to be a plain RDF file, by trying to match the file extension of the source with any
extension defined in the Config.MANIFEST EXTENSION constant. If no matching extension is
found, RDFInputReader assumes the source being an HTML file having RDF content linked or
embedded in it. It subsequently hands the URL of the source to the HtmlReader class which
then tries to extract the RDF content embedded in the HTML file, or retrieving the linked RDF
source.
HtmlReader uses Xerces, see Section 2.2, to parse the HTML file, supporting two different meth-
ods of annotating a Website using RDF data:

• Embedding the RDF data using the <script> tag, as the example in Listing 2.3 shows.
As there was no published standard document on the subject of embedding RDF in HTML
available from the W3C at the time of writing, the parser was implemented to support the
method using the <script> tag as described in [Pal02]. Although RDF data embedded in
HTML using the <script> tag is ignored by a Web Browser, the HTML document con-
taining the RDF data no longer adheres completely to the XHTML standard, and as such
the validation of the document using the W3C Markup Validation Service14 fails. See Sec-
tion 3.2.2 for proposals on how to extend the capabilities of the Semantic Clipboard to pro-
cess embedded RDF data in the future.

• Linking to an external RDF source using the <link> tag, as the following line of code
shows:
<link rel="meta"type="application/rdf+xml"href="content.rdf"/>

RDFInputReader will then create a Jena model object from the retrieved RDF content, which
will be used as session model.

1 <script type="application/rdf+xml">

2 <rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:vCard = "http://www.w3.org/2001/vcard-rdf/3.0#">

4 <rdf:Description rdf:about = "http://seal.ifi.unizh.ch/people/doe">

5 <vCard:FN>John Doe</vCard:FN>

6 <vCard:N rdf:parseType="Resource">

7 <vCard:Family>John</vCard:Family>

8 <vCard:Given>Doe</vCard:Given>

9 </vCard:N>

10 </rdf:Description>

11 </rdf:RDF>

12 </script>

Listing 2.3: RDF embedded in HTML.

14http://validator.w3.org/

http://validator.w3.org/

2.5 Plugin Manager 11

2.5 Plugin Manager
The plugin architecture of the Semantic Clipboard requires the application to discover the plug-
in classes that are currently present at the local configuration and to dynamically instantiate
those classes needed to process the source data and paste it into target applications. Therefore,
the PluginMgr class initializes and manages the configuration of the currently available plugin
classes using the manifest files provided by the plugins, storing this information using an instance
of the PluginConfig class.

2.5.1 Manifest Files
To register itself at the Semantic Clipboard, each plugin class has to provide a manifest file con-
taining information about the plugin and its capabilities as RDF data. The information provided
by all plugin types include the Java classname and the type of the plugin, being either a reader,
data container or application plugin. Furthermore, data container and application plugins have
to provide additional information as described in the following:

Reader Plugin A reader plugin implements the functionality to extract the data stored in the RDF
source using a specific ontology vocabulary, e.g. vCard or iCal, and to create a data container
object using the data. Therefore, the supported data container creates a dependency on a
reader plugin. However, it is assumed that a reader plugin and the corresponding data
container plugin are being jointly developed; thus, the compatibility of a reader plugin and
its data container (and vice versa) is implicitly assumed. Consequently, a reader plugin has
to provide the information about its classname and its plugin type in its manifest file.

Data Container Plugin A data container provides a Java object to store the data described by a
specific ontology. E.g. the vCard data container provides means to store the personal data
contained in a vCard file, such as name, addresses and telephone numbers of a specific per-
son. This data will then be pasted into a target application by an application plugin, which
has to be implemented according to the specification of the current data container.
To ensure compatibility between the application plugin and its supported data contain-
ers, the application plugins specify the name and accepted version number of each of its
supported data containers in their manifest files. The data containers, on the other hand,
specify its name and version number in their manifest files. For the sake of simplicity, a
version number is represented by a single integer number, and the test whether an applica-
tion plugin accepts the version number of a data container or not is done by simply testing
the numbers specified by the application plugin and by the container plugin on equality.
However, using the Semantic Clipboard in a real world environment, that would provide a
larger number of plugins, more sophisticated methods for version controlling would have
to be implemented.

Application Plugin An Application plugin acts as an interface between the Semantic Clipboard
and desktop applications, implementing functionality to paste the contents of one or more
data containers into a specific target application.
In addition to the version information of the supported data container plugins, which has
to be provided as described in the paragraph above, application plugins specify also the
name and a short description of the target application they are built for. This information is
provided to the user when he has to choose an application to paste the extracted data into.
As the target applications require, other than the Semantic Clipboard application itself, a
specific operating system environment such as Windows XP or Mac OS X, the application

12 Chapter 2. Implementation

plugin manifests also specify the identifier of the platform required for its target applica-
tion. Only application plugins specifying the same platform identification string as the one
returned by the method System.getProperty("os.name") are being instantiated by
the plugin manager.

