

A Distributable Data Management Layer
for Semantic Web Applications

submitted by:
Lukas Kern

Müllheim, Switzerland

student number:
01-707-017

written at the:
Department of Informatics,

University of Zurich,
Prof. Abraham Bernstein, Ph.D.

supervised by:
Peter Vorburger

submitted on:
April 3, 2006

 - 1 -

Abstract
This thesis introduces a generic data management framework capable of dealing with

distributed knowledge represented in Semantic Web languages. Persistent data storage, data
querying, retrieval, annotation, versioning and security in terms of authentication and
authorization are key features and are thoroughly discussed in regard to traditional software
principles such as distribution, openness, robustness and scalability. This work emerged from a
process support system project named NExT whose architecture called for a novel data
management framework approach.

First, the envisioned framework's specific requirements are determined. In the second part,
appropriate overall concepts are elaborated and subsequently a complete system architecture is
presented. The thesis closes with the presentation of a reference implementation that can be used
by the NExT system. The implementation furthermore reveals the architecture's feasibility as a
proof-of-concept prototype.

Zusammenfassung
Diese Diplomarbeit stellt ein generisches Framework zur Verwaltung verteilter Information

vor, die in Semantic Web Sprachen beschrieben sind. Persistente Datenhaltung, Abfrage,
Retrieval, Annotation, Versions-Management und Sicherheit in Bezug auf Authentifikation und
Autorisation gehören zu den Hauptfunktionalitäten und werden in Bezug auf traditionelle
Grundsätze der Softwareentwicklung wie Verteilung, Offenheit, Robustheit, und Skalierbarkeit
diskutiert. Die vorliegende Arbeit entstand aus einem Projekt zur Entwicklung eines Prozess-
Unterstützungs-Systems namens NExT, dessen Architektur einen neuen Ansatz für ein
Datenverwaltungs-Framework erforderte.

Zu Beginn werden die spezifischen Anforderungen des vorgesehenen Frameworks bestimmt.
Im zweiten Teil werden entsprechende allgemeine Konzepte erarbeitet und eine komplette
System-Architektur vorgestellt. Die Diplomarbeit schliesst mit der Präsentation einer
Referenzimplementierung, welche direkt von NExT verwendet werden kann. Diese zeigt ferner
die Realisierbarkeit der Architektur im Sinne eines Proof-of-Concept Prototypen.

 - 2 -

Acknowledgements
I would like to thank sincerely all the people who encouraged and supported me throughout

the time of writing this thesis. I especially express my gratitude to my closest friends that
provided me with useful inputs and critical suggestions.

Special thanks go to my girlfriend Isabelle who tolerated many late night and weekend hours

and who always encouraged me in times when my own confidence and optimism seemed to
weaken.

I am deeply indebted to my parents who made studying possible in the first place and who

supported me in all my endeavors throughout this entire period.

I would also like to thank both my supervisors Peter Vorburger and Michael Dänzer. They

have always been available and took time for discussion. Their help guided me through this work
and led me to deeper understanding of the compelling requirements of researcher in the NMR
domain. It has been a pleasure to work with them.

Last but not least, I thank Professor Abraham Bernstein for having given me the opportunity

of writing the diploma thesis in one of my favorite fields of interest and for the precious time he
dedicated whenever I needed it.

 Contents

 - 3 -

Contents
1. Introduction .. 8

1.1. Goal of the Thesis ... 8
1.1.1. Some background – Initiation of a novel project.. 9
1.1.2. Focusing aspects... 10

1.2. Target Readers .. 10

2. Motivation ... 11
2.1. The experiment's lifecycle... 11
2.2. Management of distributed data .. 13

2.2.1. Persistent, distributed data storage ... 13
2.2.2. The use of the OWL-S API in a distributed fashion... 14

2.3. The Semantic Web and reasoning over distributed resources ... 15
2.3.1. Semantic Web and reasoning ... 15
2.3.2. NExT in the context of the Semantic Web ... 16

2.4. Versioning... 16
2.4.1. NExT - a multi-user system.. 17
2.4.2. Process workflow definitions similar to programming code 17

2.5. Annotation and OWL.. 17
2.5.1. Metadata vs. Annotation... 18
2.5.2. Mindswap's annotation support .. 18

2.6. Authentication and authorization in a distributed environment 19
2.6.1. Why decentralized authentication is required... 19
2.6.2. A solution for NExT... 20

2.7. Related Work .. 21
2.7.1. JXTA .. 21

The JXTA architecture.. 21
Communication protocols ... 22
Relation to the thesis... 23

2.7.2. Edutella... 23
The basics of the Edutella framework... 23
Relation to the thesis... 24

2.7.3. OWL-S Matchmaker .. 24
Matchmaker agent system... 25
OWL-S/UDDI Matchmaker.. 25
Relation to the thesis... 26

2.7.4. Web of Trust and PGP-compatible protocols ... 26
The basic concept.. 27
Web of Trust RDF ontology ... 27
Relation to the thesis... 27

 Contents

 - 4 -

3. Vision ... 29
3.1. System architecture ... 29
3.2. Terminals and SCCs.. 30
3.3. Universal Database.. 31
3.4. Conclusion .. 32

4. Requirements .. 33
4.1. Openness ... 33
4.2. Degree of transparency.. 34

4.2.1. Access Transparency .. 34
4.2.2. Location Transparency ... 34
4.2.3. Migration Transparency ... 35
4.2.4. Relocation Transparency .. 35
4.2.5. Replication Transparency ... 35
4.2.6. Concurrency Transparency... 35
4.2.7. Failure Transparency .. 36
4.2.8. Persistence Transparency ... 36
4.2.9. Conclusion.. 36

4.3. Management of distributed data .. 37
4.3.1. Granularity of shareable data.. 37
4.3.2. Collaboration topologies... 38
4.3.3. Workspace and data repositories .. 39

4.4. Reasoning over distributed data .. 40
4.4.1. Where to query ... 40
4.4.2. What to query ... 40

4.5. Versioning... 42
4.5.1. Process plan execution.. 42
4.5.2. Model entity modifications... 43
4.5.3. Versions and variations .. 43

4.6. Annotation... 44
4.7. Authentication and Authorization ... 45

4.7.1. Authentication .. 45
4.7.2. Authorization.. 47

5. Design Concepts .. 48
5.1. Management of distributed data .. 48

5.1.1. Distribution and collaboration .. 48
5.1.2. Creating data elements.. 49
5.1.3. Publishing data elements .. 50
5.1.4. Retrieving data elements .. 50
5.1.5. Modifying data elements .. 51

5.2. Reasoning over distributed data .. 52
5.2.1. Temporary data storage .. 52
5.2.2. Data transfer volume .. 53
5.2.3. Graph computation ... 53

 Contents

 - 5 -

5.2.4. Query language compatibility .. 53
5.2.5. Reasoning effectiveness ... 54
5.2.6. Conclusion.. 54

5.3. Versioning... 55
5.3.1. Versions.. 55
5.3.2. Variations ... 57

5.4. Annotation... 58
5.4.1. Multiple inheritance in the data representation layer.. 59
5.4.2. Partial or full support for annotation .. 61
5.4.3. A work around or a reasonable extension... 61
5.4.4. Multiple views of a data entity ... 62
5.4.5. Getting the whole picture ... 63

5.5. Authentication and Authorization ... 64
5.5.1. Authentication and authorization in the context of NExT 64
5.5.2. Four login procedures... 65
5.5.3. Connections management... 66
5.5.4. Secure connections ... 68

A concept of hierarchical layers.. 68
A concept of separated concerns... 69
Conclusion .. 70

6. System Architecture ... 71
6.1. Management of distributed data .. 72

6.1.1. Data Access .. 72
6.1.2. Data access context... 73
6.1.3. Data entities and their data access objects .. 74

The introduction of a data access object ... 74
The Relation between data entities and corresponding DAOs.................... 74

6.1.4. Data Repositories.. 75
ReasonerAwareDR ... 76
ReadOnlyDR... 76
PermissionAwareDR... 77
ProxyDR ... 77
LoginAwareDR... 77
CompositeDR.. 77
ObservableDR... 78
SerializationDR... 78

6.1.5. Distribution mechanism for data repositories ... 79
The abstract view onto registered repositories.. 79
The abstract view from a proxy towards its connected target repository.... 79
Tree-like repository hierarchies .. 80

6.1.6. How all fits together ... 80
6.1.7. Conclusion.. 82

 Contents

 - 6 -

6.2. Reasoning over distributed data .. 83
6.2.1. Main components ... 83
6.2.2. The notion of a reasoner context .. 84
6.2.3. A usage scenario... 85

6.3. Versioning... 86
6.3.1. The main components... 87
6.3.2. Conclusion.. 88

6.4. Annotation... 88
6.4.1. The main components... 88
6.4.2. Conclusion.. 89

6.5. Authentication and Authorization ... 90
6.5.1. The main components... 90
6.5.2. Session management .. 91
6.5.3. Authorization.. 92
6.5.4. Authentication .. 93
6.5.5. Conclusion.. 95

7. Implementation... 97
7.1. Factories and singletons .. 97
7.2. Underlying implementations ... 98
7.3. Reasoning with Pellet and OWL-S API .. 99
7.4. Annotation and versioning in one go .. 101

8. Conclusion ... 103
8.1. Summary ... 103
8.2. Future Work .. 105

8.2.1. Web of Trust... 105
8.2.2. Digital Rights Management.. 105
8.2.3. Extensible and interoperable entity identification .. 105
8.2.4. Ontology translation mechanism .. 106
8.2.5. Common query language.. 106
8.2.6. Repository workload balance ... 106
8.2.7. Triple store ... 106
8.2.8. JXTA .. 107

A. Appendix A - NExT Application ... 108
A.1. NExT's process model in a nutshell .. 108
A.2. NExT's coarse-grained system architecture .. 109

B. Appendix B – Used Technologies .. 110
B.1. Token based authentication in single and multiple realms.. 110
B.2. Digital certificates ... 112
B.3. PAM.. 113

B.3.1. PAM Architecture .. 113
B.3.2. Module interfaces ... 114

B.4. JAAS ... 115

 Contents

 - 7 -

B.4.1. JAAS architecture... 115
B.4.2. Subject, Principals and Credentials .. 115
B.4.3. Authentication process ... 116

List of Tables... 118

List of Figures ... 119

References.. 121

1.1 - Goal of the Thesis 1 - Introduction

 - 8 -

1. Introduction
The methodological route from the era of traditional computer science to the era of

information technology (IT) and communication has started long ago. Whether or not this route
has yet reached its final destination is subject to endless discussions about philosophical beliefs
of what the two expressions fundamentally represent. Rather than loosing ourselves in such
discussions, we want to recall the motivations that led to the continuous evolutional process.

Computer science simply deals with data and the way pieces of such data do relate between

one another. As a fact, there is probably no one computer system that generically speaking goes
beyond this simple illustration. Any architecture that you perfunctory may look at eventually
describes an application (or an orchestration thereof) which processes data as its overall
functionality. Leaving aside all other factors and taking this simple model for granted, we
legitimately might ask ourselves how it comes that IT has been an ongoing field of research and
most certainly will remain to do so in the future. Obviously, IT hides some complex problem
fields that neither research centers nor the industry has yet solved to the ultimate satisfaction. A
lot has been achieved as far as data centric processes are concerned but little effort has yet
undertaken in order to solve the very fundamental of IT, which lies in the handling of
information rather than data.

Indeed, it is the difference between representing either data or information that pressed for the
circumscribed methodological change above. For a long time applications were destined to
support the handling of data. The requirements usually were met if an application offered some
reading and writing functionality. Eventually the users requested some semi-automated actions
that needed to be executed on them. Nowadays, the application's requirements have
fundamentally changed. They urge for intelligent behavior and want applications to deal with
information rather than data. Machines inherently need to understand their actions and must be
aware of their implications. Welcome to the world of semantics.

1.1. Goal of the Thesis

The goal of this thesis is to contribute to the combined field of Web Semantics and Web
Services. The thesis in particular is part of the ongoing project NExT [1] that deals with the
development of an NMR (nuclear magnetic resonance) domain specific process workflow
system. The project currently resides in its infancy and its current focus is set towards finding an
appropriate detailed architecture. The concrete contribution of this thesis hence consists of a
detailed system architecture of some of the major components and a corresponding reference
implementation that serves as a prove-of-concept. In the following, we look at how the project
initially emerged and find out what its fundamental visions and specific goals are. Having this
background, we finally describe the concrete components that the thesis is expected to elaborate.

1.1 - Goal of the Thesis 1 - Introduction

 - 9 -

1.1.1. Some background – Initiation of a novel project

The project is named after the developing application NExT1 [1] and was initiated in January
2005. The motivation for the project has arisen when two professors from significantly different
but somewhat complementary research fields discussed the potential of a joint project. Mr.
Konstantin Pervushin is Professor and head of the BioNMR research group at the Institute of
Physical Chemistry from the ETH (Swiss Federal Institute of Technology) in Zurich. He and his
group specialize on the atomic-resolution and structure-dynamics investigations of biomolecular
systems using Nuclear Magnetic Resonance (NMR) technology. Mr. Abraham Bernstein is
Professor and head of the Dynamic and Distributed Information Systems group at the
Department of Informatics from the University of Zurich, Switzerland. He and his group dedicate
the focus on investigating new means for supporting the dynamic activity that human and
computational actors have due to our ever-changing environments.

Professor Pervushin concludes that in the everyday life of an NMR experimenter there are two

issues that are of substantial concern. First, experimenters require not only a profound
knowledge about the research domain but additionally require consolidated knowledge about the
principles of the NMR technology. Having to acquire a good understanding in both areas leads to
a trade-off when focusing on the primary research goal is considered fundamental.

Second, spectroscopists use a considerable number of different, specific tools but appropriate
IT based support is vastly missing. An experiment consists of a huge conglomerate of single
subordinate experiments of which pre- and post-conditions together with the emerging results
determine the course of the overall experiment. Hence, such experiments reveal complex
dynamic process workflows that though are not controlled by any means.

By resolving above issues, Professor Pervushin is convinced to (i) achieve substantial
improvements of the overall process of NMR spectroscopy experiments and (ii) to lay out the
path for the research area to mount to a new level.

At a preliminary meeting the conclusion was drawn that a novel system is to be developed

which specifically solves the concerning issues. The first step taken towards the agreed goal was
to conduct a master thesis in order to asses the feasibility of the envisioned system and to
decompose the aiming goal into manageable subordinate problem fields. Hence, Michael Dänzer
agreed to take on this duty and worked out a very promising feasibility study. In his diploma
thesis, he elaborated upon the natural requirements of the system and worked out a component-
oriented architecture. The feasibility was proven by an additional prototype that focused on the
critical aspects. With the completion of this master thesis and the revealing prove for the
feasibility of NExT the path for the envisioned project definitely was paved.

1 NExT – NMR EXperiment Toolbox

1.2 - Target Readers 1 - Introduction

 - 10 -

1.1.2. Focusing aspects

NExT has been proven feasible. Furthermore, the overall requirements are defined and a
component- or domain-oriented architecture determines the coarse-grained system architecture
[1]. My distinct contribution consists of the elaboration of a fine-grained architecture that reveals
a solution for

i a generic data access abstraction layer,
ii a reasoning mechanism over distributed resources,
iii a version management system suitable for data defined in OWL/RDF,
iv an extensible annotation concept destined for modeled NMR projects, and
v mechanisms for distributed authentication and authorization.

We of course will discuss each of these problem domains in detail throughout the course of

this thesis. The motivation in the next chapter gives a detailed introduction and raises some of the
most obvious deficiencies. For now, we leave it by this simple enumeration.

1.2. Target Readers

This thesis primarily addresses two different categories of readers. On the one hand, system
architects and programmers learn about concepts and derived implementations that may be used
in some rather novel and state-of-the-art problem domains. On the other hand, programmers that
in particular develop on the NExT project get to know how some important components do
integrate into the overall architecture and how they be best used in concrete situations.

System architects ideally concentrate on the chapters Requirements and Design Concepts. The

former chapter gives them the context in which the elaborating system is being placed and
expected to do its job. The latter chapter then engages into discussions about plausible solutions
and their immanent pros and cons.

Programmers may want to concentrate on the chapter System Architecture and

Implementation. However, in order for them to understand as to why components are designed in
one but maybe not the other way, they preliminary ought to get themselves familiar with the
requirements which are discussed in chapter 4. The content of these chapters is self-explanatory.
If a programmer is only interested in the integration of RDF and OWL he/she can read chapters
6.1 through 6.4.

NExT developers are kindly invited to read all chapters in the provided order. Motivation and

Vision give them a solid basis for a clear and intuitive understanding of the subsequently
discussed concepts and realizations. Especially the chapter about the vision may be of great
importance. Being aware of the different futuristic scenarios helps to open one's mind for new
approaches and helps to become sensitive for critical solutions and/or implementations. To theses
readers, most valuable will be the chapter about the reference implementation. It depicts how the
architecture is used in practice but also reveals where it may fail to meet the expected behavior
and/or functionality.

2.1 - The experiment's lifecycle 2 - Motivation

 - 11 -

2. Motivation
The initial drive for this thesis came from the analysis of NExT's prototype [1] whose main

goal is to show the feasibility of the envisioned process workflow system described in the
previous chapter. While this prototype is able to describe the various envisioned functionalities
and nicely reveals how these can be implemented into a coherent and extensible system
architecture, it however could obviously not focus on the details of the many components. The
completion of the prototype hence revealed a considerable list of future work concerning the
elaboration of different components and missing conceptual frameworks especially in lower
levels concerned with communication, data distribution and the like. Representing a continuation
of the initial work by Michael Dänzer, this thesis hence focuses on the elaboration of some major
system components. As the major part of the initial prototype is considered evolutionary, it is
rational to start improving the fundamental components upon which higher-level functionality
can later be built. Furthermore, as NExT is to become a widely distributed system, data storage
and reasoning reveal central aspects that should be dealt in some generic fashion in order to make
sure that other components do not redundantly need to deal with again. Eventually we
determined that in respect to the project's ongoing progress, the next steps should concentrate on
the elaboration of following concrete aspects:

i a generic data access abstraction layer,
ii a reasoning mechanism over distributed resources,
iii a version management system suitable for data defined in OWL/RDF,
iv an extensible annotation concept destined for modeled NMR projects, and
v mechanisms for distributed authentication and authorization.

The thesis looks at each of the mentioned architectural aspect and elaborates a fine-grained

architectural design and a corresponding reference implementation. The latter can be integrated
into the existing evolutionary prototype and furthermore serves as a prove-of-concept. In the
following a motivation for each of the mentioned aspects is presented in given order. At the
beginning, the lifecycle of a typical NMR project is presented since this information is
fundamental for the further understanding not only as far as motivational aspects are concerned
but as well, as far as topics discussed throughout the course of this thesis will be at stake. The
chapter eventually is rounded with an outlook to related work.

2.1. The experiment's lifecycle

Table 1 characterizes the four phases of a typical NMR experiment. For each phase, the
primary task is summarized by a headline and described in an overview-like fashion. The
keywords give hints to the technical and design-oriented point of view, which shall confront us in
the discussion about the concrete requirements shortly hereafter.

2.1 - The experiment's lifecycle 2 - Motivation

 - 12 -

Phase 1:
Acquisition

Primary Task: Acquisition of spectroscopic data.
Description: (1) Collecting spectra from the various repositories that are
maintained by the experimenter themselves, the team, the institution or
community-like platforms.
(2) Determination of the quality of spectra. The expressiveness and
usefulness of the spectra from the previous task are assessed. The
assessment for "good" or "bad" spectra is mainly practiced on the basis of
aesthetic analyses. Nice looking diagrams tend to represent expressive and
useful experimental results. On the other hand, unaesthetic diagrams tend
to be useless and are to be discarded.
Keywords: Data retrieval, diagrams rendering, efficient organization of
artifacts
Duration: approx. 1 month

Phase 2:
Assignment of
Resonances

Primary Task: Assignment of nuclear magnetic resonances in the
collected spectra from phase 1.
Description: Spectra are analyzed in terms of their structure. Thereby,
most structures can easily be elaborated when referring to similar projects
in the past. Two aspects are crucial in order to efficiently perform this
phase: First reading and/or comparing documentation of similar completed
experiments give hints as how to assign the resonances in a particular case.
Second, experience is shared among experiments in the field and helps
understand facing specifities or exceptionalities.
The process of calculating the concrete structure is done with the help of
numerous tool-like applications. Oftentimes such tools are executed in
sequence whereby the output from one tool respectively is used as the
input for the next tool. The tool running time ranges from few seconds up
to several days. The output similarly ranges in size from few kilobytes up
to several gigabytes.
Keywords: repository querying by similarity measures, piping data
through input-output generating tools, knowledge and experience
exchange, various time and data load factors
Duration: 3-4 months

Phase 3:
Building
consensus
model

Primary Task: Aggregation of the elaborated knowledge from phase 2.
Description: The various results from the different calculations are
aggregated and unified. Naturally, this process detects eventual
inconsistencies that emerged in previous phases. Furthermore, the vast
majority of conflicting data is impossible to be detected at any earlier
stage. Loop backs to phase 2 or even phase 1 are very common in order to
correct the mentioned inconsistencies.
Keywords: data aggregation, inconsistency detection, incremental loop
backs
Duration: approx. 4 months

2.2 - Management of distributed data 2 - Motivation

 - 13 -

Phase 4:
Publication

Primary Task: Writing of a comprehensive documentation.
Description: This phase resembles a typical documentation phase of any
research experiment. Due to the enormous amount of data and information
that were acquired over the period of time, the main difficulty lies in the
process of regaining the relevant data and elaborated knowledge.
Typically, the process is shaped by tedious searching actions in order to
gather all the required artifacts.
Keywords: searching relevant information, high data volume
Duration: approx. 2 months

Table 1. Phases of a typical NMR project

Each of the above phases represents a discrete task domain and reveals inferable requirements.

In the following, each architectural aspect is related to the above presented lifecycle in order to
infer the corresponding concrete requirements.

Notice, that the requirements for phase 2 where subject to the elaboration of the data model

and the automatic process execution in [1]. Hence, phase 2 will virtually be ignored in this
discussion. Interesting readers in particular are referred to chapter 4.1 (Functional requirements)
and chapter 5 (Models) in [1].

2.2. Management of distributed data

The lifecycle of a typical NMR experiment reveals the importance of distribution in terms of
both data and services. An NMR experimenter may want to share its data in various forms
ranging from a small network that is destined for a particular research group up to high scaling
and global accessible system environments. Hence, NExT virtually becomes a system in which
the distribution of whatsoever component may be required. In the following, we first address the
popularity of the notion of so-called data access layers2 and reason to what extent NExT may be
able to make use of them. Second, we will discuss the potential of the OWL-S API3 [2] from the
Mindswap group [3] that is planned to be used as part of the system architecture.

2.2.1. Persistent, distributed data storage

The ability to store objects persistently and in a convenient and flexible way is an important
requirement for the majority of applications. Hence, a lot of research and industrial effort has
been put into the development of so-called data access layers that address these requirements and
hence try to offer maximal convenient data access functionalities. In fact, there nowadays exists a

2 A data access layer (DAC) is a software component that provides simplified access to data stored in a

persistent storage facility
3 Java API for programmatic access to manage and execute Web Services described in OWL-S [5].

2.2 - Management of distributed data 2 - Motivation

 - 14 -

broad variety of different solutions ranging from abstract, theoretical concepts up to ready-to-use
implementations.

However, NExT is assumed to store data in the form of OWL [4] and OWL-S [5] data
elements. In this respect, the number of existing data access layers vanishes to a small number.
Indeed, at the time of writing only two APIs are worth mentioning. Jena [6] is an open source
API that mainly serves as a typical object binding facility for RDF [7] and OWL data. Second,
the OWL-S API developed by the Mindswap group is the corresponding facility for data
described in OWL-S. While both APIs represent promising tools within each of their focused
fields they nevertheless do not support various features that we strongly can expect from a full-
fledged data access layer.

This thesis elaborates an architecture that tries to solve the broached inadequacy. It deals with

many of the problems that have successfully been solved as far as relational databases are
concerned but that remain unsolved when data in RDF, OWL and OWL-S respectively are at
stake.

2.2.2. The use of the OWL-S API in a distributed fashion

The system architecture of NExT described in [1] foresees a specific type of data access layer
that eventually is grounded on the OWL-S API. It namely introduces a so-called KB Access
Layer [1] whose main goal is to provide a broad set of functionalities regarding the management
of NExT related data. The architecture elaborates on the specific functionalities that this
component is expected to provide to its upper layer clients. Furthermore, it talks about the
internal mechanism that eventually is able to perform the actual work. However, because the
architecture only focuses on the primary needs and corresponding feasibilities, it ignores many
inferable aspects that are as important. For instance, the architecture does not adequately
elaborate any specific concerns in terms of distribution but in this respect somewhat blindly relies
onto appropriate support by the suggested OWL-S API.

In order to build a fine-grained architecture that behaves in the foreseen manner and keeps

feasible when transferred into a widely distributed environment, a profound discussion on the
concrete requirements is unavoidable. One goal of this thesis is the elaboration of such an
architecture. In the next chapter, we will have a look at the distinct requirements that we are
facing in generic distributed environments. Among other topics, we will discuss the different
types of transparencies and their relevance in respect to NExT. With this in mind we then will be
able to evaluate to what extent the OWL-S API can be directly used by the NExT core and to
what extent it may be appropriate to shield it by some sort of an additional component or
hierarchical layer.

2.3 - The Semantic Web and reasoning over distributed resources 2 - Motivation

 - 15 -

2.3. The Semantic Web and reasoning over distributed resources

The internet, in some sense, can be regarded as a huge database. The major difference
compared to traditional database systems is that the managed data does not conform to a well-
defined model that describes the structure and required semantic. Facilities to put machine-
understandable data onto the Web are therefore becoming a high priority for many communities
[8]. The Web can reach its full potential if it becomes a place where data can be shared and
processed by automated tools as well as by people. Tomorrow's programs must be able to share
and process data even when these programs have been designed and built very independently.
Here is where the Semantic Web comes into play.

2.3.1. Semantic Web and reasoning

"The Semantic Web is an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to
work in cooperation." [9]

The initiators of the Semantic Web (SW) [10] see the emerging technology as an enabler for

computers to better work in cooperation with people. As a fact, they are not saying that the
technology as such is going to bring any concrete or direct improvements. Being an enabler, the
SW makes new business and IT concepts possible but not necessarily a-priori feasible [8]. Let us
make an example in order to get this straight:

We hypothesize that the goal (or vision) of the SW has been achieved. All data out in

the web is accessible as well as machine-readable. Let us assume that we want to arrange
some vacation. There are many travel agencies that can do this job for us. Since the SW
has all the data that we need ready and machine-readable, we though want to do the
arrangements ourselves. So lets then start and check for flights, airport transfers, hotels,
rental cars and so on. Our goal is to get the most preferred arrangement to the lowest
possible price. We can search for an online portal that allows us to query the web for the
requested services. If such did not exist, we as well just could program such a program
ourselves. It turns out that a satisfying portal indeed does not exist. Furthermore, it also
turns out that just programming our own tool was a bit of a too enthusiastic idea. The
problem namely lies in the way of how we go about and find all relevant data. Just
because it is all out there, does not yet mean that we can use it in an efficient way. In this
scenario, we finally may as well decide against the primary plan and end up consulting a
travel agency.

The example brings us right to the point. The SW obviously cannot function without some

kind of sophisticated reasoning support. First, as the internet will serve as one big database with a
volume that exceeds the load of traditional databases by multiple orders of magnitude, the effort
that is required to locate any piece of data increases dramatically. Simple searching algorithms in
this context are no longer feasible. Instead, intelligent and sophisticated query support is vital
when managing data. Second, the fact that data is accessible does not necessarily mean that this
data is also feasibly available. In the example, we theoretically have all data at hand. However,
since it is scattered all over the network and not hosted at one well-defined location (as this is the

2.4 - Versioning 2 - Motivation

 - 16 -

case with traditional databases), we face the problem of locating the relevant data providers. As
long as we do not know what sort of data is hosted at a provider, we need to contact all of them
in order for a query to return a complete result. However, this clearly is not practicable. When we
talk about design concepts for the envisioned system architecture in chapter 5, we will eventually
find out how we can solve these two broached deficiencies.

2.3.2. NExT in the context of the Semantic Web

So, why do we talk about the Semantic Web when the question is about reasoning in the
context of NExT? The answer is simple. NExT uses OWL and OWL-S. Hence, NExT's
distributed system environment is going to resemble the Semantic Web. When we talk about
design concepts (chapter 5) and the fine-grained system architecture (chapter 6) we sometime
may come back to this early discussion. Recalling what problems the semantic web is exposed to
and how it may deal with may help us to draw our architecture.

2.4. Versioning

Versioning is a widely and everyday used mechanism to organize arbitrary artifacts in terms
of their inherent evolution process. Hence, almost every artifact is subject to some sort of a
versioning mechanism when it comes to their concrete handling and/or development. While in
some situations version indications are obvious, yet in other situations such tend to be hidden but
can be revealed if the concrete characteristics and or development process is closely elaborated.
While the former situation seems obvious, the latter may need some additional explanation. Let
us therefore have a simple example.

Hidden versioning for example takes place if you need to write a job application, and

for the sake of convenience or simplicity, you just grab one of your older CVs that you
accidentally still can find on the desktop of your personal machine. As most content of the
CVs still is accurate, you may only need to do some minor adjustments in order to reflect
the latest circumstances. After having done the adjustments, you save the document by
either overwriting the older CV or by creating a new document with a similar name. In
either case, the saving process is subject of some hidden, unconscious versioning aspects.
If you happened to overwrite the previous CV, you just did some sort of a commit
meaning you have committed your latest modifications to the original document. On the
other hand, if you created a new document with hopefully a meaningful new name, you
automatically created some sort of a new version.

In the context of NExT, there are two main aspects that reveal the necessity of a flexible and

scalable versioning mechanism. They both are separately discussed hereafter.

2.5 - Annotation and OWL 2 - Motivation

 - 17 -

2.4.1. NExT - a multi-user system

NExT by its nature is a multi-user system. Hence, different users may simultaneously work on
the same data that is retrieve from arbitrary data repositories. While simultaneous reading
processes are generically not of a problem, writing processes ought to be subject to scrutiny. If an
experimenter A temporarily retrieves data from a remotely located repository, changes it, and
subsequently commits the resulting modifications, there may be another experimenter B who – in
the meantime – may have retrieved the same original data. If experimenter B commits its
modifications slightly after A, it will blindly overwrite A' previously made modifications. The
stereotypical scenario reveals that NExT obviously faces the same problems than do all common
database systems as far as guaranteeing data integrity is concerned. Versioning in this regard may
represent an adequate and promising alternative to the implementation of a transaction
mechanism [11], which is usually done for database systems but which is still subject to ongoing
research as far as its application is destined for distributed environments.

