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Abstract

Computing fixpoints of increasing sequences of sets is an important problem
in many areas of computer science including algorithmic verification, pro-
gram analysis, inductive inference and systems biology. For most problems,
the fixpoint computation does not terminate, so an approximate solution has
to be found. Widening is a technique to compute an over-approximation of
an infinite, increasing sequence of sets. In this thesis, we present a framework
for constructing widening operators for fixpoint computations over sets rep-
resented as automata. Many widening operators for automata that appear
in the literature are instances of our framework. Moreover, two inductive
inference algorithms in the literature naturally fall out as instances of this
framework. We identify general criteria that characterise the effect of widen-
ing and use these criteria to study various properties of widening operators.
We also provide several new results and generalise existing results about
widening operators and inductive inference algorithms. Finally, we show
how a widening operator defined in our framework can be combined with
algorithms for automated verification of infinite state systems and provide
a heuristic for generating counterexamples if verification fails.



Zusammenfassung

Die Bestimmng des kleinsten Fixpunktes einer aufsteigender Folge von Men-
gen ist ein zentrales Problem in vielen Teilgebieten der Informatik, wie zum
Beispiel in der algorithmischen Verifikation, der Programm-Analyse, induk-
tiver Inferenz und der Bioinformatik. Oft ist eine genaue Bestimmung des
Fixpunkts nicht möglich; eine Überapproximation ist jedoch meist ausre-
ichend. Widening ist eine Methode die zur Berechnung solcher Überapproxi-
mationen eingesetzt wird. Diese Arbeit präsentiert einen Framework zur
Konstruktion von Widening Operatoren zur Berechnung solcher Überapproxi-
mationen, die als Automaten dargestellt werden können. Unser Framework
stellt eine Verallgemeinerung vieler in der einschlägigen Literatur verwende-
ten Widening-Operatoren dar. Insbesondere deckt unsere Kategorisierung
auch zwei auf induktiver Inferenz basierende Algorithmen ab. Wir definieren
allgemeine Kriterien die den Effekt von Widening erfassen und wenden diese
auf Widening Operatoren an. Wir präsentieren sowohl neue als auch Gen-
eralisierungen bereits vorhanderer Ergebnisse für Widening Operatoren und
Algorithmen basierend auf induktiver Inferenz. Wir zeigen wie mit Hilfe un-
seres Frameworks erstellte Operatoren mit Algorithmen zur automatischen
Verifikation von Systemen mit unendlichen Zustandsräumen kombiniert wer-
den können und präsentieren Heuristiken zur Berechnung von Gegenbeispie-
len für den Fall dass die Verifikation fehlschlägt.
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Chapter 1

Introduction

Fixpoint computations are ubiquitous in computer science. Almost any
non-trivial task involves repeating a sequence of steps and can be viewed
as a fixpoint computation. In this thesis, we develop techniques to over-
approximate the fixpoint of an infinite, increasing sequence of sets rep-
resented as automata. Such sequences arise naturally in debugging and
analysis of programs, computational learning theory, systems biology and
algorithmic verification.

Such a bombastic claim cannot be allowed to pass unjustified. Let us
provide a few examples, starting with program analysis. Points-to analysis is
an important program analysis problem. The first step in this analysis is to
identify the set of variables, called the points-to set, pointing to a memory
location of interest when the program is initialised. In each subsequent
analysis step, new variables that may point to the target memory location
are added to the points-to set. The solution is computed if the points-to set
is not further changed by any execution of the program.

What about computational learning theory? Gold [1967], states in his
seminal paper:“I wish to construct a precise model for the intuitive notion
‘able to speak a language’ in order to be able to investigate theoreti-
cally how it can be achieved artificially”. The model proposed consists of
a learning algorithm used by a learner who is provided with an infinite se-
quence of examples from a formal language. The learner uses the algorithm
to infer the rules of the language from the examples. The learning process
ends if the learner infers no new rules after a certain point and is successful
if the learner has inferred the rules of the language.

Systems biology, very broadly defined, is the study of biological models.
A biological model is typically a set of equations. Two questions can be
asked of such a model. First, if the model is started from a biologically
plausible configuration, does it evolve to exhibit experimentally observed
behaviour? Second, is the model sufficient to characterise all possible initial
configurations from which a biological system might evolve to exhibit a
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certain behaviour? The first question is usually answered by performing
computer simulations of the model. An approach to answer the second
question is to construct and analyse a discrete and continuous abstraction of
the mathematical model. The analysis begins with a target set representing
the target behaviour. In each step, configurations from which the abstract
model may evolve to a configuration in the target set are added to the target
set. The analysis terminates if no such configurations exist. If the set of
possible initial configurations is contained in the final target set, we obtain
an affirmative answer to the second question.

Algorithmic verification involves providing a guarantee that a mathe-
matically specified property is satisfied by a model of a computer system.
A typical system is an electronic controller, which receives input from the
environment and produces control signals. A property might assert that a
certain sequence of control signals is never produced. The system is analysed
by computing the set of initial states of the controller and the sequence of
states reached in each time step for all possible inputs. The system satisfies
the property if the set of reachable states that has been computed does not
change and the forbidden sequence of signals is never produced.

Each problem we described requires computing the fixpoint of an in-
creasing sequence of sets. If the sequence is infinite, the analysis procedures
described never terminate. A possible solution is to devise a procedure to
compute the fixpoint by examining a finite sequence of sets. In general, the
fixpoint may not be computable, so an approximation of the fixpoint has to
be found. Our goal is to compute such approximate solutions for algorithmic
verification problems. As a guarantee of correctness must be provided and a
malfunction in the system may have dire consequences (both financial and
social), it is acceptable to say that a system does not satisfy a property when
it does. However, it not acceptable to say that the system satisfies a prop-
erty if it does not. In short, an over-approximation of the fixpoint suffices
but an under-approximation does not. In this thesis, we devise techniques
for computing such over-approximations.

1.1 Widening and Automata

The problems with precisely computing the fixpoint of an infinite sequence
are computability and representation. That is, the fixpoint may not be
computable and may not have an efficient or finite representation. We ad-
dress the computability problem by finding an over-approximation of the
fixpoint and the representation problem by using automata to encode sets
in a fixpoint computation.

Abstract interpretation [Cousot and Cousot 1977; Cousot 1978] is a the-
ory for approximating set operations. If a fixpoint computation with sets
requires infinite steps, Cousot and Cousot [1977] define an extrapolation
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technique called widening to accelerate convergence to the fixpoint and if
possible enforce termination of the computation. A widening operator is
used to detect and generalise an increment between sets in a fixpoint com-
putation. The extrapolation introduced by a widening step is usually larger
than the difference between two sets in the fixpoint computation, so con-
vergence to the fixpoint is accelerated. If the set obtained after a widening
step is an over-approximation of the fixpoint, the computation also termi-
nates. As the over-approximation may be too imprecise, a technique called
narrowing is used to improve the precision of the solution.

Defining widening operators for fixpoint computations with arbitrary
sets is insufficient for practical purposes as complicated data structures may
be required to represent the sets and set theoretic operations on these data
structures may be computationally expensive. Our solution is to choose au-
tomata as a representation. As data structures, automata are simple but
can encode infinite sets. They are closed under Boolean operations such
as union, intersection and complement as well as concatenation, homomor-
phisms and many language-theoretic operations. Automata admit canonical
representations and there exist libraries implementing many standard oper-
ations on automata [Klarlund et al. 2002; LASH ].

Automata also have a theoretical appeal. Many interesting mathematical
structures can be encoded as automata [Khoussainov and Nerode 1995; Blu-
mensath and Grädel 2000]. Examples include, Presburger arithmetic [Büchi
1960; Cobham 1969; Semenov 1977; Bruyère et al. 1994], linear arithmetic
over the integers and reals [Boigelot et al. 2005], temporal logics [Vardi
and Wolper 1994], and the second order monadic theory of one succes-
sor [Büchi 1960;1962]. Algorithmic verification of finite state systems using
temporal or modal logic specifications has been formalised in terms of au-
tomata [Vardi and Wolper 1986; Kupferman et al. 2000] and implemented
in several tools [Bardin et al. 2003; Yavuz-Kahveci et al. 2005; Holzmann
2004].

Applying widening techniques to accelerate automata based verification
is not new. Lesens et al. [1997] develop a model checking procedure for
networks of automata. Widening is used to accelerate the computation of
network invariants. Bouajjani et al. [2000] suggest a simple heuristic for
widening sets represented by regular expressions for acceleration of their
model checking algorithms. Touili [2001] generalises this heuristic to a larger
class of regular expressions. Boigelot et al. [2003;2004] use simulation rela-
tions to detect increments between automata and generalise the increment.
They apply this method to extrapolate the language of automata encoding
arithmetic but remark that such a technique is applicable to any automata
based representation. Bartzis and Bultan [2004] present a widening operator
for automata encoding Presburger arithmetic. All these widening techniques
use some criteria to compare states in a sequence of automata and detect an
increment. The extrapolation step involves merging states in an automaton,
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which has the effect of increasing the number of loops and final states in the
automaton. As a result, the language accepted increases. In this thesis, we
show that barring the widening operator of [Touili 2001], all other widen-
ing operators mentioned above are instances of the widening framework we
develop.

Cousot and Cousot [1992c] observe that in comparison to other tech-
niques defined in abstract interpretation, “the design of widenings and nar-
rowings is often thought of to be more difficult since it appears as a heuristic
to cope with induction.” Over a decade later, Halbwachs [2006] remarked
that “widening is still often considered as a kind of dirty heuristic in the
model-checking community.” We see two possible reasons for this status
quo. Either widening does not provide significant benefits over existing
techniques, or designing widening operators is a cumbersome and intimi-
dating task that is best avoided. Indeed, the widening operators presented
in [Boigelot et al. 2003] and [Bartzis and Bultan 2004] incorporate many
seemingly complicated steps. Though the authors provide formal results
about and demonstrate the practical utility of their widening operators, a
rigorous analysis of the effect of widening is difficult.

1.2 Contents of this Thesis

The aim of this thesis is ambitious. We wish to dispel some misconceptions
about widening, at least in the context of automata, by showing that it
is possible to construct and rigorously analyse simple yet useful widening
operators.

We construct widening operators from relations between states of au-
tomata using only simple set theoretic operations. A relation is used to
detect an increment between or a pattern in the languages accepted by two
automata in a fixpoint computation. The states of the larger automaton
are partitioned using this relation and merged using the standard quotient
operation for automata.

There are three questions we study for each widening operator. (1) Does
it extrapolate the language of the automaton? (2) Does the fixpoint com-
putation with widening terminate? (3) Under what conditions can the pre-
cise fixpoint be computed? We provide general conditions that aid answer-
ing questions about extrapolation and precision and provide examples if a
computation with widening does not terminate. We analyse eight different
widening operators and show that five of them correspond to widening oper-
ators or inductive inference algorithms existing in the literature. Following
the analysis of widening operators, we show how our widening framework
can be combined with model checking algorithms.

This thesis is organised as follows: In Chapter 2 we present the rele-
vant background material. We believe this thesis is self contained and only
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assumes familiarity with set theory. In Chapter 3, we present and study
a framework for widening with automata. In Sections 3.1 and 3.2 we pro-
vide a technical introduction to widening and formalise the connection to
computational learning theory. In Section 3.3, we provide an algorithm
for constructing widening operators and in Section 3.4, we study the so-
lutions that can be computed using widening. In Chapter 4 we introduce
and analyse different widening operators. In particular, the widening op-
erators of [Bartzis and Bultan 2004] and [Boigelot et al. 2003] are studied
in Sections 4.4 and 4.5 respectively. We present the use of widening with
model checking in Chapter 5 and conclude with a discussion of open research
problems in Chapter 6.
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Chapter 2

Background

In this chapter, we fix our notation and review the relevant concepts of
formal language theory and abstract interpretation. For introductory expo-
sitions to these topics, see [Hopcroft and Ullman 1979] for formal languages
and automata, [Thomas 1997] for automata over infinite words, [Davey and
Priestley 1990] for lattice theory and [Cousot 2005] for abstract interpreta-
tion.

We use standard set theoretic notation. The difference between two
sets P and Q, denoted P\Q, is the set of elements in P that are not in
Q. The powerset of Q is denoted ℘(Q). The set of natural numbers is
denoted N. Given a relation R, R−1 denotes the inverse relation, R ◦ R
denotes relational composition,R= the reflexive closure andR∗ the reflexive,
transitive closure of R. Given an equivalence relation ∼ on a set S, [s]∼
denotes the equivalence class of s ∈ S. Partitions and equivalence relations
are equivalent notions. The block of a partition π of S containing s ∈ S is
denoted [s]π. A partition π′ is said to refine π, denoted π′ � π iff every block
of π is a union of blocks of π′. In this case, we also say that π is coarser
than π′ or that π′ is finer than π. The trivial partition of a set S is the set
of blocks {s} where s ∈ S.

2.1 Regular Languages and Automata on Finite
Words

An alphabet Σ is a nonempty finite set of symbols. A word w is a sequence
of symbols. The length of a finite word w is denoted |w|. The set Σ∗ denotes
all words of finite length constructed from symbols in Σ. The empty word
λ is the unique word of length 0 in Σ∗. The concatenation of two words u
and v is denoted u · v or just uv. A prefix of a word w is a possibly empty
sequence of leading symbols in w and a suffix, a possibly empty sequence of
trailing symbols.

A language L ⊆ Σ∗ is a set of words. Given a language, we define
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the prefixes of L as Pre(L) = {u ∈ Σ∗| for some v, uv ∈ L} and suffixes
of L as Suff (L) = {v ∈ Σ∗| for some u, uv ∈ L}. The concatenation of
two languages L and L′, is the language LL′ = {uv|u ∈ L, v ∈ L′}. If
L = {u} or L′ = {v} , we write uL′ or Lv. for the concatenation of the
two languages. The syntactic right congruence for languages is called the
Nerode equivalence.

Definition 1 (Nerode Equivalence). The Nerode equivalence, ∼L⊆ Σ∗×
Σ∗, is a relation between words such that u ∼L v iff for all w ∈ Σ∗, uw ∈
L⇔ vw ∈ L.

A language L is regular iff ∼L is of finite index. By the Myhill-Nerode
theorem, the Nerode equivalence is the coarsest right congruent equivalence
relation of finite index for a regular language [Myhill 1957; Nerode 1958].
The class of regular languages is closed under the Boolean operators union,
intersection and complement, the concatenation and Kleene star operators,
homomorphisms and inverse homomorphisms and left and right-quotient.
Another characterisation of the regular languages provided by the Myhill-
Nerode theorem is that they are accepted by finite automata.

Definition 2 (Finite Automaton). A finite automaton A is a tuple
(Q,Σ, δ, q0, F ) where Q is a finite set of states, Σ is a finite input alpha-
bet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states and
δ : Q× Σ→ ℘(Q) is the transition function.

A finite automaton as defined above is also called a nondeterministic
finite automaton (NFA). An automaton A is a deterministic finite automaton
(DFA) if for all states q ∈ Q and symbols a ∈ Σ, |δ(q, a)| ≤ 1. Note that
every DFA is an NFA. An automaton is strictly nondeterministic if it is not
deterministic.

A transition is a tuple (q, a, q′) such that q′ ∈ δ(q, a). The function
δ∗ : Q × Σ∗ → ℘(Q) is the extension of the transition relation to words
such that δ∗(q, λ) = {q} and for all words w ∈ Σ and symbols a ∈ Σ,
δ∗(q, wa) =

⋃
q′∈δ∗(q,w) δ(q′, a). If it is clear that an automaton is a DFA, by

abuse of notation, δ is written as a function from Q × Σ to Q and δ∗ as a
function from Q× Σ∗ to Q.

A word w ∈ Σ∗ is accepted by an automaton iff δ∗(q0, w) ∩ F 6= ∅. The
language accepted by a finite automaton A, denoted L(A), is the set of all
words accepted by A. The set of prefixes of a state q, Pre(q) = {w ∈ Σ∗|q ∈
δ∗(w, q0)}, is the set of words by which q is reachable from the initial state.
The set of suffixes of a state q, Suff (q) = {w ∈ Σ∗|δ∗(w, q) ∩ F 6= ∅}, is
the set of words by which a final state is reachable from q. By definition,
L(A) = Suff (q0). The functions Pre and Suff are naturally extended to sets
of states as Pre(Q) =

⋃
q∈Q Pre(q) and Suff (Q) =

⋃
q∈Q Suff (q).

