
Diploma Thesis
January 18, 2006

Developing a Meta
Model for Release

History Systems

Dane Marjanovic
of Bihac, Serbia and Montenegro (01 730 340)

supervised by

Harald Gall
Martin Pinzger

Department of Informatics software evolution & architecture lab

Diploma Thesis

Developing a Meta
Model for Release

History Systems

Dane Marjanovic

Department of Informatics software evolution & architecture lab

Diploma Thesis

Author: Dane Marjanovic, dane.marjanovic@gmail.com

Project period: 19.07.2005 - 19.01.2006

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgments

Many thanks to all people, that contributed to this thesis. Martin Pinzger, for the supervision and
idea support. Michael Wrsch and Andreas Jetter, for providing the CVS implementation and tips
to Hibernate. Also thanks to my fellow graduands for the proof reading of the text and useful
ideas.

Abstract

The goal of this thesis is to construct a meta model for release history systems, based on SVN
(Subversion)1 and CVS2. The meta model will encompass the core concepts of versioning systems
as they are present in the mentioned tools. The release history aspect will then be extended by
an issue tracking data model for which we take the Bugzilla3 data representation. With the meta
model’s semantics, one will be able to model random release history systems similar to CVS or
SVN. Further the meta model will be able to model the release history aspect of CMS (Configu-
ration Management Systems) such as ClearCase4 or Visual Source Safe5, as we will validate the
meta model with the Rational ClearCase data model. The focus of this thesis lies in modeling a
meta concept to describe the notion of software history as it is present in representative tools for
release history. The model will be conceptualized in UML 2.0 and implemented in Java with the
use of Hibernate[Hib05].

The s.e.a.l. research group conducts a software evolution project, where the release history
meta model, developed in this thesis is a base part of. The release history meta model is devel-
oped conceptually in this thesis. The actual implementation of the meta model is focused on the
implementation of the issue tracking aspect, since the meta model incorporates the issue tracking
domain as well. The release history aspect was implemented in the scope of another project6 in
the s.e.a.l. research group. Thereby, a release history model was implemented, on the base of
CVS. The tools used to implement the CVS data model are used to implement the issue tracking
model in this effort, hence, the implementations, both of the CVS data model and issue tracking
model are very closely related to a possible implementation of the release history aspect of the
meta model.

Keywords: Meta model, conceptual world, release history, issue tracking.

1www.subversion.tigris.org
2www.nongnu.org/cvs
3www.bugzilla.org
4www.ibm.com/software/awdtols/clearcase
5http://msdn.microsoft.com/vstudio/previous/ssafe
6The versioning data model was implemented as part of the evolizer project in scope of a internship at the Institute for

Informatics

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 2

2 Background 5
2.1 Related Work . 5
2.2 Modeling concerns . 7

2.2.1 Meta modeling . 7
2.2.2 UML: applied naming and style conventions 8

3 Release History Systems and Bug Reporting Tools 11
3.1 CVS . 11
3.2 Subversion (SVN) . 13
3.3 Rational ClearCase . 14
3.4 Other versioning tools . 15

3.4.1 Visual Source Safe . 17
3.4.2 BitKeeper . 18
3.4.3 GNU arch . 19
3.4.4 Monotone . 19

3.5 Bug reporting: tools and concepts . 20
3.5.1 Bugzilla . 21
3.5.2 GNATS . 22
3.5.3 Rational ClearQuest . 23

3.6 CVS, SVN and Bugzilla: The data models . 23
3.6.1 The CVS data model . 24
3.6.2 The Subversion data model . 27
3.6.3 The Bugzilla data model . 29

4 Developing the release history meta model 35
4.1 Modeling concerns for the release history meta model 35
4.2 Deriving the meta model . 37

4.2.1 The Entity-Revision relation . 37
4.2.2 The Revision-Author relation . 39
4.2.3 The Revision-Transaction relation . 39
4.2.4 The Revision-Release relation . 40
4.2.5 The Revision-Branch relation . 41
4.2.6 The Revision - Modification Report (MR) relation 41
4.2.7 The Entity - file-meta-info relation . 42

vi CONTENTS

4.3 Extension of the meta model with the issue tracking data model 43
4.3.1 Linking release history data with issue tracking information 43

4.4 Further specialization of the release history aspect of the combined meta model . . 44
4.5 The combined meta model overview . 46

5 Validationwith ClearCase 49
5.1 The ClearCase data model . 50
5.2 Validation . 50
5.3 ClearCase features as possible extension to the release history meta model 53

5.3.1 The ”View” Concept . 53
5.3.2 The ”Activity” Concept . 53
5.3.3 The ”Stream” Concept . 54

6 Implementation and Evaluation 55
6.1 Technical overview . 55
6.2 Implementation details . 56
6.3 Evaluation . 58

6.3.1 Requirements . 58
6.3.2 Achieved and measured results . 59
6.3.3 Problems during implementation and evaluation 62

7 Conclusions 67

CONTENTS vii

List of Figures
2.1 UML 2.0 class diagram . 8
2.2 UML 2.0 bidirectional association relation . 8

3.1 ClearCase stream overview . 16
3.2 ClearCase baseline object . 16
3.3 The life cycle of a bug in Bugzilla . 22
3.4 The CVS data model . 24
3.5 The Subversion data model . 27
3.6 The Bugzilla data model . 30

4.1 Different meta modeling approach . 36
4.2 Used meta modeling approach . 36
4.3 The meta model file- revision relation . 37
4.4 Subversion file representation . 38
4.5 Subversion log entry . 39
4.6 Revision Author relation . 39
4.7 The revision transaction relation . 40
4.8 The release revision relation . 40
4.9 CVS release information . 40
4.10 The revision branch relation . 41
4.11 A branch graph in SVN . 41
4.12 A revision tree in CVS with branches . 42
4.13 The revision modification report relation . 42
4.14 The Entity - file-meta-info relation . 42
4.15 Bidirectional linking association of modification report and issue entity 44
4.16 Specialization of the release history meta models file entity 45
4.17 The complete extended and specialized release history meta model 47

5.1 The ClearCase data model . 50

6.1 Implementation idea schematics . 56
6.2 Detailed process graph for the issue tracking implementation 58
6.3 Thread table for the DOMBugParser.java; source: Eclipse Profiler plug-in 61
6.4 Thread call graph for the DOMBugParser.java class; source: Eclipse Profiler plug-in . 62
6.5 Memory usage of the DOMBugParser.java; source: Eclipse Profiler plug-in 63
6.6 Code snippet of a Java bean class; . 63
6.7 Code snippet of a Hibernate mapping file . 64
6.8 Code snippet of a Bugreport xml file . 65

viii CONTENTS

Chapter 1

Introduction

The importance of software evolution became more and more pertinent to software systems dur-
ing the last twenty years, even if for very practical purposes such as undoing changes. The aware-
ness for software evolution was present some decades ago. In the 80’s, early works on software
evolution [LB85] stressed the importance of modeling and conception of versioning systems. First
versioning systems, such as SCCS or RCS, had rather simple, text-based algorithms to store suc-
cessive versions of files. In recent years, considerable research in the software evolution domain
brought up novel concepts and implementations in release history systems. The notion of his-
tory shifted frommanaging single files to change or configuration management, that is, to history
management for software products as sets of software components (files).
Recent development brought up release history systems, which, as wewill discover later on in the
thesis, appear to have a similar notion of an objects history -we deliberately use the term object
instead of file, since todays versioning systems are capable of managing different entities (files,
directories, code fragments, etc.). Namely, a revision or version of an object and information,
such as who, why or when a new revision was made, represent the core concepts in release his-
tory systems, no matter if they are open source versiosning tools or CMS (Configuration/Change
Management Systems). However, all those systems handle these concepts differently. The infor-
mation storage and data representation differs from system to system. Some of them are focused
on managing single files, other on managing directories and files. Others even manage objects
with no distinction of versions but with hashing algorithms. In terms of conceptual develop-
ment, each of these systems has its own conceptual notion of software history -each system has
a particular descriptive semantic framework. It figures, that a possible interoperability among
those systems in terms of data interchange becomes more difficult as the wealth of information
and degree of specialization increase1.It would thus be interesting to compare different release
history concepts in different systems. Furthermore it would be interesting to bring up a universal
description for at least a group of release history systems, not the least for the sake of data eval-
uation and better insights in release history. So far, there has been little effort in conceptualizing
such a framework. The difficulties lie in multiple aspects. If we take a data model of a versioning
system, designating it as set of concepts, such as version, modification, branch, etc., then each
data model has its own description rules -its own semantics. Further, each data model has a dif-
ferent notion of the elementary unit it applies versioning to. Some data models, as mentioned,
consider files, other directories, again other consider code fragments, such as methods or classes
as their elementary units.

1The problem of interoperability is mainly present in large, heterogeneous software environments where it is probable,
that multiple versioning systems are being used in different divisions.

2 Chapter 1. Introduction

1.1 Contribution
In our designing effort, we bring different kinds of history management systems together and
incorporate their notion of history and changes under one framework. This framework will con-
sider the data models of different kinds of versioning systems and will provide semantics to de-
scribe each data models structure and dynamics. It is, thus immanent to mention, that the effort
of developing the framework can be referred to as development of a meta model for release history
systems. Designing the meta model for release history systems will enable a consistent informa-
tion integration of different versioning systems into one data model. Thus, a reliable base is being
made to consistent and valid modeling of different kinds of release history concepts and inte-
gration of versioning tools. In order to construct a meta model of the described kind, some data
model reference has to be designated. For this purpose, we have considered the most common
release history systems, both pure versioning systems and CMS. For the base-versioning systems,
the data models of CVS[Ced05] and SVN (Subversion)[BCS05] were taken since they represent
the most sophisticated and well known versioning concepts. In the class of CMS we have taken
the data model of Rational’s ClearQuest. The consideration of the mentioned systems brings the
fact close, that we intend to develop and implement a meta model based on systemic data rep-
resentation of multiple, designated tools, and not to elaborate possible meta models based on a
high-level notion of release history. The effort of constructing the meta model in this thesis is thus
both conceptual and implementation oriented.
While constructing the meta model, we clearly focus on the release history aspect. We further
extend this aspect by adding problem reporting concepts. The intent is to broaden the informa-
tion set and adding the ability to manage issue tracking data models as well. Since issues or bugs
are closely related to versioning -the relation will be explained in one of the further chapters- it
would be a logical step to combine these two aspects. As a base for the issue tracking data model,
the Bugzilla2 issue tracking system was taken.

1.2 Outline
The introduced modeling effort starts by introducing related work, conducted in the domain of
meta modeling software evolution in chapter two. These works present similar efforts, yet dif-
ferent approaches and notions to history of software. Chapter two further addresses methods of
(meta) modeling and draws a line of reference to the meta modeling approach applied in this the-
sis. Further, some important and applied UML modalities are being introduced to designate the
modeling technique. Chapter three introduces different versioning and issue tracking systems
and their data models. It represents the introduction of the point of reference for the construc-
tion of the meta model. By introducing the data models we lay down a set of base constructs
for the conception of the meta model. After designating the reference for the construction of the
meta model, chapter four starts with the conceptual part of the work, the construction of the meta
model using UML2.0[Fow04]. Chapter four first starts with the introduction to meta modeling.
After the introduction, the actual meta model is being derived by referencing to the CVS and
SVN data models and plotting and elaborating each entity of the meta model and its relations.
The construction of the meta model is done in three steps. First, the meta model is derived from
the versioning data models at a similar abstraction level as the data models are on -the file/direc-
tory entity is the elementary versioned object, hence represents the lowest abstraction level. The
second step extends the release history meta model with issue tracking data. Hereby the linkage

2www.bugzilla.org

1.2 Outline 3

between the two models in in focus. Having the combined meta model in place, the next step
focuses only on the release history aspect of the meta model. Hereby the abstraction level is being
altered in a way that enables the meta model’s semantics to describe smaller objects than a file
or directory. The file entity is being further specialized into smaller fragments, such as classes,
methods or attributes. The purpose of this change in abstraction level is to enable the modeling
of so called fine grained versioning systems, that focus particularly on source code objects.
Chapter five is about the validation of the release history meta model with another tool, that is
not an element of the base set of tools used to derive the meta model. The validation helps under-
lining the effectiveness of the meta model in its role as a descriptive framework for release history
systems. As the validation reference, the data model of the ClearCase CMS [Rat03a, Rat01] is
taken. The validation is conducted by first introducing the ClearCase data model. Than a com-
parison of abstraction level, entities and their relations is made and discussed. In the end, chapter
five discusses some interesting ClearCase features that might extend the conceptual world of the
meta model enabling a better modeling of such systems as CleasCase or SourceSafe. CMS pose a
broader view on release history, since they incorporate process and work-flow management and
other organizational tasks besides pure version keeping.
In chapter six, the implementation of the issue tracking aspect of the combined meta model is
being introduced. To conclude the work, chapter seven elaborates the experience that resulted
after and during the work as well as it does outline the most important steps and problems that
emerged during the work.

Chapter 2

Background

2.1 Related Work
Before starting the effort of constructing the release history model, and as a means of outlining
our approach relative to other endeavors in the domain of release history modeling, we introduce
efforts done in a similar way as the work of meta modeling done in the scope of this thesis.
The related work section has its goal in introducing efforts in modeling release history as a con-
cept using meta models as a description facility. It is clear, that each of these efforts has a different
goal and modeling technique and that they might not correspond to modeling efforts conducted
in this thesis. However, this chapter describes each modeling effort in relation to our meta mod-
eling approach for the sake of comparison and idea exchange.

A first work in modeling release history introduces HISMO[TG05], a meta model centered
around the concept of release history. The work states the importance of an effective meta model
to enable modeling and analyzing software evolution. In [TG05], history is defined as a sequence
of versions, that are immanent to the kind of objects present in source code development. Ob-
jects such as packages, files, methods and all other possible entities are considered by the HISMO
model. The notion of history is spread across entities of different hierarchical levels, which leads
to a modeling of structural entities. Basically, the number of lines of code changed indicates
the evolution of a code fragment in a class history. The HISMO model is based on the FAMIX
meta model [SD01]. HISMO is implemented in a tool called Van which is a part of the Moose1

re-engineering environment. The HISMO meta model has an important base thought, that cor-
responds to the motivation of our meta modeling endeavor: The importance of a meta model to
effectively model the history of files in different release history systems. While the HISMO meta
model is more concernedwith the notion of history on a line-of-code-level, we aremore interested
in the dynamics of a release history data models structure. The notion of history is immanent to
our meta model and taken as existent and homogeneous in its definition across multiple release
history systems.
Another interesting work[PH], that takes release history into consideration is in a strong relation
to OMG’s2 MOF (Meta Object Facilities), stressing the creation of a distributed versioning system
suitable for MOF. The work further states, that common versioning systems are not sufficient for
MOF.
The notion of release history is understood as management of multiple versions of software en-
tities. The meta modeling aspect of this work is closely related to MOF. MOF defines an abstract

1A collaborative re-engineering platform designed by the same authors that designed HISMO
2www.omg.org

6 Chapter 2. Background

framework for defining and managing technology-neutral meta models. The goal of the dis-
tributed model in [PH] is to propose a versioning model that takes into account the distributed
character of MOF. The distributed versioning model solution is based on location identificators
and sequence numbers combined with rules for successor and branch creation.
The work on the distributed versioning model for MOF presents another aspect of release history
meta modeling. While the distributed approach focuses on a meta model that is capable of han-
dling a distributed system structure according to MOF and based on the framework of the MDA
(Model Driven Approach), our modeling effort implements a release history meta model based
on several common andwell established versioning systems. TheMDA framework is considered,
but it is not stressed in the design of our meta model.
The HISMO meta model is taken as a related modeling effort to ours, since, first, it is concerned
with the concept of release history. Further, it uses the meta modeling concept to accomplish the
task. The meta modeling is done based on a certain established meta model (FAMIX). Unlike
HISMO, our release history meta model exists, as mentioned, on the base of several versioning
systems, that have concepts and semantics of their own. However, the two models go in the same
direction of meta modeling release history, but they are based on different initial models and sys-
tems.
The distributed versioning model for MOF is taken as related, since it is concerned with the MOF
andMDA,which in turn, present the newest approach in modeling andmetamodel concepts and
which we take into consideration as well. The possible differentiation would be, that the distrib-
uted versioning model uses MOF as a reference, not taking the particular dynamics of versioning
systems into focus.

The next work is concerned about the connection between release history and issue tracking
. The work in [FPG03] addresses the problem of insufficient support for data analysis of soft-
ware aspects. For the solving of the mentioned problem, the approach is based on populating a
database that combines data from versioning as well as bug tracking and adds missing data such
as merge points for versioning systems. The idea is to retrieve relevant and meaningful views
of the evolution of a software project. The retrieval of data is shown as the execution of several
representative queries for software evolution analysis. The approach is applied on a large Open
Source project such as Mozilla3.
The work, as in [FPG03] is the most closely related effort to our meta modeling approach. The
release history meta model in our thesis too applies the combination of release history and issue
tracking in one data model and the population of one database with the combined data. While
the implementation in [FPG03] uses a SQL Database and scripts for data retrieval, the approach in
this thesis is implemented using Hibernate for database-table creation and information retrieval.
Further, the release history aspect in [FPG03] is based on CVS as an information source, whereby
a meta versioning model is used in our approach.