2.4.2. Process workflow definitions similar to programming code

Defining an NMR experiment in regard to its corresponding workflow process definition can
be compared to the process of writing application program code (source code). In both situations,
the actor is concerned with composing heavily interrelated components. In the case of source
code, the programmer defines classes that eventually will depend upon one another. Hence, in the
case of the definition of an NMR project process workflow as described in [1], the NMR
experimenter defines elements such as NMRExperiments, NMRExperimentalSteps or
NMRProcesses that inherently tend to be related to one another. Eventually, a complete NMR
experiment process workflow evolves to complex multi-layered element structure. An overview
of the NExT process model is given in appendix A.1.

While in the field of software-engineering so-called CVS (Concurrent Versions System) [12]
tools are used to handle the evolving complexity as modification procedures and simultaneous
working are at stake, the NExT system yet misses any such functionality. However, as NExT
claims to represent a powerful and full-fledged application system to be used by NMR
experimenter by their everyday work, some sort of CVS-like functionality will certainly turn out
to become crucial when user acceptance is at stake. Note furthermore that because NMR
experiments are described in OWL and probably will be stored in specific data repositories (such
as triple stores) the integration of an existing well-proven CVS tool may not be feasible or at
least not possible without severe architectural adaptations.

2.5. Annotation and OWL

Generically, annotation is defined as extra information, not being part of the corresponding
domain, and associated with some kind of data. In practice, annotating information depends on
the domain wherein it is used. For example, annotations for written documents, such as articles or
books, typical reveal knowledge about the authors, the publication date, the subject category, and

2.5 - Annotation and OWL 2 - Motivation

 - 18 -

so on. Standards aim at providing interoperable and well-defined solutions. The Dublin Core
Metadata Initiative [13] thereby is probably the most widely used framework.

OWL can be regarded as an extension to RDF (Resource Description Framework) that – as its

name reveals – aims at providing a framework for describing resources [14]. The difference
between RDF and OWL mainly lies in the expressiveness of the language. While RDF focuses
on a formalism that allows to generically handling metadata, OWL goes one step further and
focuses on a framework, which allows the handling of metadata with the addition of semantics.

2.5.1. Metadata vs. Annotation

We talked about annotation on the one hand and metadata on the other hand. Now, what
actually is the difference between these to terms? Both of them seem to deal with "data about
data". There indeed is only a small, but not unimportant difference between the two expressions.
Metadata is the more generic term. It represents information about a thing – apart from that thing
itself. With other words, it defines the characteristics of a thing by using concrete property
values. Annotation, on the other hand, is metadata as well but with an additional restriction. In
order for metadata to become annotation related information, the defining properties must not be
part of the modeled domain.

Let us have an example to get that straight: We assume that we need to build an online
reservation platform for a car-rental company. The online service thereby is required to give
detailed information about the available cars. As a result, we need a data model with some sort of
a car representation. For the sake of simplicity, we model the car with three properties; namely:
model, color and number of seats. Since we also want to keep track of data modifications, we add
an additional property last-modified. While all four properties define metadata, only the latter
property also defines annotation information. The property last modified does not have a
meaning within the modeled domain. It solely gives information about the modeled car, thus the
data record that is to represent a car in the real world.

2.5.2. Mindswap's annotation support

Mindswap's OWL-S API supports annotation out-of-the-box. The concept is simple and
promising. Because OWL supports the description of generic metadata as a key functionality,
OWL is as good when it come to the description of generic annotation. The API provides its base
model entity with the functionality that allows adding and removing arbitrary annotations. In the
underlying OWL/RDF model, annotation data is described by regular properties. The concept
offers a very flexible and powerful solution. First, it can be used in combination with any
annotation framework. Second, the fact that annotation information is described by regular
OWL/RDF properties, the same functional richness as is provided for the latter is applicable.
Third, given the previous two points, the solution seems to incorporate maximal extensibility.

However, this nice flexibility does not come without its cost. The concept namely leaves the
burden of handling concrete annotation standards up to the client. As a fact, we face the question
how we must design the data model in the business logic layer in order to keep maximal
flexibility but still provide for a concrete solution. As for now, we leave it by this short
introduction. We will come back to this question when we talk about design concepts in chapter

2.6 - Authentication and authorization in a distributed environment 2 - Motivation

 - 19 -

5. Design patterns that allow us to bridge the gap between the business logic layer and the
interface given by the OWL-S API in a lower layer will be discussed in chapter 6.

2.6. Authentication and authorization in a distributed environment

Applications can be seen as tools that provide services to people and/or other applications. In
this sense, applications and people act as users, which abstractly can be called entities or
principals whereas the latter is much more appropriate for this field. In order for the different
principals to consume reliable, convenient and foremost individualized services, it is common for
these principals to be labeled in a way that allows them to be uniquely identified. All modern
systems indeed have the notion of some sort of labeled entities. Hence, all of them do face the
problem of how to authenticate an association between a particular label and a particular
applicant (thus principal). Note at this point, that an application or a user from the real world may
not necessarily be represented by merely a single principal but rather by an arbitrary number
thereof. Such in particular is the case, when an application or user acts by multiple roles.

Authorization refers to granting or denying access to specific resources based on the
principal's identity [15]. Clearly, authentication and/or authorization are direct complements.
Neither of them would separately pursue a real purpose.

Let us have an example that puts this rather abstract notion into some practical context. As a

student at the University of Zurich, I own a personal mailbox which is hosted at some server at
the campus. In order to check my mail I usually make use of the available webmail application.
At the login page, I provide my student number and my personal password and then click
"Login" in order to get authenticated and to finally enter my mailbox. The student number (or
student ID) represents the unique label, which tells the University who I am. Because the S-
number is not protected and thus could theoretically be provided by any one student or even any
one person I need to prove my identity. In other words, I have to prove that it is actually me, the
legal representative of the given S-number, which requests a login. Here, in this example, a
password is used to give that additional prove. Authentication runs behind the scene. Upon
successful authentication, webmail uses the principal, whose name is the provided S-number, in
order to infer my individual permissions.

2.6.1. Why decentralized authentication is required

Authentication and Authorization (AA) traditionally is used within self-contained
environments in which user management is centrally hosted [16]. Teams in companies or
institutions, for example, run applications that tend to be accessible within their private network.
AA in this case is commonly covered by some kind of central user management. Usually there is
a single distinct service that is responsible for verifying credentials and providing user
permissions. When we broaden the scope and look at institution-wide networks, we discover the
same analogy. Apart from eventual sophisticated mechanisms in order to boost scalability and
performance, the concepts behind the AA facilities remain the same. In fact, a lot of times only

2.6 - Authentication and authorization in a distributed environment 2 - Motivation

 - 20 -

one single facility handles the verification of user credentials and their permissions. Hence, we
deal with a very strong dependency on centralized services [16].

NExT represents a distributed system. Both, client and service components are equally

distributed over the network. While clients do not interact with one another, they though must
rely on services in order to be able to fulfill their work. Services on the other hand may rely on
one another. It is typical that certain services concentrate on basic, atomic-like operations and
that yet other services will act as coordinators and use these former ones in order to carry out
some higher-level operations. Let us abstract from clients and different services and collectively
treat them as any interdependent component. The fact that such components may reside in many
different administrative domains implies that they most probably do not belong to the same
central security realm. A component authenticates and authorizes itself at its local authentication
and authorization service (AAS). Being authenticated this component can contact whatsoever
counterpart within the same security realm. Nevertheless, it cannot contact components in any
other realm. As a matter of fact, it is obvious, that components have to get the ability to
authenticate themselves at remote security realms by some way or another.

At the time of writing, two different authentication and authorization technologies mainly

exist that can be used in distributed systems [15]. One solution makes use of digital certificates
[15] that are based on private and public keys. The other solution is Kerberos [16]. Note at this
point that there are many other concepts that pretend to provide solutions for distributed
environments. There though is a high chance that they base on either of the two concepts and
thus do not provide any novel technique.

2.6.2. A solution for NExT

From the previous discussion, we have learned that both, digital certificates and Kerberos
provide authentication services for distributed systems. Nevertheless, both solutions do not come
without compromises. Certificates rely on the existence of a public key infrastructure (PKI) [15]
and trusted certificate authorities (CA) [15] whose installation in the first place and the required
legitimation is burdensome. Furthermore, different companies and institutions that already rely
on such an infrastructure however may not necessarily trust the same CA, which yet reveals
another problem, namely the creation of a well-defined trust hierarchy. Kerberos, the second
introduced solution, inherently forces all participating parties to use Kerberos for their principal
authentication and authorization mechanism. While a lot of companies and institutions indeed
may already use Kerberos due to its popularity and its adequate feature support, NExT
nevertheless should not ignore companies and institutions that do not do so. Rather than relying
on one distinct authentication and authorization technology, NExT should make it possible to use
different technologies at different locations within its emerging distributed environment
simultaneously. While following this idea seems promising, it however raises yet another aspect.
The system in this regard namely needs to find out how it can integrate such fundamental
different technologies (which hence rely on different underlying concepts) without the need for
significant adaptations. A transparent and plugin-like integration procedure would obviously be
highly welcomed. These and plausibly some many more compelling concerns will be discussed
and hopefully solved throughout the course of this thesis. For now, we leave with this short and
intentionally uncompleted introduction.

2.7 - Related Work 2 - Motivation

 - 21 -

2.7. Related Work

In this section, related topics concerning the elaboration of above illustrated problem domains
are discussed. Due to the rather diverse set of focusing aspects, we however intentionally do not
cover all of them but focus on the more important. Each topic is briefly introduced in terms of
principles or underlying concepts and secondly rounded out with a discussion about the concrete
relation to this thesis.

2.7.1. JXTA

JXTA [17] is a project that aims at providing a generic communication technology for peer-to-
peer systems [18]. The project was initiated by Sun Microsystems in April 2001 when the
importance and wide spread of Peer-to-Peer systems steadily increased. Napster and Gnutella,
among many others, are concrete systems that evolved during the mentioned time. As an open-
source project, the development community has steadily grown. At the time of writing more than
16.000 members have registered and claim to contribute actively to the technology's evolution.

JXTA functions as a virtual overlay network [19]. It represents a generic communication

framework that does not require any type of specific technology. The overall architecture defines
a set of protocols that intends to enable peers to communicate successfully with one another.
Interoperability thereby is of central importance and attains the major focus. The architecture
claims to enable interconnected peers to be able to (i) easily locate and communicate with each
other, (ii) to participate in community-based activities, and (iii) to offer services to one another
seamlessly across different platforms and networks [19].

The JXTA architecture

Figure 1. JXTA architecture [19]

The coarse-grained architecture (figure 1) of JXTA can be divided into three hierarchical

layers. The basis is defined by the so-called JXTA Core. The layer consists of basic services that
deal with (i) the connection of endpoints bound to participating peers, (ii) the management of
pipes that are used in order to send messages between communicating peers, (iii) the query
functionality which is used to find existing peers and to infer about their providing functionalities
as well as their concrete offering interfaces, and (iv) the proliferation of peer's state information
in an observer-based fashion. In addition to the described functionalities, it also defines the

2.7 - Related Work 2 - Motivation

 - 22 -

notion of peer groups that enable the system to subdivide its participating peers by various
aspects such as location, closely related functionalities, security boundaries, etc.

The second layer is represented by JXTA services that build upon the illustrated base
functionalities. Typical components in this layer are sophisticated search and query services as
well as higher-level communication services destined for generic file and data stream transfer.
While some services are developed by the community, others are provided by Sun Microsystems
and understood as part of the reference implementation.

Finally, the third layer is represented by concrete utility-like applications that directly interact
with the subordinate JXTA services in order to provide plug-in-like functionalities to arbitrary
systems that depend on peer-to-peer communication. This top layer in this sense functions as a
convenient access point for the application's specific components in charge of the communication
functionality.

Communication protocols

In order to get an idea of the system in terms of its functioning and in the way peers eventually
are enabled to communicate with one another, we briefly look at the defined protocols. Each of
them namely reveals a distinct aspect of the architecture. In the following, the six protocols are
listed with a short explanation.

• Peer Discovery Protocol. JXTA offers its client (an arbitrary system application) a

transparent discovery service. Peers, advertised services and pipes can be searched on
the basis of a generic request-response protocol.

• Peer Resolver Protocol is used in order to translate discovery queries of a particular
format into a generic format that is then globally understood so that it can be sent out
into the network of peers.

• Rendezvous Protocol. JXTA uses an advertisement concept in order to manage
communication among peers. The rendezvous protocol in this sense is used to create
and maintain the connections between peers which not necessarily are aware of each
other's existence and location in advance.

• Peer Information Protocol is used by a peer to query other peers about their
individual state. Since the format of a concrete query and possible response are not
defined, interoperability is achieved in combination with the Peer Resolver Protocol
that is able to translate specific formats into appropriate standard formats.

• Pipe Binding Protocol. A peer sends and receives messages over advertised pipes.
This protocol thus allows a peer to create a pipe and subsequently bind it onto one of
its endpoints. Additionally it allows other peers to bind themselves onto existing
pipes in order to be able to receive/send messages from/to the pipe's claimed initiator.

• Endpoint Routing Protocol. In some situations, a peer is protected behind a firewall
and hence cannot directly be contacted by other peers. This protocol allows a so-
called End-Point Router to act as an intermediate which is able to send message from
and to peers behind a firewall.

2.7 - Related Work 2 - Motivation

 - 23 -

Relation to the thesis

As NExT aims to become a widely distributed system with services residing on machines
within different administrative domains as well as various system environments, communication
becomes a crucial aspect. JXTA in this regard could eventually be used for the underlying
technology when communication between remote services is concerned. When we talk about the
design concepts (chapter 5) for the elaborating system architecture (chapter 6) we will realize
how close some of the JXTA's offered functionalities indeed relate to certain presented lower-
layer aspects. While JXTA deals with aspects regarding communication technologies for specific
distributed systems, the thesis rather abstracts from such particulars and deals with aspects such
as appropriate distribution topologies, or coordination patterns among data storage services.

2.7.2. Edutella

Edutella [20] is a specific JXTA project that plans to extend the JXTA framework with the
W3C metadata standard, RDF. Currently the project is hosted at the JXTA platform and is
actively maintained by the CID (Center of User-Oriented IT design) at the Royal Institute of
Technology, Stockholm, Sweden, in cooperation with the Uppsala Learning Lab at the
University of Uppsala, Sweden and the Stanford Infolab, California, USA.

The basics of the Edutella framework

Edutella builds upon the JXTA architecture and defines so-called Edutella services and
Edutella peers [21]. The former represent web services that are defined by either WDSL or
OWL-S. The latter live on the JXTA Application Layer and use the functionally provided by the
former, the Edutalla services. The project plans to elaborate five distinct services, whereas the
focus primarily is set onto the first of them. The following table depicts each service with a short
description.

Query Service Providing a standardized query exchange mechanism for

RDF metadata stored in distributed RDF repositories.

Replication Service Providing data persistence, availability and workload balan-
cing while maintaining data integrity and consistency.

Mapping Service Translating between different metadata vocabularies to
enable interoperability between different peers.

Mediation Service Defining views that join data from different sources and
reconcile conflicting information that emerge from the
corresponding data aggregation.

Annotation Service Enabling annotation in a distributed fashion such that it must
not necessarily be stored together with their targeting
artifacts.

Table 2. Edutella services

2.7 - Related Work 2 - Motivation

 - 24 -

The framework uses the notion of RDF data repositories when describing Edutella peers. A
repository consists of RDF statements and describes metadata according to referenced RDF
schemas. Because the Query Service interface is mandatory, every repository supports a so-called
local RDF storage layer query language [21]. For example, if an arbitrary repository uses a
relational database in order to store the individual RDF statements, the local storage layer query
language probably would be SQL. On the other hand, if that repository uses JENA as its
persistence framework, the local storage layer query language almost probably would be RDQL.

Mediation services are able to provide a coherent and transparent view onto an arbitrary
number of RDF repositories. They in this respect act as transparent proxies onto a set of
subordinate repositories. Because every repository may support an individual query language that
is not necessarily compatible with others, mediation services can only act as proxies if a common
query and query result representation along with corresponding transformation processes are
available. As a result, the framework defines a Query Exchange Language (QEL) [21] and a so-
called Edutella Common Data Model (ECDM) [21] in order to solve the mentioned deficiency.
Both of them are defined in RDF and collectively provide the syntax and the necessary semantics
for a standard query interface. The transformation from a local query language into the QEL and
vice versa is performed by an Edutella wrapper sitting at the corresponding repository. The
ECDM allows transferring a result set from a repository's local data model into a common data
model that is understood by all peers in the network. The remaining interfaces are self-
explanatory and do not need any further explanation. Moreover, they are considered rather
traditional services that do not incorporate any novel concept or otherwise worth-mentioning
aspects. The main reason we presented Edutella is their promising concept regarding the QEL
and EQDM.

Relation to the thesis

The concept that is used to distribute RDF statements within a distributed system is very
similar to the underlying principle that we apply to the elaborating system architecture. While
Edutella primarily focuses onto storage of metadata, our system architecture in contradiction uses
RDF to store both primary data and corresponding metadata collectively. The problem of how to
query distributed data repositories in a transparent and interoperable way however remains the
same for both projects. When we present the design concepts for the management of distributed
data in chapter 5.1, we will realize that some of the underlying principles are identical, and that in
these situations only the context in which they are applied will differ.

2.7.3. OWL-S Matchmaker

The OWL-S Matchmaker project [22] elaborates a solution to the problem of finding web
services by the definition of requesting service capabilities in addition to traditional descriptive
keyword based filtering methods. The project is lead by the Intelligent Software Agents group
[22] at Carnegie Mellon University (CMU), Pittsburgh, Pennsylvania, USA. At the time of
writing, the project is at an advanced stage where concrete implementations are integrated into
particular system environments and represent the necessary prove of concepts and corresponding
feasibility.

2.7 - Related Work 2 - Motivation

 - 25 -

Matchmaker agent system

The project's concept is based on the notion of an agent system. An agent thereby can
represent (i) a service providing entity, (ii) a service requesting entity, or (iii) even both if its duty
is to act as a service composer relying onto other agent's providing services in order to offer more
complex and/or higher level services [23]. While regular agents provide and/or consume arbitrary
services that can be characterized by their inputs, outputs, preconditions and resulting effects
(IOPE) [24], a so-called specific agent called Matchmaker acts as a "yellow pages" of agents
with their corresponding capabilities described in terms of services and their corresponding
IOPEs. The Matchmaker thus allows agents to find each other by providing a mechanism of
registering each agent's capabilities.

The semantic description of services (IOPE) is achieved with the OWL-S service description
language. However because this language only defines the way by which semantic information is
described but does not provide any direct functionality in order to reason about such data, the
project elaborates a specific matching algorithm as well as a corresponding matching engine. The
matching algorithm is designed such that it offers following characteristics. It (i) is configurable
in terms of the minimal match acceptance degree, (ii) it does not follow a hard true and false
matching mechanism, (iii) it allows for automatic dynamic discovery, and (iv) is able to perform
an intelligent selection upon the set of found services. The Matching Engine implements the
mentioned algorithm and hence can be regarded as a specific OWL-S reasoner that performs
sophisticated similarity measurements upon the service's IOPE specifications.

OWL-S/UDDI Matchmaker

The Matchmaker agent system as briefly introduced above is capable of dealing with web
services defined by the relatively novel OWL-S service description language. However, because
the majority of web services are defined by the de-facto Web Services standard [25] using SOAP
[26] and WSDL [26], the project currently does not offer any substantial benefit to businesses
running WSDL web services. Developing an OWL-S web service hence is currently not rational
because there would be no other service that eventually would make use of it due to compatibility
reasons. As a result, the project team decided to enhance the UDDI (Universal Description,
Discovery and Integration) [27] service, which acts as the corresponding "yellow pages" for
WSDL web services, in order to become compatible with both WSDL and OWL-S.

Figure 2 depicts the overall architecture of the resulting OWL-S/UDDI Matchmaker. The
underlying principle constitutes of the fact that the UDDI service is kept unchanged and that the
OWL-S/UDDI Matchmaker solely acts as a wrapper to the UDDI service. When the
CommunicationModule (CM) receives an OWL-S formatted advertisement, it sends it to the
Translator, which constructs a regular UDDI service description and registers with the UDDI. In
the second step, the CM creates an advertisement for capability matching and sends it to the
OWL-S Matching Engine (ME) that is represented by the previously described Matchmaker
agent. Requests follow the opposite direction. The CM sends an OWL-S formatted request to the
ME that subsequently performs the capability matching. The result of the matching is a set of
capability advertisements with a reference to their corresponding UDDI service description
records. After retrieving the latter, the answer set is returned to the requesting client. Services
that rely onto WSDL and SOAP do not need to interact with the OWL-S/UDDI Matchmaker but
can directly connect to the UDDI service.

2.7 - Related Work 2 - Motivation

 - 26 -

Figure 2. OWL-S/UDDI Matchmaker architecture [23]

Relation to the thesis

NMR experiments are described by OWL-S services. The NRM process model (see appendix
A.1) defines all major data entities as direct or indirect subclasses of the OWL-S service class.
Furthermore, the system architecture does not focus on a specific reasoning mechanism but
supports for the integration of arbitrary third party reasoning facilities. As a result, it may be
possible to make use of the Matching Engine in order to provide the functionality for semantic
capability reasoning. However, the two systems yet ground on different communication
methodologies. While the Matchmaker service relies onto an agent system, the system
architecture builds upon traditional client-server interaction. An eventual integration of the
Matching Engine may not be as straightforward as it may seem at first glance.

2.7.4. Web of Trust and PGP-compatible protocols

In a distributed system, communication is one of the major concerns. A node in such a system
usually does not rely on its own but engages into various communications with its counterparts.
For example, a node may act as a typical server and thereby may offer functionalities to nodes
acting as clients. Another slightly different communication pattern is represented by a peer-to-
peer system. In this case, two arbitrary nodes engage into a bidirectional conversation. While at
one point in time node A acts in the role of the client and requests services from a node B, at yet
another point time, the roles may be shifted, and hence node B starts acting as a client and vice
versa requests services from node A. Depending on the type of conversation, roles may be shifted
on a frequent basis resulting in a complete bidirectional communication.

The problem with communication in distributed systems is the mechanism by which nodes can
make sure they indeed do communicate with the actor they believe they communicate with.
While there are many different authentication techniques available, none of them is yet able to
address the introduced problem in distributed systems satisfactorily. Scalability and
trustworthiness in insecure and open networks are usually the common pitfalls.

Web of Trust [28] describes a concept that accounts for the establishment of authenticity

concerning identification of actors in untrusted environments. Common protocols, which exhibit
the notion of a Web of Trust, are PGP (Pretty Good Privacy) [28] and it's various related PGP-
compatible co-implementations.

2.7 - Related Work 2 - Motivation

 - 27 -

The basic concept

PGP's principle is based on common public key cryptography [15]. However, in contradiction
to traditional public key infrastructures (PKI) [16], PGP breaks the hierarchical trust architecture
and with this becomes able to follow the notion of a Web of Trust. While in traditional PKIs all
participating actors need to trust well-defined and inferable Certificate Authorities (CAs) that are
given the exclusive power of issuing certificates, PGP relies on a peer-to-peer based approach
and authorizes the actors themselves to sign each other's certificates. In this sense, PGP public
key certificates attain their authenticity by receiving as many as possible attests from co-actors
such as friends or other related persons that believe to be able to authenticate a particular actor's
claimed identity. The more attests a public key certificate obtains, the more likely it is to be
trusted by arbitrary co-actors. Let us make an example that illustrates the power of this trivial
idea.

Alice signs Bob's public-key certificate that she knows is authentic. Bob then forwards
his signed certificate to Carol who wishes to communicate with Bob privately. Carol, who
knows and trusts Alice as an introducer, finds out that Alice is among Bob's certificate
signer. As a result, Carol can be confident that Bob's public key is authentic. However, if
Carol does not know nor trust any of Bob's signers, including Alice, she would be
skeptical about the authenticity of Bob's public key. In this case, Bob needs to find
another introducer whom Carol trusts to sign Bob's certificate. (Modified example from
[28])

The scenario nicely reveals how trust can proliferate within an emerging network of

interrelated actors without the need of a central authority. A Web of Trust hence follows the idea
of inherently incorporating trust into the system instead of defining endless trust delegations that
generically fail in attesting the final instance and whose trust system is only as trustworthy as are
the controlling instances.

Web of Trust RDF ontology

In the recent, the Semantic Web Interest Group [30] has developed an initial draft vocabulary
in order to account for public key cryptography concerning RDF represented data. At the time of
writing the initial version is published under the XMLNS4 domain and is given the name WOT
(Web of Trust RDF Ontology) [31]. Nevertheless, there is no evidence as to whether or not it has
already been used in some corresponding projects. Hence, status of usability as well as
completeness in terms of defined classes and properties yet remain uncertain.

Relation to the thesis

Public key cryptography will be of interest when we look at the requirements in terms of
authentication. As the envisioned system deals within a widely distributed environment, some
sort of distributed authentication will be necessary. Due to the fact that NExT needs to be build in

4 xmlns.com is an internet domain created for the purpose of simple Web namespace management.

2.7 - Related Work 3 - Vision

 - 28 -

a maximal open and flexible fashion the system architecture will almost certainly need to cope
with multiple technologies. Making use of a Web of Trust may be one feasible solution.

The recent publication of the WOT vocabulary reveals the feasibility for cryptography in
terms of OWL/RDF defined data. Once the vocabulary's usability will have been proven NExT
may discuss its use in regard to the various security aspects. Note that NExT may not only be
interested in its authentication capability but as well may discuss possible usage scenarios in
terms of data integrity and authenticity.

3.1 - System architecture 3 - Vision

 - 29 -

3. Vision
The history of IT to date has marked an important and continuing trend. We are talking about

ubiquity in terms of computing. Ubiquity reveals that mass cost reductions has made it possible
to introduce processing power into devices that – only a couple of years ago – would have been
uneconomic or even unimaginable. The trend shapes the world of IT significantly. The internet is
just one of many examples that can prove this perception. We recall that the internet – as we
know it today – did not exist until the mid 1990's. However, today, we cannot think of a world
without it. As the trend towards ubiquity in terms of computing continues, the required systems
and applications become ever more interconnected. On the one hand, we would like to have the
relevant information readily available at all times. Yet on the other hand, we though do not want
to care about the management of that information in the first place. In terms of software
architecture, this statement reveals that we ought to look out for a novel and powerful abstraction
concept that makes it possible to handle information as it were a commodity.

In the following, we present a visionary system that tries to address above broached aspects as

far as fully transparent management of information and offering of mass (customized) services
(applications) are concerned.

3.1. System architecture

Our visionary system represents itself by a twofold API. On the one hand, it serves as a
transparent access layer when terminal-like applications need to access lower level service
components. On the other hand, it serves as a coordinator when the latter need to communicate
with one another. The system in this sense is said to provide a downstream API for the business
logic tier and an upstream API for the mentioned lower-level components.

The overall architecture is simple and is depicted in figure 3. Applications with a user
interface are called terminals and are expected to act as typical thin clients. Note that the
expression terminal is intentionally borrowed from the old-day mainframe systems. As we soon
will see, they indeed have many similarities to the terminals of these days. UAP stands for
Unified/Universal Access Provider and represents what we previously called the twofold API. Its
purpose is similar to a generic object broker [26]. While the upstream interface is used by the
terminals, the downstream interface is used by the so-called self-contained components (SCC).
Self-contained components represent services on different abstraction levels and typically
interact with one another. While some SCCs concern about fundamental tasks, others rely onto
former ones in order to concern about higher-level, thus more complex, services. The basis
finally consists of the notion of a global database, here named Universal Database (UDB). Our
vision intends to abstract from any concrete concept. The chosen names for the different
components as a result try to be as neutral as possible.

3.2 - Terminals and SCCs 3 - Vision

 - 30 -

Figure 3. Overall architecture

3.2. Terminals and SCCs

Terminals range from very simple to very complex. While one terminal may represent a
traditional read-only directory for people's contact information, another terminal in contradiction
may represent a complete enterprise resource programming (ERP) system. While for the former
terminals it may be feasible to rely onto one single suitable SCC, the latter terminals almost
certainly will require many of them in order to be able to perform their broad set of
functionalities. The concept's core idea is that there are as many particular SCCs as will be
needed, and that the development of particular terminals abstractly speaking is solely a matter of
picking and coordinating the right SCCs.

Obviously, this idea is only rational if building SCCs is less expensive than directly putting
their functionalities into the terminals in the first place. The concept assumes that the majority of
SCCs is simultaneously used by a high number of different terminals. Hence, a SCC is thus able
to incorporate significant economies of scale. An individual SCC provides one or multiple
services within a complete, well-defined and self-contained context. If for the delivery of a
particular service an SCC is able to make use of other already existing services and thereby can
reduce the complexity and/or required computing power, it is highly encouraged to do so. The
concept namely envisions that there are no two SCCs that will ever provide two identical
services. Note, that for the sake of simplicity, we intentionally abstract from the notion of
eventual replication aspects for purposes such as security or performance. If this conceptual idea
is strictly applied, the development of SCCs becomes a fairly simple job. The majority of SCCs
namely will be able to provide their services by relying on suitable lower-level services and by
dealing with the corresponding resulting coordination. Only the very fundamental SCCs
eventually will need to deal with some sort of direct information processing.

From the software engineering point of view, the concept does not represent any novel aspect.
After all, it does not do anything more than strictly adhering to the common two design
principles of information hiding [32] and separation of concerns [32]. However, there yet is
probably no single system that follows the two mentioned principles in the envisioned fashion
from the lowest up to the highest architectural tier and furthermore does so in a global scope that
eventually claims to unite any application out in the world. The following figure depicts the UAP
with its underlying SCCs that communicate with one another by providing particular relation
dependent interfaces.