As an example for an application plugin manifest file, the manifest of the Microsoft Outlook appli-
cation plugin, providing functionality to paste vCard and iCal data into the Outlook application
on Windows, as described in Section 2.6.3, is shown in Listing 2.4:

• The XML namespace semclip used by all plugin manifest files is associated with the URI
http://seal.ifi.unizh.ch/semclip-rdf/, as defined in line 2.

• Lines 6 to 10 specify the classname and type of the plugin, the name and description of the
target application, and the required platform for the target application.

• The supported data container plugins are each specified as individual resources in lines
16 et seq. and 21 et seq., defined as anonymous nodes carrying node ID “A0” and “A1”
respectively, which are referenced in lines 12 and 13.

1 <rdf:RDF

2 xmlns:semclip="http://seal.ifi.unizh.ch/semclip-rdf/"

3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

4 <rdf:Description rdf:about="http://seal.ifi.unizh.ch/semclip-rdf/

plugins#OutlookAppPlugin">

5

6 <semclip:classname>

ch.unizh.ifi.seal.semclip.plugins.applications.OutlookAppPlugin

</semclip:classname>

7 <semclip:plugintype>AppPlugin</semclip:plugintype>

8 <semclip:appname>MS Outlook</semclip:appname>

9 <semclip:appdesc>Microsoft Office Outlook</semclip:appdesc>

10 <semclip:platform>Windows XP</semclip:platform>

11

12 <semclip:containers rdf:nodeID="A0"/>

13 <semclip:containers rdf:nodeID="A1"/>

14 </rdf:Description>

15

16 <rdf:Description rdf:nodeID="A0">

17 <semclip:containername>VCardContainer</semclip:containername>

18 <semclip:containerversion>1</semclip:containerversion>

19 </rdf:Description>

20

21 <rdf:Description rdf:nodeID="A1">

22 <semclip:containername>ICalContainer</semclip:containername>

23 <semclip:containerversion>1</semclip:containerversion>

24 </rdf:Description>

25 </rdf:RDF>

Listing 2.4: RDF manifest for the iCal application plugin.

2.5 Plugin Manager 13

2.5.2 Plugin Configuration
During the initialization process which is performed at the startup of the Semantic Clipboard,
the PluginMgr class searches in the directory defined in the Config.MANIFEST PATH constant
for files having the extension defined in the Config.MANIFEST EXTENSIONS constant using
the discoverPlugins() method. The list of matching files is then being processed by the
ManifestReader class using its readManifest() method, which creates a ContainerInfo
object for each data container, and an AppPluginInfo object for each application plugin mani-
fest found. These plugin info objects store and provide access to the plugin information specified
in the RDF manifest files, allowing to parse the manifest file only once and retrieving the infor-
mation about a plugin afterward efficiently from a Java object instead.
The PluginConfig Singleton class stores the information contained in the plugin manifest files
using references to all existing ContainerInfo, AppPluginInfo and reader plugin objects.
References to the latter are being stored directly in a Vector instead of a dedicated plugin object,
as the reader plugins provide only a single value, its classname, in the manifest.

2.5.3 Plugin Instantiation
Depending on the type of the plugins classes, the plugin manager instantiates the different plugin
types as follows:

Reader Plugin All reader plugins whose classnames are available in the plugin configuration are
instantiated during the initialization process at the startup of the application. After the user
has specified the RDF source, the plugin manager iterates over all available reader plugins
to let them process the source model using the processModel() method, implemented by
every reader plugin class.

Container Plugin For every recognized rdf:about subject URI in the source data, a container
plugin object is created by the processModel() method of the respective reader plugin.
Using the Session.getContainersBySubject() method15, the reader receives a list of
all existing data containers for the specified URI. If the list contains an instance of a data
container the reader supports, it reuses this container, although existing data, contained in
fields the reader writes into, might be overwritten. Otherwise, a new instance of the data
container is created and the key-value pair of its URI and object reference is stored in the
previously explained Hashtable in the Session object.

Application Plugin After the source data has been processed by the reader plugins, the list of
applicable application plugins is created, containing application plugins matching all of the
following criteria:

• The operating system required by the target application of the plugin matches the ac-
tual platform the Semantic Clipboard is currently running on. Determining the current
platform version is done using the method described in Section 2.5.1 on page 12, where
the application manifest file is explained.

• The list of existing data containers contains at least one instance of a container which
is supported by the respective application plugin, regarding name and version of the
container.

15Which is simply an accessor method for a Hashtable in the Session object, that stores Vectors containing references to
the existing data container objects, using their subject URI as key.

14 Chapter 2. Implementation

2.6 Plugin Modules
A number of reader, data container, and application plugins have been implemented in order to
demonstrate the use of the Semantic Clipboard to process data from various source ontologies
into different desktop applications. The features of these plugins are explained in the following
subsections. Figure 2.3 shows the inheritance structure of these plugin classes.