The work in [JB05] introduces Kenyon, a system designed to facilitate software evolution re-
search. It provides a set of solutions to problems such as the source-intensive extraction and
efficient storage of analysis-specific facts, such as commit meta data. Kenyon supports release
history systems that perform the analysis of a series of related layers that comprise a time-based
software development history. The aim of Kenyon is to reduce the start-up time associated with
software evolution research by providing a framework where new analysis methods can use any
supported source code management systems and any supported data type.
The relation to our meta model is present, since Kenyon presents a meta model approach to re-
lease history related to common versioning systems such as CVS or SVN and it endorses the
notion of history in software systems as a set of related ”facts” (in our case revisions).

3www.mozilla.org

2.2 Modeling concerns 7

Other related work focuses on different aspects of versioning and uses different approaches
and techniques[Cap03, Cap04, Jaz02, ML02, XW04, TZ04]. Some are concerned about visualiza-
tion of software evolution[TB96, CC03], whereby others take the focus in prediction of change
propagation in software systems[HH04]. A common base for all these approaches is the (release)
history as a concept. The aspects, under which this concept is modeled and understood, differ
however.

2.2 Modeling concerns

2.2.1 Meta modeling
Theword ”meta” comes from the Greek andmeans ”further on” or ”beyond” in a free translation.
The definition of meta modeling does not exist in a strict, universal form. It is a concept applied in
many scientific and real life endeavors, and each time it is used in the frame of a certain concept.
The goal in this short digression, is not to provide a profound definition of meta modeling or a
meta model, but to rather describe this concept in the context of out work of designing the release
history meta model.

When designing a complex software system, developers are often faced with different inter-
dependent concepts in form of programming languages, platforms, etc. Further, each of these
concepts has its own conceptual world[Fis05]. Each conceptual world exists on different abstrac-
tion levels, which have to be compatible in a sense, to enable the developer to combine these
different conceptual worlds in order to develop the system. The problematics here are, that each
conceptual world has its own semantics4, and a developer has to deal with all of them, for each
conceptual world, in order to develop. It is thus a necessity, to have a sort of universally applica-
ble framework to be able to describe and define the particular concepts, their relations and their
notation. So, it is guaranteed, that the different concept worlds ca be put together consistently
and effectively. The necessity for such a framework comes also from the MDA (Model Driven
Approach) where the different abstraction levels of concepts play an important role. There are
different kinds of such frameworks or notations of concepts and their relations. One of them is
the application of a meta model.
A meta model describes a conceptual world; that is, the structure of the particular concepts and
their allowed relations in form of a directed graph, whereby, the knots of the graph represent the
concepts and the connecting lines represent the feasible relations. The application of a metamodel
follows the object-class paradigm5. Hereby, a meta model describes the concepts based on their
similarity and not from case to case. The description of concepts generates meta data , based on
which a concept can be defined. This meta data can be also considered as a classifier for a concept
and its instances. A classifier can in turn be an instance of a higher-level description (classifier).
This higher-level classifier would then be ameta-meta model. Meta modeling addresses the prob-
lematics of information transition from one abstraction level to another. Hereby, the problematics
in particular lies in different abstraction mechanisms6 concerning information.

To conclude this short introduction about meta models, the following can be stated: Meta
modeling is the application of valid frameworks to describe the semantics of different conceptual

4Semantics considered as the full definition of a conceptual world, whereby structural aspects are defined by static
semantic, and behavioral aspects are defined by dynamical semantics.

5A class describes a set of objects. Examples are, for instance, grammar-word, template-document, package-class, etc
6Examples are generalizing/specializing, information hiding, organization, structuring/destructuring, etc.

8 Chapter 2. Background

worlds on different abstraction levels, whereby it is possible to layer the frameworks used for
description. A meta model is a way of applying meta modeling in form of a directed graph. Meta
modeling also addresses the problematics of information handling across different abstraction
levels.

2.2.2 UML: applied naming and style conventions
The modeling of our release history meta model is done with UML 2.0 using Microsoft Visio 2003
as the graphical editor. In order to complete the description of the modeling approach in this
thesis, it is a necessity to point out the conventions in notation and styles of UML for this task.
The goal is however not, to give a profound description of the UML super- or infrastructure, but
rather to describe the applied naming and style conventions. The reason why this description is
done, is, because, there are no binding, overall applicable notation style guidelines in UML we
can refer to and thus we point out the conventions used in this thesis to underline this particular
notation approach. Modeling efforts can deviate from one another in notation or styles. All the
different styles and notations must however be UML -standard conform and be applied accord-
ing to the semantics of the UML.

According to the OMG7’s specification for UML8 and other resources [Fow04] the following
conventions in notation were used in this thesis:

• UML -class diagram: Figure 2.1 shows the common full notation of a UML class diagram.
Class name and attributes are used; operations on the other hand are not used, since the
structure is in focus and not the dynamics of the models.

Figure 2.1: UML 2.0 class diagram

Figure 2.2: UML 2.0 bidirectional association relation

• UML -class relations and their multiplicity: In all the data models in this thesis, most of the
relations are bidirectional. In some notations, an association relation is drawn with arrows
on one or both ends to denote, whether the relation is uni- or bi-directional. In the notation
style used in this thesis, a bidirectional association relation is drawn without arrow-ends
(Figure 2.2]. An unidirectional association is drawn with an arrow-end, pointing out the
direction of the relation. All other types of relations (aggregation, generalization, etc.) are

7Object Management Group; www.omg.org
8Unified Modeling Language

2.2 Modeling concerns 9

drawn according to the common UML notation standard.

The multiplicities of the relations are denoted according to UML standards in the following way:
Class 1 in Figure 2.2 is associated withmany (zero or more) instances of Class 2, whereby Class 2
is associated with exactly one instance of Class 1.

Chapter 3

Release History Systems and
Bug Reporting Tools

This chapter covers the various release history systems and their respective data models for ver-
sion control. First we will give an introduction and an overview of the concepts and main func-
tionality of some of the most used versioning systems, among them the CVS and Subversion
versioning systems whereas the data models of those two release history systems will also serve
as a base for the release history meta model we are developing. After CVS and SVN (Subver-
sion) we will also take an overall look at Rationals ClearCase change management and release
history system. For our topic, ClearCase is especially interesting in two ways. First, ClearCase
incorporates concepts regarding release history and change management, such as project team
management and thus tailoring the visible and accessible versions of files to a particular group
of developers , or the concept of grouping collections of files to meta entities for better manag-
ing and deployment, and so on. These concepts are not part of the, for example, CVS and SVN
versioning concepts but they might be a useful addition to the meta model. This will be covered
in one of the following chapters, after we have established and validated the meta model. The
second way, in which ClearCase is interesting for our research is that this system is the one the
meta model is going to be validated against.
Further we will introduce some other versioning systems, such as BitKeeper, Visual SourceSafe,
Aegis, Arch, OpenCM, etc. used in practice. We will not examine them in detail, their data mod-
els respectively, as we do with CVS, SVN and ClearCase.
After the version control systems we will have a look into diverse bug reporting tools, especially
Bugzilla. The reason, why we examine Bugzilla in detail is that, it’s a common and most used
opensource bug reporting tool available and, the meta model is going to be extended by adding
the Bugzilla data model.
Other bug tracking and reporting tools would be, e.g. for java code, FindBugs, JLint or Ban-

dera, for the GNU project there is GNATS (aka PRMS) and other problem tracking tools like
JitterBug, Tracker or the Debian Bug Tracking System.

3.1 CVS
Among the popular and efficient release history systems there is CVS, the Concurrent Versions
System. CVS is a versioning system that records the history of source files. It was first not much
more than a set of shell scripts written by Dick Grune who posted them to the comp.sources.unix

12 Chapter 3. Release History Systems and Bug Reporting Tools

newsgroup in the volume 6 release of July, 1986. An interesting fact is, that no actual code of
these first shell scripts is present in the current version of CVS but much of the conflict resolution
algorithms still come from the original scripts. CVS is a further development of RCS (Revision
Control System); RCS is a version control system, mainly for text files such as source code files or
configuration files. RCS manages only single files and thus cannot be used in projects of a larger
scale. Though, CVS uses the same file format as RCS.
CVS is basically a command line program but in time there was an appropriate graphical user
interface developed for nearly all current operating systems. Examples are TortoiseCVS and
WinCVS for Windows, MacCVS for Apple Macintosh and Cervisia for KDE and the Linux plat-
form.
By defining CVS as said we could stop at this point of description, because the core functionality
of CVS is to record and store the history of a developers source files or any other kind of files.
However, the way, how CVS stores the history of files is interesting; not just because of CVS itself
but also for the purpose of designing the meta model in the later sections of this thesis. So, we
will have a look into how CVS manages the file history.

CVS Data Management

Generally, CVS stores all versions of a file -we will use the term ”file” hereby having a source code
file in mind, because the most common file type used for version control are source code files- in
a Repository. All versions of a file are stored as a single file where only the differences between
the versions are stored. If a developer wants to make changes to certain files in the repository, she
checks out these files to a working copy on her local machine so the base-files are left unchanged
until the commit operation changes them to the most recent version.
Another concept immanent to versioning systems in general is the concept of branching and tag-
ging files. A branch is a separate development line of a file. CVS has it own branching concept.
Each time a developer wants to branch off and develop in a separate line, she first has to tag the
file as a branch. A tag is a sort of file meta information, that can be attached to a file. At this
point, with no actual changes made to the branch file, CVS only stores the branch point in the re-
vision number of the branch (for instance, if a branch was made at revision 2.3, the branch point
would be 2.3.2.). If then changes are committed to the branch, the first branch revision would be
2.3.2.1; then finally the branch file is stored in the repository and is treated as a separate, new file.
Releases, as sets of different revisions of files, are not explicitly present in CVS although CVS is
capable of storing releases. For this and other purposes, a developer tags a set of revisions. In
the case of tagging a file (revision of a file) for a release, the tag specifies which release a revision
belongs to. The tag names, thus the release names can be arbitrary, free settable by the developer.
So a release is actually a set of revisions of files that are tagged with the same tag, which holds the
information, that these revisions of files belong to a certain release.
CVS helps managing files under version control, especially in a project, keeps track of older ver-
sions and restores them if necessary. A comparison of versions is also possible. By saying that CVS
can manage Files in a project does not mean that CVS can be considered as substitute for project
management and control; CVS also has no built-in process model to ensure that a developed soft-
ware goes trough a set of different steps before landing in production. These specific functions
are for instance immanent to Rationals software products (ClearCase, ClearQuest) which we will
have a look at in more detail later on in this thesis.
Other CVS features concern for instance the repository, hereby highlighting the commit and
check-in operations. Unfortunately CVS’s commits and check-ins are not atomic, meaning, when
a commit is interrupted, the repository is left in an unstable, inconsistent state. Concerning the
repository further, CVS provides the possibility to set permissions on access to different parts of
a repository (local or remote). CVS is however capable of line-wise file history tracking, i.e. for

3.2 Subversion (SVN) 13

each line showing at which revision it was most recently changed, and by whom. Another con-
venience in CVS is that a developer can check out only one directory out of the repository for
individual development.
When developers face a conflict in a single file, most of them manage to resolve the conflict with-
out much problems. However a more general definition of a conflict involves problems too diffi-
cult to solve without direct communication between developers. CVS cannot determine whether
simultaneous changes in a single file or across a collection of files will logically conflict with each
other. CVS understands the concept of conflicts in a pure textual way, arising when two changes
to the same base file are close enough to ”corrupt” the merge command. We have thus pointed
out the base characteristic CVS features but have certainly not mentioned all of them. This is
not the scope of this thesis. Ultimately CVS is, from the fact out that it is a de-facto standard in
versioning, a very easily deployable system and it is very reliable (not taking the various user
interfaces for CVS and their bugs into mention). It possesses the most common release history
features such as line-wise file history tracking, modular repository structure and a set of other
convenient features. There are some lacks as the non atomic commits or the inability to discover
conflicts in a broader meaning than the line-wise interferences when merging versions.

3.2 Subversion (SVN)
The next release history tool in our overview is Subversion[BCS05]. Subversion (SVN) is an open-
source version control system. As CVS it manages files over time. In addition to the CVS func-
tionality, SVN manages directories as well. More precisely, what SVN does is, it stores a tree of
files in a central repository, that can be regarded as an ordinary file server except that it records
every change made to files or directories over time. Interesting here is that given SVN’s architec-
ture, the data can be optionally stored in a Berkeley database or in a common FSFS database.
The development of SVN began in the early 2000 when CollabNet1 started searching develop-
ers to conceive a replacement for CVS. CollabNet offered collaboration software of which one
part was history tracking or version control. This version control part of the collaboration soft-
ware was originally dependent on CVS as its initial version control system and given some of the
limitations CVS has, concerning versioning and file storage, CollabNet decided to make its own
version control system from scratch. On August 31, 2001 Subversion was fully functional and
replaced CVS in managing its own source code files.

Subversion Data Management

SVN is not much more different than its predecessor, CVS; it stores the history of files, a developer
can check out a working copy of the files to be able to work locally, comparison of versions is also
possible. However, the next paragraphs point out that SVN has some different features compared
to CVS, especially concerning file and directory versioning.
One of the new things in SVN is the directory versioning. CVS remembers the history of single
files, whereas SVN manages the history of files ”virtually”, meaning it tracks changes to whole
directory trees so it manages files and directories. If a developer wants to check out a working
copy, she checks out a whole or a part of a directory tree under version control by SVN.
Another issue, is the version history itself, in light of the respective versioning technique in CVS
and SVN. We have stated earlier, that CVS is capable of managing (only) files. Thus, some opera-
tions like copying or renaming, that apply to files, but that could be considered as actually making
changes to directories, are not supported by CVS. Also, when replacing a file in CVS with a file

1www.collab.net

14 Chapter 3. Release History Systems and Bug Reporting Tools

of the same name as the replaced one, the history of the old file is inherited by the new one, even
though the two files might be completely unrelated to each other. Within SVN, the mentioned
operations are supported and, by for instance replacing or renaming a file, the new file comes up
with a clean history.
Another relevant issue are the commit operations. We have seen that the commits and check-
ins in CVS are not atomic. With SVN, a commit is considered as a set of changes (or transactions)
where by the changes are first stored in a transaction tree and latest after a commit command they
are being stored as a definite revision tree. Only when an executed commit operation is complete,
a new revision is made out of the current transaction tree. This means, that commit operations in
SVN are atomic and that it is highly unlikely that the repository could be left in an inconsistent
state. Each revision in SVN is a new and updated copy of the base directory tree under version
control by SVN.
A very convenient concept in SVN are the branching,tagging and release concepts. In fact, here
are none! SVN is fully capable of managing tags as file meta information, branches as separate
development lines and releases as sets of revisions without explicitly having a concept or a mech-
anism for it. Tags are common file meta data that are managed and kept for files or directories.
Branches are in fact separate directory trees made out of a current main-trunk directory tree.
When a branch is made, for a file, the revision enumeration continues on. The only property that
changes is the path to the file or directory that moved from the main trunk to a branch. SVN
tracks the changes made to both the main trunk and the branch as a log of the same file, telling
the developer where a particular change (main trunk or branch) was made and whether a revi-
sion corresponds to the main trunk or the branch. The difference between a release and a branch
is minimal. Again, a release is nothing more than a copy of the whole or a part of the current
directory tree under version control. The only difference between a branch and a release in SVN
is that a release is not supposed to be temperedwith once it is designated, meaning no files ought
to be changed, otherwise a release becomes a branch.
Speaking of versioning differences there is of course one obvious difference between CVS and
SVN. The version numbering concepts are different. In CVS version numbers are an even num-
ber of period-separated decimal numbers. By default revision 1.1 is the first revision of a file.
Each new file gets the second number set to 1 and the first number set to the highest first number
of any file in a repository. In SVN the revision is a decimal number starting from 1 as the first
revision of a file and increases by one for each new revision.

3.3 Rational ClearCase
We have considered two well established and widely deployed open source release history sys-
tems; CVS and Subversion(SVN). These tools designate the most common and efficient version-
ing concepts. We have stressed that these tools are well suited for small to middle sized projects
but not for large scale projects, at least not without a well defined versioning strategy. The tools
considered in previous sections go up till the level of managing changes and project planing in
large-scale, corporate environments. The next step thus would be a tool that not only remembers
the change history of files in a repository but also supports or incorporates the whole software life
cycle process, especially the entire problematics about change management and the appropriate
project management that comes with it in larger corporate project environments. Such a tool, or
better, a set of tools is Rationals change management software: ClearCase (LT, MultiSite, etc...)
and ClearQuest and its versions.
The ClearCase family of products also provides software asset management with version control,
baseline management and build and release management. The ClearQuest products on the other
hand provide defect and change tracking and work-flow support. The concept of most interest

3.4 Other versioning tools 15

for the meta modeling later in this thesis, is the release history aspect of ClearCase, but certain
concepts we will examine, could be used to enhance the narrowish view of change or configura-
tion management, provided by CVS, SVN and other versioning tools.