3.3 - Universal Database 3 - Vision

 - 31 -

Figure 4. Architecture of the Universal Access Provider

A SCC registers with the UAP in order to announce its existence. It thereby provides a

specific advertisement interface that allows the UAP to reason upon its provided services. Note
that although the UAP is depicted by one single component, it as well may be distributed and in
this sense may rather be seen as a conglomerate of an arbitrary number of identical, benevolent,
and interconnected components. When a particular SCC wants to make use of another SCC's
provided services, it addresses the UAP and asks it to return a list of appropriate SCCs given
concrete functionality criteria. If the returned list is not empty, the particular SCC picks one of
the contained interfaces and initiates a connection to the corresponding counterpart. In situations
where a bidirectional communication channel is needed, the latter does the same in the opposite
direction. As each interface is assumed self-explaining, any SCC is thus able to communicate
with any other SCC without the need of any preliminary specific setup.

3.3. Universal Database

Analogous to the UAP, the Universal Database (UDB) represents an abstract view onto a
global database. In this sense, the vision does not claim to have one single database that serves
for all storage needs but only tries to sensitize for such a way of thinking. We assume that each
SCC can connect to its given UDB interface and that this interface is in charge of finding and
retrieving whatever data is needed. Note however, that this interface is restricted to handle
querying and retrieving aspects. Writing access is managed differently. The concept foresees that
the UDB is subdivided into sections (so-called UDB sections) and that each section is controlled
by exactly one distinct SCC, which in this case is called a DRSCC (data repository SCC). Any
writing aspect such as the creation, the modification or the deletion of particular data entities can
only be performed by the corresponding DRSCC. As a result, if an arbitrary SCC has retrieved a
particular data entity through its given UDB interface, it afterwards needs to get in contact with
the corresponding DRSCC, if for example it wants to update the eventually modified entity.
While a UDB section may contain several different types of data entities, all entities of a
particular type are assumed to reside in one distinct UDB section which results in a 1:n relation
between UDB sections and data entity types.

The clear distinction between global read-only access and single SCC based writing access
represents the crucial point of the envisioned concept. If information becomes a commodity and
thereby the corresponding data volume increases by several magnitudes, the main problem no
longer will be how to modify and/or create data entities, but will be (i) how to find appropriate
data entities and (ii) how to make sure that not only some but the entire set of actually matching
data entities be found. Having comfortable access to all available data, sophisticated reasoning

3.4 - Conclusion 4 - Requirements

 - 32 -

can be performed in order to account for the mentioned deficiencies. Furthermore, and probably
as important, it becomes possible for single data entities to define relations to arbitrary other
entities not necessarily of their own type and not necessarily within their own UDB section. From
a business point of view, the possibilities that emerge from the definition of arbitrary relations
among data entities managed by different DRSCCs (and thus different administrative domains),
are almost infinite. Whatsoever information from one company can directly be bound onto
whatsoever information from an arbitrary other company while preserving the required
restrictions to make sure data integrity is guaranteed.

Figure 5. Architecture of the Universal Database

3.4. Conclusion

While the presented visionary system claims to provide a promising solution in order to be able
to cope with the ongoing trend of ubiquity and commodity in terms of information, it
nevertheless does so by only covering the problem domain on a fairly high abstraction level that
ignores a lot of important aspects that eventually may be crucial in order to determine as whether
or not such a system can ever become feasible.

Throughout the elaboration of the system architecture outlined in the introduction and motivation
chapter, we will come across many technical and design specific aspects from which we nicely
abstracted in visionary concept above. In this sense, the presented vision provides a useful
broader context into which the elaborating system architecture can be laid when aspects such as
transparency, scalability and the like will be at stake.

4.1 - Openness 4 - Requirements

 - 33 -

4. Requirements
The requirements analysis in [1] elaborates the components of a suitable data model and

describes how experiments can be modeled in terms of OWL-S services. While this specification
was sufficient in order to design the overall system architecture, it reveals various missing
aspects when it comes to the definition of the fine-grained architecture. This chapter specifies the
requirements for the architectural aspects introduced in the initial motivation. In the first part, we
look at the overall requirements in terms of openness and transparency. As NExT represents a
widely distributed environment these two aspects are fundamental and need to be discussed
outside of any concrete functional context. In the second part, we look at each of the five
functionalities: (i) management of distributed data, (ii) querying over distributed data, (iii)
versioning, (iv) annotation, and (v) security aspects regarding authentication and authorization.

4.1. Openness

One of the most important requirements of distributed systems is openness [11]. Openness
imposes that a system needs to offer services according to standard rules that describe the syntax
and semantics. The rules thereby need to be open and hence need to be complete5 and neutral6.

In computer networks, a set of standard rules (usually referred to as a protocol) typically

governs the format, the content and the meaning of messages that are sent and/or received
between end nodes. Due to the inherent way networking services like TCP [15] or UDP [15] are
used, it is obvious that they must meet a high level of openness. Protocols are thus specified in a
particular way that allows their services to be portable and interoperable. Portability7 and
interoperability8 are the two major aspects that need to be achieved in order for the system to
become complete and neutral [11].

Analogous, services in distributed systems call for the same characteristics: They need to be

equally portable and interoperable. Furthermore, if we take into consideration that such systems –
in contrast to above presented network services – not only need to communicate with one single
client but rather tend to interact with an arbitrary number of counterparts, flexibility is an
additional important characteristic. Portability is required because distributed systems need to run
in many different environments where each of them has its own specialties. Interoperability is
required since components in distributed systems usually are built by different manufacturers but
need to co-exist simultaneously. Flexibility, to some extent, derives from the previous ones.

5 Complete means that everything that is necessary to make an implementation is specified.
6 A neutral specification does not prescribe what an implementation finally should look like. However it

describes what the features are.
7 Portability characterizes to what extent an application (or more generally a piece of software) which was

developed for a distributed system A can be executed on a different system B without any modifications.
8 Interoperability characterizes the extent by which two implementations of a system or a component from

different manufacturers can co-exist and work together by merely relying on each other's services as
specified by a common standard.

4.2 - Degree of transparency 4 - Requirements

 - 34 -

Since it is common that for a particular component multiple implementations with different
characteristics are available, it must be possible to tell the system, which concrete component it
actually needs use. In other words, the system must be configurable by various aspects.

4.2. Degree of transparency

Another important characteristic of a distributed system is the fact that services and resources
are transparently distributed [11]. A transparent system is able to present itself to users and
applications as if it were only residing on a single machine. Table 3 lists the different types of
transparencies and provides a short description. In the following, we look at each presented
transparency in detail and discuss its relevance in regard to the NExT system. At the end, we
conclude which types of transparencies are crucial and therefore need to be provided under any
circumstances. We furthermore reveal which remaining transparencies would be nice to have or
may be required in the future.

Transparency Description
Access Hide differences in data representation and how a resource is accessed
Location Hide where a resource is located
Migration Hide that a resource may move to another location
Relocation Hide that a resource may be moved to another location while in use
Replication Hide that a resource is replicated
Concurrency Hide that a resource may be shared by several competitive users
Failure Hide the failure and recovery of a resource
Persistence Hide whether a resource is in memory or on disk

Table 3. Different forms of transparency in a distributed system [11]

4.2.1. Access Transparency

In the context of NExT access, transparency reflects the fact, that a persisted object can be
serialized in many different ways. NExT is going to use OWL for its serialization, as this is more
than obvious when using the OWL-S API. As long as this determination holds true, we can safely
ignore this transparency. Nevertheless, if we wanted to be flexible in terms of what concrete
persistent storage mechanisms (i.e. triple store [54], object oriented and/or relational database,
etc.) will be used this transparency becomes essential.

4.2.2. Location Transparency

Location transparency refers to the fact that users cannot tell whether a resource is physically
located in the system. Since NExT uses data entities that are derived from RDF and/or OWL
entities, this transparency becomes immanent. Both frameworks (RDF and OWL) assume that
resources are being named by unique logical names that do not give any information as to where

4.2 - Degree of transparency 4 - Requirements

 - 35 -

the resource physically is found. However, if we do not want to stick to RDF and OWL as the
underlying persistence service, we still must account for it.

4.2.3. Migration Transparency

Migration transparency may or may not be necessary depending on the particular
requirements. We can imagine a scenario where a particular user on her machine wants to submit
a resource into a group-wide data container. If migration transparency were not supported, all
group users including her subsequently would need to update that resource's unique
identification. Because such a mechanism would represent a fairly uncomfortable system, NExT,
obviously is expected to offer some adequate migration transparency.

4.2.4. Relocation Transparency

Relocation transparency refers to the fact that the system is able to move a particular data
element from one location to another while it is actively used. In regard to the definition of
process workflows, this transparency is not necessarily required. An NMR researcher does not
directly work onto remotely located data but always works onto copies of them that primarily
have been retrieved and put into some kind of a local data container.

However, the transparency is crucial as far as the execution of remote services is concerned.
After completion of a process workflow definition for an NMR project, the NMR experimenter
uses an execution engine in order to automatically execute the composed structure of processes.
While the entire process workflow description is locally available, the referenced services may be
scattered throughout the network. At run time, the execution engine reads a particular process
specification and connects to the defined service port. If the service port however happens to be
located on a remote location, we face the probability that at the same time the remote service is
contacted by the execution engine, an NMR researcher may decide to move that service to a
different location. As a result, either moving of currently used services need to be restricted or
relocation transparency must be provided.

4.2.5. Replication Transparency

In the context of NExT, replication transparency does not represent a necessity per default.
The system may nicely run without this feature. However, if performance becomes a problem
and adequate solutions need to be considered, caching (a specific type of replication) oftentimes
is an effective solution. We realize that if we want to keep our system as flexible and adaptive as
possible, we need to make sure that at least replication transparency is foreseen and can be
implemented when needed.

4.2.6. Concurrency Transparency

Concurrency transparency represents a crucial aspect for the NExT system. As data elements
in repositories can simultaneously be accessed by multiple users, possibly concurrent occurring
data modifications need to be addressed adequately. The system in this sense needs to make sure
that data consistency and data integrity be preserved and that the necessary tasks are performed

4.2 - Degree of transparency 4 - Requirements

 - 36 -

transparent to users of the NExT system. After all, the latter need to be able to focus on their
primary work and must not be disturbed by such rather fundamental, technical aspects.

4.2.7. Failure Transparency

Failure transparency means that a user does not notice that a resource (that she eventually has
never heard of) fails to work properly and that the system subsequently recovers from that
failure. In terms of NExT, the majority of failures will probably occur when arbitrary services are
being executed that either are in their initial testing phase or just were not specified carefully
enough and hence do not account for all possible usage scenarios. Assuming that such failures
will occur on a frequent basis, an NMR experimenter cannot work with the system efficiently as
long as it throws exception or even may crash whenever such mentioned failure do occur. NExT
in this regard ought to account for some sort of failure transparency. However, we intentionally
leave the prescribed requirement somewhat fuzzy. Failure transparency is one of the hardest
issues when dealing with distributed systems. At the time of writing, this topic is still subject to
ongoing research. Satisfying and promising solutions have not yet been found. NExT, in this
regard, is expected to come up with some adequate solution but is not required to guarantee
complete transparency as such may not be possible.

4.2.8. Persistence Transparency

A major aspect that a system - not only in a distributed environment but also in general – is
concerned with, is the transparency of data persistence [11]. Transparency in this context means
that a client (i.e. a software component or an application) does not have to care neither about the
way persistence is achieved nor about the time such operations need to be executed. In the case
of NExT, the management of data plays a major role. Process workflows are specified in OWL-S
and subsequently stored in some sort of distributable data repositories. In order for the NExT
core to be able to concentrate on its primary tasks, it however must not deal with lower-level
functionalities and hence as well should not be concerned with the persistence of its data in the
first place. Persistence transparency in this regard is highly expected and should not be missing
under any circumstances.

4.2.9. Conclusion

We separately looked at each type of transparency and put them into the context of NExT.
Summarizing, we conclude that NExT ideally needs to account for all of them. Access, location,
migration, concurrency and persistence transparency are vital and must not be missing at any
circumstances. Relocation, replication and failure transparency are nice-to-have. However, our
architecture better accounts for these features right away so that they can easily be implemented
in the future when some of them might indeed become critical.

The latter argument may need some further explanation: Just because we can neglect some

features today, does not necessarily mean that we can neglect them tomorrow. Software – as we
all know – is exposed to continuous evolution [25]. As a result, the initial requirements steadily
grow and transform the system into an increasingly complex product. Although we cannot

4.3 - Management of distributed data 4 - Requirements

 - 37 -

prevent it from becoming ever more complex, we - to some extent – can control the degree at
which this process takes place. A good architecture always accounts for evolution and tries to
make sure that future extensions will nicely fit into the overall architecture [32].

4.3. Management of distributed data

NMR spectroscopists work in teams of various geographical topologies. While one team may
consist of members from the same building or even the same floor, another team may consist of
members from many different institutions in various countries all over the globe. Hence, physical
distribution in terms of infrastructure (i.e. spectrometer), data, computing and actors (services
and users) is an inherent characteristic of the field of NMR spectroscopy and therefore needs
substantial attention.

Three of the four presented phases of the NMR experiment's lifecycle (see chapter 2.1) call for

distribution in terms of data and computing. The first and the second phase request the system to
be able to query and retrieve data from different, physically distributed repositories. The fourth
phase calls for the same requirements but additionally requests the system to deposit data into
remote repositories, which yet reveals a completely different scenario. The fine-grained
functionalities can be categorized into three problem fields. In particular, these are (i) the
granularity of shareable data, (ii) collaboration topologies, and (iii) the notion of a workspace and
data repositories. In the following, we elaborate the concrete requirements for each of these
fields.

4.3.1. Granularity of shareable data

NExT is expected to offer sharing capabilities on all five abstraction layers9 of the data model
for NMR experiments. Data items which represent a Case, a ProcessPlan, an Experiment, an
ExperimentalStep or a Process need to be shareable on an individual basis. The following two
examples depict arbitrary conceivable scenarios in which this requirement becomes legitimate.

Scenario 1: A researcher is working on a yet incomplete Case and wants to share the

accomplished part of her work with members of a community. The particular part to be
shared can consist of a set of elements that individually refer to different abstraction
layers. While she may share an entire Experiment in one situation, yet in another situation,
she may as well decide to do so on the level of an ExperimentalStep or a single Process.

Scenario 2: A researcher imports a complete Case from a repository into her private

working area. She realizes that except for one particular Process she can use the entire
Case as is. The only thing she has to do before executing the project is to substitute that
particular Process. After the corresponding substitution and subsequent testing, she

9 The five abstraction layers refer to the hierarchy by which the process workflow of NMR projects is

defined. These in particular are: Case, ProjectPlan, Experiment, ExperimentalStep and Process.

4.3 - Management of distributed data 4 - Requirements

 - 38 -

eventually decides to offer the slightly modified Case back to the community. In this
particular situation, it obviously does not make sense to publish the entire Case. A way
better solution is to solely put the alternative Process into the community owned
repository and additionally bring it some relation with the original Case.

4.3.2. Collaboration topologies

The lifecycle of a typical NMR experiment discussed in chapter 2.1 reveals that an experi-
menter for a significant part of the overall time needs to collaborate with other experimenters of
the field. As NExT is to support NMR researchers by their everyday work, it therefore has to
offer appropriate collaborative functionalities.

Collaboration not only takes place on the basis of individual researchers but as well on the
basis of teams thereof. Several teams, usually from different institutions and/or companies, work
on a joined project whereby experiments are elaborated collectively. The correspondingly
required collaboration topology is illustrated in the following figure. It is important to notice that
there is no central point where communication is controlled. Each team is expected to be able to
communicate with its counterparts directly.

Figure 6. Team collaboration topology

As outlined in the motivational chapter, NExT eventually is expected to be used on a large

distributed scale. The scenario in which multiple divisions from different institutions and
companies may work on joined projects represents a feasible future constellation. In this regard
NExT must be able to cope with an arbitrary number of collaborating teams. Because not only
teams but as well complete divisions may collaborate, NExT must also deal with the notion of
hierarchical topologies as described in figure 7. A node in this sense can be seen as a simplified
abstraction of its underlying topology. With this principle, teams from different companies and
institutions are able to communicate with one another but do not necessarily need to be aware of
the exact internal structure of their counterparts. Figure 7 for example shows that the team from
company B does not exist as is. That company only knows of the teams #1, #2 and #3. However,
as such may not be important for researchers from other companies, they can look them as one
unit – thus, as the team from company B.

4.3 - Management of distributed data 4 - Requirements

 - 39 -

Figure 7. Recursive team collaboration topology

4.3.3. Workspace and data repositories

So far, we talked about the collaboration topologies that NExT needs to account for. Let us
also look at the way researchers expect NExT to handle their concrete collaboration needs.

For the sake of simplicity, the requirements in regard to collaboration are reduced to sharing
data elements of NMR project process workflows. A messaging services [11] or the functionality
of collaborative storage for additional resources such as raw data material resulting from the
execution of particular research applications (tools) are out of the scope of this discussion.

NExT needs to manage an arbitrary number of so-called data repositories that run

independently from one another and that optionally can be distributed within a local or wide area
network (LAN/WAN). In principle, such a data repository can be thought of as a place where
data is persistently deposited and later be queried and/or retrieved. The repository is used in a
number of different conceivable scenarios. (i) It can run on the user's local machine and serve as
a private repository for a particular user. (ii) It can be hosted on a team wide server and be used
as a repository for data that is to be shared among team members. (iii) A repository can be setup
by multiple collaborating teams or complete divisions and be used as a common platform where
data is collectively shared. In the latter scenario, the service may be hosted within the
administrative domain of either a participating team or an unbiased third party player. Note that
these scenarios are closely related to the introduced collaboration topologies above.

In addition to the notion of repositories, the system must as well provide the notion of a

workspace. In phases 1, 2 and 4 a researcher deals with a significant amount of data stored at
different locations. In order for the researcher to be efficient, she needs to be able to temporarily
aggregate relevant data on the notion of a desktop. Thereby the intention is that data on a desktop
is easily worked with and accessing time reduced to a minimum. The only difference between a
workspace and a repository in terms of offered functionalities is the aspect of data persistence.
While repositories serve as persistent data storage components, a workspace is transient and used
for temporary storage during active working time.

4.4 - Reasoning over distributed data 4 - Requirements

 - 40 -

4.4. Reasoning over distributed data

Reasoning is the process of finding data elements that meet particular characteristics that
cannot necessarily be inferred from analyzing the elements in isolation but usually only can be
inferred when looking at the relations among them. The motivation therefore is obvious.
Publishing data in the first place would be useless if that data could not be searched for in an
appropriate way. As data elements of a process workflow definition do not so much describe
themselves but rather engage into distinct relations to other elements, many questions cannot be
answered if we only look at their descriptive attributes. Hence, an NMR experimenter when
searching for particular data elements such as Processes or ExperimentalSteps oftentimes as well
is interested in their relations and indirect inferable characteristics.

The requirements in terms of reasoning can be subdivided into two aspects that can best be
circumscribed by the two questions: "Where to query" and "What to query". In the following, we
discuss both aspects in detail.

4.4.1. Where to query

"Where to query" reveals the necessity of defining the relevant data upon which a certain
query is to be executed. It usually is not appropriate to run a query upon all available data. NExT
stores data elements in different data repositories. At some place in the preference settings, a user
defines her individual list of such repositories. Once a particular repository is specified in the list,
it is understood to be registered, meaning that it is principally available to the NMR
experimenter. When a query is executed, a so-called relevant set of repositories serves as the
basis upon which the query is actually performed. The relevant set logically represents a subset
of all currently registered repositories and might be adjusted on a regular basis as different
queries for different purposes are executed. NExT in this sense must allow running a particular
query not only on a per repository basis but also on a well-defined collection thereof. The result
from a query upon multiple repositories must be presented in an appropriate aggregated format.
The origin of a data element in the result set furthermore must always be inferable.

4.4.2. What to query

"What to query" reveals the expressiveness of the query mechanism. In phases 1, 2 and 4,
NMR experimenters are concerned with tedious searching processes. Most of the time they need
to look for artifacts that represent certain specific similarities. Depending on the concrete purpose
of the query, different similarities and combinations thereof are imaginable. Table 4 depicts the
concrete similarity aspects that need to be offered by the query mechanism. Because versioning
and annotation need further specific attention, they later will be discussed in dedicated sub-
chapters.

4.4 - Reasoning over distributed data 4 - Requirements

 - 41 -

Similarity
Aspects

Description

Element
Type

Searching by the type of a data element such as a Case, a
ProcessPlan, an Experiment, an ExperimentalStep or a
Process.

Element
Identification

Searching by the unique identification of a data element.

Version Searching in regard to specific versions. I.e. all elements of
version 1.5 or below.

Annotation Searching by matching annotation aspects such as author, date
of creation, etc.

Input/Output Searching by matching input and output parameters in terms of
their types and/or particular value ranges for data entities that
represent services to be executed by a corresponding execution
engine. I.e. All services that, as input, expect a floating point
number representing a distance measurement.

Table 4. Similarity aspects

While the first four similarity aspects are straightforwardly understandable, the last aspect may

need some further explanation. One of the major goals of NExT is the definition of process
workflows for NMR projects. Hence, the majority of data elements that the system needs to deal
with are not simple business objects in the sense of a person record, some invoice or shipping
protocols as is oftentimes the case when looking at applications' specific data models. In
contradiction, NExT is a process workflow system that handles the description of processes that
can automatically be executed by a corresponding execution engine. In [1] the definition of an
NMR project is specified by a hierarchical structure of elements that all can be regarded as
specific types of process definitions. When an experimenter works on a particular process
workflow, she primarily deals with the composition of such processes. Because many process
definitions not only can be used for one specific project but also can in many situations can be
reused for numerous subsequent projects, querying for suitable processes becomes a major task
in every NMR project. If we remember the four phases of the lifecycle of a typical NMR project,
we notice that the described task is part of the acquisition phase.

In order for an NMR experimenter to be able to find out whether required process definitions
already exist, she needs to be able to perform some type of capability matching [11, 33]. The
notion of capabilities thereby refers to the functionality of defining searching criteria based on
inputs, outputs, preconditions and effects (IOPE) [24]. A solution that is based on a somewhat
regular directory service following the notion of categories and/or taxonomies is considered
insufficient. The reason thereby is obvious. In the NMR domain, a process does not necessarily
need to represent a self-contained and well definable service. It might as well represent a partial
task thereof. A lot of processes therefore cannot feasibly be characterized by solely relying on a
specified set of descriptive attributes. At least the specification of input and output constraints is
required.

4.5 - Versioning 4 - Requirements

 - 42 -

4.5. Versioning

A NMR project is described by a process model that incorporates the notion of recursive
processes. A Case entity wraps a ProcessPlan entity. The ProcessPlan then acts as a container
for entities of type Experiment. Yet, Experiments define the workflow of a NMR project in terms
of their sequential tasks. And tasks finally are represented by atomic and composite Processes
(see appendix A.1).

Versioning per se is imaginable on every level of the process model structure. As data entities
build relation to one another and as well may be located in different data containers, versioning
no longer reveals a trivial task. Three different aspects are of major importance. (i) The process
model structure represents a workflow, which eventually is executed by an execution engine.
Hence, versioning might have an effect on the way a workflow is executed. (ii) As data is shared
by multiple users, modifications usually are subject to some sort of versioning mechanism. (iii),
People oftentimes are confused about the strict meaning of a version. Sometimes versions relate
to the history of modifications; yet in other situations, they reveal slightly different data. How
can we know which meaning is intended in what situation? In the following, the requirements in
regard to versioning are separately discussed for each broached aspect.

4.5.1. Process plan execution

A ProcessPlan of a particular Case may happen to run multiple times as the execution engine
may stop due to errors in the workflow specification. Since the resulting pathway must not
necessarily be overwritten by subsequent runs, a Case needs to be assigned a version. For every
subsequent execution, the researcher can decide whether the Case (thus the entire workflow
description) is to be assigned a new version or whether former history data is to be overwritten.
In other words, by creating different versions of a Case the researcher is not forced to overwrite
previously acquired history data that consists of the values history10 and the pathway11.

In phase 1 and 2, a ProcessPlan is populated with Experiments and their subordinate

composite and atomic Processes. When the workflow specification phase is completed,
individual Experiments can be conducted by executing the corresponding workflow definition.
Oftentimes the initial run will not succeed due to errors in workflow specifications or will not
bring upon the expected results due to suboptimal parameter settings and the like. As a result, the
researcher needs to modify some part of the ProcessPlan and needs to restart the execution again.
Modifying and executing will alternate until the execution finally succeeds and the results are as
expected. Since previous execution runs do not necessarily have to be overwritten by subsequent
runs, a Case needs to be assigned a version.

10 The value history keeps track of the process parameters (element attributes) during execution of a NMR

project's process workflow. [1]
11 The pathway keeps track of the sequence of which processes (Experiment, ExperimentalStep, Process)

are executed by the execution engine. [1]

4.5 - Versioning 4 - Requirements

 - 43 -

4.5.2. Model entity modifications

Entities such as composite and atomic Processes or ExperimentalSteps of previously
completed projects may arbitrarily be reused for other projects. If these need to be changed in
order to become applicable, they need to be assigned different versions. In this situation, they
must never overwrite the original entity nor should they be saved as sole copies and thereby loose
the relation to its original. In this regard, every entity of the process model needs to have a
version assigned.

4.5.3. Versions and variations

Due to the fact that a particular process model entity can be referenced by an arbitrary number
of other entities, the concrete context in which an entity is used may differ significantly. Hence,
there is a high chance that different variations of a particular entity may be needed over time.
While there may be no difference between a version and a variation of a model entity in terms of
data representation, there nevertheless may be a significant difference in terms of its semantics.
Figure 8 illustrates the usage of versions and variations.

Versioning accounts for the fact that defining the workflow of an NMR project is a repetitive
task of defining process model elements and their concrete attributes. The attributes of a single
entity may be changed several times until the final and correct setting is eventually found. In
order for the researcher to be able to track these changes, she makes use of some versioning
method. In this sense, a version tells a researcher how often and in what order an element has
iteratively been changed over time. In other words, it reveals the modification history. In figure 8
different versions are represented by stapled data elements.

The notion of variations is required because a NMR experimenter needs to be able to adapt an
existing process model entity to suit her particular situation. In fact, this is one of the major tasks
an experimenter is employed with during the phases 1 and 2. In this sense, taking an existing data
entity and changing its attributes does not lead to a new version but rather to an alternative
solution for the corresponding context. In summary, variations are slightly different data entities
that though still represent the same basic workflow element. In figure 8 variations are depicted
within dashed rectangular and assigned a variation identification.

In the case of NExT, modeling an NMRProcess with different Groundings can be regarded as
a suitable usage scenario. The definition of a concrete NMRProcess except for its Grounding
oftentimes can be used by many different research teams. Because their infrastructure in terms of
computing tools and/or spectrometers usually differs, each of them needs to modify the
corresponding Grounding in order to adapt it to their particular infrastructure. By assigning
different variations to different Groundings, the system is able to express the corresponding
relation between them.

4.6 - Annotation 4 - Requirements

 - 44 -

Figure 8. Versioning in the process model

Above discussion neither presents a conceptual solution to the handling of versions and

variations nor does it prescribe concrete requirements. However, it reveals the concrete problem
situation that NMR researchers do face in the particular aspect and points out what tasks NExT
need to provide in order to receive appropriate acceptance. In this sense, NExT has to find a way
to efficiently and satisfactory deal with the presented problem domain.

4.6. Annotation

NExT needs to support researchers in the NMR domain by their everyday work. One of the
major overall aspects in order to achieve the many goals outlined in [1] is the notion of an
adequate and efficient documentation feature. In this context, the system is expected to offer
annotation capabilities that

• complies with major standards,
• are extensible in terms of concrete supported attributes,
• include adequate searching and reasoning aspects,
• and are provided by an optional component.

The first aspect implies that a concrete implementation should comply with at least one of the

widely used annotation frameworks. Additionally it must go for an architectural design that
allows to later replacing the implemented framework by some other standard that by then may
significantly be favored over the former one due to improved features or overall acceptance.

The second aspect implies that the set of provided annotation attributes is easy extensible.
Most of the standard annotation frameworks such as VCARD [34] or DCMI (Dublin Core
Metadata Initiative) [13, 35] are specified by a well-defined set of attributes that can be used to
express annotation information. The requirements in terms of NExT go one step further. The
system not only needs to offer the assignment of interoperable annotation attributes defined by

4.7 - Authentication and Authorization 4 - Requirements

 - 45 -

the chosen standard but as well needs to offer the assignment of generic metadata information
(attributes). Figure 9 illustrates the abstract idea and implicitly reveals the concrete requirements
specification. Each process model entity can be assigned well-defined annotation attributes of the
chosen standard framework. This aspect is illustrated by the composite attributes box to the right
of the entity. All other surrounding rectangular boxes represent generic metadata attributes. Note
that a particular attribute can be assigned multiple times. In the figure, for example three different
hints are attached. Note furthermore that an attached metadata attribute can optionally have
assigned the user who for example acts as the creator or last modifier of the annotation or
metadata attribute.

Figure 9. Extensible annotation concept

The third aspect defines that an NMR experimenter not only needs to be able to adequately

annotate its data but also needs to be able to reason about all annotation specific attributes.
Assuming an experimenter over time has assigned her name to each created data entity, she later
may want to be able to start a query in order to find all of her defined data entities.

The forth aspect reveals that support for above discussed annotation is to run optionally. While
some installations may need to run with full-fledged support, others may run with limited or zero
support.

4.7. Authentication and Authorization

Security aspects concerning authentication and authorization need to be addressed
independent from one another. In contradiction to the majority of applications, NExT must not
assume that authorization is solely used in combination with authentication or vice versa. The
concrete requirements for the two functionalities are separately discussed in the following.

4.7.1. Authentication

The requirements in terms of authentication are depicted in the list below. A detailed
discussion on each of the presented points is given hereafter.

• Compatibility for a wide range of standards
• Support for different procedures in different system environments
• Transparent login procedures with least user interaction

4.7 - Authentication and Authorization 4 - Requirements

 - 46 -

• Configurable
• Implemented as an optional feature

Compatibility is required in terms of a wide range of authentication and authorization

standards. This requirement is legitimate because NExT is expected to run in various different
system environments. On the one hand NExT may be used by a single user that runs all the
required system components on one and the same machine. In this situation, security plays a
neglectable role. Usually some sort of a Unix-like user and group file is sufficient in order to
manage the security policy. On the other hand NExT may as well be used in a widely distributed
network which spans over multiple administrative domains. If this is the case, each
administrative domain may run its individual authentication and authorization procedure. As a
result, NExT may not only need to comply with a small set – let us say one or two – of the most
widely used technologies but most likely may need to cope with a broad set thereof.