Figure 2.3: Inheritance structure of the reader, data container, and application plugins.

2.6.1 Reader Plugins
The class ReaderPlugin represents the superclass for all reader plugin implementations. It pro-
vides methods for frequently used Jena model processing tasks, such as retrieving the value of a
literal or the content of an RDF Sequence, or determining if at least one of the namespaces used by
the model, each representing a specific ontology, is supported by the reader. Its abstract method
processModel() has to be implemented by any reader plugin subclass, containing the function-
ality to extract the ontology-specific data from the Jena model and pasting it into the matching
data container objects.

iCal Reader As described in Section 2.3.3, iCal provides an ontology to describe events and re-
lated information. The ICalReader class extracts iCal data contained in the RDF source
using the SPARQL [Con06d] query language, provided by the Jena framework. For each
VEvent component found in the source, an ICalContainer object, see Section 2.6.2, is
created to store the information about the event and any associated VAlarm components.
The W3C provides two slightly different RDF schemata for iCal, which differ only in the
representation of timezone information. As the current ICalReader plugin ignores any

2.6 Plugin Modules 15

timezone-specific data, both of these schemata, represented by the namespaces as defined
in the ICAL NS and ICAL TZD NS constants respectively, are supported by the plugin.
Values representing date and time in the source code have to conform to the ISO 8601 date
format, as specified in [Con98].

VCard Reader The VCardReader class implements functionality to extract data that adheres to
the vCard ontology; see Section 2.3.1 for a description of this ontology. It looks for RDF sub-
jects having the vCard:FN property and extracts the vCard data for this subject. The vCard
data may be directly associated with the subject, or linked from another property resource,
such as DC:creator, representing a Dublin Core RDF [Ini02] property, as Listing 2.5 shows.
For each subject associated with a vCard:FN property, a VCardContainer container ob-
ject, as described in Section 2.6.2, is created to store the vCard information of the subject. If
a vCard:GEO property is found, containing the geographical coordinates of the described
person, the coordinates are stored in a separate GeoContainer container object, as de-
scribed in Section 2.6.2 on page 17.

1 <DC:creator rdf:parseType="Resource">

2 <vCard:FN>John Doe</vCard:FN>

3 <vCard:N rdf:parseType="Resource">

4 <vCard:Family>Doe</vCard:Family>

5 <vCard:Given>John</vCard:Given>

6 </vCard:N>

7 </DC:creator>

Listing 2.5: Dublin Core Metadata containing vCard data.

FOAF Reader The FoafReader plugin supports parts of the FOAF ontology, as described in
Section 2.3.2, whereas some of the properties describing a person, but no references to other
persons, are recognized by the plugin. Due to the close resemblance of these FOAF prop-
erties to some properties of the vCard ontology, a VCardContainer object is used to store
the extracted FOAF data. In doing so, each value of a FOAF property is mapped onto its
respective vCard property, as Table 2.1 shows.

FOAF vCard
firstName Given
surname Family
nick NICKNAME
mbox EMAIL

Table 2.1: Mapping of FOAF to vCard properties.

Music Reader Developed as a first prototype of a reader plugin, the MusicReader implements
just a simple vocabulary to describe the name of the artist and the title of a song, rather than
an existing standard ontology vocabulary. To store the data extracted from the RDF source,
an instance of the MusicContainer object, as described in Section 2.6.2 on page 17, will be
used.

2.6.2 Data Container Plugins
Any data container plugin has to be a subclass of the DataContainer superclass. The only
requirement to its subclasses is to implement the abstract method toString(), which itself is

16 Chapter 2. Implementation

inherited from the Object class. As return value of this method, every data container object
should return a String serialization of its contents that follows the specific syntactic and format-
ting requirements of the implemented ontology, e.g. the VCardContainer class described in the
following section returns a String representing the contents of a .vcf vCard file.
Using this String representation, an application plugin may paste the data contained in a data
container object into a target application simply by creating a file containing the return value of
the toString() method of the particular data container, which is then passed on to the appli-
cation. If there is no specific serialization standard for the ontology implemented by the data
container, the method may also return an empty or any other descriptive String value.
Besides this requirement, a data container class may implement any other functionality needed
to store and retrieve the specific values of its ontology vocabulary.

iCal Container The ICalContainer plugin provides functionality to store and retrieve iCal
event data. It uses an iCal4j Calendar object to store and process the iCal data internally.
Although the iCal specification allows more than one VEvent component within an iCal
RDF file, a separate container object has to be used for every VEvent component, as an
event has no individual identification within a Calendar object, and therefore could not be
accessed directly.
Table 2.2 lists the subset of iCal event properties that are supported by the plugin. In ad-
dition, alarm components may be added to an event, allowing to notify the user about an
upcoming event.

Property Description
dtstart, dtend,
dtduration

Values defining the beginning and end date, and duration
time of the event. The start and either the end or the dura-
tion of an event have to be specified.

uid A unique identifier String for the event. If not specified
by the source, a random hexadecimal UID String will be
generated using the generateUID() method.

summary,
description

Text values to describe the event. While the summary pro-
vides a title for the event, the description may describe the
event more complete.