ClearCase Data Management

When looking at ClearCase’s functionality in more detail we see that this functionality is a set
of different concepts and processes such as: version control, automated workspace management,
parallel development support, support for disconnected usage, local, remote and web client ac-
cess, transparent, real-time file and directory access, build and release management, automatic
backup and restore, etc.[Rat03a, Rat03b, Rat01]. ClearCase in a way exceeds the version con-
trol functionality by integrating version control but on top of it, providing a lot of other related
processes, which can be thought of as supporting or widening processes relative to version con-
trol.
Nevertheless, ClearCase manages the files and their history mostly by the same concept as for
instance CVS or SVN. Versioning in ClearCase incorporates creating new versions of different
kinds of source files, comparison of versions of source files, branching off separate development
lines, merging changes between versions, change tracking (who, when or why has a particular
change been made). When versioning files, ClearCase does not overwrite a current file but stores
all the versions as separate files. All files are stored in the repository, the so called VOB (Versioned
Objects Database). An interesting fact is, that also unversioned objects can be stored and viewed
by a developer2.
Source code files have been stored in a repository of a respective versioning system. Releases
could be separated and branches could be made. A software project notion, meaning having a
project leader, one or more developer teams, a process model and so forth has not been a part of
the versioning systems like CVS or SVN so far. ClearCase however, incorporates those features.
So when speaking of versioning files in ClearCase we speak of projects the files are in. Under a
project in ClearCase we consider a specific product of a development effort, for instance a corpo-
rate web site.
The Unified Change Management (UCM) technology is a core concept in ClearCase. In UCM, a
project is represented as an object that contains configuration information (components, activities,
policies) needed to manage and track the work on a product. A common UCM project consists of
a shared work area and a number of private work areas for each developer. A work area consists
of a view and a stream. A view is a directory tree, that shows a single version of each file in a
project (we have seen, that SVN manages directory trees too). A stream, as shown in Figure 3.1 is
a ClearCase object that contains a list of activities and baselines and determines which versions of
a file appear in a view. An activity (Figure 3.1) is also a ClearCase object that consists of a change
set (a set of files) that a developer creates or modifies. A base line, as shown in Figure 3.2 holds
one version of each file in a component. It represents a version of a component at a given stage in
project development.

3.4 Other versioning tools
This section encompasses further versioning tools to underline the modeling approach that takes
the CVS, SVN and ClearCase data models as a base for constructing the meta model, by showing
that the systems to be considered also do have a similar information base as the CVS, SVN and

2In ClearCase terms, a team member

16 Chapter 3. Release History Systems and Bug Reporting Tools

Figure 3.1: ClearCase stream overview

Figure 3.2: ClearCase baseline object

ClearCase models. Thus the meta model, which relies on the data and information of the base-
models, is theoretically applicable to all upcoming systems in this section, i.e. their data models.
Ergo, the meta model’s relevance becomes more pertinent and the model itself stays valid for a
larger scope of release history systems.
The goal is not, to go into the particular systems and describe their data models, but to give and
overview of the particular concepts and structures that lie beneath each system, whereby we will
take the liberty to point out the similarities between the considered systems and those to be de-
scribed in this section in order to endorse the idea of applicability of the meta model mentioned
above.

By looking at specific release history systems, we have already seen, that those systems can
ruffly be divided into two classes. One class is represented by such systems as SVN, CVS, Arch,
Monotone, etc. These systems represent the simple versioning systems with no integrated work-
flow or process management (not, or hardly applicable for large scale, corporate change man-
agement). The second class has systems like Visual Source Safe, Bitkeeper or ClearCase. Those
systems can be considered as change or configuration management systems with extensive ver-
sioning capabilities. We will continue in the same matter, and describe such systems as BitKeeper
and Source Safe, which belong to the second class of release history systems, and tools such as
Arch and Monotone, that belong to the first class of release history systems.

3.4 Other versioning tools 17

3.4.1 Visual Source Safe
Visual Studio from Microsoft has introduced Visual Source Safe for managing the history of files
across multiple projects and developer teams. This tool belongs to class two 3 of our release his-
tory systems . Visual Source Safe (VSS) is set out as an additional tool to the Visual Studio .NET
for managing the version history of both text and binary files.
VSS has a typical structure regarding data storage. Native files (master copies) are stored in
projects in a VSS database. A project is not more than a set of files. A project can be shared
among different developer teams and cross-platform. VSS copies a file, which a developer wants
to edit, from the database into a working folder for that developer. Interesting is, that VSS makes
a distinction between the two file types mentioned, namely, text files are those that contain only
characters grouped in distinct lines. Binary files represent all other file types. The idea behind is,
the separate treatment of older versions (states) of a file in terms of version history management
and reconstruction. VSS can reconstruct an earlier state of a binary file, but can not display it. For
most operations, text and binary files can be treated the same.

The check-out- check-in concept in VSS is pretty much the same as in, for instance SVN or
CVS: when a developer wants to check out a file, VSS copies the file into the working folder of
the developer. She can now apply changes to the file. Usually, check outs follow a single-check-
out-policy, meaning that if a file is already in use, no one else can check out or commit changes to
that same file. A single checkout policy is permanent for binary files. If a user only wants to read
a file, she does not have to entirely check out a file from the database; instead VSS offers a GET or
VIEW FILE function for that purpose.
The versioning concept in VSS is extended by some additional information, that is used for ver-
sion control and history services. To track a file, VSS uses three methods, or three types of in-
formation for that matter: version numbers, whole numbers that increase for each new version of
a project or a file (here we see the similarity to SVN, where a whole number is used as aversion
number, a project in VSS as well as a file can have version numbers, which corresponds to the
directory- file relation in SVN), they are internally managed and assigned to files by VSS, com-
pletely transparent to the user; labels, which are simple strings up to 31 characters that can be
attached to every version (here again a similarity to CVS (SVN): labels can be considered as meta
data or properties to a file or its revision); Date/Time stamps that tell the time, a file was last modi-
fied.
When branching a file in VSS, the file is being taken into two separate directories (paths or
branches, according to the VSS documentation) at once. As in SVN for instance, the path to
the (branch)-file is changed, relative to the path of the file the branch is made from. VSS tracks
the history of branches under different and distinct project names. The two files (the file in the
current project and its counterpart in other projects) have a shared history up to the branching
point, and divergent histories afterward.
When merging files, VSS provides two methods: visual merge and manual merge. VSS can not
resolve conflicts, instead it offers the developer the possibility to manually resolve those conflicts.
In a short digression, we state that resolving conflicts on binary files, in the terms of VSS, is not
quite an easy task, since a binary file has no clearly defined, distinct lines of characters with ex-
plicit line delimiters. Merges occur in VSS in three circumstances: when using multiple check
outs, that is, when multiple users check out a file, the subsequent user’s changes are combined
with all other changes (the first user’s changes, since after multiple subsequent check outs she
simply checks in the file), when explicitly merging previously branched files - hereby the changes
made in one branch project are merged with the changes in an other project,and when getting a
file. In any merge, what happens is the same: VSS takes the differences in changed files, compares

3Change or configuration management systems

18 Chapter 3. Release History Systems and Bug Reporting Tools

them to the original file then creates a resultant file with all the changes.
Additional interesting features in VSS are, for instance shadow folders. Shadow folders are cen-
tralized folders on a network server that contain all files in a project; a sort of a centralized area to
view and compile source code. More precisely, they contain the most recently checked in version
of a file in the project. Shadow folders are optional and serve in generally two situations: to allow
a user to view, but not modify the files, especially, when that user does not have access to VSS;
and to prevent having a compilable copy of a project in a local working copy.

3.4.2 BitKeeper
BitKeeper4 is another versioning tool that falls into class two of our categorization of release his-
tory systems. It is a tool for revision control of pure source code. It builds up on many con-
cepts known from TeamWare - later called Forte TeamWare then Forte CodeManagement System,
which is a revision control system for source code, developed by Sun Microsystems. TeamWare
introduces some new features in contrast to CVS or RCS, such as hierarchically structured repos-
itories or atomic updates of multiple files (as present in SVN or Perforce).
BitKeeper, like some other change management systems, enables developers to work concur-
rently on the same project. It was also designed to support globally distributed development -
when looking at the architecture in high level terms, taking the TeamWare underlying concepts
also into consideration, BitKeeper works as a system of files accessed by client programs, discon-
nected operation, change sets, etc.
An immanent concept of release history systems is the repository or database, the files are stored
in. A BitKeeper (BK) repository represents a collection of files, sometimes called a ”tree” or just
”repo”. In contrast to other versioning systems, such as CVS or CleasCase, BK’s repositories are
self- consistent units, that incorporate all necessary functionality to perform development and
versioning work. This is an interesting concept, since, usually, versioning systems have one cen-
tral repository, where a user can make working copies of just a part of the repository. In BK, a
developer makes a copy of the entire repository, called a ”clone”. So, a developer can alter, even
delete, her own repository thereby not affecting a shared repository or repositories of other de-
velopers. The relation between a repository and its clone is a parent -child relation, meaning,
that BK remembers the parent repository as such. Thus it is straightforward, that there must be a
sort of hierarchical repository structure. Changes that are made, propagate between parent and
child, but also among multiple child repositories. Another concept, very similar to ClearCase, is
the concept of Change Sets. A change set is a grouping of related changes to files, and the inter-
change medium among BK repositories.

BK manages the following three file types: text files (e.g. source code); binary files (images,
text(word) documents); symbolic links (Unix). For these file types the following information is
versioned: file contents, filenames, file flags, file permissions. The revision number is a set of two
comma separated integers, whereby the second integer increases for each new revision. When
branching, a developer effectively clones the repository. As in CVS or SVN, a file can have some
additional meta information attached to it. This meta information comes in form of tags. Tags are
symbolic markers that identify the state of a repository in a certain point of time. They are also
used to more easily refer to a certain release.
When trying to view or restore to an earlier state of the repository, BK can use multiple sources of
information to do that. A developer can specify an older revision of a file, change set or tag level.
If an older revision of a file is needed, the file’s revision is needed to specify the revision that is
needed. The same goes for the change set rollback: the appropriate change set revision is needed.

4www.bitkeeper.com

3.4 Other versioning tools 19

As for tag level rollback, only the name of the particular tag is needed.

3.4.3 GNU arch
The next revision control system belongs to the first class of versioning systems discussed in this
thesis. GNU arch5 (Ga) is an open source versioning system with some interesting features, not
present in most other versioning tools. However, it follows the same concepts of versioning as
CVS, SCCS or SVN do.
Concerning the versioning of objects (file trees), Ga uses a somewhat different concept. Namely,
each revision in Ga is uniquely globally identifiable. This sort of versioning allows merging and
application of changes from completely disparate sources - unlike most other versioning systems,
where merging occurs mostly in the same repository (database) and among similar projects or
inside one project. Further, Ga is a scalable, decentralized system without any central servers and
repositories; this removes the need to be authorized as a developer to a server in order to work
with Ga. The concept is rather, that a head developer makes a read-only copy of the entire project
(via HTTP, FTP or SFTP), and each developer can acquire that copy, make changes to it, then
publish her change set so that the head developer can manually merge the changes into the head
project and update the read-only copy. However, if one wants to simulate a centralized system,
the head developer could allow SSH or write access (FTP, WebDAV) to a server, enabling only
authorized users to commit changes.
Further, Ga is capable of atomic commits. A source tree must be in consistent state before a com-
mit can be executed and generally, commits are not visible until executed completely. Thus, if
commits become interrupted, they remain invisible and have to be rolled back before additional
commits are executed.
Ga supports change sets, thus, instead of tracking individual files. Each change-set can be con-
sidered as a snapshot of a source tree. Here again the similarity to other versioning tools, such
as SVN, where the versioning takes place at a directory (file) -tree level, rather than on a per-file
level is given. The same goes for branching- a branch is handled as a tag; it declares an ancestor
revision, and further development continues from there.
A common problem in versioning tools is the renaming or moving of files. With Ga, files and di-
rectories can easily be renamed, since they are tracked by an unique ID rather than names. Thus,
the history of a file is preserved and patches to files are correctly merged despite the changed
names (even across different branches). Another interesting feature, not encountered as such in
the previous release history tools, are cryptographic signatures. Every change set is stored with
a hash to prevent possible corruption. These hashes can optionally be signed (GnuPG or PGP) to
avoid unauthorized modification of files.
Gnu arch is still a maturing project, concerning eventual serious problems on portability to non
Unix platforms, and it is not so easily learned as some other versioning tools. Mostly because of
the arch specific commands, which could be intimidating to new users and thus need some initial
learning time.

3.4.4 Monotone
Another tool similar to GNU arch is Monotone6. It’s an open source revision control system, with
a similar distributed approach tomanaging files in repositories as GNU arch- the interested reader
is encouraged to recall, that GNU arch is capable of managingmultiple ”stand-alone” repositories
and the interactions among those repositories- merging and branching into and out of disparate

5www.gnu.org/software/gnu-arch/
6http://venge.net/monotone/

20 Chapter 3. Release History Systems and Bug Reporting Tools

projects (repositories).
Before continuing the description of Monotone, we first point out some interesting features of the
tool that didn’t appear in versioning tools so far. First off, Monotone uses SHA-1 (Secure Hash
Algorithm; cryptographic hash function, the successor of MD5) hashes to identify files or groups
of files instead of revision numbers. Another, monotone specific feature, is the use of netsync7 for
synchronizing trees (remember the distributed approach to managing file trees and repositories).
Netsync is a custom protocol, considered to be more robust than most other network protocols.
It was mentioned, that Monotone stores a hash instead of a revision number for a file. The con-
cept of versioning, i.e. the distinction between the different revisions of a file or a file tree, can
be described in a parent - child relation between the native (parent) file and the newer versions
(children) of that file. The relation between a parent and a child file consists of the edit, that was
done to the parent file and of which the child file was created. In managing and storing different
versions of a file, Monotone can either store a complete copy of the native file, or, since successive
versions are often very similar, store only the difference between two consecutive files.
Versioning in Monotone is not only limited to files. A developer is also capable of taking a snap-
shot of certain files in a collection. This snapshot is referred to as a file tree. So in Monotone, one
can also manage entire file trees. The advantage of that sort of versioning is, that changes can be,
for example, reverted for multiple files at once. In order to make a snapshot of a tree, a manifest
file (plain text) is being created. The files content consists of plain text lines divided into two
columns: the first column holds the SHA1 codes (revisions) for each file, and the second column
holds the path to the file.
In Monotone, branches are designated across multiple files. Every file in a branch has a reserved
branch id. Branches can be given symbolic names to make it more easy to distinguish them. A
similar concept to the branching in Monotone, is the use of tags (tags as in SVN, CVS, etc.), where
as in Monotone, the so called branch cert is a unique identifier for a set of files, separate from the
optional symbolic name. It is said before, that the the relation between revisions can be thought of
as a parent - child relation, thus, a tree structure. In a branch, the revisions with no child revision
on them, are called the heads of the branch. Monotone can automatically attempt to merge the
head revisions in a branch. If a conflict arises or another reason, why a merge cannot be executed,
Monotone leaves the branch in a consistent state with no changes made.
Despite some interesting concepts, that Monotone offers - e.g. SHA-1 hashes, distributed reposi-
tory management, certificates- the question remains, if these concepts are really scalable for larger
projects. For instance, an efficient certificate management for each file’s history in such large
projects remains questionable in terms of usability - for comparison, ClearQuest, as a large scale
change management system manages the history of files without any certificates.

3.5 Bug reporting: tools and concepts
In the previous sections we have looked at release history and introduced the tools and concepts
that are used to manage history of files or file structures. We have given an overview of differ-
ent classes of versioning tools and pointed out some specific features immanent for a particular
tool. Keeping track of source code history and conducting change and configuration management
based on the history of development can be considered the most important concepts in the release
history domain.
However, during development of a source code project, certain problems or dis-functionalities in
the software may arise. Such problems can emerge from one revision to another and are referred
to as ”bugs”. Thus, bug tracking is a necessity and a nifty addition to release history management.