An automaton is minimal iff no two states accept the same language.
That is, for all any two states q and q′, Suff (q) 6= Suff (q′). An automaton
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is complete if for all states q and symbols a ∈ Σ, δ(q, a) 6= ∅. An automaton
is trim iff for every state q, there exists w ∈ Σ∗ such that δ∗(q, w) ∩ F 6= ∅.

Given a partition of the states of an automaton, a quotient automaton
can be defined.

Definition 3 (Quotient Automaton). Let A = (Q,Σ, δ, q0, F ) be a finite
automaton and π be a partition of Q. The quotient automaton A/π =
(Q′,Σ, δ′, [q0]π, F ′) is defined as follows: Q′ = {[q]π|q ∈ Q}, F ′ = {[q]π|q ∈
F}, δ′ : Q′×Σ→ ℘(Q′) is the function δ′([q]π, a) =

⋃
p∈[q]{[q′]π|q′ ∈ δ(p, a)}.

The quotient automaton is constructed by merging states of A, preserv-
ing transitions between states and marking partitions containing a final state
as final. Note that the quotient of a DFA is not necessarily a DFA. Given
two partitions π and π′ of the states of an automaton A, if π � π′ then
L(A/π) ⊆ L(A/π′). Given an equivalence relation ≡ on the states of A, the
quotient automaton A/ ≡ is defined in terms of the partition induced by ≡.

Let π be the partition of a regular language L induced by the Nerode
equivalence. The canonical automaton for L, AL = (Q,Σ, δ, q0, F ) is defined
as follows: Q = π, F = {[w]π|w ∈ L}, q0 = [λ]π and δ([w]π, a) = {[wa]π}.
The canonical automaton for a regular language L is the unique minimal
and deterministic automaton accepting L.

2.2 Automata on Infinite Words

An infinite word or ω-word α over an alphabet Σ is a mapping α : N → Σ.
We denote the set of ω-words over the alphabet Σ by Σω. The concatenation
of a word u ∈ Σ∗ and an ω-word β ∈ Σω is denoted uβ. Concatenation is not
defined between ω-words. Every α ∈ Σω has infinitely many factorisations
of the form uβ, where u ∈ Σ∗ is a finite prefix and β ∈ Σω is an infinite
suffix. An ω-word, which admits a factorisation of the form uvω is ultimately
periodic, where u is the prefix and v is the period of the factorisation. Unlike
words of finite length, being a suffix does not define an order relation over
Σω. For example, the ω-words (ab)ω and (ba)ω are suffixes of each other.

An ω-language L ⊆ Σω is a set of ω-words. Given an ω-language L,
the prefixes of L are defined as the set Pre(L) = {u ∈ Σ∗| for some β ∈
Σω, uβ ∈ L} and the infinite suffixes of L are the set Suff ω(L) = {β ∈
Σω| for some u ∈ Σ∗, uβ ∈ L}. There exists a syntactic right congruence for
ω-languages, analogous to the Nerode equivalence [Maler and Staiger 1997].

Definition 4. The syntactic right congruence for ω-words ≈L⊆ Σ∗ ×Σ∗ is
a relation such that for u, v ∈ Σ∗ and L ⊆ Σω, u ≈L u iff for all ω-words
β ∈ Σω, uβ ∈ L ⇔ vβ ∈ L.

An ω-language L with ≈L of finite index [Maler and Staiger 1997] is
called finite state [Staiger 1983]. In contrast to the regular languages, every
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finite state ω-language may not be accepted by an automaton isomorphic
to its syntactic right congruence. We restrict our attention to ω-languages
accepted by minimal automata isomorphic to their syntactic right congru-
ence, called weak ω-languages. The automata accepting these languages are
weak deterministic Büchi automata (WDBA).

A Büchi automaton is a finite automaton as in Definition 2. The notion
of determinism, nondeterminism and the notation for Büchi automata are
identical to those for finite automata. Consider a Büchi automaton B =
(Q,Σ, δ, q0, F ). A state q ∈ Q is recurrent iff there exists w ∈ Σ∗ such that
q ∈ δ∗(q, w). A state that is not recurrent is transient. A run ρ of B on an
ω-word α is a mapping ρ : N → Q such that ρ(0) = q0 and for all i ≥ 0,
ρ(i + 1) ∈ δ(ρ(i), α(i)). By definition, a run starts in the initial state and
respects the transition function of the automaton.

Let Inf (ρ) be the set of states that occur infinitely often in a run ρ of A.
By abuse of notation, let Inf (α, B) be the states that occur infinitely often
in a run of B on α. A run ρ is accepting iff Inf (ρ) ∩ F 6= ∅. An ω-word α
is accepted by a Büchi automaton iff the automaton has an accepting run
on α. The language Lω(B) of a Büchi automaton B is the set of ω-words
accepted by B. The ω-regular languages are the set of languages accepted
by nondeterministic Büchi automata.

A co-Büchi automaton is defined as a finite automaton. A run ρ of a co-
Büchi automaton A is accepting iff Inf (ρ)∩F = ∅. Words and the language
accepted by a co-Büchi automaton are similarly defined.

Definition 5 (Weak Büchi automaton). A Büchi automaton B = (Q,Σ,
δ, q0, F ) is weak iff there exists a partition of Q into disjoint subsets Q1, . . . , Qn

such that:

• for each Qi, either Qi ⊆ F or Qi ∩ F = ∅.

• there exists a partial order≤ on the sets Q1, . . . , Qn such that if q ∈ Qi,
q′ ∈ Qj and q′ ∈ δ(q, a) for some a ∈ Σ, then Qj ≤ Qi.

A strongly connected component of an automaton with states Q is a
set S ⊆ Q satisfying that for all q, q′ ∈ S, there exists w ∈ Σ∗ such that
q′ ∈ δ∗(q, w) and there exists no S′ ⊃ S satisfying this property. Note that
each Qi in Definition 5 has to be a union of strongly connected components.
Thus, the strongly connected components of a weak Büchi automaton either
contain only final states or non-final states.

A weak deterministic Büchi automaton (WDBA) is a Büchi automaton
that is both weak and deterministic. We also say weak deterministic automa-
ton for a weak deterministic Büchi automaton. As we do not refer to finite
automata as weak, this nomenclature is unambiguous. Weak deterministic
automata have many appealing properties. They can be determinised using
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the breakpoint construction, which can be implemented in a manner sim-
ilar to the powerset construction for finite automata [Miyano and Hayashi
1984; Kupferman and Vardi 2001]. Further, a WDBA B admits a mini-
mal normal form, which is isomorphic to the syntactic right congruence for
Lω(B) [Maler and Staiger 1997]. Using a preprocessing step suggested by
Löding [2001], WDBA can be minimized using the classical algorithm for
finite automata [Hopcroft 1971].

The quotient of a Büchi automaton with respect to a partition π is
defined as before. It also holds that for any Büchi automaton B and partition
π, Lω(B) ⊆ Lω(B/π) [Etessami et al. 2005].

2.3 Lattice Theory and Abstract Interpretation

A partial order v on a set S is a binary relation that is reflexive, antisym-
metric and transitive. A preorder � is a binary relation that is reflexive and
transitive. A poset 〈S,v〉 is a set S equipped with a partial order. We write
x w y for y v x and x @ y for x v y ∧ x 6= y. A chain of a poset 〈S,v〉 is a
subset X of S such that for all x, y ∈ X, x v y or y v x. For example, the
set N is a chain of the poset 〈N,≤〉. A poset 〈S,v〉 satisfies the ascending
chain condition iff any infinite sequence x0 ≤ x1 ≤ . . . of elements of S is
not strictly increasing. The duality principle is that if a statement is true of
all posets, the dual of the statement is also true of for all posets.

An upper bound of a set X ⊆ S is an element u ∈ S such that for all
x ∈ X, x v u. The least upper bound of X, denoted lub(X) is an element of
S such that lub(X) v u for all upper bounds u of X. The element lub(X)
may not exist, but if it does, is unique though it need not be an element of
X. A lower bound of a set X ⊆ S is an element l ∈ S such that l v x for
all x ∈ X. The greatest lower bound, glb(X) satisfies that l v glb(X) for all
lower bounds l of X. For the poset 〈N,≤〉, glb(N) = 0 and lub(N) does not
exist.

Definition 6 (Lattice). A lattice 〈S,v, lub, glb〉 is a poset 〈S,v〉 such
that any two elements x, y ∈ S have a least upper bound lub({x, y}) and a
greatest lower bound glb({x, y}).

A lattice is complete if any subset X of S has a least upper bound in
S. A complete lattice has a least element called bottom, denoted ⊥, and a
greatest element, called top, denoted >. All finite lattices are complete. If
a lattice has a bottom and satisfies the ascending chain condition, it is a
complete lattice.

A fixpoint of an operator f : S → S on a poset 〈S,v〉 is an element x ∈ S
such that f(x) = x. The set of fixpoints of f is the set Fixpoints(f) = {x ∈
S|f(x) = x}. The set of pre-fixpoints is pre-Fixpoints(f) = {x ∈ S|x v
f(x)} and the dual set of post-fixpoints is post-Fixpoints(f) = {x ∈ S|x w
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f(x)}. The set Fixpoints(f) = pre-Fixpoints(f) ∩ post-Fixpoints(f). The
least fixpoint of f , denoted lfp(f) is the least element of Fixpoints(f) and the
greatest fixpoint of f , denoted gfp(f) is the greatest element of Fixpoints(f).

Abstract interpretation [Cousot and Cousot 1977; Cousot 1978] provides
a lattice theoretic framework for over-approximating set theoretic operations
and was originally conceived for computing approximate solutions to pro-
gram analysis problems. LetVal be the set of all possible values of a program
variable and ℘(Val) the powerset of Val . Most program analysis problems
involve computing the elements of ℘(Val) associated with some program lo-
cations. In particular, the solution is usually the fixpoint of an equation
involving the program’s variables. However, the fixpoint computation may
not terminate, so an approximate solution must be constructed.

The concrete domain for the analysis is the set ℘(Val) of possible values,
which forms a lattice with set inclusion, ⊆, as its partial order. For any two
sets A,B ∈ ℘(Val), A∪B is the least upper bound and A∩B is the greatest
lower bound. Approximations are expressed using an abstract domain Abs,
which also forms a lattice. The abstract domain is connected to ℘(Val) by
an abstraction function abs : ℘(Val) → Abs and its dual, a concretisation
function conc : Abs → ℘(Val). The abstraction is sound if the set of values
computed by an analysis in the abstract domain includes the set of values
computed by an analysis in the concrete domain. This correspondence is
formalised using a Galois connection.

Definition 7 (Galois Connection). Given two posets 〈C,vC〉 and 〈A,vA

〉, a Galois connection is given by an abstraction function abs : C → A and
concretisation function conc : A→ C such that: ∀c ∈ C,∀a ∈ A : abs(c) vA

a⇔ c vC conc(a).

An element c ∈ C of the concrete domain has a minimal over-approxim-
ation if there exists an element a ∈ A of the abstract domain such that
c vC conc(a) and there exists no a′ ∈ A such that a′ @A a and c vC conc(a′).
Minimal over-approximations may not always exist, but should be preferred
to other over-approximations when they do. A best over-approximation is a
minimal over-approximation that is unique. The best over-approximation of
c ∈ C is the greatest lower bound of the set of abstract over-approximations
of c.

A choice of two methods exists to accelerate a fixpoint computation in
the abstract domain. If a finite abstract domain is used, the abstract com-
putation converges in finite time to an abstract fixpoint, which is guaranteed
to exist. The alternative is to use an infinite abstract domain and define
widening operators to accelerate convergence to an over-approximation of
the fixpoint and enforce termination of a fixpoint computation. As succes-
sive applications of a widening operator result in imprecision, a narrowing
operator is used to improve precision. For any given program, a finite ab-
stract domain that provides the same precision as an infinite abstract domain
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with a widening operator can be found. However, for a family of programs,
there may be no single finite domain, which provides the same precision as
an infinite domain with a widening operator [Cousot and Cousot 1992c]. We
use the definition of widening in [Cousot and Cousot 1977], which is suffi-
cient for accelerating convergence and enforcing termination of a fixpoint
computation. This definition is weaker than the widely used one of [Cousot
and Cousot 1977;1992a], which is required when widening is additionally
used to over-approximate least upper bounds.

Definition 8 (Widening). A widening operator on an abstract domain
〈A,v〉 is a partial function 5 : ℘(A) 9 A satisfying two properties:

Convergence Let S be an element of ℘(A). If 5(S) is defined, then for
any s ∈ S, s v 5(S).

Termination For every increasing chain y0 v y1 v . . ., the increasing chain
defined as y′0 = y0, y′i+1 = 5({yj |0 ≤ j ≤ i}) stabilises after a finite
number of terms.

The first property ensures that a computation with widening converges
in the limit to an over-approximation of the least fixpoint of the computa-
tion. The second property ensures that successive application of a widening
operator enforces termination. The imprecision introduced by widening is
reduced by using narrowing. Once again, we use the weaker definition of nar-
rowing in [Cousot and Cousot 1992b] than the more popular one of [Cousot
and Cousot 1977], which is required when narrowing is used to refine an
arbitrary over-approximation.

Definition 9 (Narrowing). A narrowing operator on an abstract domain
〈A,v〉 is a partial function 4 : ℘(A) 9 A satisfying two properties:

Convergence Let S be an element of ℘(A). If 4(S) is defined, then glb(S)
exists and there exists s ∈ S such that glb(S) v 4(S) v s.

Termination For every decreasing chain y0 w y1 . . ., the decreasing chain
defined as y′0 = y0, y′i+1 = 4({y′j |0 ≤ j ≤ i}) stabilises after a finite
number of terms.

A narrowing operator is applied to a post-fixpoint and by the first prop-
erty, results in a more precise post-fixpoint. In the limit, a computation with
narrowing converges to a post-fixpoint. If the second property is satisfied,
the computation with narrowing is terminates.

We emphasise that widening and narrowing are not dual concepts [Cousot
and Cousot 1992b]. A widening operator as defined above is used to over-
approximate the fixpoint of an increasing sequence. A narrowing operator is
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used to over-approximate the limit of a decreasing sequence thereby ensuring
that an unknown fixpoint is not overshot. The dual of a widening operator
5, is a dual widening operator 5 that is used to accelerate convergence of a
decreasing fixpoint computation to an under-approximation of the greatest
fixpoint [Cousot 1978].

Definition 10 (Dual Widening). A dual widening operator on an ab-
stract domain 〈A,v〉 is a partial function 5 : ℘(A) 9 A satisfying two
properties:

Convergence Let S be an element of ℘(A). If 5(S) is defined, then for
any s ∈ S,5(S) v s.

Termination For every decreasing chain y0 w y1 w . . ., the decreasing
chain defined as y′0 = y0, y′i+1 = 5({y′j |0 ≤ j ≤ i}) stabilises after a
finite number of terms.

Dual widening, like widening introduces imprecision. A dual narrowing
operator is used to improve the precision of the under-approximation. A dual
narrowing widening operator is used to compute an under-approximation of
the limit of an increasing sequence.

Definition 11 (Dual Narrowing). A dual narrowing operator on an ab-
stract domain 〈A,v〉 is a partial function 4 : ℘(A) 9 A satisfying two
properties:

Convergence Let S be an element of ℘(A). If 4(S) is defined, then lub(S)
exists and there exists s ∈ S such that s w 4(S) w lub(S).

Termination For every increasing chain y0 w y1 . . ., the increasing chain
defined as y′0 = y0, y′i+1 = 4({y′j |0 ≤ j ≤ i}) stabilises after a finite
number of terms.

As we use the term fixpoint computation frequently, we say computa-
tion for fixpoint computation and computation with widening for a fixpoint
computation with widening.
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Chapter 3

A Framework for Widening
with Automata

Our concern is over-approximating fixpoint computations involving sets en-
coded as regular or weak ω-regular languages and represented by finite au-
tomata or weak deterministic Büchi automata. In this chapter, we introduce
and analyse a framework for widening such fixpoint computations. In Sec-
tion 3.1 we describe in detail the class of fixpoint computations that we
consider. The language accepted by a finite automaton or WDBA is extrap-
olated by merging states in the automaton. Our use and subsequent analysis
of state merging techniques is influenced by algorithms for learning regular
languages. We formalise the connection between fixpoint computations and
computational learning theory in Section 3.2. We present a widening frame-
work in Section 3.3 and analyse the solutions that can be computed within
this framework in Section 3.4.