Table 2.2: VEvent properties implemented by ICalContainer.

To allow the import of the contents of the container into Microsoft Outlook, some changes
to the contents of the container may be necessary, as Outlook imposes some restrictions on
iCal data in addition to the requirements defined in [Soc98a].
The method makeMSOutlookReady() modifies the contents of the container according to
these restrictions, if needed by an application plugin such as OutlookAppPlugin, which
is described in Section 2.6.3 on page 18. As Outlook refuses importing any iCal file that does
not fulfill its requirements, this method makes the following changes to the contents of the
data container:

• Alarm components having a negative value for its trigger property are removed from
the event, as Outlook does only support positive values for the alarm trigger property.

• Alarm components having the value for its trigger property formatted as a DateTime
value, representing an absolute date, rather than a Duration as required by Outlook,
are removed from the event.

The other requirements, namely inserting a METHOD:PUBLISH property into the vCalendar
object, inserting a UID for every event component, and adding a DTSTAMP property for each

2.6 Plugin Modules 17

event object, are taken care of by the fillICalContainer() method and the constructor
of iCal4j’s VEvent class, respectively.

vCard Container The VCardContainer plugin implements a representation of a vCard object,
supporting a large subset of the vCard properties specified in [Soc98b]. As at the time of
writing no Java framework to store and process vCard data, similar to the iCal4j framework
for iCalendar data, was available, the properties are stored internally using inner classes,
each of them representing a vCard property. Table 2.3 lists the implemented vCard proper-
ties and its meaning.

Property Description
UID Unique identifier of the vCard.
FN Formatted Name of the person.
N Name components (Family Name, Given Name, Additional

Names, Honorific Pre- and Suffixes).
NICKNAME Nickname of the person.
BDAY Birthday of the person.
ADR Postal addresses.
LABEL Formatted text corresponding to delivery address.
EMAIL Email addresses.
TEL Telephone numbers.
GEO Geographical coordinates.
ORG Organizational name and units.
ROLE Occupation, or business category.
TITLE Job title, functional position or function.

Table 2.3: vCard properties implemented by VCardContainer.

Geo Container A GeoContainer object stores information about a geographical coordinate,
represented by a latitude, longitude, and a summary and description text. The toString()
method returns the String serialization of its content, using the Keyhole Markup Language16

XML grammar. To create the XML output, the functionality provided by the dom4j library
is used.

Music Container The MusicContainer class provides a data container to store information
about a music track, namely the name of the artist and the title of the song.

2.6.3 Application Plugins
Application plugins, implemented as subclasses of the AppPlugin class, are designed to act as
interfaces between the contents of a data container and a desktop application. Therefore, they
are developed to support a specific version of one ore more data container plugins and a specific
desktop application.
The AppPlugin superclass implements utility methods usable by any application plugin, such as
retrieving creating an ImageIcon object from an icon file, representing the icon of the target ap-
plication, and providing a common used TitledBorder object. The following abstract methods
have to be implemented by any application plugin subclass:

16http://earth.google.com/kml/kml_intro.html

http://earth.google.com/kml/kml_intro.html

18 Chapter 2. Implementation

• showUI() has to implement the functionality to show the application-specific user interface
inside a Wizard panel component.

• pasteData() Has to provide the means to paste the content of the data container chosen
by the user into the target application.

For application plugins that paste the data into the target application using a temporary file
and command line scripting, the abstract SimpleScriptAppPlugin subclass of the AppPlugin
class provides functionality used in this case. Its createFileName() method returns a filename
to be used for a temporary file, using a specified prefix and suffix. execSimpleScript() pastes
the contents of the specified data container using the container’s toString() method into a
temporary file and executes the provided command line script, which calls the target application
to open the temporary file. Any errors occuring during this process are displayed on the user
interface.
If a target application is available for different platforms and the process to import data into
the application differs only slightly between the platforms, a single application plugin may be
implemented to support multiple platforms, as the GoogleEarthAppPlugin, decribed on page
19, does for example.

ICal Application The Apple iCal personal calendar application17 comes bundled with the Mac
OS X operating system and is, therefore, available to all users of this platform.
The ICalAppPlugin class shows a list of the iCalendar events contained in the existing
ICalContainer objects to the user. The user can display the start and end time, and the
description of the event, as well as a boolean value indicating whether any alarms are asso-
ciated with the event, by selecting an event from the list and clicking on the Preview button
provided by the plugin user interface.
The data of the selected event is pasted into the iCal application using a temporary .ics
file that is imported into the application using a command line script.