7A network protocol

3.5 Bug reporting: tools and concepts 21

Further, bugs (issues) can emerge from modifications made to a file. Considering, that the modi-
fied file is under version control, the bug emerges out of that edit, that is, from the modification
report of that file. Thus bugs can be considered as an additional, structured information to amod-
ification report.
When considering bug tracking, we understand the storage and management of issues related
to programmatic or even systemic instabilities, faults or conflicts during development. Usually,
these issues are stored in a dedicated bug (issue) -tracking system. These systems mainly consist
of a database (open source or proprietary) where the data to a specific issue is stored, and the
client and administrator side access layer (usually web based access, like Bugzilla). Other bug
tracking systems can also be part of a larger CMS (Configuration Management System), such as
ClearQuest, which is a part of the Rational ClearCase family of software products. As well as
for versioning tools, we can make the distinction between ”pure” bug tracking tools (GNATS,
Bugzilla, JitterBug, etc.) - web based, open-source, free accessible- and proprietary bug reporting
tools as integrated parts of corporate CMS (ClearQuest, etc.). The distinction here will not be
necessarily stressed as for versioning tools. The reason is, among other, the rather static structure
of a bug reporting system. Static in the sense, that bugs cannot be merged or branched of, they
don’t have a history in the sense of revision history. The static structure enables, thus, a more
general approach to the description of bug reporting tools without loosing relevant information.
However, if there is obvious difference between bug tracking tools, it will not be hesitated to point
that difference out.

This section will cover the introduction of several well known bug tracking tools in themanner
as in the previous section. Three characteristic bug reporting tools will be discussed. In our
following description, both web based, opensource bug tracking tools (Bugzilla and GNATS), as
well as CMS bug tracking tools (ClearQuest) will be introduced.

3.5.1 Bugzilla
Asmentioned above, Bugzilla [Tea05] falls in the class of free, web-based, open-source issue track-
ing tools. It is the most common web based tool to manage bugs. Initially it was used to manage
issues in the Mozilla Foundation8 projects; by now, external projects, both open source and pro-
prietary, can submit their bug reports too.
The architecture of Bugzilla as a tool is rather simple. It requires an installed server and a database
management system (PostgreSQL or MYSQL, etc.) to be operational. Further, Bugzilla requires a
suitable release of Perl 5 along with a set of Perl modules for the installation and a mail transfer
agent, such as Sendnote 9, qmail10, Postfix11 or Exim12.
Bugzilla as a concept is pretty much straightforward. The bug (issue) is the center of the con-
cept. All other information is concentrated around an issue. As mentioned before, a bug tracking
system is rather of a static nature. Bugzilla is not much different, since bugs cannot be merged,
branched-up or versioned. However, bugs can depend on or block each other, they can be in
different states, depending on their severity or priority. Further, in Bugzilla, the notion of a ”bug”
is taken more generally; it is not strictly bound to an programmatic fault or conflict within a soft-
ware module. For instance, mozilla.org uses Bugzilla to track feature requests as well.
A bug in Bugzilla follows a strict work-flow -also called the bug life cycle (Figure 3.3). When a
bug is submitted, it enters the state ”new ” as either confirmed or unconfirmed. Then it is being

8mozilla.org
9http://apgap.com/pub/SendNote.html
10www.qmail.org
11www.postfix.org
12www.exim.org

22 Chapter 3. Release History Systems and Bug Reporting Tools

assigned to a developer. When the developer has resolved the bug, it can either be verified, if the
solution worked out or it can be reopened if the solution was not satisfying. If a bug is verified it
is being closed.

Figure 3.3: The life cycle of a bug in Bugzilla

This life cycle is currently hard-coded into Bugzilla. It manages the entire work-flow for a bug
and defines clear states a bug goes through. We will examine the Bugzilla concepts in more detail
when we elaborate about the underlying data model in one of the following sections.

3.5.2 GNATS
GNATS13 is a web based GNU bug tracking tool. It is designed to be used at a central support
site, where users can communicate problems over e-mail, or a web based client that is communi-
cating with the GNATS network daemon. GNATS was designed as a tool for maintainers, unlike
Bugzilla, which is a free accessible bug tracking system for developers, maintainers and users.
In GNATS the bugs (issues) are addressed trough problem reports. These problem reports are
grouped in context-defined problem categories and are stored in a database, set up to archive and
index those problem reports. GNATS actually has the role of an archive for field separated textual
data.

GNATS further automatically notifies responsible parties of possible bugs and organizes prob-
lem reports.

13www.gnu.org/software/gnats/

3.6 CVS, SVN and Bugzilla: The data models 23

3.5.3 Rational ClearQuest

Rationals ClearQuest presents a CMS integrated problem reporting system. Unlike Bugzilla or
GNATS, ClearQuest is a problem tracking management system for issues and change requests
as well. It further incorporates an entire workflow management process and is a part of a larger
application suite. It however manages issues in a similar way as, for instance Bugzilla, meaning,
that the data model reflects certain similarities ti the common issue tracking system. Due to lack
of proper information, the ClearQuest system cannot be extensively discussed. However, we’ve
introduced ClearQuest as a counterpart for the web-based issue tracking systems to emphasize
the distinction of ”common”, web-based, pure issue tracking systems and the similarity in the
issue tracking concepts of these two sorts of systems as it was done for the various release history
tools.

3.6 CVS, SVN and Bugzilla: The data models
The next step in the versioning systems discussion is to look a bit closer at the most representa-
tive versioning and issue tracking systems and see how they actually manage the data. For this
purpose we look at the respective data models the particular systems have underneath. The data
models are the first fundamental step into shaping the base for the meta model. By assessing
the data models of the various systems we get a comprehensive base construct to rely on while
developing the meta model.
For the construction of the data models we will use UML 2.0. Modeling details, such as naming
and multiplicity conventions and their variations in UMLwere pointed out in the chapter two, in
the section ”Meta modeling”.
The approach to making the data models has come from the server side. Hence, while examining
the data we’ve looked into how the data is actually stored in the repositories, whereby the release
or file logs for instance, stored in the repository were a great help in retrieving the relevant data.
The retrieval of data is divided into basically two main steps. The 1st step was to define the rel-
evant data to be extracted. This data contains information such as revision and release numbers,
tag names, branch information, commit messages, locks, bug IDs, bug states, etc. There is always
a trade-off between data we want to put in a data model and data that is maybe nice to have as
information but is not really necessary. When developing the meta model later on we will see that
this trade off gets even more significant because there we will also have to deal with information
that might be too detailed or to specific 14 to be put into the meta model.
Once the relevant information has been extracted, the 2nd step was to designate and separate the
extracted relevant data to classes in a UML diagram. The separation into classes was based on the
data representation in various tools for the particular systems. Tortoise SVN was used to retrieve
the data representation from the SVN versioning repository and WinCVS and Tortoise CVS were
used to extract the data for the CVS versioning system. For the issue tracking systems, Bugzilla’s
data model was represented by the bug-report web page on mozilla.org. Given the particular
tools there were some slight differences in the data representation. For instance, the Eclipse CVS
plug in showed a different log entry of a file thanWinCVS; symbolic names were represented dif-
ferently (e.g. in WinCVS a symbolic name was noted as ”1.2 : test release” whereas in the Eclipse
CVS plug in the description came first and the version as second).
Despite the mentioned differences in data representation a consistent data model was derived for
CVS, SVN and Bugzilla. The next subsections describe the respective data models in detail.

14The problematics of merging data of different data models into a meta model implies a more high level view, a less
detailed view, if you want, of the merged data

24 Chapter 3. Release History Systems and Bug Reporting Tools

3.6.1 The CVS data model
This section describes the CVS data model. The description consists of two parts. First, a detailed
overview of the particular classes (i.e. their attributes), their relations to each other and the multi-
plicities of each relation. Second, an explanatory statement is given to underline the reason why
the particular class or relation is made the way it is in the data model.

Figure 3.4 shows the CVS data model in whole to give an overall view before we start exam-
ining the particular classes and relations.

Figure 3.4: The CVS data model

3.6 CVS, SVN and Bugzilla: The data models 25

The CVS-Entry - Revision relation

As seen in Figure 3.4 the revision is designated as a separate class despite the possibility to leave
the revision information of a file as an attribute of the file entity. The CVS-Entry entity holds the
following information:

• RCS file: The RCS file information is a reminder of the former Revision Control System
(RCS). CVS still uses this format, particularly for history files, because the first program to
store files in that format was a versioning system known as RCS. The RCS file data shows
the path to the versioned RCS representation of a file in CVS (e.g. \repository/directory/file.txt,
v). For detailed information about the RCS format and notations please see the CVSmanual
or the doc/RCSFILES file in the CVS source distribution.

• working file: The working file is the current name of a file the developer is manipulating in
his working copy.

• head: Head represents the most recent revision of a file (the HEAD revision)

• branch: When a developer isolates changes onto a separate line of development, he usually
creates a branch. The branch information shows all branches made at a particular revision.
This information is however not always displayed at this place but rather in themodification
report of a file (see the upcoming descriptions). If displayed, it shows only the branch point
revision (e.g. if a branch is made at revision 1.2, the branch point revision would be 1.2.2;
this means that a new branch file would have the revision set to 1.2.2.1)

• locks: Locks in CVS aremeant to prevent complications in software development whenmul-
tiple users change a single file. In an RCS manner, a lock is similar to a reserved checkout.

• access list: The permitted user list.

• symbolic names: Symbolic names refer to the a tag, a sort of file meta information. A symbolic
name could be a vendor tag or a release or branch tag. (i.e. 1.5.2.1 : filebranch-2)

• keyword substitution

The above data are considered relevant as they do appear in all the CVS file logs of different
tools examined for this thesis.
The revision entity on the other hand just holds the information about the revision number of a
file. As said previously, the revision information about a file could also have been placed into the
file entity itself. The separation was done since a revision is a key information in the CVS data
model.
The multiplicity of the relation is one - to - n. A file can havemultiple revisions, where as for a file,
a single revision is present only once (or a single revision belongs to one and only one file). Many
files could indeed have the same revision; in this case the multiplicity would be n -to- m. The
multiplicity in this relation is considered for the case of each file separately, not taking other files
with possibly the same revision into account. From a modeling technique point of view it is more
correct to look at a single entity and the data that comes with it than already linking more entities
together. By doing so, a developer eventually faces some information loss when prematurely
considering multiple entities of the same type in her basic model.

The Revision - Release relation

In both CVS and SVN, the release concept actually does not exist as a representation of an object
or a data set. The release concept is among the central concepts in every (considered) release

26 Chapter 3. Release History Systems and Bug Reporting Tools

history system so far. The more central role of the release concept is a reason why the CVS data
model incorporates a separate release entity; which the revision is linked to.

The multiplicity of the relation between revision and release is in most cases n to m. In most
cases because a revision does not always have to be in a release- in this case there would be no
relation. In the Figure 3.4 the relation’s multiplicity is 0..n to 1..m. This should simply show, that a
release must consist of at least one file. In CVS even this does not have to be, because a developer
can create a tag that is designated as a release but no files need be ”attached” to the tag. Since this
is a rather rare case in practice, it is not considered here.

The Revision - Branch relation

Occasionally, in larger software projects, the main line of development is split into several parallel
lines, called branches. As described earlier, a branch has a specific number starting withe the two
first comma separated numbers of the revision the branch is made of and additionally the the
new branch number, starting with an even number.
The branch concept in CVS is, on one hand, tied to tags, since tags are used to designate a set
of revisions to a release; on the other hand it is a part, or put more precisely, an extension to the
revision concept, as branches are actually revisions themselves (revisions of revisions, but not to
be considered as meta revisions).

Further, as Figure 3.4 shows, a Branch itself can have parallel development itself; a Branch
can contain branches. The multiplicity of the Revision - Branch relation is one to n. A revision (a
file, for that matter) can have multiple branches whereas a particular branch comes from a single
revision. As for the CVS-Entry - Revision relation, the argumentation concerning the multiplicity
is the same: the relation and its multiplicity are considered for one entity of each.

The CVS-Entry - ModRrep relation

A soon as changes to a file under version control occur, they are recorded in form of amodification
report. In the case of CVS it is the appendix to a files revision log entry. Each modification report
contains the new revision number, the date, the modification wasmade, the author and additional
data[Ced05].

Another possible view is that the MR can also be coupled with the revision, since for every
new revision there is a modification report. The MR is linked to the file, according to the model
representation in the various tools considered for CVS.
The multiplicity is one- to- n. A File can have multiple MRs where as a particular MR belongs to
one and only one file (revision).

The Author - ModRep relation

We have already noticed that a MR always has an Author that crated the change to a particular
file and hence moved the revision up to a new number. The Author is considered to be a valuable
information, thus it is placed in its own entity in the CVS data model. In almost every versioning
system the Author plays a role, especially in change management systems, where the authors can
be grouped into developer teams and can take different functions at the same time. For the CVS
data model, the author has a unique name and an optional identification number.
The multiplicity of the relation is n -to- one; an author can be responsible for n modification
reports, whereas a MR is written by a single author.

3.6 CVS, SVN and Bugzilla: The data models 27

Transactions and CVS-entry-meta information

Transactions are not explicitly present in CVS. A transaction would designate a set of commits
that leads to a new revision. This concept was added to the CVS data model, since a project15

was concerned and implementing the transaction concept. For a more detailed description of
a transaction, please see the elaborations in the SVN data model description in the upcoming
section.
CVS-entry-meta information represents a set of additional information to a file, such as keywords
or tags. This information is useful, since it helps in storing, finding and grouping files (tags) or it
sets permissions or additional features to a file (keywords). The relation is made to the CVS-Entry
entity and the multiplicity is one-to-n. A set of meta information is attached to one file, whereas
a file can have multiple additional information attached to it (a file can be tagged for instance as
a part of a release and it can be a branch- which again requires a tag of a different kind- as well).

3.6.2 The Subversion data model
The next release history system to be discussed is Subversion. We have already noticed, that Sub-
version (SVN) can be seen as a successor of CVS, incorporating improved versioning techniques
in contrast to CVS.
The concept of versioning in SVN has been moved on to managing the history of entire direc-
tory trees instead of (only) managing particular files, as in CVS. So, each new revision is tied to
a directory as well as to the file in that directory. On the following pages, the SVN data model
(Figure 3.5) is being elaborated; in the same manner as the CVS data model, by first describing
the entities and their relations and then giving a statement ,why the particular entities or relations
are conceived the way they are.

Figure 3.5: The Subversion data model

15s.e.a.l. research group devoted effort in explicitly recreating transactions

28 Chapter 3. Release History Systems and Bug Reporting Tools

The SVN-File - Revision relation

In contrast to CVS, SVN is managing directories and thus files in them. Having in mind, that SVN
actually does not make any distinction between files or directories, and the same information
concerning release history applies to both the directory and file, we have taken the directory
entity, the file entity respectively, into one UML class calling it the SVN entry . Further, we have
designated the file and the directory as one entity, because the various tools, considered for SVN,
make no distinction between a file or a directory either.

The SVN-File holds the following information:

• URL: The path to the file in a SVN repository.

• revision: the most current revision of a file or directory

• author: the author to whom the file ”belongs”

• last commit revision: revision and the time stamp the revision was last committed

• text status: Tells whether a file has been modified either locally or both locally and in the
repository, added or deleted.

• property status: Gives information about so called non versioned properties of a file or a
transaction or directory tree respectively (i.e. a time-stamp, at which a transaction was
created)

• lock owner: Gives the name of a person that made a lock (read, write) to the file

• lock creation date: holds the date and time, the lock has been applied to the file

The Revision entity holds the revision number without any additional information. The rela-
tion between the two entities is one -to- n; a file (directory) can have multiple revisions, whereby
a particular revision belongs to a single file (again taking the single-entity-case as mentioned pre-
viously).

The Revision- Branch relation

As in CVS, a SVN entry can have multiple parallel lines of development (branches). When a de-
veloper creates a branch in SVN, a new file is being made, yet the branch file remains invisible
for the developer. If she now wants to work on the branch file, a developer simply switches the
current file to the branch file. What changes then, is the path of the file16.
Internally, SVN makes a new sub-directory, when a developer creates a branch. What happens
first, is, SVN creates a transaction tree, then after a commit the transaction tree becomes a revision
tree with the new branch as a sub-folder or file. This procedure happens for all commit opera-
tions, no matter if a developer creates a branch or simply makes new changes to a main trunk.

Another similarity to CVS, concerning branches, is, that branches in SVN can have branches of
their own. The multiplicity of the relation between the two entities is one to n; a revision can have
multiple branches, whereas a branch belongs to a particular revision. The branch entity could
have been also attached to the SVN entry entity, since a branch is a new file originating from a
main trunk file, but conceptually, the revision is more important, since it is an unique and central
information to a file (in the context of a revision or release history system), ergo, the branch entity
is coupled to the revision entity.

16When switched to the branch file, the path to that branch file is being displayed when looking at the log

3.6 CVS, SVN and Bugzilla: The data models 29

The Revision- Transaction relation

Unlike CVS, Subversion has a defined transaction concept. Transactions help in distinguishing a
set of operations to a file that belong to a single development step as, for instance, a set of changes
that lead to a new revision of a file (i.e. the current revision is 3; a set of changes is made that lead
to revision 4).

A transaction in SVN represents a set of commits that apply to a file before the current revi-
sion changes to a new one (before the update command is being executed). The multiplicity of
the relation is one -to- one; a revision is being made out of one set of commits, that is, a single
transaction, which leads to a new revision, whereas a particular transaction (a set of commits) is
bound to a single revision, meaning that each transition from one revision to another has a unique
transaction behind it.