3.1 Fixpoint Computations and Automata

Consider a system that manipulates a set of variables. The domain of in-
terest D is the set of all possible valuations of these variables. The initial
values of the variables are described by a set S0 ⊆ D and the evolution of
the system by a transition function T : ℘(D) → ℘(D). The possible states
of the system after the first transition are T (S0). The set of states reached
after k > 0 steps is Sk = Sk−1 ∪ T (Sk−1). The sequence S0 ⊆ S1 ⊆ . . . is an
increasing sequence, which converges to the set Sl such that Sl ⊆ Sl−1, where
l ∈ N ∪ {∞}. Sl is the least fixpoint of T starting from S0 and represents
the set of reachable states of the system. An alternative approach is to begin
with the set P0 = D of all possible values. The set of states reached after
k > 0 steps is Pk = Pk−1 ∩ T (Pk−1). The sequence P0 ⊇ P1 ⊇ . . . is a de-
creasing sequence, which converges to the set Pg such that Pg ⊇ Pg−1, where
g ∈ N ∪ {∞}. Pg is the greatest fixpoint of T and is an over-approximation
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of Sl.
Computing a fixpoint of a transition function is an important step for

many verification and static analysis problems. However, two main problems
arise: (1) The sets of states Si or Pi and in particular Sl and Pg may not
have an efficient or finite representation. (2) Neither the least fixpoint nor
the greatest fixpoint computation may terminate in finite time. We address
the first problem by using automata to represent over-approximations of sets
of states and the second problem by using widening.

Figure 3.1 illustrates the effect of widening. A least fixpoint computa-
tion begins from set S0. The increasing sequence is computed by repeated
application of the transition function. Convergence to a fixpoint is acceler-
ated using widening by introducing an increment greater than what would
be achieved by a single application of the transition function. Termination
of the least fixpoint computation is enforced by extrapolating an element of
the sequence to a post-fixpoint Sp such that Sp ⊇ Pg where Pg is the greatest
fixpoint of T . The precision of the over-approximation is improved using
narrowing to compute a value between the least fixpoint of the computation
Sl and the over-approximation Sp.

Similarly, a greatest fixpoint computation begins from a set P0 and pro-
ceeds as indicated. A dual widening operator (not shown) is used to accel-
erate this computation by introducing a large decrement. Termination is
enforced by extrapolating an element of the sequence to a pre-fixpoint Pp

such that Pp ⊆ Sl. A dual narrowing operator is used to compute a value
between Pp and the greatest fixpoint Pg.

Let us return to the issue of representation. We say a set has a regu-
lar representation if it can be encoded as a regular language. We focus on
fixpoint computations over structures that can be represented as finite au-
tomata or weak deterministic Büchi automata. Consider a transition func-
tion T , and a set of initial states S0. If finite automata are used as a
representation, we make the following assumptions:

1. The set of initial states, S0, is represented by a regular language L0.

2. Given a set Si represented by a regular language Li, the set T =(Si) is
also representable by a regular language Li+1.

If weak deterministic Büchi automata are used as a representation, we
assume that the initial states and the states reached after each transition
have weak ω-regular representations. Note that the two assumptions imply
that the set of states reached after finitely many steps also have a regular
representation. However, we do not assume that the fixpoints of T are
regular or weak ω-regular. In fact, there exist transition functions that
satisfy these assumptions and have non-regular fixpoints.
Example 1. Consider a system with one integer valued variable x. The
initial value of x is 1. The value of x after k steps is k2. We encode the
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Figure 3.1: Over-approximating fixpoint computations with widening

value of x as a word over the alphabet Σ = {a}. A positive integer n is
encoded as an and 0 is encoded as λ. The initial state of this system is
represented by the language {a}, which is regular. The set of states of the
system after k steps is represented by the language {a, a4, . . . , ak2}. The
set of states reached after finitely many states is of finite cardinality and
hence, has a regular representation. However, the fixpoint of this sequence
is the language {ak2 |k ≥ 1}, which is not regular [Hopcroft and Ullman
1979, Example 3.2].

Widening is an extrapolation technique. A regular language is extrap-
olated by adding words to the language such that the language remains
regular. We define widening operators that are used to partition the states
of a finite automaton and merge states within the same partition. Merging
states may increase the number of words accepted by an automaton and
hence the language as well. This approach is directly applicable to weak
deterministic Büchi automata as well, though we may have to perform a
check to ensure that the automaton obtained by merging states is weak.

Our use and analysis of state merging techniques is influenced by algo-
rithms for learning regular languages. We briefly review the learning theory
models related to our problem.
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3.2 Widening in Computational Learning Theory

Language identification in the limit or inductive inference, introduced by
Gold [1967], is the problem of inferring a formal language from a sequence
of examples, also called data. The examples may consist of words which are
in the language, called positive examples, and words which are not, called
negative examples. The data is complete if every word is eventually classified
as being a positive or negative example. An inductive inference procedure
is supplied with a sequence of examples from a language L and has to make
a series of guesses or hypotheses H0,H1, . . . where Hj ⊆ Σ∗ such that there
exists some k ≥ 0 with Hi+1 = Hi for all i ≥ k. The procedure correctly
infers a language L if the limit of the sequence of hypotheses is L. Note
that the inference procedure only receives examples as input and cannot
determine the correctness of a hypothesis as the examples may or may not
conflict with the current conjecture. Inference of regular languages or finite
automata is called regular inference.

Inductive inference is a passive process. In contrast, formal language
learning, is an active process. A learner is provided with access to an oracle
or a teacher and has to learn a formal language L ⊆ Σ∗ called the target
language. An oracle is a machine, which answers restricted queries about the
target language. If an oracle is provided, the learner updates the current
hypothesis using answers to queries. Let L be the target language. We
mention a few types of queries the learner can make and the answers that
the oracle may provide. See [Angluin 1987b] for a complete survey.

• Membership. The input is a word w ∈ Σ∗. The answer is yes if w ∈ L
and no otherwise.

• Equivalence. The input is a language Hi ⊆ Σ∗. The answer is yes
if Hi = L and no if Hi 6= L. If the answer is no, either a positive
example w ∈ L\Hi or a negative example w′ ∈ Hi\L is returned.

• Subset. The input is a language Hi ⊆ Σ∗. The answer is yes if Hi ⊆ L
and no if Hi * L. If the answer is no, a word w ∈ Hi\L is returned.

• Superset. The input is a language Hi ⊆ Σ∗. The answer is yes if
Hi ⊇ L and no if Hi + L. If the answer is no, a word w ∈ L\Hi is
returned.

Over-approximating the least-fixpoint of an increasing sequence is a vari-
ation of learning with superset queries using only positive examples. The
target language L is a regular over-approximation of the least fixpoint. The
interaction between the learner and the oracle is illustrated in Figure 3.2.
The learner’s initial guess is the language H0 encoding the initial states of
the system. At step i, the learner makes a query to the oracle with the cur-
rent guess Hi. If some predefined criteria, Criteria({H0, . . . ,Hi}), on the
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Learner
H0 ← initial state
i← 0
repeat

if Criteria({H0, . . . ,Hi}) then
Hguess ←5(Hi)

else
Hguess ← Hi

end
〈ans,Hi+1〉 ← Oracle(Hguess)
i← i + 1

until ans = Yes

Oracle(query)
F ← query∪T (query)
if F ⊆ query then

ans← Yes
else

ans← No
end
return 〈ans, F 〉

Figure 3.2: Widening as learning with superset queries

history of guesses are met, the learner applies a learning algorithm to gen-
eralise the current guess. We use a widening operator instead of a learning
algorithm. The current guess is updated with the result of the query. This
process continues until the oracle returns Yes. The oracle accepts a query as
input and returns an answer, either Yes or No, and feedback F . The oracle
contains a transition relation T and returns No if the query is a pre-fixpoint
of T . The possibly infinite sequence of sets in a fixpoint computation is
the sequence of guesses that the learner makes. Similarly, computing an
under-approximation of the greatest-fixpoint can be viewed as learning with
subset queries and only negative examples.

The learning process we sketched is also related to inductive inference.
As the oracle only returns positive examples, there is no way to determine
if words have incorrectly been added to the language. Hence, an inference
procedure that correctly identifies a class of regular languages from positive
data can be used to design a widening operator that precisely computes a
class of fixpoints. Similarly, any algorithm for learning a class of regular lan-
guages using superset queries can also be used to design widening operators
that precisely compute a fixpoint. In addition, results about the conditions
that must be satisfied for a type of inference procedure or learning algorithm
to produce a correct result provide us with similar conditions that must be
satisfied for the application of a widening operator.

We highlight three important differences between computing a regular
over-approximation of the least fixpoint and regular inference or learning
with superset queries: (1) In an inference or learning process, a single word
is provided as input at each step. In a fixpoint computation, a possibly
infinite set of words may be provided as input. As a result, it may be
more difficult to identify a pattern in the given input sequence. (2) In
regular inference and learning, the target language is regular and must be
precisely computed. In a fixpoint computation, the target language may
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not be regular, but a non-trivial over-approximation suffices. We say non-
trivial, because the language Σ∗ is an over-approximation of every fixpoint.
(3) Regular inference and learning algorithms may assume some properties
about the data. For example, an algorithm might include the assumption
that all words of length n from the target language appear before words of
length n + 1 in the learning process. The data in our case is produced by
a combination of a transition function and initial states, both of which are
arbitrary. Therefore, we may not make any such assumptions.

Let us examine some useful results in regular inference and learning with
queries. Gold [1967] proved that any set of languages containing all the finite
languages and at least one infinite language cannot be learnt from positive
data alone. This result applies to many interesting classes of languages, in
particular the regular languages. However, it is not the case that no inter-
esting languages can be identified from positive data. Angluin [1980b] char-
acterised the set of languages that can be inferred from positive data alone
and provided inference algorithms for subclasses of the regular languages
called pattern languages [Angluin 1980a] and reversible languages [Angluin
1982]. A pattern is a concatenation of variable and constant symbols such
as 1xx0. The language of a pattern is the set of words that can be obtained
by substituting variables in the pattern by a sequence of constant symbols.
The words in the language of the pattern 1xx0 include 110100 and 100000
but not 000 or 100. We now describe the class of k-reversible languages. Let
k be a non-negative integer and L a regular language. L is k-reversible iff
whenever u1vw ∈ L and u2vw ∈ L for some u1, u2, v, w ∈ Σ∗ with |v| = k,
it holds that for every z ∈ Σ∗, u1vz ∈ L ⇔ u2vz ∈ L. An example of a
zero-reversible language is the set of words over the alphabet {0, 1} that
contain an even number of 0’s and 1’s. Angluin’s algorithm for inference of
k-reversible languages only uses comparisons followed by state merging op-
erations and provides us with a widening operator for this class of languages.
Other regular inference algorithms for subclasses of regular languages that
use only state merging operations also provide starting points for designing
widening operators [Bierman and Feldman 1972; Miclet 1980].

Angluin [1978] and Gold [1978] independently showed that the problem
of finding a deterministic automaton of minimum size that is compatible
with two sets S+ and S− of positive and negative examples is NP-hard.
Despite being intractable, the problem has a useful structure. If A is a
prefix tree automaton accepting S+, every automaton compatible with the
sets S+ and S− can be obtained by merging states in A. In addition, if π1

and π2 are two partitions of the states of A such that π1 � π2, then A/π2

can be obtained by merging states in the automaton A/π1. Thus, if A/π1

accepts a negative example S−, so will A/π2. These results provide insights
for our widening framework. A widening operator can be used to precisely
compute a fixpoint A∞ from an automaton A only if A∞ is isomorphic to
A/π for some partition π. If there are two different widening operators 51
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and52 that induce the partitions π1 and π2 of the states of an automaton A
such that π1 � π2, any extrapolation introduced by π1 is also introduced by
π2. Conversely, if π1 introduces too much imprecision, so does π2. Angluin
and Smith [1983] discuss other techniques and applications in their survey
and Murphy [1996] provides a survey of regular inference algorithms.

In contrast to regular inference, algorithms for learning with superset
queries have received less attention. Angluin [1987b] provided an algorithm
for learning pattern languages with superset queries. Angluin [1987a] showed
that it is possible to learn any regular language using membership and equiv-
alence queries if both positive and negative examples are available. We keep
this in mind as we can obtain both positive and negative examples by com-
bining least and greatest fixpoint computations.

The ω-regular languages have also received little attention. Maler and
Pnueli [1995] extended Angluin’s [1987a] algorithm for learning regular lan-
guages for learning weak deterministic Büchi automata using membership
and equivalence queries. Saoudi and Yokomori [1994] provide an algorithm
for learning two subclasses of ω-regular languages and Higuera and Janodet
[2001] consider the problem of learning ω-regular languages using only fi-
nite prefixes. In Section 3.4 we characterise the set of weak deterministic
Büchi automata computable within our widening framework using positive
ω-examples as defined in [Maler and Pnueli 1995].

3.3 Widening for Fixpoint Computations with Au-
tomata

Let us examine fixpoint computations using automata. Let A be the set of
finite automata, A0 ∈ A be an automaton accepting words encoding the set
of initial states and T : A → A be the transition function. The sequence
A0, A1, . . . , Ak with L(Ai+1) = L(Ai) ∪ L(T (Ai)) for i ≥ 0 is an increasing
sequence in a fixpoint computation. We use widening to accelerate the
convergence of a fixpoint computation, to enforce termination, and to find
regular approximations of non-regular fixpoints.

We present a framework for the design and application of widening op-
erators. Let U be a universe of binary relations between two sets of states Q
and Q′ such that for all relations R ∈ U , R ⊆ Q×Q′. Let Ai and Aj be two
automata with j > i and let Qi and Qj denote the states of these automata.
We use a set S ⊆ U of binary relations to detect repeated patterns in and
increments between Ai and Aj . The relations in S and the automaton Ai

are used to construct an equivalence relation ≡Ai
S ⊆ Qj ×Qj that partitions

the states of Aj . The automaton Aj is called the widening candidate and
the widened automaton is the quotient Aj/ ≡Ai

S . The set S is called a widen-
ing seed and the equivalence relation ≡Ai

S , a widening equivalence. As the
relation ≡Ai

S may differ based on the choice of Ai, this automaton is called
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Fixpoint Computation With Widening(T , A0)1

Input: Transition function T , Initial automaton A0

Data: Universe of binary relations U

begin2

i← 13

AO ← A04

repeat5

Ai ← AO ∪ T (AO)6

S ← Select Seed({A0, . . . , Ai})7

M ← Select Parameter({A0, . . . , Ai},S)8

≡i← Construct Equivalence(M,Ai,S)9

AO ← Ai/ ≡i10

i← i + 111

until L(Ai) ⊆ L(Ai−1)12

end13

Algorithm 1: Fixpoint computation with widening

the widening parameter. We denote the widening parameter as M to reduce
visual clutter. To summarise, a widening seed and a widening parameter
are used to construct a widening equivalence that partitions the states of
an automaton called the widening candidate. A widened automaton is the
quotient of an automaton with respect to a widening equivalence.

A scheme for computing least fixpoints using widening is codified in Al-
gorithm 1. The algorithm takes the transition function and an automaton
accepting an encoding of the set of initial states as input. The algorithm
contains the universe of relations U . Let AO denote the widened automaton.
At each step i ∈ N, a heuristic Select Seed is used to examine the history
of the computation, {A0, . . . , Ai}, and select a widening seed S. A heuristic
Select Parameter is used to select a widening parameter M . The widen-
ing seed and parameter are used to construct an equivalence relation ≡i that
is used for widening. This process continues until an over-approximation of
the least-fixpoint is reached.