Allowing different procedures in different environments is closely related to the first point.

The main aspect already has been discussed in the previous paragraph concerning the fact that
different administrative domains do naturally stick to different authentication and authorization
standards. The second aspect is equally important but oftentimes neglected. The notion of
different procedures also reveals that authentication and/or authorization processes at different
administrative domains may significantly vary among one another. While in terms of
authentication one administrative domain may use a single-sign-on service [16] and thus only
requests the user to authenticate at startup of the operating system, yet in another domain this
may not be the case. Hence, NExT also needs to offer adequate authentication functionality that
can be used on an optional basis.

Data repositories introduced in chapter 4.3 offer functionalities to store information in a

flexible, distributive and collaborative manner. An NMR experimenter defines an arbitrary
number of data repositories that serve as the set of principally available repositories. Every data
centric operation such as a query, a retrieval or an update runs in the context of a corresponding
repository thereof. As a result, the process of connecting to a particular data repository is likely to
occur on a permanent basis. Furthermore, because access to a repository usually is subject to
specific access restrictions, the process of connecting to a remote data repository usually is not
possible without appropriate authentication. In order for the user to be able to concentrate on her
primary work, NExT needs to provide a solution that handles the necessary authentication
procedures in a maximal transparent fashion.

Authentication aspects that arise from the previous points are expected to be configurable. It is

needless to say that recompilations of particular system components will not be accepted. The
main reason therefore is that such a procedure would heavily reduce overall maintainability [32].

Authentication aspects need to be implemented as independent as possible. The system has to

be deployable even if certain or all of the discussed features above are not implemented.
Depending on the concrete system environment or the concrete usage scenario, authentication
functionality may not necessarily be required. Furthermore, it is highly desirable to be able to
implement the envisioned system architecture with sole focus on the main features. If
authentication were not considered optional, such however would not be possible.

4.7 - Authentication and Authorization 5 - Design Concepts

 - 47 -

4.7.2. Authorization

In terms of authorization NExT needs to account for the fact that different data needs to be
assigned different access permissions. In this sense, the system is expected to support some sort
of standard access control. While the choice for a concrete standard is up to the implementation,
at least following concrete characteristics are expected and must definitely not be missing.

• The system works with the following distinct access rights: READ gives a user the

right to consume a particular piece of data, WRITE gives her the permission to
modify, hence DELETE gives the right to delete some particular data.

• The definition of access rights can be assigned either on the basis of data elements
or entire data repositories. Obviously, an implementation that optionally is able to
account for both features would be welcomed.

• Authorization must be supported by the concept of principals [36]. A user in this
sense can be assigned multiple principals meaning that she has multiple identities.

5.1 - Management of distributed data 5 - Design Concepts

 - 48 -

5. Design Concepts
Design concepts represent the building block of every thoroughly elaborated system

architecture. They describe the pursued underlying structural ideas, applied metaphors [37] and
analogies to other well-known areas in or off the corresponding field [32, 37]. This chapter
principally leans on the structure of the previous one and elaborates on concrete concepts for
each of the presented requirements. Because generic software aspects such as transparency,
openness [11], scalability [11] or substitutability [32] are major elements that significantly shape
a concept's intentions and visions, sometimes not only the raw conceptual idea can be presented
but also a broader approach is necessary.

5.1. Management of distributed data

The requirements prescribe that NExT needs to account for some sort of distributable data
repositories that can be accessed by NMR experimenters from different teams eventually located
in different companies or institutions. The requirements furthermore describe how collaboration
between teams is expected to be handled and focuses on the notion of recursive structures with
adequate transparency in terms of collaboration between different companies and institutions as
well as different organizational levels therein. We first look at how we can meet the requirements
in terms of distribution and collaboration in general. Second, we concentrate on the detailed
aspects of creating, publishing, retrieving and modifying the corresponding data entities.

5.1.1. Distribution and collaboration

Collaboration requirements are limited to sharing process model elements and the execution of
specified processes by a corresponding execution engine. From a conceptual point of view, it
thus is feasible to think of collaboration as some type of data sharing. Our concept defines a
generic component named Repository that can be used for three distinct functionalities: (i) to
represent a data repository, (ii) to transparently act as proxy for a conglomerate of the latter, and
(iii) to be able to represent a private workspace. By accounting for these distinct functionalities,
the requirements in terms of distribution and collaboration can be met satisfactorily. The
following figure illustrates the main principle.

Figure 10. A repository component for three functionalities

The requirements prescribe that different teams (eventually from different companies or

institutions) need to be able to collaborate without the need for some type of a central

5.1 - Management of distributed data 5 - Design Concepts

 - 49 -

communication point. The concept in this respect foresees that each team hosts an arbitrary
number of repositories and that these can optionally be opened for remote access. Several teams
in this sense can share their data among one another by mutually opening some of their own
repositories for community wide access. Different read and write access policies thereby are
imaginable. For example, if the teams primarily want to share their completed work but are not
so much interested in collaboratively elaborating new NMR projects, they can open their
repositories for read-only access. Being able to read from other repositories thereby leads to two
major benefits: First, teams are no longer limited to reason upon their own data but can do so
upon a community-wide virtual data basis. Hence, the likelihood to find suitable data elements
during the first and second phase of the NMR project's lifecycle (see chapter 2.1) can
significantly be increased. Second, the teams as well may be allowed to run particular services or
entire process workflows if they additionally are given the required execution rights.

The prescribed notion of a workspace can reasonably be provided by a slightly modified
repository. Except for the persistence functionality, a workspace behaves in the same way as a
repository illustrated above. Thinking in terms of inheritance, we conceptually either can look at
a generic repository as a subtype of the workspace with extended functionality or can look at the
latter as a subtype of the former with specifically applied restrictions. A user on the other hand
may still treat them as totally different components.

A proxy repository is used by the concept in order to account for the hierarchal structure of
teams within companies or institutions. The requirements prescribe that on each hierarchical
level, it must be possible to abstract from any subordinate structure. With other words, if an
NMR experimenter from company B wants to accesses a repository from company A, it need not
concern about company A's internal structure. The repository in question does not necessarily
need to exist in reality. It as well may internally be represented as a conglomerate of multiple
team-wide repositories as is depicted in figure 10. The introduction of such a proxy has the
benefit that the system does not explicitly need to care about recursion and transparency but that
such are inherently provided.

5.1.2. Creating data elements

When defining a NMR project, the user starts out with an element of type Case that references
a ProcessPlan and that again references an arbitrary number of Experiments. These three
elements are yet useless and do not represent any precious information. An Experiment is mainly
specified by its attached ExperimentalSteps and their further referenced composite and atomic
Processes. The entire structure of a modeled Case, a ProcessPlan or an Experiment respectively
is described in appendix A.1. We realize that the definition of an Experiment can be seen as a
recursive collection of strongly interdependent model elements. Thereby, a single data element is
useless because it does not and cannot hold any semantic information. This fact in mind, the
NMR experimenter needs to have the notion of a virtual element basket. In this regard, data
elements within a basket are considered to be treated as one unit as they tend to be heavily
interrelated. An element basket has a unique identifiable name and is created in the user's private
working area. Per default, NExT automatically puts each Case together with its ProcessPlan and
Experiment into a separate basket. Subsequently added elements are put into the same basket if
not told otherwise. A Case can indirectly reference data elements from different baskets;
furthermore, particular elements can arbitrarily be moved from one basket to another.

5.1 - Management of distributed data 5 - Design Concepts

 - 50 -

5.1.3. Publishing data elements

Publishing in principle is the process of making an element accessible to other users. In the
previous discussion, the notion of a so-called element basket was mentioned. A user in this
regard does not want to share a single element but a particular set of elements that is referred to
as an element basket.

When the user shares some of her work, she publishes it into a data repository. Simply
speaking a data repository is a place where data can be persistently stored and later be queried
and retrieved. NExT in this sense uses an arbitrary number of repositories that independently run
in the form of deamon-like services that are distributed onto different machines within a LAN or
WAN. Consequently, a data element is referred to as published if it resides in a data repository
instead of the local working area. Depending on the specific user rights of a particular repository,
other users have more or less restricted access to the contained data. We will come back to user
rights when we look at the aspect of modifying data elements shortly hereafter.

5.1.4. Retrieving data elements

Retrieving is the process of reading data elements from the private working area or remote
repositories. In principle, the requirements for this process are obvious and straightforward. As
we deal with recursive element structures, whose elements reside in different baskets in again
physically distributed data repositories the subject gets a little more complicated. The simple part
specifies how the retrieval process in regard to a particular data element needs to run. The
somewhat awkward part specifies how the system is expected to handle complete element
structures.

The concept allows retrieving a particular data element based on its unique identification

without the need for specifying at which repository (or local private working area) that element is
indeed to be found. Put with other words the fact that elements are distributed onto physically
separated data repositories is handled transparently. Given a particular element's unique
identification, the system locates the corresponding element within the scope of the list of
registered repositories. From the previous discussion we know that a single data element is
hardly ever used in isolation and therefore resides in an element basket that unites closely related
other elements. As furthermore, a basket is understood the smallest shareable unit, a request of a
particular data element is implicitly interpreted as the request for the corresponding basket.
Instead of returning the sole requested data element, the system thus returns the entire
corresponding element basket.

If the requested data element specifies relations to other elements, the retrieval process not

only returns the explicitly identified element but also returns all recursively referenced elements
as well. In the case where these elements reside in the same element basket as the primary (root)
element, the retrieval process in principle remains the same. From above discussion, we know
that an element is always returned within its residing basket. If on the other hand some of these
elements are not located in the same basket, the system engages into a recursive retrieval process
and finally returns not only one but several elements baskets in order to account for so-called
foreign referenced data elements. Note however that the recursion is only processed within the
particular repository. If relations happen to point to elements in other repositories, these relations

5.1 - Management of distributed data 5 - Design Concepts

 - 51 -

cannot be revolved. Repositories do not know of one another. In this case, the referenced entities
need to be retrieved by the client manually.

5.1.5. Modifying data elements

When a persisted12 data element is modified, the question arises how the system is going to
handle the subsequent saving process. In principle, two different saving methods can be applied.
While the first method represents an overwrite operation, the second deals with a version
mechanism that has the primary goal to keep both the original and altered element. Each method
has its individual, distinct characteristics. Depending on the concrete situation, either the former
or the latter method may be more appropriate. Conceptually, we can provide both methods and
thereby are able to give the user the ability to optionally define which method may needs to be
applied. If the user does not care, a previously declared default method can apply.

We recall the notion of an element basket from the discussion above. Because a sole data

element usually does not have a purpose or meaning when used in isolation, NMR experimenters
need to have the possibility to bundle closely interrelated data elements within so-called element
baskets. Thus, each element resides in a concrete basket. If a modified data element is saved by
the latter method, it is important that this modified element be put into the appropriate basket.
Because baskets themselves may reside in remote data repositories that are subject to specific
user rights, the saving process is not always straightforward. Table 5 depicts the default saving
methods for each possible situation. Overwrite reveals whether or not the original element per
default is overwritten. Respectively, "Version" points out whether the modified element is
assigned a new version and "Same Basket" reveals whether the modifications are stored in the
same basket as the original element.

Element
Origin

Permission Over-
write

Version-
ing

Destination Same
Basket

Working area - x x
read-only x Working area
writable, not owner x Repository x

Repository

writable, owner x x
Table 5. Default saving scenarios

Optionally, the user always has the possibility to overrule the settings specified in the table

above. The process is sufficiently defined if the destination repository and the concrete saving
method are specified. Because repositories are subject to individual user rights, not all
combinations are indeed valid. The system yields with an error message if the requested process
cannot be performed.

12 A persisted element refers to a data element that previously has been saved in some persistent data storage

but currently resides in applications memory and eventually may need to be updated from there.

5.2 - Reasoning over distributed data 5 - Design Concepts

 - 52 -

5.2. Reasoning over distributed data

Reasoning is the process of executing arbitrary queries upon a well-defined data basis. If a
query is executed, the reasoner engine needs to have access to the compendium of data that
represents the reasoning basis. Furthermore, depending on the statement of the query (thus the
type of answer that is expected upon execution) the engine may need to check every single date
entity in order to be able to generate the corresponding query result. As in the context of NExT
data is located in different data repositories, the question arises how we go about in order to
reason upon a composite set of data repositories. In principal, two methods are imaginable: either
we can locate the reasoner engine at the user's workspace and reason upon the data that currently
is loaded or we can equip each data repository with a reasoner engine that queries upon the
repository's contained data. Using the former method reveals that querying can only take place
after the user has loaded the so-called relevant set (introduced in chapter 4.4.1) of data into her
private workspace. On the other hand, using the second method reveals that a query needs to be
executed at each relevant data repository and that afterwards the query results need to be
aggregated appropriately. The major characteristics of the two methods are described in the table
below. In the following, each listed characteristic is separately discussed in detail. Finally, we
conclude which method can better meet the requirements and present a corresponding concept
that can be applied in chapter 6 when we build the system architecture.

Characteristic Centralized

reasoning
Distributed
reasoning

Temporary required data storage high (–) moderate (+)
Data transfer volume high/moderate (–) small (+)
Graph computation high (–) moderate (+)
Query language compatibility high (+) small (–)
Reasoning effectiveness high (+) moderate (–)

Table 6. Reasoning characteristics for centralized and distributed method

5.2.1. Temporary data storage

Temporary data storage refers to the volume of data that temporarily needs to be stored in
order for the reasoner engine to be able to conduct the requested query. Because reasoning (in
contradiction to traditional querying) not only constitutes in matching entity attribute values but
also includes the analysis of relations between entities and their categorization in regard to the
type within known taxonomies (or ontologies respectively) [38], a reasoner engine uses some sort
of a graph representations in order to be able to infer the requested information. Temporary
storage in this respect represents the storage need for temporarily graph representations. In the
centralized approach, all relevant data is aggregated in a private workspace and hence a
corresponding graph representation rather tends to be heavy in size. When reasoner engines are
placed at individual data repositories, their resulting graph representation on the other hand tends
to be much smaller than is the case for the former method. The reason is that we plausibly can
assume that in order for a user to execute a meaningful and thus valuable query, it previously
needs to load huge amount of data from several different data repositories. Clearly, the
distributed (thus decentralized) approach in this regard is highly preferred over the centralized
approach.

5.2 - Reasoning over distributed data 5 - Design Concepts

 - 53 -

5.2.2. Data transfer volume

The volume of data that is transferred between a user and the relevant data repositories differs
significantly. In the case of the centralized approach, all relevant data (eventually from many
different, distributed data repositories) first needs to be loaded into the private workspace in
order to be able to execute an arbitrary query. As a result, the transferable data volume per se is
extremely high. We might be able to reduce the high volume to some moderate load, if we
implemented a sophisticated update mechanism that makes sure that only data that has been
outdated or is not yet available in the private workspace is being loaded. In case of the distributed
approach, only the query and the query results need to be transferred between the user and the
relevant data repositories. Again, we realize that from a scalability and feasibility point of view,
the latter approach is highly preferred over the former one.

5.2.3. Graph computation

Graph computation tends to be high in case of the centralized approach and tends to be
moderate in case of the distributed approach. Because computation directly depends on the
amount of data that needs to be represented, the same argument as we discussed in the first point,
namely the requirement for temporary data storage, applies. Additionally, we can argue that
graph computation on the basis of individual data repositories is more economic than doing so
for each individual workspace. Once the graph for a repository has been calculated, in can be
used for queries from multiple users as long as data in that particular repository remains
unchanged. Obviously, this characteristic especially becomes valuable when data repositories
with rarely modified data are concerned as is the case for archives or publishing-only repositories
(repositories that only serve as data containers for completed, thus published work within well-
defined community boundaries).

5.2.4. Query language compatibility

The requirements prescribe that the system needs to rely on third party reasoners that are
integrated in a plugin-like fashion. As different reasoner implementations may require different
query languages, compatibility aspects need to be closely analyzed. In terms of the centralized
approach, compatibility is not a problem. Different reasoners arbitrarily can be used for different
query needs when available (plugged into the system). As far as individual query languages are
concerned, either the business logic (above the system architecture) can manage them
transparently to the user or the latter needs to choose the appropriate language which is feasible
however not necessarily comfortable. In terms of the decentralized (distributed) method,
compatibility however represents a major problem. While in the former case a query is executed
at a single location, namely at the user's private workspace, in the latter case, the query is
executed in isolation at each relevant repository and the resulting query answers are aggregated
afterwards. What, if not all repositories have the same reasoner implemented and hence do not
support the same query languages? The system needs to provide a common query language from
which translators located at individual repositories can translate the common query into their
reasoner's supported language. However, as defining a common query language is a very difficult

5.2 - Reasoning over distributed data 5 - Design Concepts

 - 54 -

task and is still subject to ongoing research, such a solution is not feasible at the time of writing.
In summary, when the distributed approach is applied, reasoning upon a defined set of
repositories is not necessarily possible. Indeed, such is only possible, if the defined set of
repositories at least support for one mutually compatible query language.

5.2.5. Reasoning effectiveness

As we already have noticed when we talked about the motivation in chapter 2.3, reasoning
over distributed data repositories reveals the problem of how to infer indirect knowledge that is
not contained at one place but eventually distributed over multiple repositories. OWL/RDF
allows assigning attribute values to a particular data entity at different places. It handles attributes
as triples of a subject, a property and an object. The subject represents the data entity to which
the attribute value is assigned. The property represents the specification of the attribute. Finally,
the object represents the attribute value that can either be a character string, a date, a number, etc.
(direct value) or a reference to yet another data entity. Because every entity of the process model
is represented by an OWL individual, an NMR researcher can specify a particular attribute in one
repository whereas the subject (thus, the data entity to which this attribute is applied must not
necessarily be located in that same repository. When reasoning is at stake, this realization is
crucial to the outcome of a query result. A reasoner engine obviously can only infer knowledge
that emerges from its given data basis. Hence, if reasoning also needs to account for data entity
attributes that are not stored in the same repository, there obviously is no other solution but
merging all relevant data into one storage container and perform reasoning thereupon as is done
by the centralized approach. In this particular situation, the distributed approach is highly
handicapped, as it is not able to offer such functionality by any means.

5.2.6. Conclusion

A decision for either of the two presented methods is not trivial. The distributed approach
provides a promising solution for the first three characteristics as far as scalability and feasibility
are concerned. However, this approach is not able to adequately account for the last two
characteristics that seem to be as important. On the other hand, the centralized approach fails to
feasibly account for the first three characteristics, but yet is able to deal with the last two
characteristics. Because the centralized approach totally fails as far as scalability in terms of
storage and computation are concerned, we reasonably need to think about applying the distri-
buted approach and figuring out how the last two characteristics can be solved adequately.

In terms of the compatibility of query languages among different data repositories, we already
argued that such can be overcome by making sure that each repository does at least offer one
default reasoner implementation. Furthermore, if our concept is flexible enough, a future avail-
able common query language (CQL) may be possible to be integrated.

The inability of the decentralized method to cope with reasoning over data entities whose
attributes may reside in different repositories, can be neglected, when we take into consideration
the relatively rare situations such may be needed. Both, the requirements specification (chapter 4)
and the concept for the management of distributed data (chapter 5.1) assume that the definition of
data entity attributes together with their referring entities usually reside in the same element
basket (see chapter 5.1.2) thus as well in the same data repository.

5.3 - Versioning 5 - Design Concepts

 - 55 -

The underlying concept to be followed by the system architecture in order to account for the
prescribed reasoning capability principally has been shaped throughout above discussion. For the
sake of completeness, we present the main design-oriented and technical aspects that the system
architecture needs to account for.

• plugin-like integration of different reasoners
• independence of data repository and reasoner
• keeping different reasoners implementations transparent
• modeling different query representations

Furthermore, a broad overview of the concept following the distributed (decentralized)

approach is depicted in the figure below.

Figure 11. Reasoning concept overview

5.3. Versioning

The requirements prescribe the implementation of a versioning mechanism that is capable to
distinguish between the notion of versions and variations. In the following, we elaborate a
versioning concept that directly leans on the outlined idea from the requirements chapter. First,
we explain how we deal with different versions and what difficulties may arise when the system
is distributed and aspects like accessibility and performance become relevant. Second, we
demonstrate how we can account for the notion of variations. We will realize that by offering
support for variations we not only will meet the requirements but also will gain a promising
solution for one of the major difficulties in terms of versioning in distributed environments.

5.3.1. Versions

Versioning takes place on the basis of process model entities. Each entity is assigned a
concrete version number that reveals to a particular point in its modification history. The higher
the version number the more modification steps in general have been performed on a particular
data entity. After the modification of a particular data entity, that entity can be saved by either the
same or the following next version indication. The concept does not define in what situation a
new version is required and in what other situations the same version indication may be kept.

5.3 - Versioning 5 - Design Concepts

 - 56 -

Note that from a software engineering point of view this is an important characteristic. By
leaving the decision up to components that eventually will make use of the versioning concept,
separation of concern [32] is accurately applied.

The concept treats versions as modified copies of the initial data entity. The relation between

two concrete versions of the same data entity is sufficiently determined by two descriptive
attributes. While the scope attribute defines the common intended representation, the version
attribute reveals the relative point in regard to the modification history. The scope value can be
an arbitrary URI. The importance is that it keeps the same for all versions of a concrete data
entity. Given a particular data entity of a particular version, all other available versions of the
same entity can then be inferred by looking for entities with the same scope value. Figure 12
illustrates the use of the scope value.

Figure 12. Versions within a scope

Among entities of the same scope, the version attribute value is unique. While the initial

(original) entity is assigned the lowest version, subsequently modified entities are assigned
increasing numbers thereof. The concept assumes that for every entity, that does not represent the
origin or the latest version the preceding and following version is inferable by comparing the
version attribute among the entities of the corresponding scope. Figure 13 illustrates that this
procedure is feasible as long as we can assume that a new version is always created from the
current, latest version. Creating a version from some intermediate entity leads to the implicit
creation of a branch [12], which hence violates the just made assumption.

Figure 13. Branches conflict version history

The process of creating a new version consists to two specific tasks that need to be performed

on the underlying entity. First, the entity needs to be assigned a separate unique identification
(UID). The reason therefore is obvious. Every version is treated as a separate element that
coexists with preceding versions in the same environment. Hence when an entity is assigned a
new version it unavoidably also needs to change its current UID. Second, the attribute that holds
the current version obviously is to be changed to hold the new version number.

Because versions are represented by independent data elements, versioning becomes a
localized aspect (localization principles are discussed in [32]). System components not interested
in versioning can safely ignore what we have discussed. They can treat a data element as if it did

5.3 - Versioning 5 - Design Concepts

 - 57 -

not support versioning at all. While we may not fully grasp the extent of this potential at this
early time, we surely will do so when we discuss the concrete system architecture in the next
chapter.

There is one major problem that we face when applying the presented concept to the system

architecture of NExT. While the concept assumes that a new version is only created from the
latest available version it does not account for the fact that such may just not be feasible. In the
case of NExT the assumption cannot be met due to two distinct reasons. First, data is subject to
some sort of access control, which prohibits certain users from accessing certain data. As a result,
the latest version is not necessarily accessible by the user who starts creating a new version.
When the system queries the data repositories for the latest version it finds the highest numbered
version that access is provided to the current user. Obviously, that version does not necessarily
represent the actual latest version.

Second, data eventually is distributed over multiple data repositories of which most need to be
accessed over the network. As a result, accessibility is no longer guaranteed but subject to typical
network, corresponding aspects that we do not want to discuss in here.

In order to solve this problem, the concept introduces an additional attribute that each data

entity is to provide if it accounts for the above versioning mechanism. The additional attribute is
a pointer to the data entity of the previous version and gives the system an additional path
tracking mechanism. In the case where two data entities are assigned the same version number,
the system can optionally distinguish the versions by their root path. In this respect, the decision
whether branches make sense in a particular contexts or whether they happen to exist by accident
and need to be corrected is left up to the user. In the latter case, entities with peer versions need
to be manually merged such that the result is again one single version path as is expected the
normal case. The following figure illustrates the discussed aspect and shows how so-called
duplicate peer versions (entities of the same version indication but unconsciously created by
different users with probably different access rights) can uniquely be tracked.

Figure 14. Duplicate (peer) versions

5.3.2. Variations

The difference between a version and a variation primarily lies in their semantics. A version as
discussed above accounts for the history of modifications that take place as a data element is
subsequently altered. A variation on the other hand accounts for the fact that in certain situations
modifications not only lead to a next version of the original data element but also do lead to the
representation of a slightly different entity than the corresponding original. As in such a situation,

5.4 - Annotation 5 - Design Concepts

 - 58 -

the difference is only small and the modified entity still has strong relations to the original entity,
it is not accurate to store it as a fully independent data entity.

The herein described concept looks at variations as an extended functionality of the previous

discussed versioning capability. In principle, a data entity that represents a specific version
optionally indicates a specific variation. Concerning the versioning path a variation in
combination with a version scope defines a separate version space13 where versioning again starts
from the beginning. For example, if we have a data entity that represents version 7 and now
decide to create a variation the version of the newly defined variation will simultaneously be set
to the lowest (initial) version, which usually is represented by the number 0.

While a version only can be created from the current latest version, the creation of a variation

is not limited by any aspect. As a result, any intermediate version can serve as the basis for a new
variation. Note also that while the attribute value for the next version is well determined, such is
not the case when defining a variation. In fact, any arbitrary value (such as an arbitrary character
string) can be used for the specification of a particular variation as long as the value is guaranteed
to be unique within the corresponding version scope.

Figure 15 depicts a typical situation for the usage of a variation. On the left hand side, the

modification history of a data entity e is shown. While the original entity is assigned version 0
the latest version is 7. On the right hand side, a variation of name "A" is depicted that is created
on the basis of version 4 of the original entity. The circled numbers refer to the sequence of
actions. Note, although version 7 already exists at the time of the creation of the variation "A",
that variation is not forced to emerge from the latest version but is free to choose any existing
point within the modification history.

Figure 15. Definition of variations within a version and/or history path

5.4. Annotation

NExT will probably be developed in incremental steps. Hence, a first version will eventually
only contain a small part of the compendium of envisioned features. Gradually, NExT will then
be extended and improved. As far as annotation is concerned, we definitely must not speculate
about the final set of implemented features. Chapter 2 – among other topics – talked about the

13 A version space has the analogous meaning of a name space as defined for the concepts of XML or the

internet domain names. Interested readers are referred to [41].

5.4 - Annotation 5 - Design Concepts

 - 59 -

power as well as future compelling urge for metadata and thereby revealed that annotation, as we
understand it in the context of NExT, may only be a very little part of the overall big picture.

In the following, we present a concept that describes how generic data entities can be assigned
generic metadata. The concept leans onto the ideas above and treats generality as its major goal.
First, we introduce the concept's overall idea and talk about the relation between OWL, the
OWL-S API, and Java as the used programming language in the upper layers of the envision
system architecture. In the second part, we elaborate the generic object structure that shall offer
the prescribed flexible annotation mechanism. Thereby, the main interesting aspect certainly is
the way we deal with multiple inheritance above the data persistence layer. Remember, Java does
not offer any support for multiple inheritance as far as classes and objects are concerned [39]. In
the last section, we translate the generic concept onto the level of NExT. Clearly, this will be the
time when we will find out to what extent the concept will help us meeting NExT's requirements
in terms of flexibility and extensibility.

The coarse-grained system architecture of NExT described in [1] specifies the use of OWL

and the integration of the corresponding OWL-S API from Mindswap that eventually will be
responsible for the mapping of OWL concepts to corresponding Java objects. One of the major
reasons why OWL has been chosen for the persistence of application data is its inherent support
for ontologies and semantics. The herein presented concept directly follows this initial intention.
As a result, it starts right at the lowest level of the system architectures and from there steadily
goes up to the business logic or the NExT core [1].

5.4.1. Multiple inheritance in the data representation layer

In the data representation layer the concept uses multiple inheritance in order to decouple the
primary data from its corresponding metadata. A generic data entity inherits from two concrete
classes. While one inherited class accounts for the primary data representation, the other class
accounts for the corresponding metadata. In the following, we shall refer to the former as primary
class and the latter as metadata class.

The primary class can be of any type. This reveals that the concept does not make any
assumption as far as a generic data entity is concerned. While in the generic case, the base type of
the primary class probably is an OWL individual, in the case of NExT, the base class is a
Process from the process model or an arbitrary subclass thereof.

The metadata structure on the other hand is encapsulated in a separate class and thus
independent of the concrete data entity it eventually will refer to. If we somewhat abstract from
the notion of multiple inheritance and look at the two classes as two scopes for individual
evolution we can compare the concept's fundamental idea with the bridge design pattern [40].
Indeed all major characteristics of the bridge pattern are also true for the presented concept if
they are translated correspondingly.

Let us look at an example that illustrates how a simple data entity can be defined in OWL (see

figures below). We assume that "entities" refers to the ontology for the primary data structure and
that this ontology defines a class Entity. In order for Entity to be aware of corresponding
metadata, it is defined as a subclass of Metadata that shall be defined in a separate ontology
named "metadata". Figure 16 shows how an instance of type Entity is defined with both the
attributes of the primary class (property1 and property2) as well as the attributes of the secondary

5.4 - Annotation 5 - Design Concepts

 - 60 -

class (creator and date). Primary data in this respect is decoupled from metadata in terms of
separate ontologies. Note that the attributes property1 and property2 refer to the "entities"
ontology and that the attributes creator and date refer to the "metadata" ontology.

Figure 17 shows an alternative way for describing the same situation. It further decouples the
primary data from its corresponding metadata by moving the latter part into a separate entity
scope. OWL allows for the definition of data elements in a distributed fashion. While one
construct serves as the basis and is defined by the rdf:ID an arbitrary number of additional
constructs can refer to the same base by describing the corresponding relation with the rdf:about
construct. Although the metadata attributes are defined in a separate entity construct, the
technically still refer to the same entity, namely the entity named E1. Obviously, this second
method has one major advantage. It allows for the replacement of different metadata definitions
while keeping the primary data unchanged. If sometime in the future the application is to switch
from one metadata concept to another, it may do so by only adapting the metadata constructs.
Thereby one appropriate and efficient technique is the use of XSLT [41]. XSLT allows the
definition of data transformations encoded XML. The Entity construct that defines the metadata
for E1 could thus be transformed into the required construct of another metadata ontology.