The Revision- Author relation

The reason, the author information is represented as a separate entity is the same as for the CVS
model: it is a valuable information and a common concept in almost all release history systems.
The author entity holds the name of the author and an optional id, if present. The multiplicity of
the relation is n to one; a developer can be the author of more than just one revision, whereas a
revision is made by one author.

The SVN-File- SVN-modReport relation

A modification report for a file in SVN can be extracted out of the history log for a file, since
the log appears to be a listing of the different modifications for each revision of a file. Unlike
CVS, where the modification reports are appended to the file log, SVN maintains the file and the
modification information separately. So when looking at the modification report log, we see the
particular actions (modified, added, deleted), the timestamps, the author, etc. for each revision.
The multiplicity of the relation is one to n. An SVN entry can have multiple revisions, thus, it
must have multiple modification reports. A modification report (hereby, we will take an entire
MR log) on the other hand, exists only once as such and is tied to one particular revision.

The SVN-File- Properties relation

Properties in SVN designate the additional information in form of tags or keywords to a file. For
the sake of a later comparison, the properties are designated as a separate entity. The multiplicity
of the relation is one-to-n. A SVN file can have multiple properties set, where a certain set of
properties is attached to one file. The probably most interesting property are keywords. They are
a common concept in many versioning systems (in this case CVS has the notion of keywords as
well).

3.6.3 The Bugzilla data model
After detailed elaboration of the particular release history systems data models, the next step to-
ward the conception of the meta model is to look in more detail at the data model underneath
Bugzilla. The issue tracking data model is to extend the release history aspect of the meta model.
Thus, we will examine the Bugzilla data model in more detail. We have mentioned in earlier
sections, the the issue tracking systems are rather static in functionality, in comparison to release
history systems. Nevertheless, the data model (Figure 3.6), is more grained than data models of

30 Chapter 3. Release History Systems and Bug Reporting Tools

release history systems.

Figure 3.6: The Bugzilla data model

As it was done for the described versioning systems, the data model will be described in two
ways. First, all the extracted entities, their relations and the multiplicity of these relations are
discussed in detail, then an explanation will be given, why the particular relations and classes are
designated as they are.

The Issue - Person relation

The central entity in an issue tracking system is of course the issue. The relevant data that comes
within the issue entity is mostly standardized across issue tracking systems. In our particular
model the issue entity holds only the information that is strictly related to it and can hardly be
separated into a stand-alone entity. The issue entity holds the following information:

• Issue number (ID): In Bugzilla, every bug has an unique number or ID. This number is in-
creasing for each new bug submitted into Bugzilla. The bug number is an integer and in-
creases by one for every new bug.

• URL: A URL associated with the bug. Usually pointing to a location, where additional
information about the bug can be found. It is of course also possible to fill in a random URL
unless restricted by the administrator responsible for a bug database.

• Summary: A short description of the bug.

• Status white-board: Somewhat similar to the Summary field, except that a larger amount of
text can be written.

3.6 CVS, SVN and Bugzilla: The data models 31

• Keyword: Used for bug categorization

• Priority: Used by the assignee (the responsible Developer for a bug) for prioritising the bug
she is responsible for.

• Severity: As the name says, this attribute tels how severe a bug is.

• Time stamp:There are actually two timestamps: one, that tells the exact time, when a bug
was submitted, the other, when a bug was last modified.

• Status: The status of a bug refers to the different states a bug goes trough in its life cycle 17.
The different states are reserved keywords such as ”‘new”’, ”‘assigned”’ or ”‘resolved”’.

• Resolution: If a bug enters the status of ”‘resolved”’, there are multiple possible resolutions.
Each resolution denotes a different outcome for the solution of a bug.

The person entity in this version of the model is a composition of three separate entities, that
were present in earlier versions of the Bugzilla data model during this project.
To a bug, there are in essence two persons that are related to it. The reporter is the person who
submits the bug to the data base. The assignee is the developer, responsible for the submitted
bug. It is however possible that an assignee also submits a bug, which makes her a reporter. A
bug always has a pair of persons that are related to it. Another person that contributes to a bug
is a creator of a comment, an attachment or an activity. This person can also have the role of an
assignee or a reporter or any of the just mentioned roles.
During the design of the Bugzilla data model, all the mentioned roles of a person contributing to
a bug were designated as separate entities. It became clear, that all the different roles could be
placed into one entity, the ”Person” entity. Since all the different contributors to a bug are stored
consistently by their e-mail address and optionally a name, the merging to a single entity presents
no real problem of possible data loss or inaccuracy in information representation. Further, the
relations of the entities18 can be gotten rid of and we’d get a more clear data model. The former
entities and their relations are painted blue in Figure 3.11.
The multiplicity of the relation among person and issue is m-to-n; an issue has multiple persons,
contributing to it, where as a person can contribute to more than one bug.

The Person - Comment, Attachment, Activity relation

Having elaborated the person-entity problematics above, we will look at the particular relation of
the person entity to comments, attachments and activities. Those three entities are considered to
have the same relation for each, with the person entity so they are discussed in one turn.
The comment entity has a n-to-one relation with the person entity; a person can write more than
one comment, where as a comment can be written by only one person at a time. This relation
stands also for the activity and attachment entities.
In the implementation of the Bugzilla model, we will see that these relations are actually not one-
to-n, but m-to-n, and they are implemented over association classes. Chapter 6 ”Implementation
and Evaluation” explains why that is. The model does not change however.

17See section 3.x ”‘Bugzilla”’
18The creator entity is linked to the comment, activity and attachment entities. Each of these entities is in turn linked to

the issue entity.

32 Chapter 3. Release History Systems and Bug Reporting Tools

The Issue- Comment relation

The comment entity holds information such as comment number, a time stamp, at which the
document was created and the comment text. A comment is an additional information to a bug,
mostly describing problematics that emerge during the solving of an issue. A issue can have one
or more comments, whereas a particular comment is linked to a single issue. The multiplicity of
the relation is thus one-to-n.

The Issue- Attachment relation

An attachment is also an additional information to a bug, with the difference, that an attachment
is usually a file of any kind. An attachment has information such as the type of the attachment,
date it was created, short description of the attached file and an attachment id. The relation to
the issue is one-to-n. An issue can have more than one file- attachments, where as an unique
attachment is linked to a single issue at a time. However, a file in an attachment can be, for
instance a patch to not only one issue, but to many. Thus, the file would be attached to more than
one issue and the relation would be m-to-n. But, the attachment is considered as an entity only
with all its information. This means, the same file in an attachment can be attached to more than
one issue, but it is likely that is was attached by a different person, at a different time, and perhaps
with a slightly different description. Ergo, as a whole, the attachment is never the same for more
than one issue, which confirms the one-to-m relation to the issue.

The Issue- Activity relation

As mentioned in the introduction to Bugzilla, in one of the earlier sections, every issue is strictly
bound to a work flow in Bugzilla, called the bug life cycle. Due to this dynamic process an issue
runs through, there is always a certain activity associated with an issue. The activity consists
of, for instance, changes that happened to the status of an issue. Overall, the bug activity is a
detailed record of all changes and contributions to an issue, including such tasks as comment-
adding, status changes, etc. It is an important informational- content addition to an issue, that
can be considered as a somewhat history of an issue. We have stated earlier however, that an
issue does not have any history; what is meant, is rather the versioning aspect, that an issue does
not have.
The multiplicity of the relation is one-to-n. An issue can have multiple activity instances19,
whereas an particular activity is linked to a single issue.

The Issue- Component relation

A component is a part of a product in the Bugzilla datamodel context. Issues are component- spe-
cific and can emerge in plural for one component. The component entity itself holds information
such as the component name and the component version. The multiplicity of the relation is one-
to-n. A component can have multiple issue, whereas a specific issue emerges in one particular
component.

The Issue- Dependency relation

Earlier in the thesis, we have briefly stated, that issues are connected with each other by a certain
relation. They can depend on or block one another. The dependency relation is however two-
sided. To illustrate the dynamics of this relation, let’s consider three bugs (B2, B4 and B5). B2

19Each activity-entry is considered a separate activity instance- not the set of activities for an issue.

3.6 CVS, SVN and Bugzilla: The data models 33

depends on B4 and B5, B4 depends on B5. This is the ”depends” side of the relation. During the
making of the data model, this relation is found to have a strict and direct opposite to its ”de-
pends” side, namely the ”blocks” side. Strict and direct means, that when B2 depends on B4 and
B5, B4 and B5 block B2. The same goes for B4: it depends on B5 so B5 blocks B4. It is not possible
for B2 and B4 to block B5, nor is it possible for B5 to depend on either B4 or B2. The ”depends”
side of the relation has for every issue a ”blocks” counterpart. The dependency relation is split
into uni-directional relations to two entities -the blocks and the dependsOn entities- whereby, for
either entity, two uni-directional relations are given.

The Component- Product relation

As mentioned above, a product is a set of components. Component entities have already been
introduced. The product entity has a one-to-n composition-relation to the component entity, since
we have stated that a product is a set of components. To illustrate this, see the following picture.
Components and products are those entities that issues emerge from, and thus they are relevant
enough to designate separate entities for components and products.

The Issue -Milestone,-Computer-system relation

Milestones are dates, that a developer plans to have her bugs fixed by. They can me set to certain
dates or to certain development points (for instance, if somebody plans to have his bugs fixed for
release 4.1, than the milestone is designated as release 4.1).
Milestones are designated as separate entities, because we wanted to keep the potion free, that if
some more information is to be attached to a milestone, it can be modeled within the milestone
entity separately, without having to manipulate other entities-that is, the issue entity, if the mile-
stone were integrated into it as an attribute. A milestone entity has the name of the milestone as
immanent information. However, a possible extension would be the date, the milestone is to be
finished by, or the description of the milestone. The relation among issue and milestone is n-to-
one. A milestone can be relevant for the completion of more than one issue, whereas an issue has
to be dealt with up to a certain milestone. The remark here is, that the relation can also be n-to-m,
since the Bugzilla documentation does not provide clear information, whether it is possible for an
issue to be assigned more than one milestone. The idea for multiple milestones would be, that an
issue has to reach a certain state in the life cycle up to a first milestone, and be definitely resolved
by a second milestone.
The computer system is another entity, that was extracted out of the same reason as the milestone
entity. So far, the computer system entity has the names of the platform and operating system,
which a component with the issue runs on. Later, it is however possible, that these information
can be extended with some other details. The relation is n-to-m. An issue can emerge in more
than one computer system, and a computer system can have , although not desirable, multiple
issues.

By now, the overview of the different versioning and bug tracking systems is complete. An
introduction and a classification was made, and the relevant systems were described and their
data models elaborated. This chapter serves thus, as a pre-meta modeling milestone, from where
the release history meta model is being developed.

Chapter 4

Developing the release history
meta model

This chapter describes and discusses the making and details of the release history meta model
and its extension with the issue tracking data model.
We have introduced and discussed release history and bug reporting systems that are going to be
the conceptual base for this meta model. We have taken the particular systems, and derived the
respective data models in an object oriented fashion into UML diagrams. The next step is to build
a meta model, that is capable of incorporating all immanent concepts and the most important and
relevant information of the different versioning systems considered in this thesis.
We will start with an introduction to meta modeling. The idea is to provide a short theoretical
base, to what meta modeling is, and how the modeling technique is applied in this thesis. After
this short theoretical introduction, we will start developing our meta model. The procedure is
split into two major parts. In a first step, the meta model is derived from the CVS and SVN data
models and extended with the Bugzilla issue tracking data model. In the next step, the release
history aspect of the meta model is considered again and modified. The modification concerns
the file or Entry entity of the model, whereby the modification is about splitting the file entity
in more sophisticated entities. This modification is done with particular focus on source code
projects, where a file or entry can be further split into packages, classes, methods, etc.

4.1 Modeling concerns for the release history meta model
The problematics of information abstraction have a central place in the context of designing the
meta model in this thesis. Namely, the problematics of our work can be put in relation with the
facts, mentioned in Chapter 2 under ”Metamodeling” up to a certain degree. As a developer, who
deals with different concepts and abstraction levels in designing a software system, or a developer
describing the grammar of languages in order to classify them, we face a problem in describing
and combining different concepts that are present in different systems of one type, namely release
history systems. Each of these systems has its own conceptual world and each of them has a sort
of a different abstraction level immanent to it. However, the abstraction levels are not so different,
so the meta modeling had not been too concerned with finding a suitable abstraction level for the
meta model. By using a meta model, in the UML2.0 conform notation, we have been able to
extract the similarities of the particular data models and describe them consistently in the release
history meta model.

36 Chapter 4. Developing the release history meta model

In the approach to meta modeling in this thesis, we have conducted a somewhat different process
of constructing a meta model, than it would be, harshly said, commonly known.

Figure 4.1: Different meta modeling approach

In Figure 4.1, a simple relation between two UML classes is described in abstract syntax as
instances of a meta model. Hereby, each information to a class (name, attributes, etc.) is classi-
fied and instantiated.The under part of the picture holds the meta data and is used to describe
relations of the shown sort. The meta modeling approach for this example derives a different
abstraction level but remains in the same conceptual world (the Person-Inhabitant -class general-
ization) [GT05].
Our concern in this thesis is a slightly different one. We do not burden ourselves with describing
one model with meta data, but rather, conceptually examining different data models and, based
on similarities, deriving a meta model, that describes all the data models. An appropriate exam-
ple, for the sake of comparison to the approach in the above shown picture would be as follows.

Figure 4.2: Used meta modeling approach

In Figure 4.2 under a), the CVS and SVN relations among a file and its additional information
are shown. The Abstraction level in these two concepts are similar, what differs are the type the

4.2 Deriving the meta model 37

relations and the attributes in each concept. Our approach is, first, to recognize the two classes as
common in each of the concepts, then designate them as entities in the meta model with the rel-
evant information. Further the relation and its multiplicity in each of the concepts is recognized
as common, then designated as a relation between the entities in the meta model. The semantics
for each data model (CVS designates the shown relation as ”has properties”, SVN as ”has infor-
mation”, multiplicity of the relation, attributes to a class) are not changed significantly and the
abstraction level is slightly changed (A file is designated as an ”Entry”, etc.), but what we derive
in b) is a class and relation description, that can be valid for not just CVS or SVN, but for every
other release history system.
The kind of meta modeling we use in this thesis is focused on similarities between instances of
different conceptual worlds as in the similarities in the semantics of the different concepts. The
similarity problematics are more pertinent, since the abstraction levels and the semantics of the
different release history data models are mostly the same.

4.2 Deriving the meta model
During the definition of the entities and their relations in the CVS and SVN data models we have
discovered some similarities, thus common concepts among release history systems as well as
some tool or system specific differences. Having these relations among the two data models in
mind we extract the core entities, that represent the main concepts of release history systems out
of these models and start building the meta model.

4.2.1 The Entity-Revision relation
The Entity, taken as a representation of a file until its further specialization in upcoming sections,
has both in CVS and SVN a revision attribute. In the model, we extracted this attribute and
designated it as a separate entity (Figure 4.3). Two main reasons for this are pointed out: first, the
separate Revision entity makes it easier to map other entities to it and to the model; second, every
release history system has the revision as a core element of the particular versioning concept so
at least here it is clear, why the Revision entity is rather important.

Figure 4.3: The meta model file- revision relation

To illustrate the revision as an important information consider the log entries of CVS and SVN.
The next listing shows an CVS log as taken from the WinCVS1 tool

Rcs file : ’”ẗestrepo/someth/test.txt,v’
Working file : ’test.txt’
Head revision : 1.8
Branch revision :
Locks : strict

1www.wincvs.org

38 Chapter 4. Developing the release history meta model

Access :
Symbolic names :
1.5.0.2 : ’rel-1-5’
..

—————————-
Revision : 1.8
Date : 2005/8/24 13:39:58
Author : ’mobsys’
State : ’Exp’
Lines : +0 -15
Keyword : ’kv’
CommitID : ’df8430c78ad7112’
Filename : ’test.txt’
Description :
no message
—————————-
Revision : 1.7
Date : 2005/8/22 15:58:25
Author : ’mobsys’
State : ’Exp’
Lines : +4 0
Keyword : ’kv’
CommitID : ’e844309f6203ec9’
MergePoint : ’1.5.2.1’
Filename : ’test.txt’
Description :
no message

The example for an SVNfile log on the other hand is shown as in Figure 4.4, where the revision
is explicitly designated.

Figure 4.4: Subversion file representation

The next important facts are the relation and the multiplicity of it among the entities: As seen
in Figure 4.3 there is a n-to-1 relationship between Entity and Revision. This means that an Entity
(file) can have up to n revisions where as a revision is clearly assigned to one file. The CVS log
excerpt shown above illustrates this relation. Revision 1.8 is the head revision of an Entity (here,
a CVS file). Revision 1.7 is the next older revision of the same CVS file. This denotes, that a file
has multiple revisions stored in its log.