Mac Address Book Being the integrated address book application for Mac OS X, the Address Book
application18 is the standard address managing tool on the Mac platform.
The user interface of the MacABAppPlugin class is similar to the one of the iCal plugin,
showing a list of the vCard components contained in the existing VCardContainer objects
to the user. A preview of the selected vCard, showing the UID, formatted name, name
components, and the first specified email address of the person, is displayed to the user
after clicking the Preview button.
The data of the selected vCard is pasted into the address book application using a temporary
.vcf file that is imported into the application using a command line script.

Windows Address Book The Windows address book19 is a simple application to create and man-
age contact entries and is integrated in the current Windows distribution.
Its corresponding application plugin, the WinABAppPlugin class, implements a basic user
interface, showing buttons with the names of the persons represented by the currently ex-
isting vCard container objects as its titles. After the user has clicked on any of the buttons,
the vCard data is pasted into the address book application using a temporary .vcf file that
is imported into the application by executing a command line script.

Microsoft Outlook Microsoft Outlook20 is one of the most widely used personal information man-
ager application and is part of the Microsoft Office suite. Besides an email client and other

17http://www.apple.com/macosx/features/ical/
18http://www.apple.com/macosx/features/addressbook/
19http://msdn.microsoft.com/workshop/wab/overviews/wabovw.asp
20http://www.microsoft.com/outlook/

http://www.apple.com/macosx/features/ical/
http://www.apple.com/macosx/features/addressbook/
http://msdn.microsoft.com/workshop/wab/overviews/wabovw.asp
http://www.microsoft.com/outlook/

2.7 User Interface 19

features, it also provides contact management and calendaring functionality.
The application plugin for Outlook, the OutlookAppPlugin class, implements a user in-
terface similar to the one of the Windows address book plugin. It displays the vCard and
iCal data contained in the current VCardContainer and ICalContainer objects as but-
tons, showing the name of the vCard object or the summary of the iCal event, respectively,
as button titles. Clicking on one of the buttons pastes the selected data as address book
entry or calendar event into the Outlook application, using a temporary .vcf file for vCard
data and a temporary .ics file for events, respectively.
Before being pasted into the target application, iCal data is processed using the
ICalContainer.makeMSOutlookReady() method, which renders the content of an
ICalContainer object into an Outlook compatible form, as described in Section 2.6.2 on
page 16.

Google Earth Google Earth21 is a virtual-globe application, allowing the user to display a satellite
image of any point on the earth surface.
The user interface of the GoogleEarthAppPlugin application plugin consists of buttons,
each labeled with the summary text of the existing GeoContainer data containers. Af-
ter the user has clicked on one of the buttons, the coordinates of the selected location is
pasted into the Google Earth application, which displays the location on its virtual globe. A
temporary .kml file, containing the coordinates and its description in the Keyhole Markup
Language XML format, is used to paste the data into the application by executing a com-
mand line script.

iTunes The Apple iTunes application22 is a music jukebox program with an integrated online
music store.
Using the ITunesAppPlugin class, a music track whose artist’s name and song title are
contained in a MusicContainer data container, can be played in the iTunes application.
The application plugin user interface displays buttons, each labeled with the name of the
artist and the title of the song. When the user clicks on one of the buttons, iTunes starts to
play the specified song, if a corresponding music file is available in the local iTunes library.
As the plugin uses the Apple Script23 script language to communicate with the application,
only iTunes on the Mac platform is supported by the plugin.

2.7 User Interface
The user interface of the Semantic Clipboard is made of Java Swing components, showing the
main window which contains the Wizard interface.

2.7.1 Main Window
The main application window of the Semantic Clipboard is a single JFrame, which acts as parent
frame for the Wizard dialog window and as container for the menu bar. Using the items provided
by the menu bar, the user may restart and display the Wizard dialog, display the about dialog,
and exit the application. Any other program interaction is done within the Wizard dialog, as
described in the following section.

21http://earth.google.com/
22http://www.apple.com/itunes/overview/
23http://developer.apple.com/applescript/

http://earth.google.com/
http://www.apple.com/itunes/overview/
http://developer.apple.com/applescript/

20 Chapter 2. Implementation

2.7.2 Wizard Interface

The Wizard user interface guides the user through the steps of the work flow of the Semantic Clip-
board. The Wizard consists of a single dialog window that displays the respective user interface
for the current stage. Using the Next and Back buttons, the user navigates through the work flow,
which may be exited at any time by clicking the Cancel button. Figure 2.4 shows the main window
containing the Wizard dialog, as it is displayed after the initialization process of the application
is completed.
An existing Wizard framework [Eck05], implemented as a Java Beans component, has been reused
to realize the Wizard interface, which reduced the total effort required to develop the interface,
compared to the alternative of developing an new Wizard framework from scratch. The develop-
ment work to be carried out included the modification and improvement of the Wizard function-
ality, and the creation of customized Panel components to suit the specific needs of the Semantic
Clipboard application.
The Model and Controller components of the Model-View-Controller pattern implemented by the
Wizard framework are provided by the WizardModel and WizardController classes, respec-
tively, the Controller being completed by individual WizardPanelDescriptor classes for each
panel to be displayed. The View of the Wizard, represented by three Wizard panels is imple-
mented using subclasses of the WizardPanel class.