<rdf:RDF
 xml:base="urn:repository1"
 xmlns:md="urn:metadata"
 xmlns:entities="urn:entities">
 <entities:Entity rdf:ID="E1">
 <entities:property1>value1</entities:property1>
 <entities:property2>value2</entities:propertye>
 <md:creator>Author 1</md:creator>
 <md:date>2006-03-05</md:date>
 </entities:Entity>
</rdf:RDF>

Figure 16. Encoding a simple data entity

<rdf:RDF
 xml:base="urn:repository1"
 xmlns:md="urn:metadata"
 xmlns:entities="urn:entities">
 <entities:Entity rdf:ID="E1">
 <entities:property1>value1</entities:property1>
 <entities:property2>value2</entities:property2>
 </entities:Entity>
 <entities:Entity rdf:about="E1">
 <md:creator>Author 1</md:creator>
 <md:date>2006-03-05</md:date>
 </entities:Entity>
</rdf:RDF>

Figure 17. Alternative encoding of a simple data entity

The essence of using multiple inheritance in the persistent data storage layer is (i) that it gives

us maximal flexibility in terms of evolution on either side, and (ii) that it inherently accounts for
the fact that primary data should have nothing in common with its corresponding metadata. Note
at this point that also the aspect of how to deal with metadata in regard to the definition of
ontologies is solved. While one or multiple ontologies can define different primary classes, yet
another and totally separate ontology can define the structure for the metadata.

5.4 - Annotation 5 - Design Concepts

 - 61 -

5.4.2. Partial or full support for annotation

The OWL-S API supports annotation in a generic way. It assumes that an OWL construct (i.e.
a generic data entity as depicted in figure 17) may define arbitrary annotation attributes. It does
not make any assumptions as to how such attributes are defined in terms of ontologies and their
class hierarchies. Hence, the API does not distinguish between an attribute describing primary
data and an attribute that describes metadata as far as the transparent data representation layer is
concerned.

In the layer above where data entities are bound to corresponding Java objects the previous

flexible approach is significantly restricted. An attribute representing annotation data must be
assigned a direct value such as a date, some number, or some arbitrary character string.
References to other data entities are no longer supported. As long as we talk about typical
annotation information such as the name of an author, a creation date, and so on, this limitation
does not border much. Things though change if we are about to account for any type of metadata
and treat annotation information as some specific subset thereof.

5.4.3. A work around or a reasonable extension

Let us first look at how the API treats annotation attributes in its corresponding Java objects
and secondly look at possible solutions to avoid the built-in restriction. Figure 18 depicts the
OWLIndividual class which acts as the base class for generic data entities. The class defines two
sets of methods: one to manage regular attributes and the other to manage annotation data. Note
at this point that in the domain of OWL, attributes are called properties14. While in case of
managing regular attributes, a method expects either an object of type OWLDataValue or
OWLIndividual, in case of annotation attributes support is only built in for objects of the former
type. It becomes clear that the announced restriction exactly is due to this small difference. An
object of type OWLDataValue represents a direct value such as a number, an arbitrary character
string or a well-formatted date. Annotations are forced to be defined by such a construct but
cannot refer to other entities that respectively would be represented by an object of type
OWLIndividual.

Figure 18. The binding base class of the OWL-S API

14 For the sake of consistency, throughout this thesis, we refer to properties of the OWL domain as

attributes.

5.4 - Annotation 5 - Design Concepts

 - 62 -

There are two obvious solutions to avoid the built-in restriction. We either can adapt the
OWLIndividual class or can use the methods destined for regular attributes as well for the
management of metadata. Almost obvious, the former solution is clearly favored over the latter
solution. Nevertheless, the major arguments are given in the following list.

• Because the API already supports the management of annotation information to some

degree, it seams reasonable to extend it in order to account for the discussed additional
requirement.

• Using methods for contradictionary intentions always is a poor design decision. As a
result, we should not use methods that are destined for the management of primary data
for the handling of metadata as well.

• Adapting the OWLIndividual class is not an endless burden but a rather trivial task. The
set of methods for the management of annotation information only needs to be extended
by one additional method that in contradiction to the existing "getAnnotation" method
needs to expect an object of type OWLIndividual instead of OWLDataValue.

5.4.4. Multiple views of a data entity

We argued that the notion of multiple inheritance reveals a promising approach in order to

decouple primary data from its corresponding metadata. However, in contradiction to OWL, Java
does not support multiple inheritance in terms of classes [39]. As a result, the concept foresees
the notion of multiple object views. Analogous to multiple inheritance in the data representation
layer discussed in 5.3.1, a Java object is to support two distinct views. One view accounts for the
primary data representation and the other view respectively accounts for the corresponding
metadata. The following figure intends to clarify the illustrated concept.

Figure 19. Multiple views hide the primary objects from the OWS-S API

An arbitrary client that works with data entities must not necessarily be aware of the fact that a

data entity eventually has attached metadata. On the other hand, clients that are interested in
metadata will call the method asMetaData and respectively will get the corresponding view that
will be in charge of handling the entities corresponding metadata. Both views are represented by
independent classes whose only requirement is that they relate to one another by their defined

5.4 - Annotation 5 - Design Concepts

 - 63 -

methods asPrimaryData and asMetaData. Since we virtually deal with the same constellation as
in the data representation layer the corresponding design characteristics do not change either15.

Note additionally that due to the fact that the relation between the two views is bidirectional,

we can also think of a scenario where a client solely is focused on metadata. In this case, the
client namely does not need to be aware of the fact that the MetaData class it is dealing with
eventually relates to some specific entity holding the corresponding primary data. Nevertheless,
as soon as this client happens to share entities with a client B, which in contradiction to the
former, is interested in the primary data, the relation from the class MetaData towards the class
Entity becomes crucial.

5.4.5. Getting the whole picture

The concept's underlying idea is to make use of multiple inheritance in order to gain the
required flexibility and extensibility in terms of annotation capabilities. So far, we looked at the
particular envisioned solutions for each of the relevant layers.

In the data representation layer, we noticed that OWL supports the notion of multiple
inheritance out of the box. In terms of object binding, we addressed the integration of the OWL-S
API. While the API's build-in support for annotation per se is promising, we nevertheless noticed
that for the handling of metadata some small modifications are necessary but feasible. The top
layer is represented by a typical data access layer. The concept showed that a business client
should not directly rely onto the OWL-S API. The reason is that the API's defined business
objects (data representing objects) do not support the concept's underlying idea of the separation
of primary data and its corresponding metadata. With the introduction of the notion of multiple
views, a promising solution was found in this aspect.

Finally, the following figure illustrates how the elaborated solutions fit together in the broader

perspective. On the left hand side, the architecture for the generic approach is presented. Note
that Entity in this respect stands for any imaginable type of data entity. On the right hand side, the
architecture for the specific case of an NMRExperiment is described.

15 For the discussion of the concrete design characteristics, please refer to chapter 5.4.1.

5.5 - Authentication and Authorization 5 - Design Concepts

 - 64 -

Figure 20 Using multiple inheritance to assign metadata to genetic data entities

5.5. Authentication and Authorization

In this section, we look at the security aspects as far as authentication and authorization is
concerned. Being aware of the prescribed requirements outlined in the previous chapter, we now
face the job of finding suitable concepts that are capable of meeting these requirements. First, we
look at authentication and authorization in the specific context of NExT and thereby set the focus
on different imaginable trust relations. Based on this acquired knowledge we then present four
distinct login procedures that collectively claim to be able to cope with every revealed trust
relation from the first discussion. The third part presents a mechanism that allows the system to
manage connections between a client and multiple data repositories in a flexible and transparent
fashion. Last but not least, we discuss how connections can be secured. Two fundamental
concepts are feasible but incorporate very different characteristics. We will find out which of
them will best suit the prescribed requirements and also can feasibly be integrated into the overall
system architecture.

5.5.1. Authentication and authorization in the context of NExT

The requirements specify that NExT needs to handle data in user's private working areas and
distributable data repositories. The former represents a transient data container, which is used in
the sense of a desktop. Data elements that are used on a permanent basis when working on a
project are temporarily stored therein. The latter represents a persistent data container that can be
shared among multiple users. While a user may run a private data repository on her private
machine, most other repositories though serve as collaborative platforms and run on specific
dedicated server machines distributed over a LAN or WAN. Here is the point where the
discussion about login concepts starts to become relevant.

5.5 - Authentication and Authorization 5 - Design Concepts

 - 65 -

Depending on the type of trust, which is mutually offered between a client and a data
repository, different authentication and authorization concepts are adequate and feasible. Figure 9
depicts the relevant types of trust in respect to the different networking scopes. We look at the
three types of trust and in the next section will discuss what authentication procedures are
adequate and feasible.

 Local

machine
Single

admin. domain
Multiple

admin. domains
trusted client ()
trusted authentication ()
trusted service / trusted authorization ()

Table 7. Trust relations between a client and a service

(i) A trusted client application is an application that can be trusted in terms of its behavior.

Such is the case if the service can legitimately assume that the client application is accurately
configured and authentic; thus, not modified in terms of its underlying source code. (ii) When a
data repository service trusts the claimed identities of a connecting client, we talk about trusted
authentication. Note at this point, that from the system point of view, a physical user (an NMR
experimenter) can have several different identities. One identity uniquely identifies the
representing physical user; additional and optional identities represent affiliations to defined user
groups. (iii) Analogous to a trusted client, a trusted service can legitimately be assumed to
behave in the expected sense and to represent a non-modified system component.

If the client application connects to a data repository service located on the same machine, the

communicating components trust in all three aspects. The explanation therefore is rather trivial.
Because the two communicating components run on the same machine, they both inherently trust
the same authority, which in this situation is the owner of the machine. If such a machine is used
by multiple users, the common authority shifts from a regular user to the corresponding machine
administrator.

If the client application connects to a data repository service that is located on a dedicated
service machine but still resides in the same administrative domain, trust in all three aspects is
subject to specific characteristics of the system environment.

Clients and services from different administrative domains principally cannot trust one
another. A service cannot trust the client and vice versa, a client cannot trust the service as long
as their authorities are not the same or do not bilaterally trust one another in the first place.

5.5.2. Four login procedures

The previous discussion reveals that NExT obviously needs to support different authentication
procedures in order to account for the different revealed trust constellations. During a profound
analysis of NExT's context, four distinct login procedures were identified. The first procedure
accounts for the situation where a communicating client and a data repository do fully trust one
another. A verification of the client's claimed identities in this case is needless (figure 21a). The

5.5 - Authentication and Authorization 5 - Design Concepts

 - 66 -

second procedure considers the typical situation where the client trusts in the service but vice
versa, the service does not trust in the client. As a fact, the service does not accept the
counterpart's claimed identities16 until these are approved by an appropriate authentication
process (figure 21b). The third procedure is a modification of the second one. Instead of
managing a list of authorized users and performing the necessary authentication, the repository
service trusts the official authentication service from the client's administrative domain and
delegates both user management and authentication to it. If you are familiar with the generic
principles of token-based authentication mechanisms, you see the parallels that are pursued in
this context. Interested readers are referred to appendix B.1 where token-based authentication in
respect to Kerberos is discussed. The procedure is especially suitable if the number of users from
the remote administrative domain is high and a corresponding user management would be
expensive (figure 21c). Last but not least, the fourth procedure introduces the use of a third party
digital certificate infrastructure. It relieves the system from handling any sort of authentication
procedure by itself. Details about the functioning of a generic digital certificate infrastructure can
be found in appendix B.2. The basic concept of the four login procedures is depicted in the
following figure.

Figure 21. Different authentication concepts

5.5.3. Connections management

As outlined in the motivation and resumed in the requirements chapter, it is very likely that
NMR researchers will work with remote data on a regular basis. Because such data is stored in
data repositories that can only be accessed by authorized users, a NMR researcher has to

16 A client is allowed to represent multiple identities. A system usually assumes that a client has one unique

and mandatory identity and optional identities in terms of user group affiliations.

5.5 - Authentication and Authorization 5 - Design Concepts

 - 67 -

authenticate herself as frequently as remote data is requested. By rights, the requirements
therefore prescribe that login procedures at data repositories be performed automatically and
foremost transparent.

The concept that is chosen to meet this particular requirement is depicted in figure 22 and

explained in the following.

Figure 22. Transparent login at remote data repository

From the discussion about the distribution of data in chapter 5.3.1, we know that the client

keeps a list of registered data repositories. For each such repository, the list holds the unique
identifying name and the information that is used in order to successfully login at the remote
location. For example, a record that describes a data repository that is restricted to authorized
users, at the minimum, holds the address of the remote service, the username and the
corresponding password. In the figure, this list is represented by the database named "conn info".

The concept allows a client to hold connections to multiple different data repositories
simultaneously. In the figure, established connections are depicted by bidirectional arrowed lines
between the client and the two data repositories named with the stereotype17 conn. Note that the
notion of a connection in this context does not refer to the low-level connectivity but refers to the
fact that two parties have successfully established a connection context. The technical aspects as
how and by what concrete transport protocol a low-level connection is established, is not
discussed at this point. In the figure, a connection context is captured by the notion of a session.
The database called "session" illustrates the fact that a client at all times keeps track of its current
open connections. A session record has a unique identifier and optionally contains further
implementation specific attributes. Note that the inside structure of a session is subject to a
concrete implementation.

What yet remains to be discussed is the function of the so-called connection managers (CM)

and the procedure by how a connection actually is established. As you already may have guessed,
these two aspects go hand in hand. The concept accounts for the fact that repositories be free to
implement any standard or individual type of authentication procedures. Different authentication
procedures are implemented by different connection managers. A repository furthermore does
not itself perform the authentication but delegates it to a connection manager. In this sense, a data
repository keeps as many different connection managers as it wants to offer different

17 A stereotype is a distinct UML construct. Further information can be found in [42].

5.5 - Authentication and Authorization 5 - Design Concepts

 - 68 -

authentication procedures. When a client contacts a repository, it does not know in advance what
concrete authentication procedure it will have to engage. Depending on the user and its
originating domain, the repository service answers the requested authentication procedure and the
port at which such is available. The process by which the service infers the requested procedure
does not have to be deterministic. The client checks whether it has support for the requested
authentication procedure and if yes creates a corresponding connection manager. At this point, a
pair of compatible connection managers has been set up. One resides at the repository and the
other resides at the client. The client's connection manager now takes the initiative and engages
into the authentication procedure with the announced remote authentication manager. Upon
successful authentication, the connection manager at the repository creates and exchanges a
connection context that is presented in the form of a previously introduced session. At this point,
the communication between the two connection managers ends and the control is given back to
the client and repository service. For the lifetime of the session, the client can now directly talk to
the data repository and can initiate the appropriate requests. In the figure, the circled numbers
reveal the sequence of actions.

Due to the fact that the client keeps a list of its registered data repositories with corresponding
contact and authentication relevant data, the client is able to autonomously engage into the
establishment of a connection. Given that the user has completely defined all her data
repositories as part of her preference settings, the system will handle connections fully
transparent. Note that the concept as is does not account for failure transparency. Due to time
constraints, this aspect was intentionally ignored. Nevertheless, the concept's openness will
eventually support almost any form of corresponding extension.

5.5.4. Secure connections

The previous two discussions were about connecting to remote data repositories. While the
first discussion was about different authentication procedures, the latter focused on means how to
establish a session based connection and how such can be managed over its lifetime. What yet
remains to be discussed is how we can secure an established connection between a client and a
remote data repository. In the case of NExT, we deal with client applications on the one side and
different service applications on the other side. A common and standard security concept that can
be applied to both the client as well as the service applications is thus highly appreciated. We
present two fundamental security concepts. Afterwards we decide which of them we actually
want to use for the envisioned system architecture.

A concept of hierarchical layers

The first concept is based on the notion of a hierarchy of layers. While the top layer deals with
the primary functionalities, the second layer is in charge of all security aspects and subsequent
layers care about the basic network communication and usually are classified by the layer defined
by the ISO OSI (Open Systems Interconnection) [15] model. The layered structure is depicted in
the following figure.

5.5 - Authentication and Authorization 5 - Design Concepts

 - 69 -

Figure 23. Hierarchical layer based concept

Client and service applications reside in the top layer. Abstractly they can be regarded as

generic software components from which we only can infer that they need to communicate over
the network and eventually engage into a bilateral session-based communications with other
components from remote locations.

The second layer consists of a communication manager that acts as the coordinator of
messages from local components to remote counterparts. Given a message, it transparently
delivers it to the defined receiver at a remote location. Depending on its configuration, the type of
message and the sender it optionally can encrypt the given message. Encryption thereby is
subject to a preliminary establishment of a secure connection with the corresponding
communication manager. The concept does not define how a secure connection is actually to be
established. It assumes that a concrete implementation can make use of appropriate standard
technologies of the third layer.

The third layer represents a bridge to the well-defined Transport Layer of the common ISO
OSI model. An implementation hereby is encouraged to make use of standard low-level
technologies. Later when we talk about the concrete system architecture, we will see that Java
has some nice frameworks ready that right fit into this layer. The nice thing is that by using such
a framework we do not even have to write one single line of code.

A concept of separated concerns

This second concept is based on the principle of separated concerns. Our goal is to find a way
to encrypt messages that are sent over the network. In order to do that but not to conflict with
additional concerns we must only care for the bare encryption procedure. Let us see how we can
do that.

A generic software component that may represent a client or service application relies on a

security manager (SM) that is able to establish a security context with a peer counterpart at a
remote location. A security context thereby represents some kind of a shared key that can later be
used by the component in order to encrypt/decrypt any required messages. Given a concrete
established security context, the SM furthermore provides the functionality to encrypt and/or
decrypt any given message. While figure 24 depicts the static setup, figure 25 describes the
sequence of actions that need to take place in order for a component to securely send a message
to some remote component.

5.5 - Authentication and Authorization 6 - System Architecture

 - 70 -

Figure 24. A concept of separated concerns

Figure 25. Sequence diagram: Security token based connection

Conclusion

Both presented solutions are generically feasible. Nevertheless, due to the architectural
flexibility and the natural following of "Separation of Concerns" the second solution seams to
represent the rational choice for NExT.

While solution 1 calls for a concrete hierarchy and defines part of the communication
procedure it is less flexible than solutions 2 that neither assumes a concrete architectural structure
nor defines how communication is to be enabled.

"Separation of Concern" is a promising design principle whose power has been widely proved
both, in the industry and the academic arena in respect to the field of software engineering. In
this sense solution, one is more likely to face severe design conflicts when concrete problem
domains will be at stake than this is the case for the latter solution.

However, how nicely or how badly the second concept will actually fit into the overall system
architecture will reveal the next chapter.

5.5 - Authentication and Authorization 6 - System Architecture

 - 71 -

6. System Architecture

Figure 26. Overview of the OWLAccess system architecture

A coarse-grained overview of the system architecture (named OWLAccess) is presented in the

above figure. The gray colored elements represent external components that either make use of
the system architecture or serve for the latter as third party facilities. The figure depicts the main
packages with their main components and shows their mandatory as well as optional
dependencies. The arrangement of packages in term of their location is chosen by a distinct rule.
They are laid out from the top to the bottom such that package dependencies only go from higher
to equally or lower positioned packages. In terms of horizontal connections, an addition rule is
applied. Except for dependencies with external components, dependencies only go from right to
left. While on the right hand side and on the top packages tend to almost exclusively serve for the
primary functionality, packages on the left and on the bottom respectively tend to serve for
mainly secondary and/or supportive functionalities.

6.1 - Management of distributed data 6 - System Architecture

 - 72 -

The first package from the top represents the official access point for external components that
make use of the system's offered functionalities. Note that this package depicts three optional
aspects. ReasonerAware refers to the optional support for generic reasoning capabilities.
SessionAware represents the awareness for sessions when connections to remote locations are
concerned. AuthAware finally refers to the optional support of authentication and authorization.
The repository package is located on the right and – as the name reveals – serves for the
definition and management of data repositories as introduced in the previous chapter. Next to it is
the reasoning package, which is in charge of the reasoning aspects that profoundly were
discussed in the previous chapter. Going further to the left, we come across the packages that (i)
serve for the session management and (ii) enable the system for generic authentication and
authorization capabilities. What now remains to be discussed are the two packages on bottom.
Javax.security.auth refers to the standard authentication and authorization framework for Java
and is usually referred to as JAAS18. The model package finally represents a container for
components that serve as generic data entities.

In the following, we separately look at each of the broached aspects and explain their

characteristics and detailed functioning. Figure 26 will guide us throughout this chapter and
thereby will repeatedly tell us where in the overall context specific components need to be
located.

6.1. Management of distributed data

The requirements in chapter 4 revealed that the majority of typical transparencies for
distributed systems are crucial and therefore need adequate consideration. Additional but almost
equally important requirements were discussed in regard to high flexibility and openness. In
chapter 5, we looked at concepts of how data in regard to NExT's specific requirements may be
best distributed and among other topics discussed reasonable storage topologies. In the following,
we present the system's architectural design in terms of data distribution and persistent storage.
The presenting design claims to reasonably cover all of the discussed aspects and in this sense
does not make any remarkable curtailments.

6.1.1. Data Access

The main access point to the system and its functionality is provided by the DataAccess
interface. DataAccess acts as the transparent façade to the underlying components and their
interactions. As a result, a client such as the core from NExT initially creates an object of this
type and subsequently uses that for all data centric operations.

As a façade, the DataAccess interface mainly provides delegating functionalities and performs
highest-level coordination. In this sense, it acts as a typical singleton [40]. Let us have a look at
the concrete offered functionalities. The interface defines four major methods that we briefly like
to discuss in order to get the overall picture. The first method allows the creation of a Context

18 JAAS (Java Authentication and Authorization Service) represents the equivalent of the PAM framework

[49] for the Java arena. An overview of PAM and JAAS are presented in the appendixes B.3 and B.4
respectively.

6.1 - Management of distributed data 6 - System Architecture

 - 73 -

that we subsequently shall refer to as the data access context (DAC). Whenever the façade is
used by a client in order to execute some data centric operations a Context is always requested.
We will look at the particular characteristics in the discussion that follows.

The second and third method are typical access providers. They respectively provide a
RepositoryManager and an OntologyManager. The RespositoryManger keeps track of the
currently registered repositories and allows adding or removing them at all times. We remember
that this functionality represents the features of being able to descriptively define existing
repositories as part of the user's personal settings. The OntologManager represents a controller of
the currently available defined ontologies. Note that this second component heavily depends on
the former one. The list of available ontologies directly depends on the available repositories.

The fourth method answers so-called data access objects or DAOs [43] as they usually are
referred to. A DAO is an object that offers operations in correspondence to a particular data
entity. We describe their functionalities as well as their specific characteristics in a separate
discussion in chapter 6.1.3.

6.1.2. Data access context

The data access context (DAC) follows the notion of a workspace as introduced in the
previous chapter. A DAC in this sense has two major functionalities. First, it acts as the data
container for permanent working data. With the help of a DAO data entities from repositories are
loaded into this container. Once a data entity resides in this symbolic container, it can be
manipulated. That is, it can be modified and put into relation to other loaded data entities. At
some point in time, the client decides to update the current work in the corresponding
repositories. In the same way as data entities were loaded into the container in the first place,
they as well are written back in the form of an update procedure.

Second, a client may look at the DAC as a black box [44]. The system requests a DAC for
almost all communication with its client. It thereby uses it in order to store information that is
needed to keep track of the client's actions but of which the latter must not be aware of. In
contradiction to relational data structures, OWL based data structures tend to be significantly
more complex in terms of their data entities' interdependences. As a fact, simple CRUD19
operations may result in tedious dependency tracking algorithms in order to guarantee data
integrity.

Apart from the discussed aspects above, the DAC has two more functionalities that may be of

interest at this point. First, the DAC offers methods to define the default repository and default
ontology. Both settings improve the work convenience and support further transparency aspects.
Temporarily working on different – maybe even distributed – repositories thus is as simple as
appropriately switching the state of the default repository. Analogously, the same is possible in
terms of the available ontologies.

Second, the DAC allows for the definition of a so-called reasoning base. Reasoning
capabilities are transparently provided upon all registered repositories and their contained
ontologies if not stated otherwise. While this feature certainly is welcomed in the majority of

19 CRUD is the abbreviation for the four distinct data management operations: Create, Read, Update and

Delete.

6.1 - Management of distributed data 6 - System Architecture

 - 74 -

situations, there still may be other situations where this same feature may be anticipated as rather
painful. We remember the phase cycle of a typical NRM experiment project introduced in
chapter 2.1. While in phase one and two the researcher usually queries her whole spectrum of
data, in phase 4 she usually only wants to gather and manage data within the project's main
dedicated repository. The reasoning set in this context allows for the concrete definition of
repositories and ontologies respectively that will be used as the data basis for reasoning requests.

6.1.3. Data entities and their data access objects

An extensible and flexible data access layer must be compatible with a wide range of data
entities. The less restrictive a system is in regard to postulating characteristics in terms of generic
data entities the more flexible and convenient it is.

The system architecture expects a generic data entity as long as it complies with the Individual
interface from the model package. The Individual defines a single method in order to give the
entity a global unique identification. Apart from that restriction, the entity basically can have any
arbitrary internal structure. It can have as many attributes as needed, and also can define any
interdependencies among data entities of their own as well as foreign types.

The introduction of a data access object

The system handles the corresponding flexibility by introducing the notion of a so-called data
access object or DAO. The underlying idea is that for each individual data entity there is a
distinct dedicated object that is responsible for that corresponding CRUD operations. With other
words, for every concrete type of data entity there also needs to exist a corresponding DAO that
is in charge of handling its generic as well as individual data related operations.

The system architecture defines a generic DAO from which every specific data access object

needs to inherit and which defines the generic interface upon which affecting system components
may eventually rely. The design principle that underlies this construct is the template pattern
[40]. While the system relies onto the defined methods of the generic DAO, their concrete
implementations may significantly vary among concrete DAOs. Let us have an example in order
to get this straight. One of the defined methods from the generic DAO is the method update that
is used in order to store the modifications of an entity in its originating ontology and repository
respectively. When the client requests a specific data entity to be updated, the system does not
need to care about the concrete operations but solely can delegate this operation to the
corresponding DAO. The DAO on the other hand is free to perform whatever adequate task in
order to serve the client in its best way. The main concern of a concrete DAO is usually to make
sure that data consistency is guaranteed [43].

The Relation between data entities and corresponding DAOs

In order for the system to be able to rely on the adequate DAO when being given a data entity
of a specific type, a binding between the data entity types and their corresponding DAOs is
required. The DataAcces provides a corresponding configuration capability. At startup or re-
initialization it reads a textual binding definition that (i) defines the classes to be used to
represent the particular data entities and (ii) the classes to be used to represent the corresponding

6.1 - Management of distributed data 6 - System Architecture

 - 75 -

DAOs. As a result, an implementation is neither needed to be recompiled nor requested to be
stopped when new or modified data entity types are available.

The following figure shows the specific data entities and corresponding DAOs in respect to

NExT's process model. Note that all of the specified process model entities defined in [1] can be
integrated without any modifications or adaptations.

Figure 27. Data entities and its corresponding DAOs

6.1.4. Data Repositories

DataRepository represents the basic interface for a data repository as it initially was introduced
in chapter 5.1 when we talked about the basic concepts for the management of distributed data.
Because each repository can be understood as a self-running component that is independent from
the system as far as its internal behavior and its offered functionalities are concerned, the system
architecture followed the principle of decorators (see decorator pattern in [40]) that optionally
can be assigned when they are needed. While one DataRepository may run as part of the NExT
client and represent a private working space, another DataRepository may be implemented as a
proxy that points to some remote repository. Needless to mention, both of them naturally offer
different types of functionalities. If we take into consideration further aspects such as reasoning
capabilities, authentication, authorization, session awareness and the like, it becomes even more
obvious that the compendium of these functionalities should certainly not be requested by every
single type of DataRepository.

The following figure illustrates the use of the decorator pattern in the mentioned context.

There are eight distinct decorators that can be applied to a specific type of DataRepository
independently from one another. The function of each of the illustrated decorators is discussed in
the following.

6.1 - Management of distributed data 6 - System Architecture

 - 76 -

Figure 28. A data repository with different functionalities

We start discussing the most obvious decorators first and then go on to decorators whose

functions are less apparent.

ReasonerAwareDR

The ReasonerAwareDR is a specification of the basic DataRepository and offers
functionalities in terms of powerful reasoning mechanisms. The interface defines two additional
methods. While the first method returns a list of available reasoners identified by their distinct
names, the second method offers a handle to access one of them in order to start an arbitrary
reasoning request. We will discuss reasoning in chapter 6.2.

ReadOnlyDR

The second decorator that we look at is the ReadOnlyDR. As its name already infers, this
decorator defines a restriction to the basic DataRepository. While a generic DataRepository is
assumed to offer all of the standard CRUD operations this particular decorator restricts the use of
all of them but reading. A read-only DataRepository can be used for different purposes. The
system architecture mainly thinks of the following two scenarios. First, an institution may have
archives that are actively maintained by dedicated system administrator that work outside of the
scope of OWLAccess. In order for them to let an arbitrary application access their archived data
with highest security restrictions in terms of modifications, they may build a ReadOnlyDR. Not
only will this interface provide for a convenient implementation due to the wide restriction in
terms of expected offered functionalities, it also provides the required security aspects.

Second, data described in OWL/RDF originally was destined to be made accessible over a
web server. Indeed this is also the main concept that the OWL-S API is based on. So far, we
almost only focused on data that was subject to modifications on a regular basis and thus looked
for means to be able to conveniently cope with the corresponding problems. Nevertheless, the
assumption that all data needs to be regularly modified is not accurate. There indeed are
situations where data once written need not be modified anymore. Here is one major use
scenario. OWL based applications almost never come without underlying domain ontologies that
define their distinct data model. A domain ontology thereby is understood to remain unchanged
over relatively long periods of time. In fact, they only need to be changed if their underlying data

6.1 - Management of distributed data 6 - System Architecture

 - 77 -

model is adapted to new or changing business requirements. The choice to publish them by a web
server under a well-known URL becomes a promising solution. Nowadays, existing OWL based
domain ontologies almost all are accessible over the web browser. A system such as NExT in this
case may build a read-only data repository in order to include its published domain ontologies.

PermissionAwareDR

The PermissionAwareDR is an extension to a regular DataRepository and offers authorization
capabilities on either the scope of the whole repository, the scope of ontologies or the fine-
grained scope of single data entities or Individual as they are referred in the system architecture.
We realize that this decorator accounts for the prescribed authorization requirements. On the one
hand, authorization needs to be open in terms of their specification granularity. On the other
hand, the functionality is to be provided by an optional feature. We will come back to this topic
when we separately talk about authentication and authorization in chapter 6.5.