For SVN on the log entry for a file and its revisions looks as in Figure 4.5. Revision 17 is the
head revision, and revisions 16, 15 and so on are the next older revisions respectively.

4.2 Deriving the meta model 39

Figure 4.5: Subversion log entry

4.2.2 The Revision-Author relation
A file entity in each versioning concept has the Author as an attribute. The author plays an im-
portant role in the versioning concepts since we wish to track down changes to a certain Author
at a given point in time.
So what we did was to again separate an attribute, in this case the Author- attribute and make
it a separate entity in our meta model as well as in the data models of the particular versioning
systems used as a base for constructing the meta model.

Figure 4.6: Revision Author relation

The attribute for each entity here is basically clear. A Revision is defined by the revision
number for a file; an Author is defined by his or her name (Figure 4.6).
Taken that a person is considered an Author when he or she is logged into the system or has
his or her own working copy of a file or set of files, the relation and the multiplicity defining it
can be put to like this: A revision has one author that made that revision. This statement stands
before the implication that a new revision is created after a commit command which incorporates
several changes a single author has made to a certain file. So, for a revision there is one and only
one author.
The other end of the relation states that an Author can have her name on one or more revisions;
again considering an author to be a logged in user or a user recognized by the release history
system.
To illustrate the relationship see the again Figure 4.5; the second row denotes one author for each
revision.

4.2.3 The Revision-Transaction relation
This relation is not explicitly given for all versioning systems taken into account for this thesis2. In
SVN for instance there’s a transaction concept that clearly shows a transaction as a sum of several
commits made by an author. After each sum of commits in SVN a new transaction tree is being
generated out of the versioned folders tree. Then a new revision of that tree is being stored in the
SVN database.
The concept of transactions however remains the same across the two versioning systems.

2TheCVS versioning system has no explicit notion of transactions as described in t section 3.6.2 ”The SVN datamodel”.
The transactions had to be reconstructed. For more detail, please see [FPG03].

40 Chapter 4. Developing the release history meta model

Figure 4.7: The revision transaction relation

The multiplicity of the relation describes the following relation: A revision has one transaction
that created it whereas a transaction can influence more than one revision (depending on how
many files with different revision numbers are being affected by the commit) (Figure 4.7).

4.2.4 The Revision-Release relation

Figure 4.8: The release revision relation

The Release entity is firmly coupled with the concept of file meta data such as tags, labels or
keywords. The reason is that there is actually no explicit release- entity as such. The release con-
cept is however very helpful in grouping files and distinguishing between different programming
lines of a piece of software.
A release is generated trough adding meta information to files that designate the file to a partic-
ular release. In order to more clearly depict the release concept that is immanent to most release
history systems including the ones considered in this thesis we have taken the release as a sepa-
rate entity that is linked with the Revision entity - since a release consists of one or more revisions.
Themultiplicity has been partially explained (from the release point of view). On the revision side
it’s clear that a single revision can emerge as part of several releases. Figure 4.8 designates the re-
lation.
Figure 4.9 illustrates the relationship in an excerpt of the WinCVS log. The file information con-
tains additional information (”test-release-1”) that designates it to that specific release.

Figure 4.9: CVS release information

The above figure illustrates the relationship for CVS. In SVN the concept is the same, though
there is no distinction between a branch and a tag, meaning a release is no different than a branch
of a folder structure versioned under SVN except that when you separate a part of the folder
structure as a release you must not change any files in that release because it would then turn into

4.2 Deriving the meta model 41

a common branch. The relation between the release and a revision of files and the multiplicity of
the relation remain the same in SVN as in CVS.

4.2.5 The Revision-Branch relation

Figure 4.10: The revision branch relation

When working on a file there is always the possibility that this file can be used (slightly mod-
ified) for some other purpose than the one you designated it for (by another person, another
department in your company, etc.). In this case you separate a branch of that file (or a set of files)
and treat it as a separate development line. This is a common concept in versioning systems.
The relation in Figure 4.10, between a Revision and a Branch has an n-to-1 multiplicity, which
means a Revision can have multiple Branches whereas a Branch comes from a single file, ergo,
from a single Revision. A Branch can itself have its own sub branch. To illustrate the relationship,
consider Figures 4.11 and 4.12. Figure 4.11 shows the excerpt of a SVN branch tree in form of a
graph, where branches originate from one revision or from other branches. Figure 4.12 shows a
CVS revision tree, where the branch point is at revision 1.3.

Figure 4.11: A branch graph in SVN

4.2.6 The Revision - Modification Report (MR) relation
Each time an author changes a file and commits the changes, a new revision of that file is being
made. In relation to this a modification report is being generated telling a third user who, when,
on what file has made the change. From the versioning tool’s point of view the modification
report (MR) is linked to a file instance in the versioned repository. But from a conceptual point of
view it would be more correct to make the relationship between revision and MR. The reason is
the taught that eachMR describes a new revision thus it’s in direct relation with a revision; which
is also indirectly linked with the file instance (see complete meta model picture for details).
The relation is described as follows: For a single revision there is oneMR that holds the data about

42 Chapter 4. Developing the release history meta model

Figure 4.12: A revision tree in CVS with branches

the changes that led to that revision. A MR is linked to a single revision, because it describes
exactly the one revision it is linked to (Figure 4.13).

Figure 4.13: The revision modification report relation

4.2.7 The Entity - file-meta-info relation

By examining the different versioning tools we have discovered that a file instance has a set of
”meta” information attached to it and describing the file. We designated the meta information as
a separate entity. What follows is a 1-to-n relation with the Entity instance (Figure 4.14). Ergo, an
Entity (or file) can have one more of these meta information whereas a single meta information
instance is linked to exactly one Entity, namely that on that it is describing.

Figure 4.14: The Entity - file-meta-info relation

4.3 Extension of the meta model with the issue tracking data model 43

4.3 Extension of the meta model with the issue tracking
data model

In the earlier discussion of issue tracking systems in this thesis, it was stated, that the issue track-
ing domain can be considered to be a sort of extension to the release history systems. It was said,
that issues can emerge from one version of a file to another and thus issues are closely related
to versioning. The issue tracking domain is however more than an addition to release history
problematics. It is a sophisticated system for bug and change/feature request management. In
the case of the release history meta model, we develop in this thesis, the issue tracking domain is
indeed an extension of the release history data model. By having a sophisticated release history
meta model combined with issue tracking data, we get a more complete base to model the entire
life cycle of a file under version control. By adding issue tracking information to a release history
model, the interactions among files are further extended with information in form of problem
reports that again have their own particular structure. The result are two inter-operable models
with the purpose of history and problem management of files.
For the purpose of combining the release historymetamodel with issue tracking data, the Bugzilla
data model was introduced and discussed.

4.3.1 Linking release history data with issue tracking information
When editing a file under version control, a new revision of that file is made along with a mod-
ification report for that revision. When looking into modification reports of files under version
control in more detail, i.e. into commit messages, which textually describe the changes made
and some additional information, certain patterns can be found that might be useful in construc-
tion the bespoken link between versioning and issue tracking. Namely, commit messages often
hold keywords, such as ”BUG”, ”bugID”, ”bugNum 2315” or similar, that point to an issue that
emerged during the creation of a version (modification report), the commit message is appended
to. These keywords indicate, that a modification report presents the linking possibility with an
issue tracking model. While examining the release history data models, commit messages came
up to be the only considerable linking solution to issue tracking data. First, modification reports
are, as described in earlier sections, closely related to a file and thus to the revision of that file-
hence, if we’d to look in a transitive way, the relevant link to a revision, as a central entity in the
release history meta model, is present. Further, the modification reports are the only entities that
hold the kind of information, that is relevant for the linkage.
On the side of the issue tracking data model, the linking point would be the issue entity directly3.
The data relevant for linking would be the issue ID, since modification reports refer in their com-
mit messages to such issue numbers or IDs. The following figure shows the excerpt entities from
the release history meta model and the Bugzilla data model with the established linking, bidirec-
tional, many-to-many association.
To come back to the introduction to meta modeling, where meta modeling is considered to

be the effort on combining different conceptual worlds and describing their semantics, the ap-
plication of this approach is hereby shown again. There are two conceptual worlds: the release
history concepts and the issue tracking concept (Figure 4.15). In order to enable a comparison
and combination they are modeled with the same modeling language (UML) and in consistent
modeling style. The static semantics (the structure), as well as the dynamic semantics4 of the con-
cepts (the data models) are different5. The abstraction levels differ. Entities in the release history

3See section 3.6.3 ”Bugzilla data model”, Figure 3.6
4The behavior of the two systems, meaning the interactions and dependencies among entities
5If we abstract from the notation style, which is the same for both concepts in this particular case, the release history

44 Chapter 4. Developing the release history meta model

Figure 4.15: Bidirectional linking association of modification report and issue entity

concept designate data on a source entry (file) level, whereby the issue tracking concept abstracts
information on a file-data level -the designated data is about an information to a source entry.
Nevertheless, the two concepts can be combined, interfering neither semantics nor abstraction
level of the particular concept.
The multiplicity of the linking association is many-to-many. A modification report can reference
to one or more issues, whereby an issue can emerge in more than one modification report.

4.4 Further specialization of the release history aspect of
the combined meta model

The issue tracking aspect of the combined meta model abstracts data on a level that allows the
linkage not only on a file level, since the information in it is abstracted on a data-to-a-entry level.
This is an interesting fact to remember in the following effort to further specialize, or if one wants
so, to change the abstraction level of the release history meta model. The reason why this effort
is made, becomes clear when the focus falls onto the source code development domain in soft-
ware engineering. Release history systems usually are capable of managing pure text files as well
as binary files. Under text files we commonly understand either plain, unstructured text files or
source code files of some particular programming language such as Java, C++, HTML, etc. The
latter sort of text files will be of further concern in this section.
Release history systems manage entire source code files without or with little notion of the text
structure in the file. This means, that a release history system, such as SVN, captures the changes
made to a file, thus crates revisions and point to conflicts, when merging conflicted code from a
branch, but it has no notion of what exactly has changed in the file while changes were applied to
it. It does not recognize, whether a method declaration was altered or an attribute was changed in
a source file. However, there are certain versioning systems that do consider the internal structure

meta model and the issue tracking model show different structural details.

4.4 Further specialization of the release history aspect of the combined meta model 45

of a source file6, and manage not only files, but more detailed entities, such as classes, methods,
attributes, etc.
So far, the release history concept’s abstraction level was on a file- level, not considering the in-
ternal structure or the type of a file. But, due to development on fine grained versioning systems
and augmented focus on source files, the revision history meta model is to be further specialized
in its entities and thus its abstraction level.

The idea is to further lower the abstraction level in a systematic way, to be able to encompass,
on one hand the different types of entries, a versioning system can manage (files, directories), and
on the other, to emphasize the internal structure of a file.
The specialization of the file entity is done according to Figure 4.16.

Figure 4.16: Specialization of the release history meta models file entity

Instead of a File entity as the central link to Modification Report, Revision, etc., there is now
the ”Entity” instance. The Entity has two ways of specialization. In one way, the specialization
is made on a file level, distinguishing between two sorts of objects a versioning system can man-
age, namely, a File, and as a composition related to the File, a Directory, whereby a Directory
can have one or more subdirectories7. The other side of the specialization is concerned with the
internal structure of a managed object, hereby having the focus on source code files. The Entity is
an abstraction of a Package -the Package being the hierarchically highest object in a source code
domain8. A Package can in turn have one or more sub-packages. A package is further a compo-
sition of Classes, which again can have subclasses of their own. Further abstracting, a Class can
have Methods, which in turn can have none or many attributes. Attributes designate the lowest
abstraction level and the lowest hierarchical stair for this effort of specialization.
The accomplished change in the abstraction level of the release history meta model enables the

6One such fine grained release history system is being developed at the University of Salerno, Italy, under the direction
of Prof. Andrea de Lucia

7With modeling directories as shown, it is possible to organize a hierarchical structure of the managed Objects, if such
a necessity arises

8The Java programming language is taken as reference, while specializing the entities

46 Chapter 4. Developing the release history meta model

modeling of a wider spectrum of versioning systems, hereby encompassing the fine grained ver-
sioning systems, that manage internal structures of files as well, yet still being able to efficiently
model common versioning systems such as the described systems of SVN or CVS.

4.5 The combined meta model overview
After the completion of extension and specialization of the release history meta model, the graph-
ical interpretation looks as in Figure 4.17.
The upper right entities in the Bugzilla model part (Assignee, Reporter, Creator) are all merged
into the Person entity. The respective relations of these Entities are to be considered as relations
of the Person entity.

4.5 The combined meta model overview 47

Figure 4.17: The complete extended and specialized release history meta model

Chapter 5

Validation with ClearCase

While examining the CVS and Subversion data models all the necessary tools and documentation
were relatively easily accessible and free to use. This is because the CVS as well as the SVN sys-
tems are open source projects. The documentation provided was insightful and detailed.
With Clear Case it was a slightly different story. First, and maybe most important, is the fact
that Rational’s ClearCase is not an open source System, ergo, there is no free or trial version of the
system. The next point is the ClearCase documentation. Though there is plenty of free and down-
loadable documentation, the documentation is not quite detailed about the actual data model of
ClearCase nor is it consistent in its definitions of certain aspects of ClearCase. However, the doc-
umentation provided a solid base for a more detailed data model.

The release history meta model was derived on the base of release history systems, that, ac-
cording to the implicit classification of versioning systems earlier in this thesis, fall under the first
class of verisoning systems, that is, they are pure versioning systems. These systems are sophisti-
cated and incorporate the common and most significant concepts in release history management.
However, in order to underline the relevance and a wide applicability of the meta model, it has
to be validated against a release history system, that was not part of the informational base for its
construction. For the purpose of validation, Rationals ClearCase release history system was used.
The validation is done by, first, identifying the ClearCase data model in a fashion, all the other
data models were derived, then the ClearCase data model is compared with the release history
meta model. During the comparison, the focus lied on identifying significant similarities among
entities and particularly their relations. These similarities refer to common versioning concepts
such as revision, release, modification report and the relations among these concepts. It is to be
said, that the validation is not concerned, as to how, for instance, ClearCase stores versions (re-
visions), but rather, whether the release concept is present in ClearCase and whether the concept
can be modeled with the semantics of our meta model.

The validation in this section will start by introducing the ClearCase data model. The deriva-
tion of the particular entities and relations of the ClearCase datamodel is not the primary concern,
thus it will not be explicitly emphasized. The entities and relations will be explained in the context
of the entire ClearCase data model and during comparison of the two models. The final section of
this chapter will then emphasize some interesting ClearCase concepts related to versioning, that
would extend the release history meta model in order to further span its relevance for change or
configuration management systems.

50 Chapter 5. Validation with ClearCase

5.1 The ClearCase data model
While extracting the relevant information for the data model in the ClearCase documentation,
some details regarding information to entities such as attributes or the exact multiplicity of the
particular relations, are inconsistently explained or not present. However, the ClearCase data
model, as it is shown in Figure 5.1, is valid enough for the effort of validation in the upcoming
section.

Figure 5.1: The ClearCase data model

The under right entity of a VOB1 element is present, and its attributes are in place, yet it
remains unclear, due to the ClearCase documentation, what multiplicity the relation with the
Version entity has. The upper entities represent the concepts in CleasCase, that will be discussed
in context of extending release history systems in one of the next sections.

5.2 Validation
As mentioned earlier, the validation process is focused on finding similar concepts (in form of
entities) and relations in both models. The elaborations will be done by first taking a ClearCase
entity and relating it to the appropriate entity in the meta model. During validation, it will be
possible for some of the entities and relations to be compared in more than one way. These pos-
sibilities will be mentioned, since some concepts in CleasCase can be considered ambiguous as

1Versioned Objects Base is a sort of repository in CleasCase

5.2 Validation 51

they can act as representations of more than one concept2.
Before starting the actual validation, the parameters of a successful validation have to be pointed
out. Since the release history domain is of concern here, there are core concepts in release history,
that need to be covered in a satisfactory way, in order to successfully validate. These concepts are
the following:

• File/Directory

• Revision/Version

• Branch

• Release

• Author/Editor

• Modification Report

• Additional file information/File-metainfo

If these concepts, that are present in ClearCase, can be modeled by the semantics of the meta
model, than the parameters of a successful validation are satisfied and the meta model is valid for
more systems than the ones used for its construction.

The File/Entry validation

A File in ClearCase can be either a text file (source code) or any sort of a binary file. The file as
an entity is present in both models, which was straightforward, since files are the most common
managed objects by a versioning system. Further, ClearCase manages directories as well. The
directory entity is not designated explicitly, since there is no reliable information, whether it can
be considered as a specialization of a file or as a separate entity, thus the relation between the two
models is made among the file entities, which is satisfying as well. The meta model’s semantics
are able to model the ClearCase file concept.