Figure 2.4: Main application window showing the Wizard interface.

2.8 Workflow 21

2.8 Workflow
To give an impression of the workflow of the Semantic Clipboard user interface, the following
subsections explain the steps necessary to select an RDF source, choose the target application,
and finally paste the data into the application.
The RDF source used in this example consists of an HTML document containing embedded RDF
data, as shown in Listing 2.6. The RDF data in the document describes the name and geographical
position of a person in lines 10 to 17, and the artist and title of a music track in lines 19 to 22.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4 <head>
5 <title>Embedded RDF</title>
6 <script type="application/rdf+xml">
7 <rdf:RDF xmlns:semclip="http://seal.ifi.unizh.ch/semclip-rdf/"
8 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
9 xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#">

10 <rdf:Description rdf:about="http://seal.ifi.unizh.ch/people/doe">

11 <vCard:FN>John Doe</vCard:FN>

12 <vCard:N rdf:parseType="Resource">

13 <vCard:Family>John</vCard:Family>

14 <vCard:Given>Doe</vCard:Given>

15 </vCard:N>

16 <vCard:GEO>8.477225834570831,47.41419165048976</vCard:GEO>

17 </rdf:Description>

18 <rdf:Description

19 rdf:about="http://seal.ifi.unizh.ch/semclip-rdf/examples/music#keane">

20 <semclip:trackartist>keane</semclip:trackartist>

21 <semclip:trackname>somewhere only we know</semclip:trackname>

22 </rdf:Description>

23 </rdf:RDF>

24 </script>
25 </head>
26 <body>
27 <p>This HTML document contains embedded RDF data.</p>
28 </body>
29 </html>

Listing 2.6: An HTML document containing embedded RDF data.

2.8.1 Specifying the RDF Source
As the current implementation of the Semantic Clipboard does not yet support an integration into
a Web Browser application, see Section 3.2.1 suggesting how this could be done in the future, the
user has to specify the RDF source manually.

22 Chapter 2. Implementation

Using the first panel of the Wizard user interface, as shown in Figure 2.5, the user specifies the
RDF source, represented by a plain RDF file or an HTML file with embedded or linked RDF
content. The location of the source is specified either as a URL, or by choosing a local file using a
FileChooser dialog. If the current content of the system clipboard is a text representing a URL,
the user may paste this URL into the corresponding text field by clicking the Paste from Clipboard
button.
After specifying the location of the RDF source, the user clicks the Next button, which causes the
Semantic Clipboard to retrieve the specified RDF source, iterate through the reader plugins to
process the data, and create data container objects from it, as described in Sections 2.4 and 2.5.3.

Figure 2.5: Specifying the RDF source in the first Wizard panel.

2.8.2 Selecting the Target Application

The second Wizard panel displays a progress bar, showing the progress of retrieving and process-
ing the RDF source to the user. Below the progress bar, the list of application plugins that are able
to handle the current source data is displayed, as Figure 2.6 shows. The description of a plugin,
as defined in its manifest file, see Section 2.5.1, is displayed for the selected plugin upon clicking
the Get Plugin Description button.
In this example, the Google Earth, Mac Address Book, and iTunes applications would be possible
target applications for the data contained in the RDF source and are, therefore, shown in the plu-
gin list.
After the user has selected the application plugin to handle the data and has clicked on the Next
button, the Semantic Clipboard instantiates the chosen application plugin and lets the plugin
display its user interface.

2.9 Installation 23

Figure 2.6: Selecting the target application in the second Wizard panel.

2.8.3 Selecting the Data to be pasted
In the third Wizard panel, the specific user interface provided by the application plugin, as se-
lected in the previous step, is displayed. As each application plugin implements its specific user
interface, the layout and contents of this Wizard panel varies, depending on the chosen applica-
tion plugin. Therefore, the screenshots shown in Figures 2.7 and 2.8 are only one possible example
of such a plugin-specific user interface.
Figure 2.7 shows the Wizard displaying the user interface of the Mac Address Book application
plugin. The plugin displays a list containing the vCard components extracted from the source, in
this case a vCard about the person John Doe. Clicking on the Preview button displays a message
box showing the summary of the contents of the selected vCard component, as Figure 2.8 shows.

Clicking on the Paste Data button results in the application plugin pasting the data into its
target application. In the case of this example, the application plugin pastes the selected vCard
data into the Mac Address Book application, resulting in the creation of a new address entry.

After the data is successfully pasted into the target application, the user may select and paste
other data into the same application. He may also click on the Back button to return to the sec-
ond or first Wizard panel to choose another target application or specify a different RDF source.
Clicking on the Finish button closes the Wizard user interface, which may be displayed again by
selecting the Show Wizard command from the File menu bar.