ProxyDR

The ProxyDR is used in order to wrap another data repository whose accessing time and or
initialization procedure may be delayed for arbitrary reasons. The system architecture mainly
foresees its usage for wrapping data repositories from remote locations. In this sense, the proxy
provides a surrogate or placeholder for the remote repository and is able to keep specific control
mechanism transparent from the rest of the system components. The interested reader can find a
detailed discussion of the proxy design pattern [40] in the adequate literature. Shortly hereafter,
we will look at the possibilities that the use of such proxies can offer in terms of the discussed
distribution topology in chapter 4.3.2.

LoginAwareDR

A DataRepository that requires some sort of a login procedure prior to be able to access the
contained data, implements the LoginAwareDR interface. The interface provides a method that
returns a corresponding SessionContext. The SessionContext respectively will be in charge of
managing the eventually required authentication procedure and subsequently sets up a session
that can be used to refer to a performed login procedure. The detailed purpose of the
SessionContext as well as a profound discussion about the sequence of actions that take place in
this specific situation is subject to the separate discussion about authentication and authorization
in chapter 6.5.

CompositeDR

The CompositeDR follows the composite design pattern [40] and thus primarily allows
composing tree-like structures of recursive related data repositories. This decorator accounts for
the fact that several repositories from different levels of a company's or institution's
organizational hierarchy may need to be treated uniformly when being accessed from some
external point. The underlying concept to this particular design was discussed in chapter 5.1.1
where we looked at distribution topologies. By using a CompositeDR, the distribution of

6.1 - Management of distributed data 6 - System Architecture

 - 78 -

subordinate repositories can be kept transparent to its clients. The system architecture foresees its
main usage when providing a unified view onto closely interrelated repositories from the
business logic perspective. While particular repositories may be regarded identical in terms of
their usage and their representing data, they however may not necessarily reflect identical
implementations. Indeed, they in the majority of situations may (i) offer totally different
functionalities in terms of providing decorators and (ii) may be located in geographically
distributed areas. The resulting diversity of individual repositories is nicely hidden by a
CompositeDR.

ObservableDR

The ObservableDR represents a DataRepository that allows notifying its clients about its
internal state changes. The interface closely leans onto the generic Java Observable from the
package java.util [39]. However, in contradiction to the latter, the ObservableDR only is defined
by its offered functionality (thus its interface) but not by a concrete class that as well determines
part of the internal mechanism. Nevertheless, due to fact that the concept from the Java reference
implementation is identical to this decorator's followed underlying concept, a concrete
implementation still may decide to utilize the Java ready-to-use construct. In this case, the
implementation can conveniently account for the offered functionality of the ObservableDR but
does not have to deal with the particular concerns and insights of the observer pattern [40] as
such.

The system architecture foresees two main situations where the ObservableDR interface can
be used efficiently. First, a data repository is concerned with the management of its containing
data entities in respect to their persistent storage. A data repository can decide to implement its
own persistence mechanism but may as well want to rely onto third party services such as triple
stores20 or OWL object binding frameworks. While the first choice may be appropriate for first
version implementation purposes and their testing phases, the latter choice obviously is the
preferred go when a flexible and open system is to be built. By using an ObservableDR when
connecting a DataRepository with a corresponding persistent storage facility the resulting
coupling becomes least stressed and offers means for flexible interchangeability.

Second, a CompositeDR as it was introduced above manages a dynamic set of subordinate
repositories. When the set of referenced subordinate repositories will change, clients to the
CompositeDR may need to be informed in advance in order for them to be able to react
adequately in terms of required preliminary actions. For example, most clients need to be notified
when available repositories are removed. If they are not, they may not be able to guarantee data
integrity in the first place.

SerializationDR

Last but not least, the SerializationDR supports an important additional functionality when it
comes to the persistent data storage by external (third party) components. As data at a repository
is defined in OWL/RDF, data interchange between a DataRepository and an arbitrary persistent

20 A triple store [54] is a persistent data storage facility for data defined in Semantic Web languages such as

RDF or OWL.

6.1 - Management of distributed data 6 - System Architecture

 - 79 -

storage facility is best achieved with OWL/RDF serializations. When data is to be read from the
persistent storage into the repository the latter requests a data stream which it can use to populate
its internal data container. Vice versa, when the data repository needs to persistently store its
containing data, it uses a stream into the opposite direction. The SerializationDR defines two
methods that provide support for the described mechanism.

In the situation where the system is allowed to refer to a particular underlying framework data
interchange between a DataRepository and a persistent storage facility must not necessarily be
performed by a neutral serialization mechanism. Instead, the interchange may take place on a
higher and more efficient data representation level. The OwlKBSerializationDR represents such a
solution when the usage of the OWL-S API can be assumed.

6.1.5. Distribution mechanism for data repositories

The transparent and flexible distribution of data repositories is based on distinct collaboration
patterns in terms of data repositories and their concrete applied decorators. In the following, we
first look at the abstraction that the system architecture provides onto the registered data
repositories of a client. Thereby we foremost will realize the main duty of the
DataRepositoryManager. Second, the discussion focuses onto the abstraction that a repository
proxy uses in order to handle the variety of different kinds or repositories it may need to target.
In the last part, we finally get the chance to look at how the system is able to build flexible and
recursive structures of local and/or remote data repositories.

The abstract view onto registered repositories

Figure 29 illustrates a typical system topology setup. The DataRepositoryManager, which is
mainly used by the DataAccess, treats its maintained set of repositories as generic
DataRepository objects regardless of their individual supported functionalities. As a result, any
client that uses the DataRepositoryManager in order to refer to an appropriate repository fully
abstracts from the distribution as well as the variety of different repository representations.
Furthermore, because a generic DataRepository can optionally implement any of the eight above
discussed decorators the system also allows for specific transparencies in regard to each
decorator's additional functionality. In the figure, all three repositories implement the decorators
ProxyDR, LoginAwareDR and ReasonerAwareDR. The first decorator is needed since the three
repositories act as proxies towards remote services. The LoginAwareDR interface is required
because we assume that the remote repositories permit access only to authorized clients. Finally,
the ReasonerAwareDR makes sense as otherwise, a client would not be able to infer about the
content of a particular repository. Note that the depicted scenario nicely reveals how a
combination of decorators can be used to build powerful system constellations that in the same
time are able to follow all major design principles [32].

The abstract view from a proxy towards its connected target repository

In the same fashion as the DataRepositoryManager abstracts from the actual functionality of
its assigned repositories, a proxy analogously abstracts from the remote repository's functionality
by solely relying on the interface of a SessionAwareDR. The session is used in order for the
remote repository to be able to keep track of the connections to its current clients. However, if a

6.1 - Management of distributed data 6 - System Architecture

 - 80 -

remote repository does not rely on preliminary login and eventual authentication procedures, it
may as well provide its functionalities through the basic interface of a DataRepository.

Tree-like repository hierarchies

The figure finally also depicts how the initially claimed capability for tree-like hierarchies of
independent repositories can be achieved. The gray colored remote data repository not only acts
in the sense of a SessionAwareDR but additionally also acts as a CompositeDR. As a fact, it
transparently refers to a set of subordinate repositories that by themselves may again be
implemented as ProxyDRs and/or CompositeDRs. We can imagine how the illustrated recursion
could almost endlessly be followed and how an almost unlimited structure of interdependent
repositories may arise. Note also, that the recursion is not restricted to local repositories but as
well may recursively span over geographically distributed locations.

Figure 29. Distribution of data repositories

We may not have realized the real power of each single decorator when it first was introduced.

The main reason therefore is that the majority of decorators indeed do not provide any substantial
gains in terms of their appliance to basic DataRepositories but only do so when they are wisely
combined. The above usage scenario hopefully could give the required understanding in order for
us to grasp the real power that this architecture exhibits.

In the next section (chapter 6.2), we will look at the reasoning functionality that yet represents

another challenge for the system. We then will realize that the underlying principle does not
significantly differ from the one that we have discussed in here. In addition, we will note that
reasoning indeed becomes one of the most crucial functionalities altogether.

6.1.6. How all fits together

The entire process of a request such as a data-centric operation upon a particular data entity
within a particular ontology and repository is described by the following sequence diagram. The
intention thereby is to show how the components and design principles introduced throughout

6.1 - Management of distributed data 6 - System Architecture

 - 81 -

this subchapter about the management of distributed data fits together to one coherent
architectural picture.

Figure 30. Sequence diagram: From the client to the data repository

The two major components that an external client such as the NExT core is concerned with are

the DataAccess and the corresponding Context (Data Access Context, DAC). The sequence
diagram starts with the creation of a DAC. The Client thus addresses the DataAccess in order to
provide it with a new Context that subsequently will be used in order to communicate with the
system. Once in possession of a personal DAC the Client starts figuring out what ontologies it has
available. It again addresses the DataAccess that passes it the OntologyManager, which is in
charge of all ontology based operations. By asking the latter about the currently available
ontologies, it answers a list or their unique names. Thereby the list contains the compendium of
ontologies from the currently available repositories. Note besides that we assume that the
available repositories were preliminarily registered as part of some regular initialization task that
is not covered by the diagram. Aware of all available ontologies, the Client now is able to load
any number of them into the Context. Obviously, it will not just go ahead and load of them but
distinctly may want to choose a small number that covers the data upon which it subsequently
needs to work on. The diagram depicts this process as a loop of loading requests destined to the
OntologyManager. Once the data retrieval process has completed the Client is able to start its
actual work. We assume that the Client needs to modify and/or create some data entities and
thereafter needs to update them in the corresponding data repositories. The sequence diagram
abstracts from specific data operations such as a modification, a removal, etc. and depicts the
update process as a repeated loop of generic data centric operations. If we look at how the Client
is involved into the update process, we realize that its sole duty is to make the decision what

6.1 - Management of distributed data 6 - System Architecture

 - 82 -

actions need to be performed upon its holding Context. Everything else is transparently managed
by the system. When the DataAccess receives an operation request, it infers the type of data
entity that is involved and grasps the corresponding DAO. The operation request is then
forwarded to the latter. As we know from previous discussions, the DAO has the knowledge of
how to perform the operation in terms of their fine-grained steps. Hence, what from the client's
perspective is treated atomic, not necessarily needs to be performed alike in lower level contexts.
Once the operation is completely executed by the DAO the action flow together with the
corresponding operation result is turned back to the DataAccess where it is further returned to the
original requestor, the Client.

For the sake of simplicity, the scenario skipped the reasoning aspect. Nevertheless, we can

easily think of a slightly modified scenario that hence as well accounts for the previously
profound discussed reasoning capability. Instead of loading particular ontologies from the
OntologyManager, the Client could as well request a ReasonerContext and subsequently execute
queries in order to find out what ontologies and/or data entities are needed. In this situation, the
Client uses the reasoning capability in order to efficiently infer the relevant set of data it needs to
work on.

6.1.7. Conclusion

The previous discussion was held under the topic of how to deal with the management of
distributed data. We started at the top of the architectural structure and looked at the way an
external client communicates with the presented system. We learned that there exists a façade-
like component that is in charge of handing out the relevant components. Among others, the
client deals with a RepositoryManager and an OntologyManager. While the former is used to
infer about the registered, thus available, repositories, the latter is in charge of providing
information concerning available ontologies and their particular content. We further have learned
that the system makes use of he widely known principle of so-called DAOs (data access objects).
For every individual type of data entity there is a corresponding DAO which is in charge of
handling the particular data-centric operations such as create, update, delete and the like. The
distribution of data across the network is managed by data repositories. We realized that because
a particular repository is able to provide an arbitrary set of additional functionalities and does so
in a fairly transparent way the system is able to cope with each prescribed requirement in terms
of flexibility, openness and scalability. We concluded the discussion with an overall usage
scenario that was destined to reveal how all the mentioned aspects and components fit into one
coherent structure. Apart from the additional aspects that follow, the system architecture seems to
represent a robust and coherent design. The actual usability though can only be proven by an
appropriate implementation. We yet stay tuned for the chapter about the implementation that
eventually will reveal as to what extent the envisioned principles will hold true.

6.2 - Reasoning over distributed data 6 - System Architecture

 - 83 -

6.2. Reasoning over distributed data

The querying functionality is considered an optional feature. An implementation of this
system architecture is thus allowed to fully ignore reasoning throughout all the potentially
affected components. In the following, we show how the system architecture is able to manage
the separation between the primary functionality and reasoning as some sort of additional feature,
thus secondary functionality.

First, the main components in charge of enabling the system for reasoning capabilities are
introduced. Because reasoning is treated as an optional feature and is strongly separated from the
primary functionality, modeling a sole reasoner component almost obviously is not feasible. We
will realize how the notion of a reasoner context will enable the envisioned goals. Second, a
separate discussion about the characteristics of the latter is given. The reasoning topic finally is
concluded with a profound usage scenario that eventually reveals how the elaborated components
fit together and how reasoning as such is applied onto the overall system architecture.

6.2.1. Main components

The architecture defines four main components that are responsible to enable the required
reasoning capabilities. The following figure depicts these components and reveals their
interrelations. A corresponding explanation is given hereafter.

Figure 31. The main components in charge of the reasoning functionality

The ReasonerAwareDR is a generic DataRepository with additional functionalities to provide

reasoning capabilities. The additional method that a ReasonerAwareDR in comparison to its
generic repository provides is a handle to its corresponding ReasonerContext. The
ReasonerContext serves as the actual enabler for reasoning processes. Its existence furthermore
allows decoupling the reasoning functionality from the primary concerns of a DataRepository. A
client such as the DataAccess, which acts as the façade to the overall system, does not directly
deal with a particular data repository but instead deals with the corresponding ReasonerContext
when it comes to reasoning tasks. The ReasonerFactory is used by the data repository in order to
retrieve a particular Reasoner that is determined by its unique identifying name. The system
architecture in this sense assumes that multiple different third party reasoners may coexist and
that the client, prior to the execution of a query, chooses a particular implementation from a
provided list of available concrete reasoners. Note additionally that only by the notion of a list of
available reasoners, the distribution of data repositories onto multiple machines within various
administrative domains becomes feasible. The system must not assume that all connected data
repositories provide the same reasoner implementation.

Once the ReasonerAwareDR has received a concrete Reasoner, it offers the Reasoner a
handle onto its internal data representation in order for the Reasoner to be able to access the

6.2 - Reasoning over distributed data 6 - System Architecture

 - 84 -

corresponding data. When a client needs to reason upon the repository's data, it addresses the
ReasonerAwareDR in order to ask for a corresponding ReasonerContext that can be regarded as
a session-like connection to the Reasoner. In this situation, the ReasonerAwareDR transparently
forwards the request to the Reasoner. The latter is able to create the requested ReasonerContext
and immediately returns it to the ReasonerAwareDR from which that is finally returned to the
client. We note that a client never directly gets into contact with the Reasoner. The Reasoner is
kept transparent behind the ReasonerAwareDR and the ReasonerContext.

6.2.2. The notion of a reasoner context

We may reasonably wonder as to why the system introduces the notion of a ReasonerContext
but does not let the Reasoner itself be responsible for the functionality that is offered by the
former. After all, it seems as if the sole ReasonerContext's duty is to act as an intermediate
between a client and the concrete reasoner implementation that is represented by the Reasoner
component. The decision for the illustrated design is not arbitrary but is grounded upon multiple
aspects. The introduction of the ReasonerContext namely has following advantages. It (i)
inherently allows using established sessions between a client and a data repository, (ii) it enables
the Reasoner to eventually run query processes asynchronously which may provide significant
performance and stability gains, (iii) it allows the Reasoner to handle query requests in a queuing
system, and (iv) it makes it possible to eventually manage requests by some sort of a priority
mechanism. In the following, we provide a brief explanation for each of the broached aspects.

i In one of the previous discussions, we looked at the functioning of a proxy that connects

to a remote data repository. We mentioned that in most situations the remote repository
will only allow access to authenticated clients. As a fact, an authentication procedure as
discussed in chapter 5.5.2 will preliminarily be necessary. The result of a successful login
is usually a bilaterally established session context that is used by both parties to refer to
the initial authentication process. A ReasonerContext can be created on a per connection
basis and thus be assigned to individual clients.

ii Running query requests in an asynchronous mode is adequate because (i) the

corresponding reasoning process may require substantial processing power and (ii) the
number of simultaneously connected clients is uncertain but may tend to be rather high
than low. If reasoning runs asynchronously the client does not actively wait for the result
to be returned but disconnects from the reasoner and either repeatedly asks the latter about
the state of the process until that turns out to be completed or is notified by the latter after
the process has ended. Once the client knows that the reasoning process has completed, it
again connects to the reasoner and picks up the deposited result. Because the same
reasoner simultaneously may be used by multiple clients, the communication between a
client and the reasoner must be identified by some sort of a context. Otherwise, they
cannot communicate in the described requested fashion. We realize that only by providing
the notion of a ReasonerContext, asynchronous execution becomes possible in the first
place. The choice as to whether or not reasoning is indeed to be executed asynchronously
still is up the implementation of a particular reasoner.

6.2 - Reasoning over distributed data 6 - System Architecture

 - 85 -

iii As reasoning generally absorbs potential processing power, a reasoner – once put into a
multi user system – needs to account for some sort of balancing mechanism in order to
prevent from crashing. Queuing [11] thereby is an appropriate and feasible mechanism.
The ReasonerContext can be used as the queuing element. In this sense, it is used in the
same fashion as lightweight processes (threads) [45] are managed by common operating
systems.

iv Priority management usually depends on the existence of a queuing mechanism. Its

potential in regard to the management of reasoning requests is obvious. As soon as a
service is shared among multiple actors, the notion of some priority rules in regard to the
type of task or the requestor's identity becomes apparent. The reasoner in this case may
want to schedule incoming query requests on the basis of various aspects in order to
provide maximal efficient performance anticipation. Again, we might refer to the analogy
of the way processes or threads are managed by common operating systems.

6.2.3. A usage scenario

Up to now the underlying mechanism and the main components of the system were
introduced. The actual sequence of actions that take place when the client initiates a query
request is best illustrated on a sample usage scenario. The following sequence diagram depicts
the main action flow of a typical scenario starting at the client and proliferating over a couple of
different intermediates down to a concrete ReasonerContext. While we discuss the interactions
between the affected parties some of the already mentioned aspects will be repeated in order to
deepening the overall understanding. Readers we substantial practice in reading a sequence
diagram eventually may want to skip the following explanation and only may study the depicted
provided diagram.

Figure 32. Reasoning on a data repository

6.3 - Versioning 6 - System Architecture

 - 86 -

The depicted scenario in the sequence diagram above starts with a request for a
ReasonerContext by some arbitrary client. From the initial discussion in this subchapter, we
know that the client is either the DataAccess that acts as the façade to the overall system or the
DataRepositoryManager. Both are controlled by an external client such as the NExT core and are
used as intermediaries to the transparent underlying functioning of OWLAccess. In this respect,
we can think of the depicted client as an arbitrary external client although such generally would
not contact a repository directly but would do so over certain indirections.

Note that in order for the Client to request a concrete ReasonerContext it must provide the
unique name of the underlying reasoner implementation that the latter transparently can rely on.
Prior to sending a query request, the Client therefore consults the available list of reasoners that
the corresponding DataRepository provides.

When the DataRepository receives a request for a particular ReasonerContext the
DataRepository contacts the ReasonerFactory in order to be provided the appropriate Reasoner.
Hereafter the DataRepository calls upon the Reasoner to create a new ReasonerContext. Finally,
the DataRepository returns the newly created ReasonerContext back to the initial requestor.

The Client at this point owns a ReasonerContext upon the data contained in the
DataRepository. The actual query procedure depends on the protocol of the ReasonerContext. In
case reasoning is implemented by a synchronous algorithm, the Client requests the execution of a
query by the appropriate method and waits upon the result to be returned. The concrete action
flow for this situation is illustrated in the continuation of the discussed sequence diagram. The
case in which reasoning takes place in an asynchronous mode is depicted in the additional
diagram to the right (figure 32b). While the process of announcing the query request is identical
to the former method the subsequent action flow significantly differs. Once the Client has
submitted its query request, it engages into an interrogation loop during which it repeatedly
checks the state of the reasoning process at the ReasonerContext. When the ReasonerContext
eventually answers that the process has finished, the Client exists the loop and in a final step
picks up the query result. Note that because the query request is encapsulated into a context but is
not directly sent to the actual reasoner, aspects such as the installment of a queuing and/or
priority mechanism as discussed above are nicely hidden from the requestor. With other words,
the architecture does not prescribe how reasoning in the end is to be performed but only defines
the protocol that a reasoner implementation has to comply with. The defined interface thus is said
to be complete and neutral21.

6.3. Versioning

The system architecture strictly follows the versioning concept that was introduced in the
previous chapter. The capability for versioning thereby is regarded as an optional feature and is
fully decoupled from the primary functionality. In the following, we look at the main components
of the architecture and discuss their interdependence as well as their integration into the overall
system. Although the presented concept is extremely powerful, the corresponding architectural
design is not. Indeed, due to the fact that the concept aimed at maximal decoupling, only very

21 Completeness and neutrality are discussed in chapter 4.1.

6.3 - Versioning 6 - System Architecture

 - 87 -

few components will be affected by the introduction of this additional feature. The subchapter
finally ends with an overall conclusion.

6.3.1. The main components

The overall system architecture depicted in figure 26 at the beginning of this chapter describes
the model package with a single element, namely the Individual. Although the illustrated class
diagram does not claim to provide a detailed view onto the system but rather intends to present
an overall and thus simplified picture, it does an accurate job when presenting the model
package. Indeed, the system principally does not rely onto any other interface than the Individual
when referring to data entities. As a result, a versioning mechanism can be introduced in a fully
transparent way as long as the mechanism is based on the defined Individual.

The following class diagram depicts the main components that are responsible to provide the

system with the additional versioning capability. The system defines an optional interface named
VersionAware that bases on the Individual and provides all the functionalities in order to enable
the envisioned characteristics of the versioning concept presented in chapter 5.2. The major
methods defined by the VersionAware interface are depicted in the class-like box to the right.

Figure 33. Version and Variation as subclasses of Individual

Any concrete type of data entity that implements the VersionAware interface becomes aware

of its version as well as optional variation. In contradiction to the discussion in chapter 6.1.3
where we assumed that a specific data entity inherits from the basic Individual, an entity now
obviously needs to inherit from the VersionAware instead. Nevertheless, since VersionAware only
defines some fairly simple, descriptive functionality, its application to domain specific data
entities is unproblematic.

The simplicity of this design is indeed astonishing. There is not even one other component that

needs to be extended in order to provide the concept's envisioned functionality. Nevertheless, in
case we want to provide some corresponding convenience functionalities we though might want
to extent the DAO in order for it to be able to handle operations such as the creation of a new
version or the retrieval of a specific version in a transparent fashion. The system architecture
therefore defines an optional interface that can be implemented by the generic DAO in order to
become version aware.

6.4 - Annotation 6 - System Architecture

 - 88 -

6.3.2. Conclusion

The architectural design that accounts for the required versioning capability is straightforward.
The overall principle is based on the inheritance from the generic Individual. Because the entire
system solely relies onto an Individual when referring to various data entities, the integration of
the versioning concept becomes a fairly easy and natural task. Up to some extent, we can
reasonably argue that the herein achieved simplicity is not only the result of the promising
underlying concept but may – even more – be the result of the continuously forced focus on
transparency, openness and scalability.

6.4. Annotation

Like in the case of versioning, the functionality for annotation is strictly decoupled from the
overall system architecture and follows the annotation concept elaborated in the previous chapter.
We remember that we extended the initial annotation concept in order to be able to also serve
generic metadata concerns and that the underlying principle is based on the notion of multiple
inheritance.

In the following, we present the corresponding architectural design. We first look at the main
components and their interactions with the overall system architecture. In the second part, we
provide an unbiased conclusion.

6.4.1. The main components

The main components that enable the system to manage generic metadata are described in
figure 34. The notion of two separate views onto a virtual data entity is realized by two interfaces
that both inherit from the generic Individual. One interface serves for the view onto the primary
data representation and hence the second interface serves for the view onto the corresponding
metadata. Because both inherit from the generic Individual, the overall system architecture does
not have to care about their explicit functioning. Indeed, the system can treat either view as a
regular data element and thus is principally not affected by the additional support for the
management of generic metadata.

The illustration on the right hand side of figure 34 depicts the two interfaces with their defined

methods. As both of them only define one distinct method, they can easily be applied to any
particular domain specific data entity. Dublin Core Metadata Initiative [13], FOAF [46] or VCard
[34] represent common used standards for describing data elements in terms of annotation
information. The illustration reveals that either of them easily could be implemented by an
extension of the generic Metadata interface. Note at this point that the three standards are only
mentioned in order to reveal the architecture's flexibility. They of course could as well be
replaced by any other standard or application specific data model.

6.4 - Annotation 6 - System Architecture

 - 89 -

Figure 34. Primarydata and Metadata as extensions of the generic Individual

The metadata concept elaborated in chapter 5 goes one step further than the majority of

currently known metadata standards. It namely does not make the common assumption that a
metadata attribute be restricted to only represent a direct value such as an arbitrary character
string, a date or some number value. Instead, the concept foresees that an attribute as well can
represent a relation to another data entity. An obvious example is the typical assignment of the
author's name and contact information. While it is common to define the author by its name and
its address in the form of one simple character string, we as well could imagine providing the
same information by a distinct relation to a corresponding author entity. The latter method avoids
the creation of redundant information and thus is far more flexible when it comes to reasoning
aspects. Furthermore, and in some situations even more important, it also eases the burden of
general data maintenance [47].

Because both Primarydata and Metadata inherit from the generic Individual and the system

architecture does not distinguish between either of them, the additional capability for relational
metadata attributes is inherently enabled. Nevertheless, we need to be aware of the fact that
allowing metadata elements to build relations among one another will eventually result in
complex interdependencies that otherwise could not evolve. We furthermore notice that in this
regard we eventually also may need to provide metadata specific DAOs in order to be able to
manage the metadata level in the first place. As soon as metadata elements start to represent
independent entities and thus are no longer bound to a distinct corresponding entity from the
primary data level, they can only be managed if the system provides a corresponding DAO22.

6.4.2. Conclusion

The definition of the two interrelated views, described by the annotation concept from the
previous chapter, revealed a fairly easy job. Due to the fact that the entire system architecture
refers to the basic Individual when referring to arbitrary data entities, the two views could directly
be inherited from the latter and thus be kept simple.

22 The relation between a data entity and its DAOs is discussed in chapter 6.1.3

6.5 - Authentication and Authorization 6 - System Architecture

 - 90 -

Another discussion point was the handling of relational attributes in terms entities of type
Metadata. Once more, because the system architecture solely relies onto the basic Individual
interface and therefore does not distinguish between either view (Primarydata or Metadata)
defining a concrete specialization of the Metadata interface can be done without limitations. In
summary, we can reasonably say that the initial requirements could all be met satisfactorily.

6.5. Authentication and Authorization

The discussion about authentication and authorization from the last chapter revealed that a lot
of different particular aspects need to be taken into consideration if we are about to design a
system that not only guarantees authentication and authorization in a limited one-machine
environment but as well does so in a widely distributed system. In the following, we illustrate
how the system architecture introduced at the beginning of this chapter can be extended in order
to feasibly account for these very features.

We start with an overview of the involved components and subsequently look at major aspects

that emerged from the elaboration of the security concept from the previous chapter. Among
others, we discuss how the system can account for the connections management by making use
of a common session based architecture. We also look at how transparency in regard to various
types of login procedures can be handled and how thereby the separation of identification,
authentication and authorization comes in as a precious and promising concept. As always, we
finish the subchapter with an overall conclusion.

6.5.1. The main components

The major components that enable the system to support authentication and authorization are
depicted in figure 35. For the sake of comprehensibility, the figure uses distinct colors in order to
highlight the three major aspects that are identification, authentication and authorization.

The yellow colored elements are responsible to manage generic identification concerns. As we
already know from the discussion of the management of distributed data in one of the previous
chapters, identification is taken care of by a session construct. While in general, there are
different incentives that call for the creation of a session, we only use them in order to be able to
refer to a distinct bilateral communication context that is established between a client and a
server.

The red colored elements support the system for authentication capabilities. We note that the
major functionality herein is delegated to the JAAS [48] framework. JAAS stands for Java
Authentication and Authorization System and represents the reference implementation of the
PAM [49] framework for Java.

Finally, the blue colored elements enable the system architecture to cope with the required
authorization capability.

6.5 - Authentication and Authorization 6 - System Architecture

 - 91 -

Figure 35. Main components for authentication and authorization

In the following, we look at each depicted component and discuss its major aspects as well as

its interactions with its counterparts.
We already are familiar with the DataAccess, the ProxyDR and the RemoteDR. They represent

the components that serve for the primary functionality. A detailed discussion about their
individual characteristics and their interdependencies was already provided in chapter 6.1. Hence,
we can directly address the more specific components that serve for the three distinct aspects.

6.5.2. Session management

The SessionContext is owned by the ProxyDR and acts as a delegator for the session
management between its owner and the remote party. At the remote location, a similar
constellation is anticipated. The RemoteDR owns a delegator (the SessionController) which
keeps track of the current sessions. When a client contacts the RemoteDR in order to deposit an
operation request it shows the previously established session. The RemoteDR subsequently
shows the provided session to its SessionController that is able to validate it. If the session turns
out to be valid, the RemoteDR starts the regular process in order to perform the requested action.
On the other hand, if the session turns out to be unknown or outdated the RemoteDR answers
with an appropriate failure message. Note that the connection between the proxy and the remote
repository not always needs to be based on a session. A session is only necessary if the remote
repository implements the SessionControlledDR, as is the case in the depicted scenario. Also,
notice that due to the fact that the RemoteDR act as a SessionControlledDR, the proxy on the
client location needs to be provided with the corresponding functionality and hence needs to
implement the depicted SessionAwareDR interface.

By now, we know how sessions are being used by the parties that are in charge of the primary

functionality. Nevertheless, we do not yet know how a session is being established in the first
place. Let us therefore look at the SessionContext and its corresponding peer, the
SessionNegotiator. When the SessionContext is told by its ProxyDR to return a current session,
two possible actions might follow. In the first case, the SessionContext already holds a valid
session and thus immediately returns it to the ProxyDR. In the second case, the SessionContext
obviously is not yet in the control of a session and therefore needs to engage into the
corresponding establishing process. Here is the point where the SessionNegotiator finally comes
into play. It represents an independent service that like the RemoteDR is accessible by the client
over a well-defined interface. While the RemoteDR is in charge of the primary functionalities,
the SessionNegotiator on the other hand is in charge of the yet missing session establishment.