Our task is now clear. We have to specify all details that are left ab-
stract in this algorithm. We need to identify relations in the universe U
and possible widening seeds. We say identify as opposed to define because
a vast number of relations between the states of automata exist and can be
used directly. Given a set of widening seeds, we need to define heuristics to
select a widening seed and parameter. The guiding principle behind widen-
ing is to extrapolate at the cost of precision. A widening seed is chosen by
examining the history of the computation and deciding how much to ex-
trapolate. Recall that we use widening seeds to detect patterns between a
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Construct Equivalence (M , Ai, S)1

Input : A widening seed S ⊆ U
Output: A widening equivalence ≡S

begin2

forall Ri ∈ S do3

Compute Ri between M and Ai4

end5

RO ← ∅6

forall Ri,Rj ∈ S do7

RO ← RO ∪Ri ◦ R−1
j8

end9

≡S← R∗O10

return ≡M
S11

end12

Algorithm 2: Construct a widening equivalence
from a widening seed

pair of automata. The pattern detected varies with the automata chosen,
hence we require a heuristic, Select Parameter, to select an appropriate
widening parameter. Further, we require procedures to construct different
equivalence relations and compute the quotient automaton.

We define Algorithm 2 for constructing an equivalence relation from a
widening seed. The input to the algorithm is a widening seed S ⊆ U . In the
loop between lines 4 and 6, a symmetric relation of the form RO ⊆ Q′ ×Q′

is constructed using relations Ri,Rj ⊆ Q × Q′ in S. Note that RO ranges
over a different pair of states from the relations R ∈ S. The equivalence
relation ≡S is the reflexive, transitive closure of RO. We use the following
lemma to prove the correctness of the algorithm.

Lemma 1. Given two relations R1,R2 ⊆ Q1 ×Q2, the relation R = (R2 ◦
R−1

1 ) ∪ (R1 ◦ R−1
2 ) is symmetric.

Proof. Consider 〈t, t′〉 ∈ R. If t = t′, we are done. If t 6= t′, there are two
cases.

〈t, t′〉 ∈ R2 ◦ R−1
1 ⇒ ∃r : 〈r, t〉 ∈ R1 ∧ 〈r, t′〉 ∈ R2 [definition of R2 ◦ R−1

1 ]

⇒ 〈t′, t〉 ∈ R1 ◦ R−1
2 [definition of R1 ◦ R−1

2 ]
⇒ 〈t′, t〉 ∈ R [definition of R]

The case 〈t, t′〉 ∈ R1 ◦ R−1
2 is similar.

Theorem 1. Construct Equivalence(M,Ai,S) returns an equivalence
relation.

22



Proof. We need to show that R∗O is an equivalence relation. R∗O is reflex-
ive and transitive by definition. We show that Rk+1

O is symmetric for any
k ≥ 0 by induction over k. R0

O is the identity relation and is symmetric.
Consider 〈t, t′〉 ∈ RO ◦ Rk

O. For the induction hypothesis, assume that Rk
O

is symmetric. Let 〈t, tk〉 ∈ Rk
O and 〈tk, t′〉 ∈ RO. By the induction hypoth-

esis, 〈tk, t〉 ∈ Rk
O. Observe that RO =

⋃
Ri,Rj∈S(Rj ◦ R−1

i ) ∪ (Ri ◦ R−1
j ).

By Lemma 1, (Rj ◦ R−1
i ) ∪ (Ri ◦ R−1

j ) is symmetric, whereby, 〈t′, tk〉 and
〈tk, t′〉 ∈ (Rj ◦R−1

i ) ∪ (Ri ◦R−1
j ) for some Ri,Rj ∈ S. Hence, 〈tk, t′〉 ∈ RO

and 〈t′, t〉 ∈ Rk
O ◦ RO. By the associativity of relational composition,

Rk
O ◦ RO = RO ◦ Rk

O = Rk+1
O .

A typical least fixpoint computation without widening is an instance of
Algorithm 1. To see this, let S⊥ = ∅ be a widening seed that is always
returned by the heuristic Select Seed. At step i, the heuristic Select
Parameter returns Ai−1. The algorithm Construct Equivalence com-
putes the reflexive, transitive closure of S⊥ and returns the identity relation.
Given these specific heuristics, lines 5-12 of Algorithm 1 reduce to:

begin
i← 1
repeat

Ai ← Ai−1 ∪ T (Ai−1)
i← i + 1

until L(Ai) ⊆ L(Ai−1)
end

The widening seed S⊥ introduces no over-approximation. A complemen-
tary widening seed is S> = {Q×Q′}. Construct Equivalence(M,Ai,S>)
returns an equivalence relation, which at each step i in Algorithm 1, relates
all states of Ai provided the state set of the widening parameter M is non-
empty. The widening equivalence has index 1 and the widened automaton
has only one state.

3.4 The Space of Solutions for Widening

The extrapolations introduced by different widening seeds form a spectrum
between the two extremes defined by S⊥ and S>. In this section, we char-
acterise the solutions that can be computed within our widening framework
and show that state based widening operators are extremely sensitive to the
structure of an automaton.

3.4.1 Regular Languages

Let Reg denote the set of regular languages over the alphabet Σ. When
equipped with the partial order ⊆, we have the lattice of regular languages
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〈Reg ,⊆,∪,∩〉. For any two languages L1, L2 ∈ Reg , the least upper bound
is L1 ∪ L2 and the greatest lower bound is L1 ∩ L2. The bottom is the
empty language ∅ and the top is the language Σ∗. We make the following
observations about this lattice:

Remark 1. Every language L ⊆ Σ∗ has an over-approximation in Reg .

Remark 2. Every regular language has a best approximation in Reg .

Remark 3. The lattice 〈Reg ,⊆,∪,∩〉 is not complete.

Remark 4. Every non-regular language has no minimal over-approximation
in Reg .

For Remarks 1 and 2, observe that every language is over-approximated
by Σ∗ and that every regular language is best over-approximated by itself.
Recall that every subset of elements of a complete lattice must have a least
upper bound in the lattice. We show Remark 3 by identifying a set S ⊆ Reg ,
which has no least upper bound in Reg . Consider the infinite sequence of
regular languages L0, L1, . . . such that Li contains all words of length less
than i+1 generated by a context free grammar. The set of languages {Li}i≥0

has no least upper bound in Reg . To see that Remark 4 is true, consider
any regular over-approximation L′ of a non-regular language L. As regular
languages are closed under set difference with finite sets, L′ must contain
infinitely many words not in L. A more precise, regular over-approximation
of L can be obtained by removing any finite set of words in the set L′ \ L
from L′. As the precision of any regular over-approximation of a non-regular
language can be improved in this manner, non-regular languages have no
minimal over-approximation in Reg .

Remark 3 must be kept in mind because many existing results about
fixpoints and abstract interpretation apply only to complete lattices. If a
minimal, regular over-approximation does not exist, either another abstract
representation must be used or a choice between various over-approximations
must be made. Some possible courses of action are discussed in [Cousot
and Cousot 1992b]. The choice can be guided by various factors such as
knowledge of the system being verified and practical considerations.

Let us assume that a we have identified a unique, regular over-approxim-
ation of a fixpoint. Under what conditions can it be computed using widen-
ing? Dupont, Miclet and Vidal [1994] formulate regular inference as a search
problem in a lattice of automata. We use a similar approach to study widen-
ing operators. Given an automaton in a fixpoint computation, the set of au-
tomaton that can be obtained by merging states form a lattice. A fixpoint
can be computed precisely using widening only if the automaton represent-
ing the fixpoint is contained in this lattice.

Let π1, π2 denote partitions of the states of an automaton A. Define the
preorder � between quotients of automata as A/π1 � A/π2 iff π1 � π2. Let
Quotients(A) be the set of automata that can be obtained by merging states
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in A and π> be the partition of states of A that has unit index. The set
Quotients(A), with the preorder � defines a lattice with A as the bottom
and A/π> as the top elements. Let Lattice(A) denote this lattice.

Remark 5. For any automaton A, Lattice(A) is complete.

Remark 6. If π1 � π2 are partitions of the states of A, Lattice(A/π2) ⊆
Lattice(A/π1).

Remark 5 follows from Lattice(A) being finite. If π1 � π2, A/π2 belongs
to the lattice Lattice(A/π1), hence, Remark 6 follows.

In the sequel, let A∞ = (Q∞,Σ, δ∞, t0, F∞) be an over-approximation
of a fixpoint that we would like to compute and A = (Q,Σ, δ, q0, F ) be an
automaton in the fixpoint computation. We provide a sufficient condition
for obtaining A∞ by merging states of A. Dupont et al. [1994] provide a
sufficient condition in the case that L(A) is finite, which is a special case of
our result.

Given a language L, a set of words S ⊆ L is called a sample. Our
characterisation relies on structurally complete samples.

Definition 12 (Structural Completeness). A sample S ⊆ Σ∗ is struc-
turally complete with respect to a trim automaton A = (Q,Σ, δ, q0, F ) iff

1. S ⊆ L(A)

2. For each q ∈ F , there exists w ∈ S such that q ∈ δ∗(q0, w).

3. For each q, q′ ∈ Q and a ∈ Σ such that q′ ∈ δ(q, a), there exists
w = uav ∈ S such that q ∈ δ∗(q0, u).

A sample is S structurally complete with respect to an automaton A
if the runs of A on the words in S exercise every transition in A and use
every final state in A as an accepting state. Note that the second condition
is not subsumed by the third because the run of A on a word may exercise
every transition in A but only one state is used as the accepting state. A
language L is trivially structurally complete with respect to every automaton
accepting exactly L. Our definition differs slightly from that in [Dupont
et al. 1994], where a structurally complete sample has to be finite. For
every structurally complete sample S ⊆ Σ∗, there is a finite sample S′ ⊆ S
that is also structurally complete.

Example 2. Consider the automaton A below:

q0 q1
1

0

A
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The sample {001} satisfies condition 3 but not condition 2 of Definition 12.
The sample {000, 01} is structurally complete for this automaton.

A sample S is prefix complete with respect to an automaton A iff S =
(Pre(S) ∩ L(A)). That is, every prefix of a word in S that is accepted by
A is also in S. For a word w = a1a2 . . . an, let w[i] denote the symbol
ai. Dupont et al. [1994] consider two representations for finite, structurally
complete samples: maximal canonical automaton (MCA) and tries.

Definition 13 (Maximal Canonical Automaton). The Maximal Canon-
ical Automaton (MCA) for a finite sample S is MCA(S) = (Q,Σ, δ, q0, F )
where Q = {q0} ∪ {qw[i]|w ∈ S, 1 ≤ i ≤ |w|}, F = {qw[n]|w ∈ S, n = |w|}
and q0 ∈ F if λ ∈ S and δ(qw[i], a) = {qw[i+1]|w[i + 1] = a} is the transition
relation.

MCA(S) contains the words in S but does not additionally structure
them. It is the largest, trim automaton accepting exactly S and is generally
nondeterministic. The largest, deterministic automaton accepting exactly S
is a trie or prefix tree acceptor, denoted Trie(S).

Definition 14 (Trie). The trie for a finite, sample S is an automaton
Trie(S) = (Q,Σ, δ, q0, F ), where Q = Pre(S), q0 = λ, F = S and δ(w, a) =
wa whenever w,wa ∈ Q.

Tries have been used to index and retrieve strings [Knuth 1998], hence
the name. Angluin [1982] used tries to develop a learning algorithm for the
k-reversible languages. Let CA(S) denote the canonical automaton repre-
senting the set S. For a finite sample S, MCA(S), Trie(S) and CA(S) are
structures of decreasing size accepting S. An MCA represents each word
independently, a trie collects words with common prefixes and the canoni-
cal automaton, being minimal and deterministic additionally collects words
with common suffixes.

We begin with a simple lower bound for obtaining A∞ and then present
the results in [Dupont et al. 1994].

Remark 7. If an automaton A has fewer states, final states or transitions
than A∞, then A∞ cannot be obtained by merging states of A.

Theorem 2 (Dupont et al. 1994, Theorems 1 and 3). A finite sample
S is structurally complete with respect to an automaton A if and only if A
belongs to Lattice(MCA(S)).

Theorem 3 (Dupont et al. 1994, Theorem 2). If S is a structurally
complete, finite sample with respect to a minimal, deterministic automaton
A, then A belongs to Lattice(Trie(S)).

From Theorem 2 we know that, given an automaton A∞, there exists
an automaton accepting a finite language from which we can obtain A∞ by
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merging states. From Theorem 3, we know that there even exists such an
automaton, which is deterministic. We also see from Theorem 2 that all
automata corresponding to a structurally complete sample S are contained
in Lattice(MCA(S)). A trie for a sample S can be obtained by merging
states in MCA(S) that are reachable by the identical prefixes. Therefore,
Trie(S) and consequently, by Remark 6, Lattice(Trie(S)) are contained in
Lattice(MCA(S)). Note that for an arbitrary sample S, neither MCA(S)
nor Trie(S) may be minimal. In fact, it may be possible to merge states
and obtain A∞ from MCA(S) and Trie(S), but not from CA(S).

Remark 8. There exist finite samples that are structurally complete with
respect to an automaton A∞ such that A∞ belongs to Lattice(MCA(S))
and Lattice(Trie(S)) but not to Lattice(CA(S)).

Remark 9. There exist automata A1, A2 and A∞ such that A∞ belongs
to Lattice(A1) and A2 belongs to Lattice(A1) but A∞ does not belong to
Lattice(A2).

The following example is an illustration of Remark 8.

Example 3. Consider the automaton A∞ below and a sample following au-
tomata accepting a sample S = {00, 01}, that is structurally complete with
respect to A∞.

q0

q1

q2

q3

q4

0

0

1

0

r0 r1

r2

r3

0

1

0

MCA(S) Trie(S)

1

1

s0 s1 s2
0

t0 t1 t2

0 0

1

CA(S) A∞

Consider the partitions π1 = {{q0}, {q1, q2, q3}, {q4}} of states of MCA(S)
and π2 = {{r0}, {r1, r2}, {r3}} of states of Trie(S). The states in the same
partitions are shaded in the illustration. The automata MCA(S)/π1 and
Trie(S)/π2 are isomorphic to A∞. However, there exists no such partition
of the states of CA(S).

In Example 3, we can also see that Trie(S) belongs to Lattice(MCA(S))
and that CA(S) belongs to both Lattice(MCA(S)) and Lattice(Trie(S)) but
as we have seen, A∞ does not belong to Lattice(CA(S)). Hence, care must
be taken when applying widening because the computation might move from
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a state in which a fixpoint be computed precisely to one in which this is no
longer possible.

The ability to obtain a certain automaton by merging states changes
dramatically if the structurally complete sample has infinitely many words.
Given such a sample S for an automaton A∞, we can obtain a trie or an
MCA by unwinding transitions in CA(S) a finite number of times to obtain
an automaton A such that L(A) is structurally complete with respect to
A∞. A problem arises as we do not know how many times the transitions
in CA(S) should be unwound. Formally, let A1 be an automaton obtained
by unwinding the transitions in the automaton CA(S) accepting an infinite
sample S. For any such A1, we can pick A2 obtained by another unwinding
of CA(S) such that A∞ belongs to Lattice(A2) but not to Lattice(A1). We
make this argument clear with an example.

Example 4. Consider a sample S accepted by CA(S) below.

p0 p1 p2
0 1

0

CA(S)

0

1

q0 q1 0

0

1

0
k

1
k

r0 r1 r
k 0

A1 Ak

The sample S is structurally complete with respect to A1. Further, there
exists an infinite family of automata Ak, with k ≥ 1, such that S is struc-
turally complete with respect to each Ak. The transition (p1, 0, p1) in CA(S)
can be unwound once to obtain the trie T1 and k times to obtain the trie
Tk. Both tries are shown below.

s0 s1 s2

s
′

1

0 0

1

t0 t1

t
′

1

tk tk+1

t
′
k

0

1

0
k−1

0

1

T1 Tk

A1 can be obtained from T1 by merging s′1 with s0 and s2 with s1. Ak

can be obtained from Tk by merging t′i with ti−1 for 0 ≤ i ≤ k and by
merging tk+1 with tk.

The automaton Ak in Example 4 belongs to Lattice(Tk). However, in
order to obtain an automaton by merging states, we do not need to restrict
ourselves to considering an MCA or a trie.
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Theorem 4. Let A = (Q,Σ, δ, r0, F ) be trim and deterministic and A∞ =
(Q∞,Σ, δ∞, t0, F∞) be trim and deterministic. If L(A) is structurally com-
plete with respect to A∞ and if for all w ∈ L(A), Pre(δ∗(r0, w)) ⊆ Pre(δ∞(t0, w)),
then A∞ belongs to Lattice(A).