The Revision/Version validation

Each file in ClearCase has a version. Hereby, newer versions of a file can be stored as separate
files, without changing an older one. The same stands for directories. The version of a file in
ClearCase was designated as a separate entity. As the picture shows, the revision entity in the
meta model is unambiguously the counterpart to the ClearCase entity.

The Branch validation

Another concept, common to most versioning systems is branching. A branch in ClearCase rep-
resents a parallel development line as it does appear in other versioning systems. The branch
concept is also validated, however, ClearCase manages branches in a proprietary way. Namely,
most versioning systems don’t have a notion of a branch until a developer really branches off
a separate development line. ClearCase however, defines every development line as a branch,
whereby the initial development line is designated as the main branch. From this main branch,
all other branches are derived. This idiosyncratic feature of ClearCase makes however no differ-
ence to the overall notion of a branch.

2An Activity in CleasCase, for instance, can be a considered as a transaction set on one file as well as a change set, thus
a directory, dependent the desired role of the Activity, that is, on the information from it that is required

52 Chapter 5. Validation with ClearCase

The Release validation

The release concept poses some deviations in the straightforward validation. A release is a set of
revisions of multiple files. All the revisions in a release are tagged with additional information,
that designates them to particular releases.
In ClearCase, the release concept could not be identified as such. It is however present, under
different names and functionalities. Two entities in the ClearCase data model could be identified
as a counterpart to the release entity in the meta model: the Baseline and the Activity entity.
A baseline, according to [Rat03a], identifies one version of each file element in a component3 that
represents the work of a group of developers. It designates a version of a component at a certain
stage in development. This definition of a baseline corresponds to the notion of a release in other
versioning systems, such as CVS or SVN. A release is a set of files, at a certain revision, that des-
ignate a software component or the result of a certain stage in development effort. Thus, the base
line is a possible candidate for the validation purpose.
Another concept in ClearCase, that might as well be the counterpart to a release is the Activity.
An Activity is a ClearCase object, that encompasses a set of files, that a developer creates or mod-
ifies. This set of files is the change set of an Activity, and it represents development tasks, such
as bug fixes or, even releases of software components. The difference between a baseline and an
Activity is in the number of developers, that are appointed to either of the two. A baseline has
many developers, whereas an Activity exists for one developer only. Nevertheless, the Activity
can be a set of versions, that designate a release in its common notion, ergo, the Activity is the
second possible entity to be validated against the release entity of the meta model.
Whether baseline or activity, as long as the meta model’s semantics incorporate the release con-
cept, it can model both baselines and activities as releases. The validation for the release concept
is accomplished, however with a certain ambiguity, whether baseline or activity should be consid-
ered as a counterpart to a release. From the point of view of the author of this thesis, the baseline
is considered for validation, since the activity is more ambiguous in its definition of a set of files
it incorporates.

The Author/Editor validation

ClearCase manages developers as individual contributors or as groups (teams). Each developer
has an account and a working copy (view) of a set of files. The Author entity models develop-
ers, both as individuals and teams, since the information to an author consists mostly of a name
and/or an ID. The relation between Version and Author in the ClearCase data model is m-to-n
because of the just mentioned consideration. The meta model considers an Author as single in-
stance -it abstracts the group notion of an Author as a single instance4. Thus the relation between
author and revision has the multiplicity of one-to-n. The Author concept is valid, if an author is
considered as a single instance. If the multiplicity is changed to m-to-n, the meta model could
model groups as well5.

The Modification Report validation

The modification report validation faces similar problematics as the validation of the Release en-
tity. It was said earlier, that ClearCase stores each new version of a file as a separate object. These
objects are stored in the VOB and are referred to as VOB-elements. During the data extraction for
the ClearCase data model, no direct counterpart to the modification report entity was found. The

3A component is considered to be the object of a development effort; a piece of software, a module, etc.
4The versioning systems used for constructing the meta model do not have the notion of the author as a group. How-

ever, it is possible to extend the meta model in that it models the author as a group as well
5Please consider the upcoming section for the proper extension of the author concept

5.3 ClearCase features as possible extension to the release history meta model 53

VOB-element entity, however, turned out to represent a similar concept to a modification report.
Namely, each time a new version of a file is created, a new VOB-element is stored in the reposi-
tory. This VOB-element holds the information about modifications made to the file (time stamp,
size, author of the modification, etc.). A VOB-element is thus considered to be a modification
report in form of a stored physical object in a repository. The meta model allows the handling of
modification reports as they are present in ClearCase.

The Additional-file-data/File-metainfovalidation

The file-meta information concept is present in ClearCase in the same notion as it was designated
in the meta model. The information, the file meta info entity in ClearCase holds attributes such
as labels, attributes, hyperlinks, etc. A label, for instance, designates a user-defined name for a
version, which corresponds to the tag attribute in the meta model.

5.3 ClearCase features as possible extension to the re-
lease history meta model

The validation against ClearCase is accomplished within a satisfactory spectrum. The core con-
cepts and relations of release history systems could be validated, though, some ambiguities re-
main concerning revisions, authors, and modification reports. Ultimately, they do not relativize
the modeling of the ClearCase data model with the semantics of the release history meta model.
We look at certain ClearCase specific features that can be considered for an eventual extension
of the meta model’s semantics. These features can be implemented in the meta model since they
seem very plausible and applicable in release history management as well as from a conceptual
point of view.

5.3.1 The ”View” Concept
A view in ClearCase is a similar concept as a working directory in other versioning systems.
However, the working directory is not a concept imanent to a data model of a versioning system,
but rather an implementation concern. The view concept in ClearCase abstracts the view as a part
of the data model. It defines a set of files in a specific version or just a set of files, accessible to a
developer. This concept enables a better overview of efforts done by many different developers
or teams. Integrating this into the data model allows a further layer of organization of files or
directories.

5.3.2 The ”Activity” Concept
The activity can also be considered as a change set, a set of files, a developer currently works on.
An interesting addition from ClearCase would be the additional information, that come with a
change set; information related to the author. Namely, so far change sets can be modeled with
the meta model as directories (a set of files) with indirect relation to revision and author . The
Activity would be a separate entity, encompassing a set of files with additional information to the
author who is assigned to it (and to the revision of course) directly.

54 Chapter 5. Validation with ClearCase

5.3.3 The ”Stream” Concept
A stream is probably the most interesting feature, that can be added to the meta model. A stream
is a ClearCase object6, that maintains a record of activities and baselines. Further it determines,
which files are shown in a view for a developer. It is considered to be the work flow history
managing entity in the ClearCase data model. This would be a completely novel concept in the
release history meta model. A stream entity in the meta model, would be the composition of
modification reports and it would have additional information about files, authors, and activities.

6An object in the sense of a Stream is the information representation towards the user. A Stream is the working
environment with all the visible change sets for a user. It encapsulates a development effort or task in ClearCase. A
Stream is not an object, but rather the set of concepts, such as Activity or Baseline.

Chapter 6

Implementation and Evaluation

The conceptual part of the modeling effort is concluded. The meta model is in place and vali-
dated. The next step is to implement the issue tracking part of the meta model, since, the effort of
implementing a release history model on basis of CVS has already been made [FPG03].
The implementation of the issue tracking part of the meta model follows in essence the same prin-
ciples and uses the same tools as the implementation of the CVS data model conducted earlier.
By describing the issue tracking data model implementation, a possible implementation of the
actual release history part of the meta model is being addressed as well. The upcoming section
will describe the tools used for implementation. In the section ”Implementation details” we will
elaborate the implementation in more detail, by first introducing the overall idea of the process
from loading and parsing XML files to storing objects in a database. Hereby, the issue tracking
model will be linked with the CVS data model implementation. Finally the implementation sec-
tion will discuss further improvements to the current implementation. The last section in this
chapter will be concerned about the results of the implementation of the combined model. There,
the evaluation will encompass results such as download and storage time of files, relevancy of
the link between release history and issue tracking, etc. .

6.1 Technical overview
The requirements for this project state the use of Hibernate1 and Eclipse2. Hibernate is an ob-
ject/relational mapping tool for JAVA environments [Hib05]. It is an open source project and
a component of the JBoss Enterprise Middleware System (JEMS3). Hibernate maps data repre-
sentations of an object model to a relational data model with a SQL-based schema. It provides
mapping of Java classes to database tables as well as query and retrieval facilities and relieves the
developer from manual data handling in SQL and JDBC.
Hibernate is a very suitable tool for our implementation purpose. Namely, the implementation
is concerned about translating an object oriented model into a database for data storage and re-
trieval. Hibernate does exactly that, it maps models onto relational database table schema. Fur-
ther, a Java source code of an implementation does not have to be tempered with in order to use
Hibernate. A developer using Hibernate should be only concerned with the model implementa-
tion in Java and data retrieval. The implementation is conducted using Eclipse.

1www.hibernate.org
2www.eclipse.org
3For more information, please see https://jboss.com

56 Chapter 6. Implementation and Evaluation

6.2 Implementation details
This section describes the complete implementation of the issue tracking data model. The de-
scription will encompass an overall view of the implemented classes and the complete process
model of the implementation. To gain an insightful overview of the implementation idea, con-
sider Figure 6.1.

Figure 6.1: Implementation idea schematics

Under 1 there is the data model of an issue tracking system (Bugzilla) in form of a UML2.0
graphics. This object oriented model has to be implemented using Java and Hibernate. Hence,
the following step under 2is split into two parts. First, under 2a, we retrieve actual data in bug
reports on one of the bigger issue reporting sites4.
After the data is retrieved, under 2b, the UML classes are translated into Java Bean classes5. The
Java Bean classes and the data retrieving classes (DOM Parser, Bug report loader), which well
mention shortly, can be referred to as the Java middle layer of the implementation process. For
each of the Bean classes, a Hibernate mapping file6 is being made. The hibernate mapping file
is used to construct the relational database tables and relations. Figure 6.6 shows a code snippet
for the Bug class which represents implementation of the Issue entity of the issue tracking data
model. at the bottom of the code, we see the get and set methods for but ID, and the bug number
respectively. Figure 6.7 shows the corresponding XML mapping file for a Bug. With the ”proper-
ties” tags, the attributes, defined by the get and set methods in the Bean class are being mapped.
The ”set” tags map the relations of the entities.
The Java bean classes and the corresponding Hibernate mappings designate the construct of the
meta model as it will be present in a MySQL database (Figure 6.1 under 3).
A bug report is usually stored as a XML file. This XML file holds all the relevant information in
a predefined structure (Figure 6.8). Information is extracted by parsing the XML file. Since a bug
report XML file has a static structure, where certain tags can be present or not, and since Java pro-
vides facilities to handle XML files, the documents were parsed using a DOM Parser (Document
Object Model). A SAX parsing method could be used as well, but since we need all the tags and
their information in a defined, static structure, the DOM parser was used. Further, the parsed
bug report files are rather short, thus the construction of a DOM tree for a file is not significantly
time consuming, if the processing time with DOM were taken as a disadvantage for that kind of
document parsing. The DOMparser used here is extendedwith additional functionality. Namely,
besides the parsing ability it also implements the Hibernate session facility for creating and stor-

4For the data source, the argoUML (www.argouml.tigris.org) issue repositorywas used. For testing purposes, however,
the landfill.bugzilla.org repository was used.

5A Java bean class, as employed here, is a standard Java class, with get- and set- methods as shown in Figure 6.2 for
each attribute of a entity in the UMLmodel

6A Hibernate mapping file is an XML file that interprets Java Bean -class attributes in form of tags.

6.2 Implementation details 57

ing persistent objects in the MySQL database. The concept of Hibernate is described in [Hib05].
Concerning the retrieval of the XML files themselves, there are theoretically two options. The first
implemented option is to directly reference a XML file over its URL and parse it directly, that is,
on the Internet. The advantage of this method is, that no disc space is used for bug reports. How-
ever, this method would require a fast internet connection in order to function within affordable
time. The second option, and the one, that is effectively used, is to first download and store the
bug reports on a local hard drive and then access them for parsing. A significant advantage of
this method is the minimal time consumption for accessing the files.
If the bug reports were not downloaded, the BugLoader.java file (Figure 6.2, a) is triggered first,
to download and store Bug report files to a local hard-drive. The BugLoader retrieves XML files
by their URL, then it reads the files and stores the XML code into local files with a designated
name7. If the bug reports are present in a local folder on the hard-drive, the process starts by trig-
gering the DOMBugParser.java file (Figure 6.2, b). The DOMBugParser first parses the selected
bug reports for the bug number only, and stores the bug numbers in memory. Then it parses the
bug reports again, whereby all data is extracted by parsing, the Hibernate session, provided by
the HibernateUtil.java file (Figure 6.2, d) is created, Hibernate objects from the Java bean classes
(Figure 6.2, c) are being initialized and stored after parsing. During the second parsing process,
the dependencies for a bug are being compared to the bug numbers from the first parsing run.
If we recall earlier elaboration, where it was stated, that bugs depend or block each other, the
dependency information to a bug is the bug number of another bug that depends on or blocks the
current bug. Therefore, we compare the dependency-bug numbers of a bug with all the numbers
of bugs that are stored in the database to check, if a bug that appears in the dependency or block-
ing relation to a currently parsed bug is in the database or not. If a bug, that another bug depends
on is not present in our MySQL database, it cannot be considered as a dependency or a blocking
and it will be ignored by the parser until it is inserted in the database. In a 3rd parsing run, the
DOMBugParser checks the links8 between the issue tracking implementation and the CVS ver-
sioning data model. Hereby, the parser loads all Revision9 objects from the database, provided,
that the Versioning data is loaded first into the database. Then, the parser checks the commit
messages in every revision for bug numbers by searching the text of the commit message. If a
commit message points to a bug, that revision and the corresponding bug will be linked with a
many-to-many relation10. Hibernate uses the mapping XML files (Figure 6.2, d) for each Java class
to create the tables and relations in our MySQL database. For the establishment of the database
connection and basic Hibernate configuration, the hibernate.cfg.xml file (Figure 6.2, d) is used.
There, a user specifies the database name and appropriate credentials to access the database, the
connection driver, the SQL dialect, the used hibernate mapping XML files and other settings11.
Finally, hibernate creates the tables in the database and exits the current Hibernate session and
the entire process.
The implementation is organized in three packages in the Eclipse project:

• org.evolizer.base.issuetracking.hibernate12: This package contains the DOMparser, the bug loader,
the Hibernate mapping engine file and additional Hibernate configuration files.

• org.evolizer.base.issuetracking.model: The package contains all the Java Bean classes for each
UMLmodel entity.

7Bug report files are denoted as ”bugreporti.xml, where by i is the respective number of the file.
8The linkage of the Issue and Revision entities was performed and described in [FPG03]
9As stated earlier, the Revision is the linking counterpart to the issue.
10A many-to-many relation is implemented as a set of objects (HashSet) that is added to each side of the relation. For

more details, pleas see the Eclipse project
11please see the Eclipse project for mode details
12The org.evolizer.base project is the super set of the release history and issue tracking projects.

58 Chapter 6. Implementation and Evaluation

Figure 6.2: Detailed process graph for the issue tracking implementation

• org.evolizer.base.issuetracking.model.mappings: The Hibernate mapping files are stored in this
package.

The downloaded bug reports are stored in a separate folder, but in the same Java project as
the above mentioned packages. To access the bug reports, the DOM parser has to be set to the
relative path of that folder to be able to access the bug report files.

6.3 Evaluation
The evaluation is concerned about the performance of the Bugzilla implementation as well as
about problems that emerged during implementation. Another focus lies on the link between
the Bugzilla implementation and the CVS data model in scope of the Evolizer project. For the
purpose of evaluation, the ArgoUML issue repository was taken. For early testing purposes, the
landfill.bugzilla.org repository was used.
The evaluation is concerned with indicating values regarding functionality and run-time charac-
teristics of the implementation. Section 6.3.1 describes the intended results of the implementation.
the intended results are the point of reference for the overall implementation status of the Bugzilla
data model. The performance measurement procedure is implicitly denoted during the descrip-
tion of the achieved results, in section 6.3.2.

6.3.1 Requirements
The requirements concern the desired implementation level of the issue tracking data model.
Further, requirements relate to the desired functionality in terms of retrieval of relevant data, like
relations between entities, such as the relation of Issue and Comment or Issue and Activity.