6.5 - Authentication and Authorization 6 - System Architecture

 - 92 -

When the SessionContext needs to establish a new session, it addresses the destined remote
SessionNegotiator that in turn starts the corresponding negotiation process with its counterpart.
Note that the exact process by which a session is being established is not defined by concept but
is subject to an individual session negotiation protocol. In the simplest case a specific negotiation
protocol can be represented by a simple one-way call where upon the SessionNegotiator returns
an independently created session identification. On the contrary, another protocol may be based
on several bidirectional message flows. The latter is usually the case if a session constitutes of
shared secret keys and such need to be established during the described creation phase [15].

The following figure summarizes above discussed aspects and shows a typical action flow.

The abstractly covered process of opening a session at the SessionContext will be illustrated in
details when we talk about the authentication aspect in chapter 6.5.4.

Figure 36. Establishing a session between a client and a remote repository

Using sessions in the described fashion above enables the system to rely onto identities

without the need to care about their credibility. We so far discussed how a session is technically
established and how it is delivered to agents such as the ProxyDR or the RemoteDR. We though
did not talk about how the negotiation process decides to whom and in what circumstances a
session is being granted and thus bilaterally established. We so far assumed that we can trust both
the client with its SessionContext and the server with its SessionNegotiator. As long as this
assumption holds true there is no need to authenticate one another. The negotiation of a session
can be done regardless of whether or not the claimed identities are indeed accurate. Note that this
aspect represents a necessity if we are about to provide authentication services as additional, fully
decoupled and transparent features.

6.5.3. Authorization

The functionality for authorization is provided by yet another specific decorator of the generic
DataRepository. Figure 35 shows that both, the ProxyDR and the RemoteDR implement the

6.5 - Authentication and Authorization 6 - System Architecture

 - 93 -

PermissionAware interface that provides them with the appropriate additional functionalities.
When the proxy addresses its target and requests the execution of a particular data operation such
as an update, a deletion or the like, the repository at the remote location first grasps the
simultaneously provided session and gives it to its SessionController. Given a concrete session,
the controller is able to infer the corresponding identity. Knowing the identity of the requesting
client the RemoteDR subsequently addresses a destined security policy application in order to
infer the permission that is granted to the current client. The security policy application depicted
in figure 35 is in possession of ACLs (Access Control Lists) [15] that correspond to the contained
data in the RemoteDR. Note at this point, that the system architecture silently assumes that
permissions are being described by a DAC (Discretionary Access Control) [50] system.

If the security policy application answers a permission that allows the execution of the
requested operation, the RemoteDR starts the regular process in order to perform the client's
request. On the other hand, if the inferred permission does not allow for the execution of the
requested operation the RemoteDR answers with an appropriate failure message.

The granularity by which permissions can be defined is subject to the concrete decorator that

the RemoteDR presents to its client. Figure 37 shows the three different kinds of available
interfaces. PermissionAwareDR represents the root interface and accounts for the granularity of a
per repository basis. A client in this case can be granted permissions that collectively apply to all
data contained in the repository. OntologyPermissionAwareDR accounts for the granularity of a
per ontology basis and EntityPermissionAware respectively account for the granularity of a per
data entity basis. Depending on specific requirements of particular data repository, any
combination of the presented interfaces can be applied.

Figure 37. Permission on various granularities

6.5.4. Authentication

Authentication is the process of confirming the claimed identity of some communicating actor.
When we looked at the session mechanism, we realized that the negotiation process is based on
the assumption that both parties trust one another and that therefore authentication is not
required. As soon as this assumption does not hold true anymore, the bilateral negotiation process
of a session is only possible when the communicating parties have preliminarily authenticated
one another.

As a result, the SessionContext can optionally be configured in order to account for the
appropriate authentication procedure. In this case, the SessionContext implements the optional
AuthAwareSessionContext interface that represents a decorator to the already known basic

6.5 - Authentication and Authorization 6 - System Architecture

 - 94 -

SessionContext. AuthAwareSessionContext defines the additional functionality to declare a
corresponding ServiceLoginContext (SLC). Analogously to the delegation between the ProxyDR
and the SessionContext, the SLC acts as a delegator for the latter as far as authentication
procedures are concerned. When the SessionContext is requested to create a new session and
thus implements the AuthAwareSessionContext interface, it first addresses its corresponding SLC
in order to perform the required authentication process and only afterwards engages into the
process of establishing a session as described above.

The underlying concept of the SLC is straightforward. The SLC namely can be seen as a
typical intermediate between the SessionContext and the JAAS framework. Having access to the
client's credentials, it basically does nothing more than initiating a login request on behalf of the
SessionContext or ProxyDR respectively. Once the authentication procedure has successfully
finished, the SLC immediately returns the action flow back to the SessionContext.

When the SessionContext and its peer, the SessionNegotiator (SN) engage into the

establishment of a session and the SN implements the optional interface AuthAware, negotiation
will only be accepted by the latter, if the connecting client preliminary was successfully
authenticated at the corresponding AuthService. The AuthService thereby can represent any type
of standard or specific authentication service that analogously to the SN or the RemoteDR is
accessible by the client. A primitive authentication service may be represented by the rlogin or
telnet program on a UNIX workstation [49]. On the other hand, powerful mechanisms such as a
login over SSH23 or Kerberos [16] is feasible as well. Note that the SN in this situation needs to
be able to communicate with its corresponding AuthService in order to find out what clients
recently have been successfully authenticated.

A lot of standard token-based security services couple the authentication and session

negotiation process in order to be able to establish a secure connection. Such for instance is the
case with Kerberos. The sequence diagram in figure 38 depicts how the integration of such a
security system can be achieved. Note that due to the fact that the session is already created by
some JAAS component (RemoteLoginModule), the SessionContext does not need to engage in to
the previously discussed session negotiation process but easily can get the session from its
corresponding ServiceLoginContext. Note also that the components subject, LoginContext and
RemoteLoginModule are specific JAAS components that we did not discuss. Readers not familiar
with the basics of JAAS may first have a look at the appendix B.4.

23 SSH is a common protocol which can be used as a general purpose cryptographic tunnel. At the same

time, it represents a widely used remote login application that directly relies onto the SSH protocol [15].

6.5 - Authentication and Authorization 6 - System Architecture

 - 95 -

Figure 38. Transparent authentication and session negotiation

The above explanation was held on a suitable elevated abstraction level in order to be able to

focus on the principles and the major collaboration patterns among the introduced components.
As a result, the explanation does not claim to give any insight as far as the actual integration of
the standard JAAS framework is concerned. The interested reader is referred to the appendix B.3
and B.4 where both PAM and JAAS are covered. Readers interested in the concrete functioning
of JAAS as a generic security framework nevertheless are referred to appropriate literature
mentioned in the reference chapter ([48, 36]).

6.5.5. Conclusion

The presentation of the session management revealed that it enables the separation of
authentication and authorization by providing a common denominator for the representation of
the identity of a communicating client. Authorization is achieved by yet another optional
decorator for the generic DataRepository. Finally, as far as authentication is concerned, the
system calls for the delegation onto the widely used JAAS framework that enables an application

6.5 - Authentication and Authorization 7 - Implementation

 - 96 -

to virtually be able to deal with any type of concrete authentication facility. In summary, it can
reasonably be said that all corresponding requirements from the chapter 4.7 are successfully met.

7.1 - Factories and singletons 7 - Implementation

 - 97 -

7. Implementation
On of the goals of this thesis was to elaborate a system architecture that is able to adequately
solve the deficiencies introduced in the motivational chapter. We hence studied the
corresponding requirements, then looked at concrete underlying design principles and in the
previous chapter finally presented a complete system architecture. An additional goal of the
thesis however was to develop a reference implementation that primarily has the two goals of (i)
serving as an actual proof-of-concept prototype and (ii) providing a running system that – as is –
can be plugged into overall NExT's system architecture described in [1]. In the following we look
at the developed reference implementation but instead of profoundly elaborating the generally
rather straightforward implementation aspects, we only focus on some of the specific additional
design considerations.
We first engage into the discussion of factories and singletons concerning their co-existence. The
goal is to sensitize for their distinct differences and to reveal in what situations they best be
applied. Second, we discuss the debate about whether or not to make use of underlying, thus
somewhat hidden, implementations. We in this section will find out how the reference
implementation can profit from the two powerful frameworks represented by the OWL-S API
and the Jena framework. In the third and the fourth section, we finally look at two concrete
implementation aspects. On the one hand, we look at the concrete integration of the Pellet
reasoner [51] and thereby try to point out with how little effort the integration is accomplished.
On the other hand, we highlight the straightforwardness of the implementation of the versioning
and annotation functionality that eventually results from the system architecture's underlying
concepts. Security aspects regarding authentication and authorization are not specifically
covered, as they are principally delegated to the standard JAAS framework.

7.1. Factories and singletons

The use of factories and singletons is not mutually exclusive although this sometimes is
misleadingly believed by programmers rather new to the use of design patterns [40]. A factory is
used in order to hide the creation and composition of objects that apply to defined interfaces of a
system architecture [40]. A component that uses a particular counterpart hence should not rely
onto that concrete implementation but should only rely onto the provided interface. As a result, if
the required counterpart does not yet exist, the former needs to have a third party component
(thus a factory) that it can ask for the appropriate creation.

A singleton is used in order to make sure that a particular object only exists once for the entire
system and that it therefore cannot be created multiple times [40]. In contradiction to a factory, a
singleton however cannot hide its concrete implementation towards its clients. Hence, if a
component relies onto an interface that is implemented by a singleton, the component is not able
to create an arbitrary object that offers the required interface if it does not know the
corresponding concrete implementation. If the component needs to be able to refer to a singleton
without knowing the underlying implementation, the singleton additionally needs to be wrapped
into a factory that accounts for the necessary indirection.

7.2 - Underlying implementations 7 - Implementation

 - 98 -

Being aware of above realization, the reference implementation uses singletons always in
combination with a factory. In addition, it carefully distinguishes between singletons de-facto and
singletons de jure. All singletons de facto are defined by regular classes that principally may
have multiple instances. In such situations, the factory is responsible to guarantee for the inherent
singleton restriction. It makes sure that once a particular instance has been created, that very
same is returned by any subsequent request. Singletons de jure on the other hand are
implemented as regular singletons. In this situation, the singleton restriction is directly controlled
by the class implementation. While the difference between the two design methods is small, a
careful distinction nevertheless can be precious. Two major aspects are given hereafter. First, a
careful distinction undoubtedly improves the readability and the clarity of the overall system and
hence improves maintainability. Second, a careful distinction usually also improves testability
[32]. When the creation of testing environments is at stake, singleton-like components oftentimes
need to be specifically composed and/or configured. In yet other situations, it is desired to be able
to intentionally relief the inherent singleton constraint. As a result, from this second point of
view, it is desirable to have as little regular singletons as possible. However, such is only
achievable if each potential singleton is analyzed in terms of its actual requirements.

7.2. Underlying implementations

The discussion about the use of underlying implementations by the technique of explicit
casting of a generic into a more concrete type, which only can be assumed but is not clearly
specified by the corresponding interface, can be endless. The subject basically deals with the
question of how much a client component is allowed to interpret an interface's described
functionalities within an assumed context that reveals additional implicit assertions. Design by
contract [32, 44] does indeed not necessarily forbid to reason upon an underlying implementation
as long as that can reasonably be inferred and as long as the implementation adequately declares
its additional resulting dependencies. The first argument reveals that the assumption must not be
arbitrary but most by some means be legitimate. For example, the determination of the particular
used implementation may be defined by the system requirements, or may be sufficiently defined
by a superior system architecture that serves as the definition of the environment wherein the
particular implementation is placed. The second argument reveals that an implementation must
somehow specify all its dependencies that cannot directly be inferred from the applied system
architecture. Many implementations do not document the functionality of their components but in
this respect refer to the corresponding documented interfaces from the system architecture.
Indeed such technique is legitimate and also efficient as it keeps documentation at a well-defined
location. However, it though fails when assumptions not explicitly asserted by the interfaces are
made. An implementation in this situation thus must document whatever aspect is not yet
covered by the interfaces.

The reference implementation heavily relies onto the underlying implementation of the OWL

object-binding framework. In this respect, it namely relies onto the OWL-S API and its
underlying Jena framework (figure 39a). However, this design decision can be regarded
legitimate because the implementation accounts for both above discussed aspects. The
assumption is not arbitrary but is well documented in NExT's coarse-grained system architecture

7.3 - Reasoning with Pellet and OWL-S API 7 - Implementation

 - 99 -

described in [1]. Second, the implementation adequately documents the defined classes in terms
of assumptions and assertions that cannot be inferred from the corresponding interfaces (system
architecture). As far as the second point is concerned, the implementation goes even one step
further and defines internal interfaces in order to be able to define more precisely the
components' functionalities. The reference implementation thus again is partitioned in the
definition of particular interfaces and their corresponding class implementations. Figure 39b
depicts the relation between the system architecture and the implementation with additional
interface definitions. Note that the implementation of course does only define additional
interfaces where the system architecture reveals somewhat too generic.

Figure 39. Use of underlying implementations

7.3. Reasoning with Pellet and OWL-S API

In this section, we show how the reference implementation in particular deals with the
integration of the Pellet reasoner that is compatible with the OWL-S API. Let us first resume the
basics of the envisioned concept presented in the previous two chapters as far as reasoning is
concerned and only thereafter look at the concrete implementation.

Due to the fact, that reasoning needs to be performed over distributed data and because data

volume tends to reach magnitudes that cannot be easily transferred from one remote location to
another, the concept prescribes that reasoning is to take place separately at each repository. We
profoundly discussed this topic in chapter 5.2. A major design aspect in this situation is
represented by the mechanism by which arbitrary reasoners get access to repositories' internal
data representations. As different reasoner implementations may use very different reasoning
mechanisms, they also tend to require very different object oriented graph representations upon
which reasoning can eventually be performed. As a result, the concept foresees that arbitrary
reasoners do not directly access the repositories' internal data representation but instead manage
their own, thus private and redundant, data representations. A data repository implements the
ObservableDR decorator (interface) in order for the reasoner to be able to get informed about
changes to the internal data representation. The update process between a reasoner and a
repository is then performed over generic OWL/RDF serialization. Hence, the data repository
also is assumed to implement the OwlSerializationProviderDR decorator, which provides
reasoners with the necessary functionality to read updated and/or newly created data entities and
ontologies respectively.

7.3 - Reasoning with Pellet and OWL-S API 7 - Implementation

 - 100 -

When using the Pellet reasoner, above summarized mechanism however can significantly be

simplified. Pellet depends on the Jena and OWL-S API as far as the object oriented graph
representation and part of the inference mechanism is concerned. Collaboration between the
repository and the Pellet reasoner can be based on their common underlying frameworks and
thereby must not go the rather tedious detour over generic OWL/RDF serialization interchange.
Moreover, the reasoner as well does not need to manage its private data representation. Figure 40
depicts the resulting simplified architecture.

Figure 40. Implementation of the pellet reasoner

In contradiction to the generic collaboration, the depicted architecture uses the possibility to

infer about the underlying implementations, which are the OWL-S API and the Jena framework.
The reasoner communicates with the repository over the OwlKBProviderDR interface instead of
the generic OwlSerializationProviderDR. As a result, the reasoner gains direct access to the
repository's internal data container that is represented by an OWLKnowledgeBase, a particular
interface from the OWL-S API. Clearly, serialization over OWL/RDF as well as the installment
of a notification infrastructure is no longer necessary. When the reasoner receives a query
request, it just gasps the corresponding OWLKnowedgeBase upon which it directly is able to run
the necessary inference procedures. The ReasonerContext is no longer involved into the
reasoning procedure but solely serves for the temporary storage of the RDQL query
(QueryString) and the eventual query result. When the execute method of the ReasonerContext is
called, the ReaonerContext takes the provided query (QueryString) and stores it in some internal
variable. It afterwards switches into phase WAINTING and puts itself into the reasoner's internal
queue. When the reasoner eventually picks up the context in order to perform the requested
query, it (i) switches the phase of the ReasonerContext from WAITING to RUNNING, then (ii)
reads the temporarily stored query string from ReasonerContext's internal variable, (iii) executes
it upon the data representation of the repository, (iv) stores the query result in the
ReasonerContext, and (v) finally switches the phase from RUNNING to DONE. Clearly, the
implementation is straightforward and seamlessly comprehensible. For the sake of completeness,
figure 41 shows the reasoner's infinite loop that it entered after initialization in order to manage
internal queue of query requests.

7.4 - Annotation and versioning in one go 7 - Implementation

 - 101 -

public void run() {
 ...
 ReasonerContext ctx;
 String query;
 while(queue.hasElements()) {
 ctx = queue.pop();
 query = ctx.getQueryString();
 ctx.result = getRepository().getKB().execute(query);
 ctx.setPhase(ReasonerContext.DONE);
 }
 ...
}

Figure 41. Management of queued query jobs by the Reasoner

While the above demonstration does not reveal any novel or otherwise captivating

information, it nevertheless is able to reveal some of the inherent potential that the two aspects (i)
reuse and (ii) delegation to underlying implementations can eventually bring about.

7.4. Annotation and versioning in one go

In the following we look at the implementation of the versioning and annotation functionality
that both reveal to have many similarities and thus can somewhat be addressed in one go. In
chapter 5, we realized that the prescribed generic annotation functionality can best be accounted
when looking at annotation specific data as generic metadata, thus data about data. We then
elaborated a concept based on two separated views that can optionally be applied to a generic
data entity, which – in terms of the system architecture – is defined by the Individual interface.
The elaborated concept for the versioning functionality on the other hand is based on the notion
of a decorator for the Individual interface. Although both concepts follow different goals and were
separately elaborated, they nevertheless do share quite a lot in common. The following list
illustrates the major similarities.

• Both aspects in principal deal with data about data, thus metadata.

• Versioning and annotation can be regarded as extensions to the generic data entity
defined by the Individual interface.

• Both functionalities need to be provided optionally when such are adequate and/or
needed

• Their functionalities in both cases are defined by interfaces that inherit from the
generic Individual and hence can be regarded as decorators

• The definition of particular data entities (such as a NMRProcess, NMRExperiment,
etc) must not be affected by either of the two functionalities

The reference implementation mainly focuses onto the fourth and fifth point. It decides to use

the adapter pattern [40] in order to be able to encapsulate a genetic data entity within a wrapper
once for metadata purposes and once for versioning purposes. The latter subsequently is being
bound to the former as is done with Primarydata and Metadata, which was discussed in chapter

7.4 - Annotation and versioning in one go 8 - Conclusion

 - 102 -

6.4.1. The reference implementation defines a slightly more specific Metadata interface that is
named identical but that is yet put into another package. The only difference between the two
interfaces is that the latter additionally defines a method that allows the client to get a
VersionAware view onto the corresponding data entity. The advantage that comes with this
design decision is that versioning related data can be treated as metadata of some special kind.
The interface of a particular data entity (such as an NMRProcess or NMRExperiment) as a result
is not scattered with versioning functionalities (methods) but in this respect is kept clean and
adheres to the principle of separation of concerns [32]. Because both functionalities are defined
by separate interfaces, they still are decoupled as far as extensibility (subclassing) and
interdependence is concerned. If for example, NExT decides to use the Dublin Core Metadata
Initiative [13] in order to account for its annotation needs, it uses the DCMetadata interface and a
corresponding implementation thereof (chapter 6.4.1). As VersionAware is implemented by a
separate view onto the corresponding data entity, it thereby is not affected by the illustrated
extension. Instead of independently extending the Metadata interface, we as well could
independently extend the VersionAware interface. A concrete data entity implementation by
default would inherit from the basic IndividualImpl. However, if the entity needs to support either
or both of the discussed functionalities (annotation and/or versioning) it instead can inherit from
the provided PrimarydataImpl and with this is given the additional method that allows a client to
ask for the Metadata and VersionAware view respectively. Since PrimarydataImpl also uses the
adapter pattern in order to wrap the generic IndividualImpl, inheriting from either of the two
implementations (IndividualImpl or PrimarydataImpl) does not matter when creating a concrete
data entity. Note, that while the former characteristic especially accounts for forth point, the latter
adequately does so for the fifth point. The illustrated architecture is summarized in the figure
below.

Figure 42. Versioning and annotation functionality in one go

8.1 - Summary 8 - Conclusion

 - 103 -

8. Conclusion

8.1. Summary

The thesis elaborated a coherent and fine-grained architecture for specific aspects of NExT's
overall system architecture described in [1]. Speaking more precisely the goal of the thesis was to
focus onto following somewhat independent aspects:

• Elaborating an architecture and a corresponding reference implementation of a

generic OWL/RDF data access abstraction layer.

• Defining a scalable and flexible reasoning mechanism that allows reasoning over
data distributed onto self-contained data repositories. Thereby allowing manual and
programmatic querying of data.

• Providing a flexible and evolutionary annotation concept to be used for data
entities of the NExT process model.

• Elaborating a versioning concept that both, suits the inherent requirements within
the NExT context, and represents a feasible and natural approach in regard to the
underlying concepts of OWL and RDF.

• Extending the NExT architecture with adequate functionalities for authentication
and authorization in its inherently distributed environment.

The thesis started with a motivation of above focusing aspects and revealed some of the most

obvious deficiencies that can be inferred from the overall NExT system architecture. Afterwards,
a brief digression was made which allowed introducing a visionary system that claims to solve all
the problems discussed throughout the course of the thesis and that furthermore claims to account
for problems that will arise as the notion of the Semantic Web and the ongoing trend to ubiquity
steadily increases in terms of importance and global acceptance.

The primary part of the thesis discussed the mentioned focusing points and for each of them

elaborated a feasible solution. While the reasoning aspect was treated as a de-facto mandatory
functionality of the designed data access layer, versioning, annotation and security
(authentication and authorization) were considered optional and thus discussed separately. In the
following, each architectural design aspect is briefly summarized.

A data access layer needs to exhibit different transparency aspects. A discussion about the

concrete requirements revealed that adequate consideration of eight transparencies for distributed
systems is needed. It furthermore turned out, that aspects such as flexibility, openness and
scalability are as important and thus needed to be equally considered. In order to define the
underlying design concepts, the lifecycle of a typical NMR experiment was profoundly studied.
The result was the elaboration of three distinct problem fields. (i) The granularity of shareable
data reveals that sharing may take place on different abstraction levels. (ii) The frequency of

8.1 - Summary 8 - Conclusion

 - 104 -

publishing versus retrieving addresses performance related considerations in terms of imaginable
data processing concepts. (iii) The topology of data repositories highlights the notion for
distributed, self-contained services for persistent data storage.

In order for the system architecture to account for the mentioned aspects above, principles
such as modularity, information hiding, separation of concerns, pay as you go, and design by
contract turned out to be crucial. One of the major design aspects dealt with the modeling of data
repositories that may provide different functionalities in different situations and additionally may
be located on remote machines. Here, the decorator design pattern came in as a suitable and
handy approach. As far as reasoning functionalities are concerned, yet another key design
consideration was necessary. A thorough discussion about the inherent characteristics of
reasoning over OWL/RDF described data, revealed that it is not feasible to preliminarily collect
all relevant data from the corresponding repositories in order to subsequently start reasoning
upon them. The system architecture as a result decided to locate reasoner engines directly at their
corresponding data basis (thus at individual data repositories) and to provide an adequate
infrastructure which allows to use the former in a maximal transparent fashion. The required
transparency was achieved by introducing an additional indirection, which was represented by a
so-called reasoner context.

The elaboration of the concrete requirements for versioning in the context of NExT revealed
that the notion of a version has to account for two different aspects. First, a version is assigned to
a particular data entity in order to be able to refer to its individual modification history. In this
sense, any time an entity is modified; it is stored by a new version. Second, a version also is
assigned when a copy of an existing data entity is used to represent a variation to its original. The
underlying versioning concept accounts for the notion of a version in order to refer to the first
aspect and accounts for the notion of a variation in order to refer to the second aspect. While the
concept is simple and straightforward, it reveals one major problem. As different versions and/or
variations of a data entity are not necessarily stored in the same data repository but may be
distributed across the network, it is not always possible to infer the correct subsequent version
number. The thesis discusses two solutions that claim to overcome the mentioned deficiency.

The underlying concept that eventually claims to provide the system with a flexible and
scalable annotation capability is based on the notion of two separate views. While the first view
accounts for the primary data, the second view addresses the management of annotation or more
precisely generic metadata. In the data representation layer the OWL's capability for multiple
inheritance is applied in order to naturally account for the definition of the two separated views.
In the higher level where Java is assumed to be used as the primary programming language,
multiple inheritance is no longer possible and thus needs to be replaced by an adequate design
concept. The two views are defined as mutually depending decorators to the generic data entity
which is modeled as an Individual. The two major benefits that result from this design decision
are simplicity and transparency. The latter benefit leads to the fact that except for two localizable
components the system is not affected when support for metadata is optionally added.

Depending on the type of trust that is mutually anticipated between a client and a remote data
repository, different authentication and authorization concepts are adequate and feasible. The
thesis in particular elaborated four fundamental login procedures that each may be applied for a
distinct anticipating trust relation. In order for the elaborated security concept to best possibly

8.2 - Future Work 8 - Conclusion

 - 105 -

account for all four login procedures, it needed to focus on the strict separation of the notion of
identity, authentication and authorization. Another major design decision was encountered when
mechanisms concerned with establishing and maintaining secure connections were discussed.
The question was whether the architecture should go for either a connection-oriented (focusing
on hierarchical layers) or a token-based (focusing on separation of concerns) approach. For the
sake of openness and flexibility, the latter was chosen.

8.2. Future Work

Future work is mainly represented by improvements and regular extensions to the elaborated
system architecture. The most evident tasks are presented in the following. The order is arbitrary
and therefore does reflect neither the feasibility nor the importance of the relative aspects.

8.2.1. Web of Trust

A web of trust can successfully be provided by integrating the PGP concept that relies on
public key cryptography. Data entities could be encrypted in a similar way as is done with E-
Mail messages. As the system architecture prescribe that data entities be stored in OWL/RDF
format, the de facto standard RDF vocabulary WOT (Web of Trust ontology) [31] could thus be
integrated. In this sense, the Individual interface would need to be extended by an optional
decorator as analogously is done for versioning (chapter 6.2) or annotation (chapter 6.4).

8.2.2. Digital Rights Management

When we looked at the underlying design concepts in chapter 5, we – among other topics –
talked about authentication and the corresponding handling of data access rights. Because the
requirements only described primitive requirements, a traditional DAC mechanism could be
applied. However, if we wanted to extend the foreseen functionalities and provide a standard,
flexible and foremost generic data access control mechanism, we may want to integrate the
corresponding W3C standard Open Digital Rights Language (ODRL) [52] that claims to account
for any current and probably future rights management requirement. As the ODRL rights
definition is based on an XML application, we may preliminarily need to define a corresponding
OWL/RDF vocabulary. Although, such may represent a tedious task, it nevertheless is feasible.

8.2.3. Extensible and interoperable entity identification

By the notion of self-contained data repositories, the system architecture offers a flexible and
interoperable way to distribute data over the network. Due to the inherent lifecycle of a typical
NMR experiment, data entities not necessarily reside in the initial repository but may change its
location on a regular basis. Unique entity identification within the scope of the entire network is
crucial and needs to be appropriately accounted for. As the system architecture currently relies
onto the user to define a globally and all-time unique identification, such a control system is
totally missing. DOI (Digital Object Identifier) [53] is an ISO standard framework that accounts

8.2 - Future Work 8 - Conclusion

 - 106 -

for the mentioned deficiency by specifying a standard numbering syntax and a generic resolution
service. While it is obvious that the system architecture needs to be extended for some kind of an
appropriate control mechanism, it may – but does not have to – integrate the introduced ISO
standard.

8.2.4. Ontology translation mechanism

Different companies and institutions may specify individual and/or proprietary ontologies in
order to describe their specific application and/or problem domains. Situations where two
different ontologies do specify similar or even identical concepts are more than possible to occur.
In order for two such companies to share their data efficiently, an ontology translation
mechanism will be needed. In this sense, the system application could be extended to implement
the corresponding translation mechanism from Edutella [20, 21] that defines so-called wrappers
that are put atop of their agents. We already covered the Edutella's overall architecture when we
looked at related work to this thesis.

8.2.5. Common query language

A common standard query language will be required as soon as we want to query over
multiple data repositories and cannot assume that the repositories all provide the same query
languages. When we looked at the reasoning capability of the system architecture, we noticed
that reasoning over multiple repositories indeed is only possible if the repositories can agree upon
a common reasoner. With the notion of a common query language from which wrappers are able
to translate the query into the reasoner's individual query language, this limitation is no longer
anticipated. As a query usually results in an answer data set that is returned to the requestor, not
only the query language but also the data model eventually needs to be translated. As is with the
ontology translation, the system architecture again may want to make use of the promising
solution from the Edutella [20, 21] framework. Edutella defines both, a common query language
(ECQL) and a common data model (ECDM). Additionally, it built a first prototype that serves as
a proof-of-concept.

8.2.6. Repository workload balance

The system assumes that the number of data repositories is steadily augmented as data load
increases. The architecture however does not account for a corresponding workload balance
mechanism that can transparently move data between specified repositories in order to guarantee
that particular repositories be not overloaded. Obviously, a good place to implement such a
mechanism is at proxy repositories that act as composite repositories and transparently manage a
specified set of subordinate data repositories. Eventually, the system architecture could thus
define another specific decorator that then can be applied when adequate.

8.2.7. Triple store

The current reference implementation stores OWL/RDF data in regular files without
concentrating on aspects such as scalability, performance and the like. The implementation in

8.2 - Future Work 8 - Conclusion

 - 107 -

this respect only provides a simple solution that allows proving the architectural design. The
system architecture however foresees the integration of a third party triple store [54]. While the
corresponding interfaces are already defined, a concrete implementation is yet pending.

8.2.8. JXTA

As illustrated in chapter 2.7.1, data repositories could eventually be implemented as JXTA
services in order for the system to further improve its flexibility and interoperability. JXTA
represents a novel communication framework for peer-to-peer systems and – among many other
aspects – accounts for functionalities such as agent notification, agent grouping, agent discovery
and agent communication through arbitrary network firewalls. As far as communication between
proxies and their target data repositories is concerned (see chapter 6.1.4), JXTA could represent a
promising standard and open solution.