Proof. We construct a partition of the states of A and show that the quotient
of A by this partition is isomorphic to A∞. As L(A) is structurally complete,
for each t ∈ Q∞, there exists w = uv ∈ L(A) such that δ∞(t0, u) = t.
As A∞ is deterministic, Pre(t) ∩ Pre(t′) = ∅ for each t, t′ ∈ Q∞. By the
condition of the theorem, Pre(δ∗(r0, u)) ⊆ Pre(t), hence, for all t′ 6= t ∈ Q∞,
Pre(δ∗(r0, u)) ∩ Pre(t′) = ∅. As each state in A is reachable by a prefix of
some state in A∞, |Q| ≥ |Q∞|. By structural completeness of L(A) and
a similar argument, we also have that |F | ≥ |F∞| and that A has at least
as many transitions as A∞. We have that A satisfies the lower bound of
Remark 7.

Define a partition π as follows: For all r, r′ ∈ Q, [r]π = [r′]π iff for some
t ∈ Q∞, Pre(r) ⊆ Pre(t) and Pre(r′) ⊆ Pre(t). The index of the partition
is |Q∞|. Consider the quotient automaton A/π. A state [r]π in A/π is final
iff there exists a state r′ ∈ [r]π that is final, which in turn is possible iff the
state t ∈ Q∞ corresponding to [r]π is final. So, we have that the number of
final states in A/π is |F∞|. A similar argument applies for the number of
non-final states in A/π. If there exists a transition between t, t′ ∈ Q∞, by
structural completeness, there exists a transition between the corresponding
partitions [r]π and [r′]π. As both A∞ and A are deterministic, for each
ri, rj ∈ [r]π, [δ(ri, a)]π = [δ(rj , a)]π. Therefore, if there exists a transition
([r]π, a, [r′]π) in A/π, there exists a corresponding transition (t, a, t′) in δ∞.
As A/π and A∞ have the same number of states, final states and have the
same transition relation, they are isomorphic.

Observe that in an MCA and a trie, each state has exactly one prefix,
so these automata always satisfy the conditions of the theorem. To prove
Theorem 4, we constructed a partition of A using A∞. In general A∞ is
not known and widening is used to choose and element of Lattice(A). This
lattice may be quite large and many different widening operators may be
applicable. A merge between two states is compatible iff both states are final
or both are non-final. If L(A) is prefix complete, A∞ can be obtained from
A by compatible merges.

Corollary 1. If A and A∞ are automata satisfying the conditions of Theo-
rem 4, and L(A) is prefix complete, then A∞ can be obtained from A using
only compatible merges.

Proof. Construct a partition of the states of A as in the proof of Theorem 4.
All states in a partition have the same prefixes as a given state in A∞. If
this state is accepting, all states in the partition must be accepting and vice
versa.
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Given an automaton A, the number of automata in Lattice(A) is the
number of partitions of states of A. The number of partitions of a set
with n elements is called the Bell number, denoted $n. The number $n =
Θ(n/ log n)n [Knuth 2005, Section 7.2.1.5]. The number $100 has a 116
digits! Clearly, trying all the possibilities, even for small automata is not an
option.

3.4.2 Weak ω-Regular Languages

We present similar results for weak ω-regular languages. We state a corollary
of Theorem 4 that provides us with a condition for constructing a WDBA
from a structurally complete sample. As structurally complete samples are
defined in terms of the regular language accepted by an automaton, we intro-
duce ω-samples and provide a sufficient condition, analogous to Theorem 4
in terms of the ω-language of a WDBA.

Let ω-Reg denote the set of weak ω-regular languages over the alphabet
Σ. Equipped with the partial order ⊆, we have the lattice 〈ω-Reg ,⊆,∪,∩〉.
The bottom is the empty language ∅ and the top is the language Σω. As
with regular languages, every ω-language has an over-approximation and
every weak ω-regular language has a best over-approximation in ω-Reg .

Remark 10. The lattice 〈ω-Reg ,⊆,∪,∩〉 is not complete.

We show Remark 10 by identifying a set S ⊆ ω-Reg that has no least up-
per bound in the lattice. Consider the infinite sequence of weak ω-languages
(0212)ω, (0212 + 0313)ω, . . .. The limit of this sequence is an ω-context free
language and is not contained in ω-Reg .

Consider a sequence of weak deterministic Büchi automata B0, B1, . . .
in a fixpoint computation with an over-approximation B∞ that we wish to
compute using widening. As Theorem 4 only requires that the two automata
be trim and deterministic, we directly obtain a condition for merging states
in Bi to obtain B∞ in terms of the regular languages the two automata
accept.

Corollary 2. Let B = (Q,Σ, δ, r0, F ) and B∞ = (Q∞,Σ, δ∞, t0, F∞) be
trim, weak and deterministic Büchi automata. If L(B) is structurally com-
plete with respect to L(B∞) and if for all w ∈ L(B), Pre(δ∗(r0, w)) ⊆
Pre(δ∗(t0, w)), B∞ belongs to Lattice(B).

Maler and Pnueli [1995] define an ω-observation table for weak ω-regular
languages. We use a similar idea to define ω-samples. An ω-sample is a set
of pairs S ⊆ Σ∗ × Σω where for (u, β) ∈ S, β is ultimately periodic. For
u ∈ Σ∗ and β ∈ Σω, we write u ∈ S if there exists α ∈ Σω such that
(u, α) ∈ S and we write β ∈ S if there exists v ∈ Σ∗ such that (v, β) ∈ S.
The set of ω-words in an ω-sample S, words(S) = {uβ|(u, β) ∈ S}. We
provide conditions for constructing a WDBA B∞ from another WDBA B
in terms of structurally complete ω-samples.
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Definition 15 (ω-Structural Completeness). An ω-sample S is struc-
turally complete with respect to a weak deterministic Büchi automaton
B = (Q,Σ, δ, r0, F ) iff the following conditions hold:

1. The set words(S) ⊆ Lω(B).

2. For each q, q′ ∈ Q and a ∈ Σ such that q′ ∈ δ(q, a), there exists
(ua, β) ∈ S such that q ∈ δ∗(q0, u).

3. For each recurrent state q ∈ F , there exists (u, β) ∈ S such that for
the run ρ of B on uβ, q ∈ Inf (ρ).

A structurally complete ω-sample for WDBA B contains words accepted
by a B factored into a finite prefix and an ultimately periodic suffix. If con-
dition 2 is satisfied, the prefixes in the ω-sample exercise every transition in
B. By condition 3, the runs of B on the words constructed from an ω-sample
visit every recurrent final state infinitely often. Recall that finite structurally
complete samples are used to construct maximal canonical automata, tries
and minimal automata, which are acyclic. Likewise, we construct a WDBA
accepting an ω-sample.

Definition 16. A transition graph for an ω-sample S, G(S) = (Q,Σ, δ, q0, ∅),
is an automaton with Q = ∪u∈S Pre(u) where u ∈ Σ∗, δ(u, a) = ua, if there
exists u ∈ Σ∗, β, β′ ∈ Σω such that(u, β), (ua, β) ∈ S and δ(u, a) = v if for
all β ∈ Σω, uaβ ∈ words(S)⇔ vβ ∈ words(S) and q0 = λ.

The WDBA accepting an ω-sample S, B(S) = (Q,Σ, δ, q0, F ) is a tran-
sition graph with F = {q ∈ Inf (α, G(S))|α ∈ words(S)}.

As with finite automata, ω-structural completeness of a WDBA with
respect to a representation of the fixpoint is insufficient to guarantee that
the fixpoint can be computed using widening.

Example 5. The WDBA B∞ below accepts infinite words such that the
symbol 1 only appears in even positions.

0

0, 1

q0 q1

B∞

The ω-sample S = {(01, 0ω), (000, 0ω)} is structurally complete with
respect to B∞. Consider the two WDBAs B(S) and B′, which accept
words(S). B(S) is constructed as indicated in Definition 16.

r0 r1 r2
0 0, 1

0

0

0

s0 s1 s2 s3
0 0, 1

B(S) B′
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Observe that B∞ belongs to Lattice(B′) but not to Lattice(B(S)).

The problem we see is similar to that in the case of finite automata. An
ultimately periodic ω-word accepted by B∞ may be accepted by B but may
traverse a cycle that has fewer states. As we only modify B by merging
states, there is not way to increase the number of states in a cycle. Notice
that the automaton B(S) is minimal but B′ is not. We see once again that
minimising a deterministic automaton before widening, dramatically alters
the precision of the solution that can be obtained. As states in a WDBA can
be uniquely identified by their prefixes, we obtain a similar characterisation
to the finite automata case.

Theorem 5. Let B = (Q,Σ, δ, r0, F ) and B∞ = (Q∞,Σ, δ∞, t0, F∞) be
trim, weak and deterministic Büchi automata. If L(B) can be factored into
a structurally complete ω-sample for to B∞ and if for all w ∈ Pre(Lω(B)),
Pre(δ∗(r0, w)) ⊆ Pre(δ∞(t0, w)), then, there exists Bπ ∈ Lattice(B) such
that Lω(B∞) = Lω(Bπ).

Proof. Let S be the sample obtained by factoring words α ∈ Lω(B) into
finite prefixes and ultimately periodic suffixes. Define a partition π of Q as
follows: For all r, r′ ∈ Q, [r] = [r′] iff for some t ∈ Q∞, Pre(r) ⊆ Pre(t)
and Pre(r′) ⊆ Pre(t). Denote Bπ = B/π = (Qπ,Σ, δπ, [r0], Fπ). Following
a similar reasoning as in the proof of Theorem 4 we can show that |Q∞| =
|Qπ| and that δπ is isomorphic δ∞. It remains to identify Fπ. If t ∈ F∞
is recurrent, there exists α ∈ Lω(B) such that t ∈ Inf (α, B∞). By the
definition of structural completeness and the restriction on prefixes, there
exists r ∈ Inf (α, B) such that Pre(r) ⊆ Pre(t). As B is a WDBA, this state
is final, so [r] is also final. Hence, for every recurrent, final state in F∞,
there exists a recurrent, final state in Bπ. As transient states can be visited
at most once, they do not affect the ω-language accepted by an automaton.
As B∞ and Bπ have the same number of states, the same transition relation
and the same recurrent final states, L(B∞) = L(Bπ).

There is a subtle difference between the results in Theorems 4 and 5. In
Theorem 4, we provided a sufficient condition for A∞ to be in Lattice(A)
for some A. In Theorem 5, we only identify Bπ ∈ Lattice(B) such that
L(Bπ) = L(B∞). The automata Bπ and B∞ are not necessarily isomorphic.
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Chapter 4

Widening Seeds

The most important step in a fixpoint computation with widening is select-
ing the widening operator. In our framework, a widening operator is de-
fined by a combination of a widening seed and a widening parameter. The
widening seed defines the nature of extrapolation introduced and the widen-
ing parameter is used to tune the extrapolation to determine the structure
of the final automaton. In this chapter, we introduce and study different
widening seeds.

4.1 A Universe of Relations

Widening seeds are subsets of a universe U of binary relations between states
of automata. Various state-based preorders exist in the literature and are
used to check language inclusion between automata, construct abstractions
of transition systems and for minimisation. Such work is devoted to studying
how states in an automaton can be merged without changing the accepted
language. The study of pre-orders and equivalences for various kinds of
transition systems such as process algebras [Baeten and Weijland 1990],
timed automata [Dembiński et al. 2002] and hybrid automata [Henzinger
et al. 2005] with respect to the logical properties that they preserve has also
received much attention. In contrast, the use of preorders to merge states
to increase the language accepted by an automaton has been studied only
recently [Dams et al. 2001; Boigelot et al. 2003; Bartzis and Bultan 2004].
We use existing preorder relations to define widening seeds and study the
extrapolation the resulting widening operators introduce.

We begin by identifying useful elements of the universe U . Common
preorders for automata use language based or transition based criteria. In
Table 4.1, we list a few relations that use language based criteria to compare
states. States with the same suffixes are related by =s and states with the
same prefixes are related by =p. Given a state r, define Prek(r) = {w ∈
Σ∗|w ∈ Pre(r) ∧ |w| ≤ k} as the prefixes of r of length at most k and
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Relation Definition
=s r=st ⇔ Suff (r) = Suff (t)
=p r=pt ⇔ Pre(r) = Pre(t)
=k

p r=k
pt ⇔ Prek(r) = Prek(t)

=k
s r=k

s t ⇔ Suff k(r) = Suff k(t)
⊆p r⊆pt ⇔ Pre(r) ⊆ Pre(t)
⊆s r⊆st ⇔ Suff (r) ⊆ Suff (t)
∩p r∩pt ⇔ Pre(r) ∩ Pre(t) 6= ∅
∩s r∩st ⇔ Suff (r) ∩ Suff (t) 6= ∅

Table 4.1: Relations for comparing states

Suff k(r) = {w ∈ Σ∗|w ∈ Suff (r) ∧ |w| ≤ k} as the suffixes of r of length
at most k. The relations =k

s and =k
p relate states with the same suffixes

or prefixes of length at most k. The first four relations in Table 4.1 are
equivalence relations. If every prefix of a state r is a prefix of a state t, they
are in the relation ⊆p. Similarly, if the suffixes of r are suffixes of t, the
states are related by ⊆s. These two relations are preorders. The symmetric
relations ∩p and ∩s relate states that have a common prefix or suffix. We
use the infix notation, as in Table 4.1, to denote that two states are in a
certain relation.

Preorders using language containment or equivalence are easy to define
but may be expensive to compute. In particular, determining language inclu-
sion between nondeterministic automata is PSPACE hard. In contrast, sim-
ulation relations are more restrictive but can be computed efficiently. Simu-
lation relations have been studied extensively in concurrency theory [Milner
1995] to understand the branching behaviour of concurrent processes and
have been used in verification tools for state space reduction [Dill et al. 1992].
The classic definition of simulation proposed by Milner [1971] is referred to
as ordinary simulation. There exists an ordinary simulation between a state
r and a state t (t o-simulates r), denoted r vo t, iff for every transition from
r to a state r′ with a symbol a, there is a transition from t to a state t′ with
a symbol a such that t′ o-simulates r′. If there exists an ordinary-simulation
between r and t, for every run from the state r on a word w, there exists
a run from t′ on w. Acceptance criteria are not considered for ordinary
simulation. Dill et al. [1992] introduced direct simulation (originally called
safety simulation), an extension of ordinary simulation for check language
inclusion between finite automata and Büchi automata. There exists a di-
rect simulation between a state r and a state t (t di-simulates r), denoted
r vdi t, iff for every transition from r to a state r′ with a symbol a, there
is a transition from t to a state t′ with a symbol a such that t′ di-simulates
r′ and if r is a final state, then t should be a final state. Direct simulation
between the initial states of two automata implies language inclusion [Dill
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et al. 1992]. We illustrate the difference between the two relations with an
example.

Example 6 (Ordinary and Direct Simulation). Consider the automata A1

and A2 below.

q0 q1

0

0

r0 0

A1 A2

Every run from the states q0 and q1 is defined from the state r0 and vice
versa. Therefore, we have that q0 vo r0 and r0 vo q0. In addition, q0 vdi r0

and q1 vdi r0 but r0 6vdi q0. As L(A1) ⊆ L(A2) but L(A2) * L(A1), only
direct simulation is a sound condition with respect to language inclusion.

Direct simulation is sufficient for checking language inclusion between
finite automata but may be too strong for checking language inclusion be-
tween Büchi automata. In Example 6, the ω-language accepted by A1 and
A2 is the same but r0 6vdi q0. Dill et al. [1992] make this observation and
propose a live cycles Büchi simulation relation (BSR-lc) for a subclass of
Büchi automata. We refer to the class of simulation relations defined for
Büchi automata as ω-simulations. Note that direct simulation is also an ω-
simulation. Henzinger et al. [2002] use a game theoretic framework to study
the simulation relations for various ω-automata and introduce fair simula-
tion, which uses acceptance criteria specific to Büchi automata. There exists
a fair simulation between states t and r in a Büchi automaton (t f-simulates
r), denoted r vf t, iff t o-simulates r and for every infinite accepting, run
from r, the corresponding infinite run from t is also accepting. In the au-
tomata in Example 6, every infinite run from r0 and q0 is accepting, hence,
q0 vf r0 and r0 vf q0. It also holds that q1 vf r0 and vice versa. In the
example, merging the states q0 and q1 does not change the ω-language of
the automaton.