The implementation level is defined by the following requirements:

• Implementation is conducted using Java and Hibernate;

• The Bugzilla data model as described in Figure 3.6 is implemented in all its entities and
relations, whereby adjusted to the ArgoUML issue repository. ;

• The Bugzilla implementation is capable of retrieving issue reports from any problem report
site on the web. Hereby an entire web repository of a problem report system can be locally
stored and the data extracted;

• The process of the Bugzilla implementation, as described in section 6.2 is fully functional;

6.3 Evaluation 59

• The Bugzilla implementation is easily explicable and appropriate for successive developers
to use;

• The Bugzilla implementation performs in acceptable time frames;

• The Bugzilla implementation is capable of linking its data to the appropriate entities in the
CVS implementation in scope of the Evolizer project according to the description in section
6.2;

The intended functionality is designated in form of representative feasible queries that demon-
strate the usability and effectiveness of the implementation and it is described as follows:

Basic queries:

• Retrieve Issue number

• Retrieve Issue Activities

• Retrieve Reporter

• Retrieve Assignee

• Retrieve Comments

• Retrieve Person as Comment Creator

• Retrieve Person as Activity Creator

• Retrieve Attachments

• Retrieve all Persons to an Issue

• Retrieve Issue Status/Severity/Milestones/Keywords

• Retrieve Issue triggered by Revision

The performance is measured in the time it takes to store a certain number of issues. The
intended minimal time it takes the implementation to process a problem report set depends on
the number of reports. The link between issue tracking and versioning is measured in the number
of effectively established links between Issue and Revision.

6.3.2 Achieved and measured results
Implementation Level Evaluation

The implementation level was achieved according to the requirements in the following measure:

• Implementation is conducted using Java and Hibernate: Java as a programming language and
Hibernate were used extensively to implement the Bugzilla data model.

• The Bugzilla data model as described in Figure 3.6 is implemented in all its entities and relations,
whereby adjusted to the ArgoUML issue repository: The Bugzilla problem-report-XMLfiles (Fig-
ure 6.5) have different tags in comparison to the ArgoUML XML-files, which were used for
the evaluation. In order to process the ArgoUML files, the DOMBugParser.java had to be
set to parse XML-files according to ArgoUML notation instead of the landfill.bugzilla.org-
notation. The modifications concerned changing XML tag-names in the parser. All entities
from the Bugzilla data model are applicable to the ArgoUML data representation.

60 Chapter 6. Implementation and Evaluation

• The Bugzilla implementation is capable of retrieving problem reports from any problem report site
on the web. Hereby an entire web repository of a problem report system can be locally stored and the
data extracted: The BugLoader.java can be set to the URL of any web-based problem tracking
repository, as long as this repository is conform to the common problem report notation as
in Bugzilla or ArgoUML (Figure 6.5).

• The process of the Bugzilla implementation, as described in section 6.2 is fully functional: All the
designated components are implemented and related to each other as described.

• The Bugzilla implementation is easily explicable and appropriate for successive developers to use:
The implementation combines the parsing of XML-files and the creation and storage of Hi-
bernate objects in one file (DOMBugParser.java). This method of implementation has its
advantages, since the only run-time component is the DOMBugParser.java and the entire
process is capsuled in one class. A more proper approach is to externalize the entire Hiber-
nate mapping engine for better understandability and debugging of the implementation.

• The Bugzilla implementation performs in acceptable time frames: The processing of the entire
ArgoUML repository (3’868 Issues as of the 17.01.2005) takes approximately 28 minutes.
The detailed time allocation is shown in the ”Performance Evaluation” subsection, further
below.

• The Bugzilla implementation is capable of linking its data to the appropriate entities in the CVS im-
plementation in scope of the Evolizer project according to the description in section 6.2 The linking
of the Revision and Issue entities with an association is feasible and performs as amethod of
the DOMBugParser.java. The resulting set is an association table in the data base showing
Issue IDs and the corresponding Revision IDs.

Functionality Evaluation

The designated queries (see Basic Queries above) can be fully performed to retrieve the relevant
data for analysis. The Basic Queries are executed externally, in native SQL. A further possibility
is to internalize some basic queries into the Hibernate querying facility.
By querying the database with the CVS and ArgoUML data for the linkage between Revision
and Issue 300 links from Issue to the keyword ”Issue Number: ” in Revision were made out of
6’138 Revisions and 3’868 Issues. From these 300 possible links, 65 links were effective matches
of Revision and Issue. The 300 possible links are represent the matches of the keyword ”Issue
Number:” only, without an effective issue number following it. The 65 effective links represent
the matching of the keyword and the corresponding issue number. A related keyword search and
linkage of Revisions and Issues is conducted in [FPG03].

Performance Evaluation

The DOMBugParser.java is the only component that performs in run-time. The time (in mil-
liseconds) for the entire process is allocated to the methods in the DOMBugParser.java. For per-
formance testing, the Profiler13 plug-in for Eclipse was used. The result set of the performance
evaluation shows information as in Figure 6.3.

From Figure 6.3 we can see, that the time allocation is unevenly spread across the threads.
The most processing time is consumed by the preLoadDependencies and loadParseComments
threads. The preloadDependencies thread goes in the first parsing run. The second and main
parsing run, where all the data is parsed and stored allocated the overall time mostly to the

13http://eclipsecolorer.sourceforge.net/index profiler.html

6.3 Evaluation 61

Figure 6.3: Thread table for the DOMBugParser.java; source: Eclipse Profiler plug-in

loadParseComments thread, since issues are known to have more than one comment or attach-
ment(see the time allocation for loadParseAttachments in Figure 6.3).

Figure 6.4 further illustrates the time allocation and shows the thread call procedure for the
most frequently called threads in the DOMBugParser.java.
The memory usage during the process is shown in Figure 6.5. The peak in performance use is
caused by the initial call of the DOMBugParser.java class. From then, the memory usage declines.
Due to problems within the Profiler plug-in for Eclipse, which was used to measure the per-
formance of our Bugzilla implementation, Figures 6.3, 6.4 and 6.5 show the performance of the
entire implementation for only 20 thread calls (20 bug reports). The time allocation percentage
is approximately constant for every number of bug reports for the following threads, since the
number of instances generated by those threads per bug-report is constant14:

• loadParseTimestamp thread: 0.27% of 28 min makes 4.536 seconds

• loadParseStatWhiteboard thread: 0.26% of 28 min makes 4.368 seconds

• loadParseProduct thread: 2.40% of 28 min makes 40.32 seconds

• loadParseOS thread: 0.26% of 28 min makes 4.368 seconds

• loadParseComponent thread: 2.62% of 20 min makes 44.016 seconds

Despite, that the above mentioned threads generate each the same number of instances per
bug, their time consumption is different. This variation in time consumption is due to the fluc-
tuation in the internet connection of the machine, our implementation runs. The parsing of the
XML-files invokes the parsing of the DTD (Document Type Definition) for every bug report.
The overall performance of the implementation is satisfying, although improvements can be

14For instance, a bug report has one and only one time-stamp to designate its creation time

62 Chapter 6. Implementation and Evaluation

made. Especially the download of the XML files takes long time and should be shortened. Fur-
ther, as seen in Figure 6.4, some threads (the dark marked thread on the top left of the Figure)
still consume lot more time than other. This is not a drastic performance lack but, it might be
considered when processing larger web problem reporting projects.

Figure 6.4: Thread call graph for the DOMBugParser.java class; source: Eclipse Profiler plug-in

6.3.3 Problems during implementation and evaluation
Implementation Problems

Asmentioned earlier, the designation of a problem report is different in ArgoUMLand in Bugzilla;
ArgoUML refers to problems as issues, whereby Bugzilla refers to them as bugs. This means, that
the XML files that hold the information about an issue or bug are slightly different in their nota-
tion. This further implies, that the parser had to be reset to ArgoUML notation in the evaluation

6.3 Evaluation 63

Figure 6.5: Memory usage of the DOMBugParser.java; source: Eclipse Profiler plug-in

Figure 6.6: Code snippet of a Java bean class;

phase.

Another problem that raised during implementation is the parsing methodology itself for the
XML-files. Two aspects of the parsing problematics were identified. First off, the XML files rely
on defined DTDs which caused problems during the download and later during the processing
of the XML files. The files themselves could sometimes not be read, because the DTD was in-
correct or the BugLoader.java downloaded and stored an empty file (in 3’868 files there were 220
empty files, which makes 5,68%). This caused the parser to throw error messages and stop the

64 Chapter 6. Implementation and Evaluation

Figure 6.7: Code snippet of a Hibernate mapping file

parsing. This problem was solved by reformating each stored bug report, so the XML code could
be correct and well-formed and parsed properly. The other aspect of the mentioned problematics
was immanent to earlier versions of the parser. Since the DOM parsing method was used, every
tag in the XML document had to be designated as a node in the DOM tree. As long as the tag to
be parsed was present in the document, the parser functioned well. As soon as the tag was not
present -for instance, if the currently parsed bug did not depend on any other bug, the depen-
dency tag was missing- the parser stopped and threw error messages. This problem was solved
by improving the parser, enabling it to recognize missing tags and ignore them.

In the implementation level evaluation, we stated, that the parsing and the Hibernate map-
ping storage of objects is done by the same class. In early versions of the implementation, the
mentioned processes were separated. The parser did only the parsing, whereby another class in-
corporated the entire Hibernate engine facilities. The problem with this first approach, was, that
relations among certain entities of the data model did not establish correctly. E.g., Bug 1 has 50
comments attached to it. Bug 2 has 3 comments attached to it. Normally, the Comments-table in
the database should show the 50 first comments with the number of the Bug 1 as foreign key, the
51st, 52nd and 53rd comment should then have the number of Bug 2 as foreign key. The men-
tioned approach did not manage to designate the comments correctly. It showed all 53 comments
as comments of the Bug 1. Thus, the implementation was modified, so that the creation of Hiber-
nate objects and the relation-mapping occurred during the parsing of a bug repor. The problem
of incorrect relations was solved hereby, but the implementation lost on flexibility.

6.3 Evaluation 65

Figure 6.8: Code snippet of a Bugreport xml file

The link between Revision and Issue entity is, as described earlier, implemented as a many-
to-many relation. The problematics of this relation was, that there is no explicit and defined
interface or linking of both CVS and Issue-tracking data models. The linking attributes are the
commit message in the Revision, and the issue number in the Issue. The commit message is a
free text with no structure or pre-defined keywords, where as the bug number has no further
information to it. The commit message had to be searched for and indication to a bug number
[FPG03]. The problem was partially solved, by instantiating the Revision’s commit message as
an Object in the DOMBugParser letting the parser search the commit message for every issue and
then, if a match was found, assign the current Revision to the Issue. The searching method in the
commit message is capable of identifying only a pre-defined character sequence, which makes it
more in-appropriate for wider use.

Evaluation problems

During evaluation, the main problem was the mentioned Profiler plug-in for Eclipse. The calcu-
lation of the time allocations to particular threads that were invoked during run-time was con-
ducted on the maximum number of parsed files that could be handled by the Profiler plug-in.
The overall process time was however not tangented by that problem- our implementation was
put to work in stand-alone mode to retrieve the process time.
In essence, no more significant problems emerged during the evaluation, except that the Ar-
goUML site was very slow and hardly accessible.

Chapter 7

Conclusions

Release history management has increasingly been the subject of research and development in
recent years. The notion of history in software systems has become more immanent to software
development and reserves a constant place in this domain. In this thesis, the notion of history,
based on a meta model approach to various revision history data models was conceptualized and
implemented using sophisticated tools. The release history meta model is an approach where
different models for the history concept were taken as a base for another data model -a meta
model- that commonly describes all the taken models and incorporates all the needed semantics
to describe other versioning data models as well. To provide a meta model for release history
as in this thesis brings several problematics in different areas of modeling and implementation
that need to be addressed and solved. The conceptual issues start by first designating a modeling
technique and the degree and way of information abstraction. Further, the extraction of relevant
information and the designation of model entities posed an interesting task, as well as the refer-
encing to the base-data models. A special concern was thus given to the structured comparison
of the data models and the identification of similarities among the reference- data-models. In or-
der to successfully map an effective meta model, the derivation of information from the reference
data models had to be accurate and consistent. For the meta model construction to be accurate
and effective, all reference data models were modeled in the same way -the data description and
abstraction was the same for all models- and the meta model was derived entity by entity from
those data models by identifying same or similar core versioning concepts and translating them
to entities and relations of the meta model.
A further problem in modeling in general is the combination of different models into one. The re-
lease history meta model was extended in its information wealth by the issue tracking data model
derived from a well known and widely used problem tracking system. The issue tracking aspect
is a closely related domain to release history and by adding that aspect to the meta model we
have extended the descriptive capability on to issue or change request tracking. The combination
of these two models posed a different problem aspect. Namely, the issue tracking data model has
dynamics of its own, so, it was an interesting task to add the issue-tracking model with minimal
modifications and a proper and functional link to the release history meta model. Conceptually,
this extension was about adding a bidirectional association between entities of each model and
the implementation was realized as the combination of two independent projects.
The tools used for modeling and implementation provided the needed functionality to accom-
plish the implementation work. The implementation is at a stage, where the release history model
is functionally combined with the issue tracking project and where data can be analyzed in a
MySQL database. The actual release history implementation was done on CVS in the scope of a
related project. The CVS data model is a reference to the meta model. The meta model is further
capable of modeling CVS as well, meaning that the implementation of the release history concept

68 Chapter 7. Conclusions

in CVS corresponds to a possible implementation of the meta model.

The modeling effort conducted in this thesis is to give a base for further development in meta
modeling release history. Meta modeling approaches to release history are not many. An explicit
meta model for release history is not in place yet and the meta model developed in this thesis
could be considered a sort of a point of reference for future work. If an overall meta model can be
put in place at all is to be discussed, since the notion of history changes and second, newmodeling
concepts in software systems in general emerge. So it would be difficult to establish a generally
valid meta model without having the problem of information handling and conceptual-difference
understanding. However, the meta modeling effort conducted in this thesis can be as well under-
stood as a concept providing a solid base for modeling efforts in related or even non related areas
to software development.

References

[BCS05] C. Michael Pilato Ben Collins-Sussman, Brian W. Fitzpatrick. Version control with sub-
version 1.1. 2005.

[Cap03] A. Capiluppi. Models for the evolution of os systems. In Proceedings of the International
Conference on Software Maintenance(ICSM 2003), pages 65–74, 2003.

[Cap04] A. Capiluppi. Evolution of understandability in oss projects. In Proceedings of the 8th
European Conference on Software Maintenance and Reengineering (CSMR 2004), pages 58–
66, 2004.

[CC03] J. Nagra J. Pitts K. Wampler C. Collberg, S. kobourov. A system for graph-based visual-
ization of the evolution of software. In Proceedings of the 2003ACM Symposium of Software
Visualization, pages 77–86, 2003.

[Ced05] Per Cederquist. Version management with cvs. 2005.

[Fis05] J. Fischer. Metamodelierung. 2005.

[Fow04] Martin Fowler. UML Distilled, A brief Guide to the Standard Object Modeling Language.
Addison-Wesley, 2004.

[FPG03] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a Release History Data-
base from Version Control and Bug Tracking Systems. In Proceedings of the 19th Interna-
tional Conference on Software Maintenance (ICSM), pages 23–32, Amsterdam, The Nether-
lands, September 2003. IEEE, IEEE Computer Society.

[GT05] K. Ehrig G. Taenzler. Visuelle sprachen projekt, einfhrung. 2005.

[HH04] Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in software
systems. In ICSM ’04: Proceedings of the 20th IEEE International Conference on Software
Maintenance, pages 284–293,Washington, DC, USA, 2004. IEEE Computer Society.

[Hib05] Hibernate- relational persistence for idiomatic java. 2005.

[Jaz02] M. Jazayeri. On architectural stability and evolution. In Reliable Software Technologies-
Ada-Europe 2002, pages 13–23, 2002.

[JB05] Jr. S. Kim M. Godfrey J. Bevan, E. J. Whitehead. Faciliating software evolution research
with kenyon. 2005.

[LB85] M.M. Lehman and L. Beladi. Program Evolution - Processes of Software Change. London
Academic Press, 1985.

70 REFERENCES

[ML02] S. Ducasse M. Lanza. Understanding software evolution using a combination of soft-
ware visualization and software metrics. In Proceedings of LMO 202 (Langages et Modles
Objets), pages 135–149, 2002.

[PH] Frantishek Plasil Petr Hnetynka. Distributed versioning model for mof.

[Rat01] Rational. Rational clearcase family documentation supplement. 2001.

[Rat03a] Rational. Clearcase and clearcase lt introduction (unix/windows edition). 2003.

[Rat03b] Rational. Rational clearcase and clearcase lt command reference (unix/windows edi-
tion). 2003.

[SD01] S. Ducasse S. Demeyer, S. Tichelaar. Famix 2.1 - the famoos information exchangemodel.
2001.

[TB96] S. G. Eick T. Ball. Software visualization in the large. 29(4):33–43, 1996.

[Tea05] The Bugzilla Team. The bugzilla guide - 2.19.3 development release. 2005.

[TG05] Stephane Ducasse Tudor Gibra, Jean-Marie Favre. Using meta-model transformation to
model software evolution. 2005.

[TZ04] S. Diehl A. Zeller T. Zimmermann, P. Weissberger. Mining version histories to guide
software changes. In 26th International Conference on Software Engineering (ICSE 2004),
pages 563–572, 2004.

[XW04] M.-A. Storey X. Wu, A. Murray. A reverse engineering approach to support software
maintenance: Version control knowledge extraction. In Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE 2004), pages 90–99. IEEE, IEEE Computer So-
ciety, 2004.