2.9 Installation
The enclosed CD-ROM provides a ZIP file (semclip bin.zip) that contains a JAR archive of
the Semantic Clipboard classes, as well as the plugin classes and manifest files, and all required
external Java libraries. The contents of the ZIP file should be extracted into an empty folder, in
the following referred to as $SEMCLIP. In order to run the Semantic Clipboard application, the

24 Chapter 2. Implementation

applicable method for the respective platform, as described below, should be used.

Mac OS X Using the console, the run.sh is executed by changing the current working directory
to $SEMCLIP and typing the commands as shown in Listing 2.7.

1 chmod u+x run.sh

2 ./run.sh

Listing 2.7: Shell commands to start the Semantic Clipboard on Mac OS X.

Windows In an Explorer window showing the $SEMCLIP directory, the application is started by
simply double-clicking on the run.bat batch file.

2.9 Installation 25

Figure 2.7: The third Wizard panel showing the data to be pasted into the target application.

Figure 2.8: A message box displaying the contents of the selected vCard component.

Chapter 3

Conclusion and Future Work

3.1 Conclusion
In this thesis, the concept of the Semantic Clipboard, using an extensible plugin architecture and
a Java implementation thereof, is presented.
The Semantic Web, a collaborative effort of a large number of researchers and the industry, initi-
ated and led by the World Wide Web Consortium, provides a common framework to share data
across application, enterprise, and community boundaries. The Resource Description Framework
RDF, using XML syntax and the URI schema for naming, enables Semantic Web applications to
compose metadata describing Web resources, or, by extending the concept of a resource, any other
object of the real or virtual world.
Current clipboard applications, as the built-in clipboards of the Windows or Mac OS operating
systems, allow the exchange of data between applications running on the same platform. Re-
taining the semantics of the data copied, however, is only supported within the boundaries of
some application frameworks, as for data exchanged within the applications of the Microsoft Of-
fice suite. Expanding the range of data sources from desktop applications to any Website of the
World Wide Web, the process of copying data from a Web resource and pasting it into a desktop
application results in losing most of the semantics of the data, as the target application usually
recognizes the pasted data as formatted or plain text only.
The Semantic Clipboard application extracts RDF data from accordingly annotated Websites,
presents the user a list of target applications which are able to handle the data, and pastes the
data chosen by the user into a target application, retaining the semantics of the data. The imple-
mented plugin architecture uses three different types of plugin modules, which each of them can
be developed individually to extend the range of supported source ontologies and target applica-
tions:

• Reader plugins, each implementing a specific ontology vocabulary, extract the supported
ontology-specific data from the RDF source.

• Data container plugins provide functionality to store the extracted data, while keeping the
specific syntactic and formatting standards of the particular ontology.

• Application plugins, acting as interface between the Semantic Clipboard and desktop ap-
plications, paste the data contained in the supported data container objects into a specific
target application.

Using the Semantic Clipboard, metadata contained in an RDF annotation of a Website, for
example describing the time, date, and description of an event, and the name and address of

28 Chapter 3. Conclusion and Future Work

the author, can be extracted, processed and pasted as an event entry into a calendaring desktop
application, and as an address entry into a contact management application, respectively.

3.2 Future Work
Due to the extensible plugin architecture implemented in the Semantic Clipboard, additional plu-
gin modules to support further source ontologies and target applications may easily being added
to the current configuration. Besides this possible extensions, the integration of the Semantic Clip-
board into a Web Browser application, and the extension of the range of supported methods to
embed RDF data in HTML, are proposed.

3.2.1 Browser Integration
The current implementation of the Semantic Clipboard requires the user to manually paste the
URL of an RDF annotated Website into a text field provided by the application user interface.
Integrating the Semantic Clipboard into a Web Browser application would allow the Semantic
Clipboard to be able to recognize Websites containing RDF metadata, which then could be au-
tomatically extracted and presented to the user, creating a “true” clipboard functionality. After
extracting the source data, the user may chose the data he wants to paste into a specific target
application, as it is the case in the workflow of the current implementation. A possible way to in-
tegrate the Semantic Clipboard into a Web Browser might be the Mozilla Extensions technology1,
allowing to develop add-on functionality for the Mozilla Firefox and SeaMonkey Web Browsers.

3.2.2 Embedded RDF Data
As the development work in this thesis focused on creating a set of plugins to support a number
of source ontologies and target applications, the implemented functionality to extract RDF data
embedded in HTML includes only a basic set of embedding methods, as described in Section 2.4.
However, to expand the range of Websites whose RDF annotations are supported by the Semantic
Clipboard, the HTMLReader class could be extended by implementing the ability to extract RDF
content that is embedded in HTML documents using one of the following methods:

• Embedding RDF data in the HTML body, using the RDFa syntax as proposed by the W3C in
[Con06a]. RDFa allows to define RDF properties directly in the HTML content, e.g. the code
<p>My name is <meta property="contact:fn">Jo Smith</meta></p> displays
the name Jo Smith to the visitors of the Website, and, at the same time, defines this name as
the value of the contact:fn property, allowing Semantic Web applications like the Se-
mantic Clipboard to extract this data and process it as contact information, rather than plain
text.