Etessami et al. [2005] highlight that in general, merging states that fair
simulate each other does not preserve the ω-language of the automaton and
propose delay simulation. Recall that if ρ is an infinite run, ρ(i) is the ith

state visited in the run. There exists a delay simulation between states t
and r in a Büchi automaton (t de-simulates r), denoted r vde t, iff t o-
simulates r and for every infinite run ρ from r, if ρ(i) is a final state, there
exists j ≥ i such that, in the corresponding infinite run τ from t, τ(j) is
a final state. By definition, for every accepting run from r, there exists a
corresponding accepting run from t. A formal definition of the simulation
relations discussed follows.

Definition 17 (Simulation Relations). Consider two automata A1 =
(Q1,Σ, δ1, r0, F1) and A2 = (Q2,Σ, δ2, t0, F2). Ordinary, direct, fair and
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delay simulations are binary relations vo, vdi, vf and vde⊆ Q1 × Q2,
defined as:

1. Ordinary: r vo t ⇔ ∀r′ ∈ Q1,∀a ∈ Σ : r′ ∈ δ(r, a) ⇒ ∃t′ ∈ Q2 : t′ ∈
δ(t, a) ∧ r′ vo t′.

2. Direct: r vdi t ⇔ (r ∈ F1 ⇒ t ∈ F2) ∧ (∀r′ ∈ Q1,∀a ∈ Σ : r′ ∈
δ(r, a)⇒ ∃t′ ∈ Q2 : t′ ∈ δ(t, a) ∧ r′ vdi t′).

3. Fair: r vf t⇔ r vo t and for all words α ∈ Σω, and an infinite run ρ
in A1 on α such that ρ(0) = r ∧ Inf (ρ) ∩ F1 6= ∅, there exists a run τ
of A2 in α such that τ(0) = t and Inf (τ) ∩ F2 6= ∅.

4. Delay: r vde t⇔ r vo t and for all words α ∈ Σω, and an infinite run
ρ in A1 on α such that ρ(0) = r, there exists an infinite run τ in A2 on
α such that τ(0) = t and for all i ∈ N, ρ(i) ∈ F1 ⇒ ∃j ≥ i : τ(j) ∈ F2.

Delay simulation is more restrictive than fair simulation as non-accepting
runs must also satisfy a condition involving final states. Etessami et al.
[2005] prove that delay simulation implies language containment and order
different ω-simulations by inclusion.

Theorem 6 (Etessami et al. 2005, Proposition 3). Consider ordinary,
direct, fair and delay simulations for Büchi automata.

1. For sim ∈ {o, di, f, de}, the simulation relation vsim is a preorder.

2. The simulation relations are ordered by containment. That is, r vdi

t⇒ r vde t⇒ r vf t⇒ r vo t.

3. For sim ∈ {di, f, de}, if r vsim t, then Suff ω(r) ⊆ Suff ω(t).

How do these results interest us? Just as we use preorders and equiva-
lence relations to relate states in a finite automaton, we can use ω-simulations
to design widening operators for WDBAs. If preorders that differ in the
number of state they relate are defined, we can construct widening opera-
tors with different precision. Results like those in Theorem 6 provide insights
into which states are merged and allow us to compare the effect of different
widening operators.

Much work on ω-simulation relations is aimed at efficiently minimising
Büchi automata. Etessami et al. [2005] prove that unlike fair simulation,
merging two states that delay simulate each other does not change the ω-
language of the Büchi automaton and provide examples where delay sim-
ulation differs from fair and direct simulation. Gurumurthy et al. [2002]
provide an example in which no two states delay simulate each other but
states that fair simulate each other can be merged without changing the
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language of the automaton. These examples show that it is worthwhile to
study different ω-simulation relations and that no ω-simulation is in general
better than others. The examples in existing studies only feature Büchi
automata that are not weak, which begs the question: Which results about
ω-simulation relations hold for WDBAs? If the different relations behave
identically with weak automata, it is sufficient to consider only one. Do the
differences between ω-simulation relations exist even if only weak automata
are considered? We provide a positive answer to this question.

Example 7 (ω-simulations and WDBAs). We compare delay simulation with
direct and fair simulation.

q0 0 r0 r1 r2
0 0

1 0

B1 B2

For the WDBAs B1 and B2, q0 vde r0 but q0 6vdi r0. In terms of the ω-
language accepted by B1 and B2, we have that Lω(A1) ⊆ Lω(A2). Thus,
direct simulation is not a necessary condition for language inclusion between
weak Büchi automata. Next, we compare fair and delay simulation.

1

s0 s1 s2 s3
0

0

1

1

0

0

t0 t1 t2 t3

t4

0

1

0

1

1

0

0

0

1

B3 B4

For the weak deterministic automata B3 and B4, Lω(B3) ⊆ Lω(B4) and
s0 vf t0. Consider the runs ρ and τ of B3 and B4 on the word 1ω. As s0 is
final and t0 is not and for all i > 0, ρ(i) and τ(i) are not final, the condition
for delay simulation is not satisfied and s0 6vde t0.

We conclude that fair, delay and direct simulation behave differently with
WDBAs and may each be useful for designing widening operators. Lynch
and Vaandrager [1995] survey other simulation relations for labelled transi-
tion systems and Bustan and Grumberg [2004] compare other ω-simulations.

We call the relations we have presented so far elementary. A widening
seed is a set of relations. Every elementary relation can be used as a widening
seed. We provide a brief overview and example of the analysis we undertake
for each widening seed.

Let us recall some terminology and notation. A widening candidate A
is an automaton in a fixpoint computation. A widening parameter M is an
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automaton such that M = A or M occurs before A in the computation.
A widening seed, S ⊆ U , is a set of binary relations. A widening equiva-
lence is a relation ≡M

S on the states of A constructed from M and S using
Algorithm 2, Construct Equivalence. The widened automaton AO is(
A/ ≡M

S
)
. If the fixpoint of the computation is regular, we denote it as A∞.

We analyse three properties of a widening seed.

1. Extrapolation: Do there exist A and M such that L(A) ⊂ L(AO)?

2. Termination: For all computations, do there exist A and M such that
the computation with widening terminates?

3. Precision: If the fixpoint is regular, under what conditions does the
computation with widening converge to the exact fixpoint.

We say a widening seed is extrapolating if there exist A and M such that
L(A) ⊂ L(AO). Results about precision should be interpreted carefully as a
computation with widening that converges to the precise fixpoint may not
do so in a finite number of steps. We demonstrate the style of our analysis
and elaborate on the previous statement with a simple example. Let S⊥ be
the widening seed.

Lemma 2 (Properties of S⊥ ). S⊥ has the following properties:

1. It is not extrapolating.

2. It does not enforce termination.

3. If the fixpoint is regular, the computation with widening converges to
the precise fixpoint.

Proof. (1) For any choice of M and A, the widening equivalence ≡M
S is the

identity relation, hence, AO = A.
(2) Any computation with widening is identical to the computation without
and does not terminate.
(3) The computation trivially converges to the fixpoint. The computation
with widening, being identical to the one without, also converges to the
precise fixpoint.

In the sequel, we repeat a similar analysis for each widening seed we
consider.

4.2 Extrapolation and Convergence Criteria

In this section, we identify general conditions that are useful for prov-
ing extrapolation and convergence properties of widening seeds. We use
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the notation introduced in the previous section. Let A be the automaton
(Q,Σ, δ, r0, F ) and A∞ be an automaton representing the fixpoint. To com-
pare the language of A and AO, we need to examine the quotient of A with
respect to the widening equivalence. We show that it is sufficient to study
the effect of merging two states in A and provide criteria that must be satis-
fied for the language accepted by the quotient of a finite automaton or weak
deterministic Büchi automaton to increase.

Define the language between two states L(r, r′) = {w ∈ Σ∗|r′ ∈ δ∗(r, w)}
to be the set of words by which r′ is reachable from r. Let S be a set of
states. The set of words L (S) =

⋃
t,t′∈S L(t, t′). For the remainder of this

section, let π denote a partition of index |Q|−1 obtained by merging exactly
two states in A and let A/π = (Qπ,Σ, δπ, [r0], Fπ) be the quotient of A with
respect to π. For r ∈ Q, [r] denotes both the partition of r in π and the
state corresponding to r in Qπ. Observe that any partition π′ of Q of index
|Q| − n with 0 ≤ n ≤ |Q| − 1 can be obtained from the trivial partition
π⊥ of Q via a sequence of partitions π⊥ = π0 � π1 � . . . � πn = π′ such
that the index of any two successive partitions differs by 1. To determine if
L(A) ⊂ L(A/π′), it suffices to determine if L(A/πi) ⊂ L(A/πi+1) for some
0 ≤ i < n. Let t, t′ be the two states in the same block of π and r, with
subscripts as required, range over the other states in Q.

4.2.1 Finite Automata

We provide a necessary and sufficient condition for extrapolating the lan-
guage of a DFA. As transitions are not added in the quotient construction,
each transition in A/π corresponds to a transition in A. If L(A) ⊂ L(A/π),
there exists a word w ∈ L(A/π) \ L(A) such that either the sequence of
transitions exercised in A/π by reading w is not defined in A or the run
of A/π on w ends in a final state but the run of A does not. A word
w ∈ L(A/π) \ L(A) can be written as u1 · · ·un, where for each ui, there ex-
ists a sequence of transitions respecting δ in A corresponding to the sequence
of transitions in A/π.

Consider the prefixes and suffixes of a state [t] in A/π. The set Pre([t])
includes the prefixes of t and t′ as well as all words in L({t, t′}) Similarly,
Suff ([t]) includes the suffixes of t and t′ and the words in L({t, t′}). The
change in the language of the quotient automaton can be described in terms
of Pre([t]) and Suff [t]).

Remark 11. L(A) ⊂ L(A/π)⇔ Pre({t, t′}) ·L ({t, t′})∗ ·Suff ({t, t′}) * L(A)

Proof. ⇒: If L(A) ⊂ L(A/π), there exists a word w ∈ L(A/π)\L(A). If
the run of A/π on w does not visit [t], it is also defined in A, so the run
must visit the state [t] at least once. Hence, w ∈ Pre([t]) · Suff ([t]). The
set of words Pre([t]) · Suff ([t]) consists of prefixes of t and t′, concatenated
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with zero or more repetitions of words between any pair of states in {t, t′},
concatenated with the suffixes of t and t′. This is precisely the set of words
Pre({t, t′}) · L ({t, t′})∗ · Suff ({t, t′}), so this direction follows.
⇐: From the previous case, we may rewrite the right hand side of the remark
as Pre([t]) ·Suff ([t]) * L(A). Consider a word w ∈ Pre([t]) ·Suff ([t])\L(A).
Clearly, w ∈ L(A/π) \ L(A).

If the automaton A is deterministic, we can make a stronger statement.

Lemma 3. If A is deterministic, L(A) ⊂ L(A/π)⇔ Suff (t) 6= Suff (t′).

Proof. ⇐: We show the equivalent statement that Suff (t) 6= Suff (t′) ⇒
L(A/π)\L(A) 6= ∅. As Suff (t) 6= Suff (t′), at least one of the following
conditions must hold:

(a) Suff (t)\Suff (t′) 6= ∅

(b) Suff (t′)\Suff (t) 6= ∅.

Without loss of generality, say (a) holds and v ∈ Suff (t) \ Suff (t′). As
A is deterministic, Pre(t) ∩ Pre(t′) = ∅. As we only consider the reachable
states in an automaton, Pre(t) 6= ∅ and Pre(t′) 6= ∅, so there must exist
u ∈ Pre(t′) \ Pre(t′). The word uv ∈ L(A/π)\L(A), which is not empty as
required.
⇒: To prove L(A) ⊂ L(A/π) ⇒ Suff (t) 6= Suff (t′), we may equivalently
prove: Suff (t) = Suff (t′) ⇒ L(A) ⊇ L(A/π), which reduces to proving
that Suff (t) = Suff (t′) ⇒ L(A) = L(A/π) as A cannot accept more words
than A/π. As merging states with the same suffixes does not increase the
language of the automaton, the implication follows.

Providing a similar characterisation for NFAs is not as straightforward.
States with different suffixes may have the same prefixes, so merging states
in an NFA may not change the language of the automaton.

Example 8. The automaton A2 below is obtained from A1 by merging the
states r1 and r2. Note that L(A1) = L(A2).

q0

q1

q2

q3

q4

0

0

1

0

r0 r1

r2

r3

0

1

0

A1 A2

The automaton A4 below is obtained from A3 by merging the states s1

and s2 but L(A3) 6= L(A4).
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s0

s1

s2

0

0

0

1

t0 t1
0

0, 1

A3 A4

To provide a similar result to Lemma 3 for nondeterministic automata,
we only provide conditions that are satisfied if L(A) ⊂ L(A/π). We first
consider the case that L({t, t′} = ∅.

Lemma 4. If L({t, t}) = ∅ and L(A) ⊂ L(A/π), one of the following
conditions must hold:

1. Pre(t)\Pre(t′) 6= ∅ ∧ Suff (t′)\Suff (t) 6= ∅

2. Pre(t′)\Pre(t) 6= ∅ ∧ Suff (t)\Suff (t′) 6= ∅

Proof. Consider w ∈ L(A/π)\L(A). As any run of A/π that does not visit
the state [t] is also defined in A, the run of A/π on w must visit [t]. By the
antecedent of the lemma, the run of A/π on w can visit the state [t] only once,
so we can write w as uv, where u ∈ Pre(t)∪Pre(t′) and v ∈ Suff (t)∪Suff (t′).
We consider two cases:

(1) Let u ∈ Pre(t′). If v ∈ Suff (t′), uv ∈ L(A), hence, v ∈ Suff (t)\Suff (t′).
If u ∈ Pre(t), uv ∈ L(A), hence u ∈ Pre(t′)\Pre(t), satisfying Condition 2.

(2) Let u ∈ Pre(t), by a symmetric argument, it must be that u ∈
Pre(t)\Pre(t′) and v ∈ Suff (t′)\Suff (t), satisfying Condition 1.

If the set L(t, t′) is not empty, There exists a sequence of transitions from
[t] to [t] for every word in L ({t, t′})∗.

Lemma 5. If L(t, t) = L(t′, t′) = ∅ and L(t, t′) 6= ∅ and L(A) ⊂ L(A/π),
the following must hold: Pre(t′)\Pre(t) 6= ∅ ∧ Suff (t)\Suff (t′) 6= ∅.

Proof. Consider w ∈ L(A/π)\L(A). We show by contradiction that if the
consequent of the lemma does not hold, w ∈ L(A). The word w is of the
form uxv where u ∈ Pre(t)∪Pre(t′), v ∈ Suff (t)∪Suff (t′) and x = y1 · · · yk,
where for each 1 ≤ i ≤ k, yi ∈ L(t, t′). Consider two conjuncts in the lemma.
(1) Assume Pre(t′)\Pre(t) = ∅, which implies that Pre(t′) ⊆ Pre(t). For
all y ∈ L(t, t′), Pre(t) · y ⊆ Pre(t′). Therefore, if Pre(t′) ⊆ Pre(t), it
must be that Pre(t) · L(t, t′)∗ ⊆ Pre(t). Consider the word uxv with x =
y1 · · · yk. If v ∈ Suff (t), as ux ∈ Pre(t), uxv ∈ L(A). If v ∈ Suff (t′),
as uy1 · · · yk−1 ∈ Pre(t) and yk ∈ L(t, t′), ux ∈ Pre(t′) and uxv ∈ L(A),
yielding a contradiction.
(2) Assume Suff (t)\Suff (t′) = ∅, which implies that Suff (t) ⊆ Suff (t′). For
all y ∈ L(t, t′), y · Suff (t′) ⊆ Suff (t). Therefore, if Suff (t) ⊆ Suff (t′), it
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must be that L(t, t′)∗ · Suff (t) ⊆ Suff (t′). Consider again the word uxv
with x = y1 · · · yk. If u ∈ Pre(t′), as xv ∈ Suff (t′), uxv ∈ L(A). If u ∈
Pre(t), as uy1 ∈ Pre(t′) and y2 · · · yk · v ∈ Suff (t′), uxv ∈ L(A), yielding a
contradiction.