A.1 - NExT's process model in a nutshell Appendix A - NExT Application

 - 108 -

A. Appendix A - NExT Application

A.1. NExT's process model in a nutshell

From an abstract point of view, conducting an NMR project does not differ from any other
business workflow. Whatever task needs to be performed at a specific point in sequence can be
described as a process. NExT's process model defines three fundamental types of processes that
can be assigned to abstract hierarchical levels.

A ProcessPlan represents the root of the hierarchy. It defines a collection of Experiments and

the sequence in which these are to be performed. Experiments in this sense represent the second
hierarchy level. Each of them formally describes the workflow of an NMR project in terms of
their required tasks. The third (thus lowest level) characterizes the tasks themselves. A task that
recursively can be subdivided is modeled by a CompositeProcess. Respectively, a task that
represents the smallest conceivable unit is modeled by an AtomicProcess. The following figure
depicts the described process model as it is used for the NExT system.

Figure 43. NExT's process model

Apart from the above described process hierarchy, the process model introduces an additional

entity that is represented by the so-called Case. A Case essentially is wrapped around the
ProcessPlan and is able to record the workflow's concrete pathway during execution.
Additionally, it also keeps track of the state modifications that result from the sequential
execution of the inherent recursively contained processes. Once a project will have been
successfully completed, the Case is put into a Case Base [1] where it is used for future reasoning
purposes. A detailed discussion of the NExT process model can be found in [1].

A.2 - NExT's coarse-grained system architecture Appendix A - NExT Application

 - 109 -

A.2. NExT's coarse-grained system architecture

Figure 44. NExT coarse-grained system architecture [1]

B.1 - Token based authentication in single and multiple realms Appendix B – Used Technologies

 - 110 -

B. Appendix B – Used Technologies

B.1. Token based authentication in single and multiple realms

Kerberos [16] is a widely used authentication technology whose concept is based on session-
oriented service granting tickets that are being issued between a user and a so-called Ticket
Granting Server (TGS). The technology is widely used because it allows a client to negotiate
with its Ticket Granting Server without the need of transferring plain security tokens. Kerberos
hence does not require the establishment of secure connections between clients and servers [16].

The discussion herein focuses on the fundamental authentication procedure but does not look
at the specifics in terms of the higher conceptual components such as the notion of a Ticket and a
Ticket Granting Server. Readers interested in the detailed concept of Kerberos are referred to
appropriate literature [16].

Kerberos relies on the notion of security tokens that are established between communicating

actors. Due to this fact, authentication can only be provided within an established, well-defined
realm unless further effort is being made. Let us first discuss the notion of a realm and its
characteristics for a generic token-based authentication system. In the second part, we then look
at what specific solution Kerberos offers in order to avoid the mentioned limitations.

When different parties need to negotiate with one another but cannot trust their claimed

identity, they need to authenticate themselves against one another. A token based authentication
system pursues the notion of negotiated temporary passports that actors can show when
communicating with one another in order to avoid repetitive and burdensome authentication
processes. In this sense, a token is used as a bilateral passport.

The idea is to engage into a preliminary authentication phase where each actor negotiates a
bilateral token with its counterparts. Once a token is established by an appropriate authentication
procedure, it subsequently can be used between the two parties as long as they both accept the
token to be valid. An actor A, who shares a bilateral token with actor B, can safely communicate
by attaching the corresponding token to each message that is destined for actor B. So far so good.
However, the real question is how authentication between two untrusted actors can be established
in the first place.

Authentication can only be proved by pursuing adequate tests. The most common procedure

nowadays is the use secure passwords. In this case, an actor that requests a counterpart to be
authenticated asks for the counterpart's identification and corresponding password.
Authentication in this case succeeds if the provided information matches with a preliminary
stored pair of an identification representation and a corresponding password. As a result,
authentication can only be performed if the participants have previously shared their credentials
among one another.

As long as communication among actors is done in a hub-like fashion, where there is one
single server and an arbitrary number of clients, the preliminary proliferation and subsequent
maintenance of the clients' passwords (credentials) can feasibly be done. In such a constellation,
the server typically keeps a list of registered clients with their corresponding credentials.

B.1 - Token based authentication in single and multiple realms Appendix B – Used Technologies

 - 111 -

In an environment with multiple servers, the management of bilaterally accepted credentials is
no longer feasible. As a result, a third party actor is introduced to globally manage the credentials
of all the relevant actors. In such a constellation both, clients and servers, register themselves at
the central actor and fully trust in that functioning. The scope in which the third party actor
provides its services is what we referred to as a realm. We realize that the concept of temporary
passports inherently assumes a well-defined environment in which at least one actor is to be
trusted collectively. Kerberos assumes that the Ticket Granting Services is trusted by all
components and that tickets be accepted as artifacts that have the power to prove an actor's
claimed identity.

Note that this concept basically follows the procedure that we, as humans, use to deal with

authentication. If a person wants to pass the customs from one country to another, the customs
official does not call up some governmental office in order to prove our claimed identification.
The official instead requests the person to show his or her passport in order to prove his or her
identity. Also, note that the passport in this case exhibits the same rationale as we elaborated
above. This passport can only prove the identity as long as it will be accepted by the authorities.
The realm in terms of a personal passport is therefore defined by the set of accepting countries.

Kerberos offers a solution to avoid the discussed limitation that token-based authentication

systems inherently exhibit. The underlying idea is based on trusted delegation. Ticket Granting
Servers (TGS) [16] from different realms can be configured to trust one another. In this case,
they bilaterally accept certain types of their issued tickets and thereby gain the possibility to
authorize local clients to be able to access arbitrary cooperating TGS in different realms.

Let us look at the required sequence of actions that take place when two parties (client and/or
server) from different realms engage into a bilateral communication. Let us assume that a client
from realm A (clientA) needs to contact a server that is located in realm B (serverB). Following
steps in this situation are necessary. First, clientA authenticates at its local Ticket Granting Server
(TGSA) and requests a ticket that will be accepted by the Ticket Granting Server at realm B
(TGSB). Having received such a ticket, clientA is able to connect to the TGSB. In order to prove
its identity it does not engage into a corresponding authentication procedure but provides its
previously issued ticket. The TGSB examines the provided ticket and infers that it has been
established by a trusted (thus cooperating) TGS, namely the TGSA. Hence, the passport is
accepted and is able to prove clientA's identity. Because clientA intends to communicate with
serverB, but that server only accepts tickets issued by its local TGS (TGSB), our clientA needs to
call on TGSB in order for the latter to subsequently create an appropriate ticket; a so-called
Service Ticket (ST) [16]. Once clientA is in possession of a regular ST for a particular service at
serverB, it is able to communicate with the latter for the time of the ticket's validity. Note that due
to the fact that clientA receives a regular ST for the realm B, the targeted server (serverB) does not
become aware of the actual remote location of clientA. We realize that although the sequence of
action is bit of a pain, the underlying principle however is straightforward and well
comprehensible. Kerberos names the described mechanism Cross Realm [16]. Readers interested
in the details are referred to appropriate literature [16, 15].

B.2 - Digital certificates Appendix B – Used Technologies

 - 112 -

B.2. Digital certificates

A digital certificate [15] acts as an electronic credential and verifies that the person presenting
it is truly who she actually claims to be. In this respect, a certificate is similar to a passport. Both
establish an individual's identity, contain a unique number for identification purpose, and have a
recognizable issuing authority that verifies the credentials as authentic. In the case of a
certificate, a Certificate Authority (CA) [15] functions as the trusted, third party that issues the
certificate and verifies it as an authentic credential.

In contradiction to traditional authentication methods, digital certificates allow users to

communicate securely without having prior access to a shared secret key. The method is based on
two mathematically related keys. One key is globally proliferated and is referred to as the public
key. The second key is kept secret by the owner of the certificate and yet is referred to as the
private key [15]. The underlying concept foresees that a piece of information can be encrypted
with either the private or the public key. Once some data is encrypted, it however can only be
decrypted by the opposite key. If for example the owner encrypts a message with her secret key
and sends it over the network, any peer that receives the message is basically able to open and
read it. In order to do so, the receiver (i) request the sender's public key from a recognizable
certificate authority and (ii) opens (thus decrypts) the message with the received key. Due to the
fact that the message could be decrypted be the received public key, the sender implicitly was
authenticated. No other than the sender's private key must have been used to encrypt the message
in the first place. As long as the private key is kept secret and the CA is trustworthy, two
arbitrary clients can bilaterally authenticate one another without having to exchange secret tokens
in advance.

The main advantage of digital certificates in correspondence to other authentication methods

is its broad use potential and its scalability aspect [15]. First, because a certificate is based on a
private and a public key, a certificate not only can be used for user authentication but as well can
be used for data integrity and data privacy. Second, the use of digital certificates for
authentication purposes scales in terms of both, the number of users and the number of
applications. Once a user has been issued a certificate, that very certificate can be used for as
many applications as one might think of. With other words, once the required infrastructure for
public key cryptography is setup, it can serve for all current as well as future applications.

Obviously, there as well is one main disadvantage. Each client and each service needs to be

supplied with an individual certificate. However, the derived distribution and maintenance
process is difficult and cumbersome. Certificates rely on private keys whose security is crucial.
The concept indeed is only trustworthy as long as the private keys are not comprised. As a result,
any single private key needs to be treated with special care. Second, Certification Authorities
(CA) must be careful when issuing certificates. It is their responsibility to make sure that
certificates (i) are not issued to wrongful principals and (ii) are not used in an illegal or insincere
way over time. In summary, we reasonably conclude that issuing certificates is not possible
unless there is a considerable bureaucracy involved that though is cumbersome and probably also
rather expensive.

B.3 - PAM Appendix B – Used Technologies

 - 113 -

B.3. PAM

PAM (Pluggable Authentication Modules) [49] is a software library written in C programming
language and is primarily destined for UNIX systems. Its purpose is to offer a standardized API
for authentication, authorization and users management. While current implementations still are
exclusively available for UNIX-like systems such as (AIX, Solaris or Linux), the underlying
principle has been widely adopted for other platforms and/or programming languages. JAAS [48]
for example is the Java equivalent that is further explained in appendix B.4. In the following,
PAM is explained in term of its applied concept. Readers interested in particular implementations
or its concrete usage, are referred to appropriate literature [49].

B.3.1. PAM Architecture

The core component of the PAM framework is a twofold interface, which at the one hand is
used by applications in order to ask for suitable authentication modules that they can use as
generic delegators, and on the other hand, is used as a central coordinator for the plugin of
arbitrary authentication modules. While the former is called front-end and usually is referred to
as the PAM API, the latter is called back-end and referred to as PAM SPI (Service Provider
Interface). The simplified view of the architecture is given by the following figure.

Figure 45. PAM architecture [49]

The figure shows the relation between typically potential applications (ftp, telnet or login), the

twofold API and arbitrary authentication modules (UNIX, Kerberos, S/Key). When an
application calls the PAM API, it transparently loads the appropriate authentication module,
which is configured in the corresponding configuration file. Subsequently, any request from the
application is transparently forwarded to the module where it then is performed appropriately.
Analogously, corresponding operation results are transferred back to the initial requestor, which
is an arbitrary application. The SPI is used by the modules in order to be able to (i) get back to
the requestors by means of specific callbacks and (ii) to communicate with other modules if such
is required.

Clearly, the architecture achieves full transparency between the two parties (applications and

modules). As applications can rely onto the standard PAM API when they need to integrate
authentication functionalities, they need neither concern about particular authentication
procedures nor about concrete security aspects. On the other hand, a programmer team working
on a particular authentication module such as Kerberos or S/Key can safely abstract from

B.3 - PAM Appendix B – Used Technologies

 - 114 -

particular applications and their individual characteristics. Hence, they can concentrate on their
primary work and solely rely onto the standard SPI. A system administrator can use both,
applications and authentication modules independently from one another. For example, if a
particular business application lives over a long period of time (such is usually the case for
legacy systems) and the company eventually changes its global security strategy and for example
decided to switch from S/Key to Kerberos, the system administrator can leave the business
application untouched but only needs to adjust the corresponding configuration.

B.3.2. Module interfaces

Apart from the illustrated authentication functionality, PAM additionally offers support for
account, session and password management [49]. Hence, a pluggable module as depicted in
figure 45 does not necessarily need to offer authentication services but as well may particularly
be dedicated for one of the these additional aspects. PAM, as a result, defines four independent
interfaces that can be applied by modules when appropriate. The four interfaces are depicted in
the following table.

Interface Offered functionalities
Authentication
Management

Offers pam_authenticate() function to authenticate a user, and
pam_setcred() to set, refresh, or destroy a user's credential

Account
Management

Offers pam_acct_mgmt() function to check whether authenticated
users should receive access to their accounts in terms of expiration
and/or access hour restrictions.

Session
Management

Offers pam_open_session() and pam_close_session() functions for
session management and corresponding logging.

Password
Management

Offers pam_chauthtok() function to change a user's password

Table 8. PAM module interfaces

B.4 - JAAS Appendix B – Used Technologies

 - 115 -

B.4. JAAS

JAAS (Java Authentication and Authorization Service) [48] represents a set of APIs that
enables Java programs to efficiently and conveniently deal with authentication and authorization.
The architecture is primarily based on the standard PAM (Pluggable Authentication Module)
framework described in appendix B.3. In the following, we present an overview of the JAAS
architecture and reveal how standard authentication processes are being performed. Note that
several simplifications are made in order to be able to keep the discussion in an adequate bound.
Interested readers are referred to appropriate literature [48, 36].

B.4.1. JAAS architecture

The JAAS architecture strictly follows the underlying principle of the PAM framework.
Indeed, each component found in the PAM framework can directly be mapped onto a particular
component in the JAAS architecture. While PAM offers an API to generic applications such as
ftp, telnet or login, JAAS's equivalent is defined by the LoginContext interface that is destined to
be used by components of arbitrary applications that need to deal with authentication and/or
authorization aspects. PAM's SPI (Service Provider Interface) is represented by the LoginModule
interface and is applied to particular module implementations. Finally, the configuration
capability is addressed by the Config interface. An implementation thereof is prescribed to read a
similar configuration file as is used in the PAM framework. While the PAM configuration
references particular C modules such as pam_unix.so or pam_skey.so, the JAAS configuration
references Java classes that implement the LoginModule interface. The JAAS overall architecture
is depicted in figure 46a.

B.4.2. Subject, Principals and Credentials

Apart from the already introduced components LoginContext, Config, and LoginModule, which
each relate to an equivalent in the PAM framework, JAAS additionally defines a Subject which is
as important and which we will look at in the following.

The Subject represents the user and or the service application that eventually needs to be

authenticated. In the following, we use the expression agent in order to refer to a user and/or
service application respectively. Because an agent may have several identities that it uses for
different situations, the subject contains an arbitrary number of Principals. Each Principal thereby
represents a distinct identity. For example, if a Subject happens to represent a student "Alice
Bar", the Subject may hold two principles: "alice.bar", the login-name that she uses in order to
enter her mailbox, the intranet, etc., and "99-999-999", her unique student id.

A Subject furthermore can be assigned an arbitrary number of public and private Credentials.
Thereby, a Credential represents an arbitrary security related attribute. A Kerberos ticket or a
public key certificate (X.509, PGP, etc) are typical public credentials. A password or a private
key on the other hand are typical private credentials.

B.4 - JAAS Appendix B – Used Technologies

 - 116 -

B.4.3. Authentication process

When an application component (ApplComp) needs to authenticate an agent, it creates a
LoginContext by providing a realm and a CallbackHandler. The realm is a regular character string
and refers to a section in the configuration file where the individual security policy of the
ApplComp is specified. The CallbackHandler later is used by the LoginModule in order to
communicate with the ApplComp transparent fashion. Once the LoginContext is successfully
created and initialized, the ApplComp executes the provided login method and waits until the
method returns or a LoginException is thrown. In the former case, authentication succeeded and
the ApplComp can retrieve the authenticated Subject from the LoginContext. Note that at this
point the Subject holds the authenticated Principals as well as optional Credentials. In the latter
case, authentication failed and the ApplComp may eventually raise a similar exception or may
print an appropriate failure message.

When the login method is called, the LoginContext consults the Config component in order to
find out what LoginModule it has to use in this particular context. The LoginContext uses the
given realm in order to be able to refer to a concrete security policy. In the next step, the
LoginContext instantiates the appropriate LoginModule and provides it with a newly created
Subject as well as the CallbackHandler which it requested from the ApplComp in the first place.
The login action is then forwarded to the LoginModule that needs to perform the necessary
procedures in order to authenticate the agent. We assume that our LoginModule represents a
simple application that authenticates on the basis of a username and a password. As a result, the
LoginModule's first action is to request the agent's username and corresponding password. Easy to
guess, it uses the provided CallbackHandler and executes the handle method with appropriate
arguments. The handle method eventually returns a username and a password. If the validation
process succeeds, the LoginModule creates a Principal for the provided username and assigns it to
the provided Subject. As our module happens to be very simple, there are no Credentials to be
added. However, if for example the module represented an authentication facility that relies on
public key cryptography, it additionally created appropriate public and private Credentials and
assigned them to the Subject in order to provide the necessary certificate keys. After the Subject
is adequately updated, the login method returns the action flow back to the LoginContext. On the
other hand, if the validation process failed, the method answers with a LoginException.
Remember that the subsequent actions for both situations (success and failure) have already been
covered above and thus need not be repeated again. The discussed interactions are partially
illustrated in Figure 46b.

B.4 - JAAS Appendix B – Used Technologies

 - 117 -

Figure 46. JAAS architecture and overall class diagram

 List of Tables

 - 118 -

List of Tables

Table 1. Phases of a typical NMR project.. 13
Table 2. Edutella services... 23
Table 3. Different forms of transparency in a distributed system .. 34
Table 4. Similarity aspects ... 41
Table 5. Default saving scenarios... 51
Table 6. Reasoning characteristics for centralized and distributed method 52
Table 7. Trust relations between a client and a service .. 65
Table 8. PAM module interfaces.. 114

 List of Figures

 - 119 -

List of Figures

Figure 1. JXTA architecture... 21
Figure 2. OWL-S/UDDI Matchmaker architecture.. 26
Figure 3. Overall architecture... 30
Figure 4. Architecture of the Universal Access Provider ... 31
Figure 5. Architecture of the Universal Database .. 32
Figure 6. Team collaboration topology .. 38
Figure 7. Recursive team collaboration topology... 39
Figure 8. Versioning in the process model... 44
Figure 9. Extensible annotation concept .. 45
Figure 10. A repository component for three functionalities ... 48
Figure 11. Reasoning concept overview .. 55
Figure 12. Versions within a scope .. 56
Figure 13. Branches conflict version history.. 56
Figure 14. Duplicate (peer) versions .. 57
Figure 15. Definition of variations within a version and/or history path 58
Figure 16. Encoding a simple data entity ... 60
Figure 17. Alternative encoding of a simple data entity... 60
Figure 18. The binding base class of the OWL-S API ... 61
Figure 19. Multiple views hide the primary objects from the OWS-S API.............................. 62
Figure 20 Using multiple inheritance to assign metadata to genetic data entities 64
Figure 21. Different authentication concepts ... 66
Figure 22. Transparent login at remote data repository.. 67
Figure 23. Hierarchical layer based concept .. 69
Figure 24. A concept of separated concerns... 70
Figure 25. Sequence diagram: Security token based connection ... 70
Figure 26. Overview of the OWLAccess system architecture ... 71
Figure 27. Data entities and its corresponding DAOs.. 75
Figure 28. A data repository with different functionalities .. 76
Figure 29. Distribution of data repositories.. 80
Figure 30. Sequence diagram: From the client to the data repository 81
Figure 31. The main components in charge of the reasoning functionality 83
Figure 32. Reasoning on a data repository ... 85
Figure 33. Version and Variation as subclasses of Individual.. 87
Figure 34. Primarydata and Metadata as extensions of the generic Individual 89
Figure 35. Main components for authentication and authorization.. 91
Figure 36. Establishing a session between a client and a remote repository 92
Figure 37. Permission on various granularities .. 93
Figure 38. Transparent authentication and session negotiation.. 95
Figure 39. Use of underlying implementations .. 99
Figure 40. Implementation of the pellet reasoner.. 100
Figure 41. Management of queued query jobs by the Reasoner.. 101
Figure 42. Versioning and annotation functionality in one go ... 102
Figure 43. NExT's process model .. 108
Figure 44. NExT coarse-grained system architecture .. 109

 List of Figures

 - 120 -

Figure 45. PAM architecture.. 113
Figure 46. JAAS architecture and overall class diagram.. 117

 References

 - 121 -

References

[1] Michael Dänzer: NEXT – The NMR EXperiment Toolbox, diploma thesis,
Department of Informatics, University of Zurich, Switzerland, 2005

[2] Website of the OWL-S API: http://mindswap.org/2004/owl-s/api – last time
validated on March 22, 2006

[3] Website of the Mindswap (Maryland Information and Network Dynamics Lab
Semantic Web Agents Project) group: http://www.mindswap.org/ – last time
validated on March 21, 2006

[4] Official W3C OWL website: http://www.w3.org/2004/OWL/ – last time validated
on March 21, 2006

[5] Official OWL-S language specification: http://www.daml.org/services/owl-s/ – last
time validated on March 21, 2006

[6] Website of the Jena OWL API: http://jena.sourceforge.net/ – last time validated on
March 21, 2006

[7] Official W3C RDF website: http://w3.org/RDF/ – last time validated on March 22,
2006

[8] G. Antoniou, Grigoris Antoniou, Frank Harmelen: A Semantic Web Primer, MIT
Press, 2004

[9] James Hendler, Tim Berners-Lee, Eric Miller: Integrating Applications on the
Semantic Web, Journal of the Institute of Electrical Engineers of Japan, Vol.
122(10), 2002, pages 676-680

[10] Official Semantic Web website: http://www.w3.org/2001/sw/ – last time validated
on March 22, 2006

[11] Andrew S. Tanenbaum, Maarten van Steen: Distributed Systems: Principles and
Paradigms: International Edition, Prentice Hall, 2003

[12] Jennifer Vesperman, Essential CVS: First Edition, O'Reilly, 2003

[13] Official website of the Dublin Core Metadata Initiative: http://dublincore.org – last
time validated on March 22, 2006

[14] Frank Manola, Eric Miller: RDF Primer, 2004, http://w3.org/RDF/rdf-primer/ – last
time validated on March 02, 2006

[15] Andrew S. Tanenbaum: Computer Networks: Fourth Edition, Prentice Hall, 2003

[16] Jason Garman: Kerberos: The Definitive Guide: Cross-Platform Authentication &
Single-Sign-On, O'Reilly, 2003

[17] Official website of the JXTA project: http://www.jxta.org – last time validated on
March 22, 2006

[18] Schahram Dustdar, Harald Gall, Manfred Hauswirth: Software Architekturen für
verteilte Systeme, Springer, 2003

 References

 - 122 -

[19] Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou, Carl
Haywook, Jean-Christophe Hugly, Eric Pouyoul, Bill Yeager: Project JXTA 2.0
Super-Peer Virtual Network, http://www.jxta.org/project/www/docs/JXTA2.0
protocols1.pdf – last time validated on March 22, 2006

[20] Official website of the Edutella project: http://edutella.jxta.org – last time validated
on March 22, 2006

[21] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek,
Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, Tore Risch: Edutella: A P2P
Networking Infrastructure Based on RDF, http://edutella.jxta.org/reports/edutella-
whitepaper.pdf – last time validated on March 22, 2006

[22] Website of the Matchmaker project hosted at the Intelligent Software Agents Lab,
Carnegie Mellon University, PA: http://www.cs.cmu.edu/~softagents/daml_
Mmaker/matchmaker.html – last time validated on March 22, 2006

[23] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara: Semantic
Matching of Web Services Capabilities, http://www.daml.org/services/owl-s/pub-
archive/ISWC2002-Matchmaker.pdf – last time validated on March 22, 2006

[24] Michael Wooldrigde: An Introduction to MultiAgent Systems, John Wiley & Sons,
2004

[25] M. M. Lehman, L. A. Belady: Program Evolution: Process of Software Change,
Academic Press, London, 1985

[26] Fabio Casati, Harumi Kuno, Vijay Machiraju, Gustavo Alonso: Web Services:
Concepts, Architectures and Applications, Springer, 2003

[27] Official website of the UDDI project: http://www.uddi.org – last time validated on
March 22, 2006

[28] Alfarez Abdul-Rahman, The PGP Trust Model, 1996, http://www.cs.ucl.ac.uk/
staff/F.AbdulRahman/docs/pgptrust.html – last time validated on March 22, 2006

[29] Simson Garfinkel: PGP: Pretty Good Privacy, O'Reilly & Associates, 1994

[30] Official website of the Semantic Web Interest Group: http://www.w3.org/2001/sw/
interest/ – last time validated on March 22, 2006

[31] Web or Trust RDF Vocabulary: http://xmlns.com/wot/0.1/ – last time validated on
March 22, 2006

[32] Shari Lawrence Pfleeger, Joanne M. Atlee: Software Engineering: Theory and
Practice: Second Edition, Prentice Hall, 2001

[33] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, Neveen Srinivasan:
Automated Discovery, Interaction and Composition of Semantic Web services,
2003, http://www.cs.cmu.edu/~softagents/papers/websemantics2003.pdf – last time
validated on March 22, 2006

[34] Official website of VCard and VCalendar hosted by the Internet Mail Consortium
(IMC): http://www.imc.org/pdi/ – last time validated on March 22, 2006

[35] Reference description, version 1.1, of the Dublin Core Metadata Element Set:
http://dublincore.org/documents/dces/ – last time validated on March 22, 2006

 References

 - 123 -

[36] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, Roland Schemers: User
Authentication and Authorization in the Java Platform, published in the
proceedings of the 15th annual computer security applications conference, Phoenix,
AZ, 1999, http://java.sun.com/security/jaas/doc/acsac.html – last time validated on
March 22, 2006

[37] Martin Glinz: Software Engineering I, University of Zurich, 2003

[38] Michael K. Smith, Chris Welty, Deborah L. McGuinness: OWL Web Ontology
Language Guide, 2004, http://www.w3.org/TR/owl-guide/ – last time validated on
March 21, 2006

[39] Bill Joy, Guy Steele, Gilard Bracha, James Gosling: The Java Language
Specification: Third Edition, Addison Wesley, 2005

[40] Erich Gamma. Richard Helm. Ralph Johnson, John Vlissides: Design Patterns:
Elements of Reusable Design, Addison-Wesley, 1995

[41] Elliotte Rusty Harold, W. Scott Means: XML in a nutshell: A Desktop Quick
Reference: Third Edition, O'Reilly, 2004

[42] Grady Booch, James Rumbaugh, Ivar Jacobson: UML2 and the Unified Process:
Practical Object-Oriented Analysis and Design: Second Edition, Addison-Wesley,
2005

[43] John Cupri, Dan Malks, Deepak Alur: Core J2EE Patterns: Best Practices and
Design Strategies, Prentice Hall, 2001

[44] Dominik Gruntz, Stephan Murer: Component Software: Beyond Object-Oriented
Programming: Second Edition, Addison Wesley, 2002

[45] William Stallings: Operating Systems: Fifth Edition, Prentice Hall, 2004

[46] Official website of the Friend of a Friend (FOAF) project: http://www.foaf-
project.org – last time validated on March 21, 2006

[47] Serge Demeyer, Stephane Ducasse, Oscar Nierstrasz: Object-Oriented
Reengineering Patterns, Morgan Kaufman Publishers, CA, 2003

[48] Sun's official JAAS website: http://java.sun.com/products/jaas/ – last time validated
on March 22, 2006

[49] Vipin Samar, Charlie Lai: Making Login Services Independent of Authentication
Technologies, http://java.sun.com/security/jaas/doc/pam.html – last time validated
on March 22, 2006

[50] National Computer Security Center: A Guide to understanding Discretionary
Access Control, 1987, http://www.radium.ncsc.mil/tpep/library/rainbow/CSC-TG-
003.html – last time validated on March 22, 2006

[51] Website of Pellet: http://www.mindswap.org/2003/pellet/ – last time validated on
March 21, 2006

[52] Renato Ianella: Open Digital Rights Language, Version 1.1, 2002,
http://www.w3.org/TR/odrl/ – last time validated on March 22, 2006

 References

 - 124 -

[53] International DOI Foundation: DOI Handbook, Version 4.2.0, 2005,
doi:10.1000/186, http://www.doi.org/handbook_2000/DOIHandbook-v4-2.pdf –
last time validated on March 22, 2006

[54] Yeh Ching-Long, Lin Ruei-Feng: Design and Implementation of an RDF Triple
Store, 2002, http://datf.iis.sinica.edu.tw/Papers/2002datfpapers/sessionB/B-3.pdf –
last time validated on March 22, 2006

	1. Introduction
	1.1. Goal of the Thesis
	1.2. Target Readers
	2. Motivation
	2.1. The experiment's lifecycle
	2.2. Management of distributed data
	2.3. The Semantic Web and reasoning over distributed resources
	2.4. Versioning
	2.5. Annotation and OWL
	2.6. Authentication and authorization in a distributed environment
	2.7. Related Work
	3. Vision
	3.1. System architecture
	3.2. Terminals and SCCs
	3.3. Universal Database
	3.4. Conclusion
	4. Requirements
	4.1. Openness
	4.2. Degree of transparency
	4.3. Management of distributed data
	4.4. Reasoning over distributed data
	4.5. Versioning
	4.6. Annotation
	4.7. Authentication and Authorization
	5. Design Concepts
	5.1. Management of distributed data
	5.2. Reasoning over distributed data
	5.3. Versioning
	5.4. Annotation
	5.5. Authentication and Authorization
	6. System Architecture
	6.1. Management of distributed data
	6.2. Reasoning over distributed data
	6.3. Versioning
	6.4. Annotation
	6.5. Authentication and Authorization
	7. Implementation
	7.1. Factories and singletons
	7.2. Underlying implementations
	7.3. Reasoning with Pellet and OWL-S API
	7.4. Annotation and versioning in one go
	8. Conclusion
	8.1. Summary
	8.2. Future Work
	A. Appendix A - NExT Application
	A.1. NExT's process model in a nutshell
	A.2. NExT's coarse-grained system architecture
	B. Appendix B - Used Technologies
	B.1. Token based authentication in single and multiple realms
	B.2. Digital certificates
	B.3. PAM
	B.4. JAAS
	List of Tables
	List of Figures
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