• RDF data pasted into the <head> of a HTML document2, which completes the embedding
using the <script> tag as described in Section 2.4.

1http://developer.mozilla.org/en/docs/Extensions
2see “How do I put some RDF into my HTML pages?” at http://www.w3.org/RDF/FAQ#How

http://developer.mozilla.org/en/docs/Extensions
http://www.w3.org/RDF/FAQ#How

3.2 Future Work 29

References

[AvH04] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT Press,
Cambridge, Massachusetts, USA, 2004.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001. http://www.sciam.com/article.cfm?articleID=
00048144-10D2-1C70-84A9809EC588EF21.

[BM05] Dan Brickley and Libby Miller. FOAF Vocabulary Specification. Namespace
Document, July 2005. http://xmlns.com/foaf/0.1/.

[Con98] The World Wide Web Consortium. Date and Time Formats. W3C Note, August 1998.
http://www.w3.org/TR/NOTE-datetime.

[Con01] The World Wide Web Consortium. Representing vCard Objects in RDF/XML. W3C
Note, February 2001. http://www.w3.org/TR/vcard-rdf.

[Con05] The World Wide Web Consortium. RDF Calendar Workspace. Website, April 2005.
http://www.w3.org/2002/12/cal/.

[Con06a] The World Wide Web Consortium. RDFa Primer 1.0: Embedding RDF in XHTML.
W3C Working Draft, May 2006.
http://www.w3.org/TR/xhtml-rdfa-primer/.

[Con06b] The World Wide Web Consortium. Resource Description Framework (RDF). Website,
June 2006. http://www.w3.org/RDF/.

[Con06c] The World Wide Web Consortium. Semantic Web. Website, June 2006.
http://www.w3.org/2001/sw/.

[Con06d] The World Wide Web Consortium. SPARQL Query Language for RDF. W3C
Candidate Recommendation, April 2006.
http://www.w3.org/TR/rdf-sparql-query/.

[Eck05] Robert Eckstein. Creating Wizard Dialogs with Java Swing. Sun Developer Network,
February 2005. http://java.sun.com/developer/technicalArticles/
GUI/swing/wizard/index.html.

[Ini02] The Dublin Core Metadata Initiative. Expressing Qualified Dublin Core in RDF /
XML. DCMI Proposed Recommendation, May 2002.
http://dublincore.org/documents/dcq-rdf-xml/.

[Pai05] Reinhard Paizoni. The Semantic Clipboard. Master’s Thesis, Technical University of
Vienna, March 2005.

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://xmlns.com/foaf/0.1/
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/vcard-rdf
http://www.w3.org/2002/12/cal/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/rdf-sparql-query/
http://java.sun.com/developer/technicalArticles/GUI/swing/wizard/index.html
http://java.sun.com/developer/technicalArticles/GUI/swing/wizard/index.html
http://dublincore.org/documents/dcq-rdf-xml/

32 REFERENCES

[Pal02] Sean B. Palmer. RDF in HTML: Approaches. Website, June 2002.
http://infomesh.net/2002/rdfinhtml/.

[Soc98a] The Internet Society. Internet Calendaring and Scheduling Core Object Specification
(iCalendar). Request for Comments, November 1998.
http://www.ietf.org/rfc/rfc2445.txt.

[Soc98b] The Internet Society. vCard MIME Directory Profile. Request for Comments,
September 1998. http://www.ietf.org/rfc/rfc2426.txt.

http://infomesh.net/2002/rdfinhtml/
http://www.ietf.org/rfc/rfc2445.txt
http://www.ietf.org/rfc/rfc2426.txt

	1 Introduction
	1.1 Motivation
	1.2 The Semantic Web and RDF
	1.3 Semantics of Data
	1.4 Functionality of the Semantic Clipboard

	2 Implementation
	2.1 Architecture
	2.2 Technologies
	2.3 Implemented Ontologies
	2.3.1 vCard
	2.3.2 FOAF
	2.3.3 iCal

	2.4 RDF Source Reader
	2.5 Plugin Manager
	2.5.1 Manifest Files
	2.5.2 Plugin Configuration
	2.5.3 Plugin Instantiation

	2.6 Plugin Modules
	2.6.1 Reader Plugins
	2.6.2 Data Container Plugins
	2.6.3 Application Plugins

	2.7 User Interface
	2.7.1 Main Window
	2.7.2 Wizard Interface

	2.8 Workflow
	2.8.1 Specifying the RDF Source
	2.8.2 Selecting the Target Application
	2.8.3 Selecting the Data to be pasted

	2.9 Installation

	3 Conclusion and Future Work
	3.1 Conclusion
	3.2 Future Work
	3.2.1 Browser Integration
	3.2.2 Embedded RDF Data