The case with only L(t′, t) not being empty is identical. It remains to
identify the conditions that must be satisfied if t and t′ are merged and
L(t, t) 6= ∅. In this case, we find that the conditions we identified in Lem-
mas 4 and 5 are insufficient.

Example 9. Consider the states s1 and s2 in the automaton A below.

s0

s1

s2

s3 s4

s5

0

0, 1

0

0

00

0

0

0, 1

0

0

A

For the state s1, Pre(s1) = Suff (s1) = 0+. For the state s2, Pre(s2) =
(1 + 0+) and Suff (s2) = (1 + 0+). We see that Pre(s1) ⊆ Pre(s2) and
Suff (s1) ⊆ Suff (s2), so the conditions of the form in Lemmas 4 and 5 do
not hold. However, merging s1 and s2 adds the words 10+1 to the language
of A.

Lemma 6. If L({t, t′}) = L(t, t) 6= ∅ and L(A) ⊂ L(A/π), one of the
following conditions must hold:

1. Pre(t)\Pre(t′) 6= ∅ ∧ Suff (t′)\Suff (t) 6= ∅

2. Pre(t′)\Pre(t) 6= ∅ ∧ Suff (t)\Suff (t′) 6= ∅

3.
Pre(t) ⊆ Pre(t′)

∧ Suff (t) ⊆ Suff (t′)
∧ ∃w ∈ L(t, t)∗ : Suff (δ(t′, w)) 6= Suff (t′)

.

Proof. Consider a word w ∈ L(A/π) \ L(A). This word must be of the
form uxv, where u ∈ Pre([t]) \ L([t], [t]), x ∈ L([t], [t]) and v ∈ Suff ([t]) \
L([t], [t]). If u ∈ Pre(t), as ux ∈ Pre(t), it must be that v ∈ Suff (t′).
As uxv /∈ L(A), it must be that ux /∈ Pre(t′), hence the first condition
holds. If u ∈ Pre(t′), there are two possibilities. If v ∈ Suff (t), and either
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v /∈ Suff (t′) or xv /∈ Suff (t′) the second condition holds. If v ∈ Suff (t′),
there are two possibilities. If δ∗(t′, x) is not defined, for all z ∈ Suff (t),
xz /∈ Suff (t′) and the second condition holds. If δ∗(t′, x) is defined, it must
be that v /∈ Suff (δ∗(t′, x)), and the third condition holds.

We have identified conditions that must be satisfied if the language of
an automaton is extrapolated by merging exactly two states. On arriving
at these conditions, we discovered that the problem is of interest for de-
veloping NFA minimisation algorithms. Let us state the problem in our
setting. If π is the partition of the states of an NFA, under what con-
ditions is L(A) = L(A/π)? Alternatively, which widening operators are
non-extrapolating for NFAs? Ilie and Yu [2002] prove that if either the re-
lation =p or the relation =s is used to merge states, the language of the
automaton does not change. Champarnaud and Coulon [2004] suggest the
use of the preorders for merging states and claim that merging two states
t and t′ that only satisfy the negation of conditions 1 and 2 in Lemma 6
does not change the language accepted. However, this claim has since been
retracted [Champarnaud and Coulon 2005]. The partition of the states of A
in Example 9 refutes this claim. Ilie et al. [2005] identified three conditions
that correspond to the negation of the conditions in terms of the prefixes
and suffixes of states that are merged and also provide an example refut-
ing the claim of Champarnaud and Coulon [2004], which only differs from
Example 9 in the labels of the transitions.

4.2.2 Weak Deterministic Büchi Automata

We identify extrapolation criteria for weak deterministic Büchi automata.
If we restrict ourselves to a normal form for WDBAs introduced by Löding
[2001], we obtain a fairly straightforward characterisation of when states can
be merged without changing the language.

Definition 18 (k-Colouring). Let B = (Q,Σ, δ, r0, F ) be a WDBA and
k ∈ N be an even number. A k-colouring is a function c : Q → {0, . . . , k}
such that

1. c(r) is even for recurrent states r ∈ F .

2. c(r) is odd for recurrent states r /∈ F

3. For all r, r′ ∈ Q and a ∈ Σ with δ(r, a) = r′, c(r) ≤ c(r′).

A k-colouring c is maximal iff for any k-colouring c′ and for every state
r ∈ Q, it holds that c′(r) ≤ c(r). Observe that a run ρ of a WDBA is
accepting iff max{c(q)|q ∈ Inf (ρ)} is even. Given a k-colouring c, let Fc =
{q ∈ Q|c(q) is even }.
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Definition 19 (Coloured Normal Form). A WDBA B with final states
F is in coloured normal form iff there exists a maximal k-colouring of B and
F = Fc.

Löding [2001] proved that for any maximal k-colouring, two states in
a WDBA with the same ω-suffixes have the same colour. In addition, if
the automaton is in coloured normal form and two states have the same
finite suffixes, they have the same ω-suffixes. See Example 7 for examples
of automata in coloured normal form.

Lemma 7 (Löding 2001, Lemma 7). Let c be a maximal k-colouring
of a WDBA B. For all states q, q′ ∈ Q, if Suff ω(q) = Suff ω(q′), then
c(q) = c(q′).

Lemma 8 (Löding 2001, Lemma 10). Let B be a WDBA in coloured nor-
mal form. For any states q, q′ ∈ Q, if Suff (q) 6= Suff (q′), then Suff ω(q) 6=
Suff ω(q).

We may infer from these two lemmas that if a WDBA B is in coloured
normal form, merging states that do not have the same suffixes extrapolates
the ω-language accepted.

Corollary 3. Let B be a WDBA in coloured normal form and t, t′ be two
states in the same block of a partition π. We have that Suff (t) 6= Suff (t′)⇔
Lω(B) ⊂ Lω(B/π).

Proof. ⇒: If Suff (t) 6= Suff (t′), by Lemma 8, Suff ω(t) 6= Suff ω(t′). With-
out loss of generality say β ∈ Suff ω(t′)\Suff ω(t). As B is deterministic,
there exists u ∈ Pre(t)\Pre(t′). The word uβ ∈ Lω(B/π)\Lω(B), hence
Lω(B) ⊂ Lω(B/π).
⇐: Assume that Lω(B) ⊂ Lω(B/π) but Suff (t) = Suff (t′). By Lemma 3,

Suff (t) = Suff (t′) ⇒ L(B) = L(B/π). Further, if two states accept the
same language, they also accept the same ω-language, so we have Lω(B) =
Lω(B/π), yielding a contradiction, so this direction follows.

We make a few observations that are useful for identifying extrapolations.
Let B = (Q,Σ, δ, r0, F ) be a WDBA in coloured normal form with a maximal
k-colouring c. Let π be a partition of index |Q|−1 and t and t′ be two states
in the same block of π.

Remark 12. If t ∈ F and t′ /∈ F , Lω(B) ⊂ Lω(B/π).

Remark 13. If t, t′ ∈ F and there exists uv ∈ Σ∗ such that δ(t, u) = r,
δ(r, v) = t′ and r /∈ F , Lω(B) ⊂ Lω(B/π).

Remark 12 follows from Lemma 8 as Suff (t) 6= Suff (t′) if only one of
the states t, t′ is final. To see Remark 13, consider the colour of the states
t, t′ and r. By conditions 1 and 2 of Definition 18, c(t) and c(t′) are even
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and c(r) is odd. By condition 3 of the same definition, we have that c(t) <
c(r) < c(t′). From Lemma 7, if c(t) 6= c(t′), Suff ω(t) 6= Suff ω(t′), so we have
Lω(B) ⊂ Lω(B/π).

At this juncture, we highlight an important point about merging states in
a WDBA. Unlike finite automata, weak Büchi automata are not closed under
the quotient operation. We provide a necessary and sufficient condition for
the quotient of a WDBA to be a WDBA.

Lemma 9. Let B = (Q,Σ, δ, r0, F ) be a WDBA and π be a partition of index
|Q| − 1, with the states t and t′ in the same block. Let Qmerge be the set of
states {r ∈ Q|∃uv ∈ Σ∗ : δ∗(t, u) = r ∧ δ∗(r, v) = t′}. The Büchi automaton
B/π is weak iff (Qmerge \ {t, t′}) ⊂ F or (Qmerge \ {t, t′}) ∩ F = ∅.

Proof. Let Q1, . . . , Qm be the SCCs of B. Define the partial order≤ between
SCCs as Qi ≤ Qj iff there exists r ∈ Qi, r′ ∈ Qj and w ∈ Σ∗ such that
δ(r, w) = r′. Let Qt and Qt′ denote the SCCs of the states t and t′. There
are three possibilities:

1. Qt ≤ Qt′ and Qt′ ≤ Qt

2. Qt < Qt′ or Qt′ < Qt

3. Qt and Qt′ are incomparable.

We consider each possibility in turn.

1. If t and t′ are in the same SCC, B and B/π have the same number of
SCCs. As t and t′ have the same accepting status, all states in each
SCC of [t] in B/π also have the same accepting status and B/π is
weak.

2. Without loss of generality say Qt < Qt′ . Consider the SCC of [t] in
B/π. The states in this SCC are all states that can be visited in a run
that begins in t and ends in t′ and are the states in Qmerge. If B/π is
weak, all these states should have the same accepting status. As t and
t′ are merged, if either state is final, [t] is final, so it suffices to check
if all the other states in Qmerge have the same accepting status.

3. If Qt and Qt′ are incomparable, there is one less SCC in B/π than in
B as Qt ∪ Qt′ is one SCC. Again, it is sufficient to check if all states
except t and t′ in this SCC have the same accepting status.

It follows from part (1) of the proof above that if each block of a partition
only includes states in the same SCC, the quotient Büchi automaton is also
weak. If the conditions of Lemma 9 are not satisfied, we can choose not
to compute the quotient automaton. However, if this situation occurs too
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frequently, a widening operator may not be applicable often enough. The
alternative is to compute the quotient and make it weak by marking all
states [r] such that r ∈ Qmerge as final states of B/π.

Definition 20 (Weak Quotient). Let B = (Q,Σ, δ, q0, F ) be a weak
Büchi automaton and π be a partition of Q. The weak quotient B( π =
(Qπ,Σ, δ, [q0], Fπ) is the Büchi automaton with Qπ = {[q]|q ∈ Q} and for all
[q] ∈ Qπ, a ∈ Σ, δ([q], a) = {[q′]|q ∈ δ(q, a)}. Let Q1, . . . , Qm be the SCCs
of the transition graph of B( π. Fπ = ∪iQi where for each i, there exists
[r] ∈ Qi such that r ∈ F .

Remark 14. The weak quotient of a weak Büchi automaton is weak.

Remark 15. For any partition π, Lω(B) ⊆ L(B( π).

4.2.3 Convergence Criteria

We have identified necessary criteria for a widening operator to be extrap-
olating. Another important question relates to convergence of a fixpoint
computation with widening. As we see in subsequent sections, most widen-
ing operators do not enforce termination for all fixpoint computations. In
such cases, especially if the widening operator is extrapolating, we are inter-
ested in the fixpoint of the computation with widening. Specifically, under
what conditions does a fixpoint computation with widening converge to the
precise fixpoint. In general, the answer depends on the widening seed used to
define the widening operator. In this section, we identify a general condition
for precise convergence of a computation with widening.

As we frequently require a condition relating the prefixes of A to those
of A∞, we define it here.

Definition 21 (Prefix property). Let A be an automaton in a fixpoint
computation with a regular fixpoint represented by a minimal, deterministic
automaton A∞. A state r in A has the prefix property with respect to A∞
iff there exists t in A∞ such that Pre(r) ⊆ Pre(t). The automaton A has
the prefix property if every state in A has the prefix property.

Recall from Theorem 4 that A∞ ∈ Lattice(A) only if L(A) is structurally
complete with respect to A∞ and has the prefix property. If A is determin-
istic and has the prefix property, for every state q in A, there is a unique
state t in A∞ such that Pre(q) ⊆ Pre(t). We denote this state f(q).

Remark 16. Let A0, A1, . . . be the automata in a computation with widening
with a regular fixpoint A∞, such that Ai is either T =(Ai−1) or

(
Ai−1/ ≡

Aj

S

)
for some widening seed Aj with j ≤ i. If for each Ai, Aj , L

(
Ai/ ≡

Aj

S

)
⊆

L(A∞), then the fixpoint computation with widening converges to the pre-
cise fixpoint.
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Proof. If for each automaton Ai in the fixpoint computation with widening,
L(Ai) ⊆ L(A∞), then, the sequence converges to the least fixpoint. This
statement can be proved by induction over the steps in the computation. For
the base case, consider the initial automaton A0. By definition of a fixpoint
computation, L(A0) ⊆ L(A∞). For the induction hypothesis, assume that
for any i − 1, L(Ai−1) ⊆ L(A∞). We need to show that L(Ai) ⊆ L(A∞).
If Ai = T =(Ai−1), we are done. It remains to prove that L

(
Ai/ ≡

Aj

S

)
⊆

L(A∞) for any Ai and Aj , which is the statement of the remark.

The statement in Remark 16, is essentially a common step that is re-
quired to prove a statement about the convergence for various widening
operators. Another common step we require involves identifying partitions
such that the language of the quotient automaton is contained in the fixpoint
of the computation.

Lemma 10. Let π be a partition of the states of an automaton A and A∞ be
a deterministic automaton representing a regular fixpoint. If L(A) ⊆ L(A∞)
and for any two states q, q′ in the same block of π the prefix property holds
and f(q) = f(q′), then L(A/π) ⊆ L(A∞).

Proof. The partition π is of index |Q| − n for 0 ≤ n ≤ |Q| − 1 and can be
written as a sequence π⊥ = π0 � . . . � πn = π, where consecutive partitions
differ in index by 1. The proof is by induction over the language accepted
by the quotient automaton A/πi. For the base case, consider π0. Clearly,
if L(A) ⊆ L(A∞), then L(A/π⊥) ⊆ L(A∞). For the induction hypothesis,
assume that for i < n, L(A/πi) ⊆ L(A∞). We show that merging two
state in A/πi satisfying the conditions of the lemma does not extrapolate
the language beyond the fixpoint.

Denote the two states that are merged in A/πi as q, q′ and the corre-
sponding state in A/πi+1 as [q]. From Remark 11, it is sufficient to examine
Pre([q]) · Suff ([q]). Note that if a state r in A/πi has the prefix prop-
erty with respect to A∞, as Pre(r) ⊆ Pre(f(r)) and L(A/πi) ⊆ L(A∞)
by assumption, it must be that Suff (r) ⊆ Suff (f(r)). Consider a word
uxv ∈ Pre([q]) · Suff ([q]) such that u ∈ Pre([q]) \ L([q], [q]), x ∈ L([q], [q])
and v ∈ Suff ([q]) \ L([q], [q]). From the previous observation, we have that
v ∈ Suff (f(r)). We show that ux ∈ Pre(f(r)).

Without loss of generality, say u ∈ Pre(q). Consider x = y1 . . . yk, where
each yk ∈ L({q, q′}). For each yi, for some q1, q2 ∈ {q, q′} it must be that
f(q2) ∈ δ∗∞(f(q1), yi). As f(q1) = f(q2) it must be that yi ∈ L(f(q1), f(q2)),
so it follows that x ∈ L(f(q1), f(q2)). As u ∈ Pre(f(q)), we have that
ux ∈ Pre(f(q)). Thus, uxv ∈ L(A/π). As each word in L(A/π) is also in
L(A∞), we have that L(A/π) ⊆ L(A/π) as required.

Lemma 10 only provides a sufficient condition for when an extrapolation
still allows for the precise fixpoint to be computed. There exist widening
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operators that induce partitions containing states that do not satisfy the
conditions of the lemma though the language of the quotient automaton is
contained in the fixpoint of the computation.
Example 10. The automata A occurs in a fixpoint computation.

q0 q1 q2 q3
0 0 0

r0 r1 r2
1 0

1

A AO

The widened automaton AO is obtained from A by merging the states q1

and q2. Consider the two automata A∞ and M∞ representing the language
of the fixpoint of the computation.

s0

s1

s2

s3

0, 1

1

1

0

1

0

0

t0

t1

t2

t3 t4

1

0

1 1

1

1

M∞ A∞

Note that L(A∞) = L(M∞) and that A∞ is minimal and deterministic but
M∞ is not. As each state in A has only one prefix, A has the prefix property
with respect to A∞. Observe that f(q0) = t0, f(q1) = t2, f(q2) = t3 and
f(q3) = t4. As f(q1) 6= f(q2), Lemma 10 is not applicable.

Consider M∞. For all states si, sj in this automaton, Suff (si)∩Suff (sj) =
∅. We compare the suffixes of states in A to suffixes of states in M∞.
Suff (q0) ⊆ Suff (s0), Suff (q1) ⊆ Suff (s1), Suff (q2) ⊆ Suff (s1) and Suff (q2) =
Suff (s3). The suffixes of the states that are merged in A are contained in
the suffixes of a unique state in M∞.

Our choice of the automaton M∞ in Example 10 is not arbitrary. This
automaton is isomorphic to the syntactic left congruence for L(A∞). Recall
that a minimal deterministic automaton is isomorphic to the Nerode equiva-
lence, which is the syntactic right congruence for regular languages. Just as
the sufficient condition for convergence to a fixpoint represented by a min-
imal deterministic automaton is described in terms of the prefix property,
we identify another sufficient condition in terms of suffixes of an automaton
and the left automaton representing the fixpoint.

Definition 22. The syntactic left congruence for a regular language L ⊆ Σ∗

is a relation L∼ ⊆ Σ∗ × Σ∗ such that for u, v ∈ Σ∗, u L∼ v ⇔ ∀w ∈ Σ∗ :
wu ∈ L⇔∈ L.
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The automaton isomorphic to the left congruence has one final state and
a set of initial states.

Definition 23 (Left Canonical Automaton). Let π be the partition of
a regular language L induced by the syntactic left congruence. The left
canonical automaton for L, ML = (Q,Σ, δ, I, qF ) is defined as follows: Q =
{[w]π|w ∈ Σ∗}, qF = [λ]π, I = {[w]π|w ∈ L} and δ([wa]π, a) = {[w]π}.

The second sufficient condition we provide is in terms of suffixes of states
in an automaton A and a left canonical automaton M∞.

Definition 24 (Suffix property). Let A be an automaton in a fixpoint
computation with a regular fixpoint represented by the left canonical au-
tomaton M∞. A state r in A has the suffix property with respect to M∞
iff there exists t in M∞ such that Suff (r) ⊆ Suff (t). The automaton A has
the suffix property if every state in A has the suffix property.

If a state r has the suffix property with respect to M∞, as the suffixes of
states in M∞ are pairwise disjoint, the state t in M∞ such that Suff (r) ⊆
Suff (t) is unique. Denote this state as g(r). We provide the analogue of
Lemma 10 for suffix properties.

Lemma 11. Let π be a partition of the states of A and M∞ be a left-
canonical automaton representing the fixpoint. If L(A) ⊆ L(M∞) and for
any two states q, q′ in the same block of π the suffix property holds and
g(q) = g(q′), then L(A/π) ⊆ L(M∞).

Proof. We proceed as in the proof of Lemma 10. By the same inductive
argument as in Lemma 10, it suffices to show that if π is of index |Q| − 1
and the conditions of the current lemma hold, then L(A/π) ⊆ L(M∞).

Denote the two states the same block of π as q, q′ and the corresponding
state in A/π as [q]. If a state r in A has the suffix property with respect to
M∞, as Suff (r) ⊆ Suff (g(r)) and L(A) ⊆ L(M∞) and because the states in
M∞ have disjoint suffixes, it must be that Pre(r) ⊆ Pre(g(r)).

By Remark 11, it is sufficient to examine Pre([q]) · Suff ([q]). Consider
a word uxv ∈ Pre([q]) · Suff ([q]) such that u ∈ Pre({q, q′}) \ L({q, q}), x ∈
L({q, q′}) and v ∈ Suff ({q, q′}) \ L({q, q}). From the previous observation,
As Pre(q) ⊆ Pre(g(q)) and Pre(q′) ⊆ Pre(g(q′)) and g(q) = g(q′), u ∈
Pre(g(q)). We have to show that xv ∈ Suff (g(q)).

Without loss of generality, say v ∈ Suff (q). Consider x = y1 . . . yk, where
each yk ∈ L({q, q′}). For each yi, for some q1, q2 ∈ {q, q′} it must be that
g(q2) ∈ δ∗∞(g(q1), yi). As g(q1) = g(q2), yi ∈ L(g(q1), g(q2)). It follows that
x ∈ L(g(q1), g(q2)). As v ∈ Suff (g(q)), we have that xv ∈ Suff (g(q)). Thus,
uxv ∈ L(A/π). As each word in L(A/π) is also in L(M∞), we have that
L(A/π) ⊆ L(M∞) as required.
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The conditions we provide use either the canonical or the left-canonical
automaton to characterise when merging states does not extrapolate the
language of the widened automaton beyond the fixpoint. Both conditions are
only sufficient conditions. In Section 4.3, we provide an example of a fixpoint
computation with automata that neither have the prefix property nor the
suffix property. However, as the language of such automata is contained in
the fixpoint, there may be some other representation of the fixpoint with
respect to which a widening candidate satisfies either the prefix or suffix
property. The final condition we provide in this section is in terms of any
automaton representing a fixpoint.

Lemma 12. Let A be an automaton with states Q in a computation with
the language L∞ as the fixpoint. There exists an automaton N∞ with states
Q∞ such that L(N∞) = L∞ and for each state q ∈ Q, there exists t ∈ Q∞
such that Pre(q) ⊆ Pre(t) or Suff (q) ⊆ Suff (t).

Proof. We prove by contradiction that if the statement does not hold, then
L(A) 6⊆ L∞. Assume the lemma does not hold. We have that for all N∞
representing L∞, there exists q ∈ Q such that for all t ∈ Q∞, Pre(q) ⊃
Pre(t) and Suff (q) ⊃ Suff (t). Consequently, there exists a word u ∈ Pre(q)\
Pre(Q) and a word v ∈ Suff (q) \ Suff (Q). The word uv ∈ L(A) but uv /∈
L(N∞) for any N∞ representing L∞. Thus, L(A) 6⊆ L∞, contradiction the
premise of the lemma.

Given an automaton A with states Q in a fixpoint computation, let N∞
be an automaton with states Q∞ representing the fixpoint as in Lemma 12.
For each state q in A, let F (q) = {t ∈ Q∞|Pre(q) ⊆ Pre(t)} be the set of
states in N∞ reachable by all words in Pre(q). Similarly, let G(q) = {t ∈
Q∞|Suff (q) ⊆ Suff (t)} be the states that accept all words in Suff (q). We
know by Lemma 12 that for any state q in A, either F (q) or G(q) must be
defined.

Remark 17. If F (q) is defined for a state q, then Pre(q) ⊆
⋂

t∈F (q) Pre(t).

Remark 18. If G(q) is defined for a state q, then Suff (q) ⊆
⋂

t∈G(q) Suff (t).

Theorem 7. Let A be an automaton in a fixpoint computation with states
Q and N∞ be an automaton with states Q∞ representing the fixpoint and
satisfying the conditions of Lemma 12. Let π be a partition of Q. For any
two states q and q′ in the same block of π, if one of the following conditions
hold:

1. F (q) = F (q′)

2. F (q) = G(q′)

3. G(q) = G(q′)
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then L(A/π) ⊆ L(N∞).

Proof. The initial induction step is similar to that in Lemma 10. We consider
π to be a partition of index |Q| − 1 and show that L(A/π) ⊆ L(N∞).

We know from Lemma 12 that either F (q) or G(q) must be defined and
that the same applies for q′. Consider a word uxv ∈ Pre([q]) · Suff ([q]) such
that u ∈ Pre([q]) \ L([q], [q]) and v ∈ Suff ([q]) \ L([q], [q]) and x = y1 . . . yk

with yi ∈ L([q], [q]) for 0 ≤ i ≤ k. We consider the three conditions in the
lemma and show that in each case, uxv ∈ L(N∞).

1. F (q) = F (q′): The word v must be in Suff (q) ∪ Suff (q′). Say v is in
Suff (q). As L(A) ⊆ L(N∞), it must be that Suff (q) ⊆

⋃
t∈F (q) Suff (t).

Thus there exists a state t ∈ Q∞ with v ∈ Suff (t) and u ∈ Pre(t).
It remains to show that yi ∈ L(t, t). Note that each yi ∈ L({q, q′})
and is thus either contained in a prefix of q or a prefix of q′. As
Pre(q) ⊆ Pre(t) and Pre(q′) ⊆ Pre(t), we have that uyi ∈ Pre(t) for
each yi. Further, because u ∈ Pre(t) and uyi ∈ Pre(t), we have that
uy∗i ∈ Pre(t). As each yi ∈ L(t, t), L([q], [q]) ⊆ L(t, t). It follows that
uxy ∈ L(N∞).

2. F (q) = G(q′): For any t ∈ F (q), u ∈ Pre(t) and v ∈ Suff (t). It
remains to show that for each yi ∈ L(q, q′), yi ∈ L(t, t). If yi ∈ L(q, q),
as u′ ∈ Pre(t) for any u′ ∈ Pre(q) and u′yi ∈ pre(q) we have that
u′yi ∈ Pre(t) and hence yi ∈ L(t, t). If yi ∈ L(q, q′), as any u′ ∈ Pre(q)
is also in Pre(t) and u′yi ∈ Pre(q′) and Pre(q′) ⊆ Pre(t), u′yi ∈ Pre(t).
A similar argument applies for yi ∈ L(q′, q)∪L(q′, q′). Thus, x ∈ L(t, t)
and uxv ∈ L(N∞) as required.

3. G(q) = G(q′): The word u must be in Pre(q) ∪ Pre(q′). Say u is in
Pre(q). As L(A) ⊆ L(N∞), it must be that Pre(q) ⊆

⋃
t∈G(q) Pre(t).

Thus there exists a state t ∈ Q∞ with u ∈ Pre(t) and v ∈ Suff (t).
It remains to show that yi ∈ L(t, t). Note that each yi ∈ L({q, q′})
and is thus either contained in a suffix of q or a suffix of q′. As
Suff (q) ⊆ Suff (t) and Suff (q′) ⊆ Suff (t), we have that yiv ∈ Suff (t)
for each yi. Further, because v ∈ Suff (t) and yiv ∈ Suff (t), we have
that y∗i v ∈ Suff (t). As each yi ∈ L(t, t), L([q], [q]) ⊆ L(t, t). It follows
that uxy ∈ L(N∞).

4.3 Elementary Widening Seeds

The conditions we identified can be used to study different widening op-
erators. We recall our notation. S, is a widening seed, M , a widening
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parameter, A the widening candidate, A∞, the minimal, deterministic au-
tomaton representing the fixpoint of the computation, if it is regular, and
AO, the widened automaton. We analyse each widening seed as indicated
in Section 4.1. In addition, we provide examples to illustrate the effect of
widening. For each seed S, we also compute RO and ≡M

S and indicate the
elements in these relations that affect the widened automaton.

The first widening seed we consider is {=s}. Two states t and t′ in A
are merged if there exists a state r in M such that t =s r and t′ =s r. The
following example illustrates the use of this widening seed.

Example 11. Consider the automaton A with the widening parameter M .

r0 r1
0

0

0

0
t0 t1 t2 t3

0 1

0

M A

The relations computed are:

=s = {〈r1, t2〉, 〈r1, t3〉}
RO = {〈t2, t3〉, 〈t3, t2〉}
≡M
S = id ∪RO

The states in the same equivalence class of ≡M
S are shaded in the illustration.

The widened automaton AO below is obtained by merging t2 and t3.

q0 q1 q2
0 1

0 0

AO

Note that L(AO) = L(A) and that AO is minimal.

Lemma 13 (Properties of {=s}). Let S be {=s}. S has the following
properties:

1. It is not extrapolating for finite automata or WDBAs.

2. If A is the widening parameter, A/ ≡A
S is minimal.

3. It does not enforce termination.

4. If the fixpoint is regular, the computation with widening converges in
the limit to the precise fixpoint.
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Proof. (1) All states in an equivalence class accept the same language, hence
the finite language of the widened automaton does not increase. As two
states with the same suffixes have the same ω-suffixes, the ω-language ac-
cepted does not change.
(2) If A is the widening parameter, all states in A accepting the same lan-
guage are in the same equivalence class of ≡M

S . Therefore, no two states in
AO accept the same language and it is minimal.
(3) As the widening seed is not extrapolating, the sequence of languages in
the computation with widening is identical to the sequence in the computa-
tion without. Hence, termination is not enforced.
(4) As the sequence of languages in a fixpoint computation with and without
widening is the same, if the computation without widening converges to a
regular fixpoint.

A computation with minimisation steps is an instance of Algorithm 1
(Fixpoint Computation With Widening). At step i of the computation,
the widening parameter is Ai and the widening seed is {=s}. By Lemma 13,
part 2 the widened automaton is minimal. Note that the automaton AO

may not be deterministic and hence, not canonical.
The widening seed {=p} has similar properties to {=s}. It can be used to

reduce the size of an automaton but does not change the language accepted.
In addition, for deterministic automata, the widening equivalence is the
identity relation.
Example 12. A widening parameter M and automaton A are shown below.

s0 s1 s2
0 1

t0

t1

t2

t3

t4

0

0

1

0

M A

The relations computed are:

=p = {〈s0, t0〉, 〈s1, t1〉〈s1, t2〉, 〈s2, t3〉, }
RO = {〈t1, t2〉, 〈t2, t1〉} ∪ id \ {〈t4, t4〉}
≡M
S = id ∪RO

The pair 〈t4, t4〉 /∈ RO because no state in M is related to t4. The shaded
states are merged to obtain AO below.

r0 r1

r2

r3

0

1

0

AO
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Observe that A and AO are the MCA and the trie for the sample {01, 00}.

Lemma 14 (Properties of {=p}). Let S be {=p}. S has the following
properties:

1. It is not extrapolating for finite automata.

2. If A is a deterministic, AO is isomorphic to A. Further, S is not
extrapolating for WDBAs.

3. If A is an MCA for a sample S, A/ ≡A
S is Trie(S).

4. It does not enforce termination.

5. If the fixpoint is regular, the computation with widening converges in
the limit to the precise fixpoint.

Proof. (1) All states in an equivalence class of ≡A
S have the same prefixes.

Merging states with the same prefixes does not change the language of the
automaton, therefore, this seed is not extrapolating.
(2) If A is deterministic, no two states have the same prefixes. Therefore,
each equivalence class of ≡A

S has only one state and AO is isomorphic to A.
As WDBAs are deterministic, this seed is not extrapolating for WDBAs.
(3) As A is the widening parameter, all states in A with the same prefixes are
related. For any sample S, Trie(S) is obtained from MCA(S) by merging
states with the same prefixes. Hence, if A is an MCA and the widening
parameter, AO is a trie.
(4) Identical argument to part 3 of Lemma 13.
(5) Identical argument to part 4 of Lemma 13.

As this widening seed does not merge states in a deterministic automa-
ton, the partition it induces is finer than the partition induced by {=s}.
An NFA might have states reachable by identical prefixes and states with
different prefixes but identical suffixes, so the partitions induced by {=p}
and {=s} may be incomparable.

The next widening seed we consider is {=k
s}. Two states are in the re-

lation =k
s if they have the same suffixes of length at most k. Bierman and

Feldman [1972] introduced the k-tails heuristic, in which states in a non-
deterministic Mealy machine related by =k

s are merged. This heuristic has
since been used in various applications such as regular inference, extracting
formal specifications from protocol code [Ammons et al. 2002], inference of
document structure [Sankey and Wong 2001] and synthesis [Choi 2002] and
testing [Maadani and Geffroy 1991] of VLSI circuits. We refer to {=k

s} as
the k-tails widening seed and illustrate its use with the following example.

Example 13. Consider the following sequence of automata in a fixpoint com-
putation with the regular fixpoint A∞ as shown.
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q0 q1
0

r0 r1 r2
0 0

s0 s1 s2 s3
0 0 0

A0 A1 A2

Let A2 be the widening candidate and A1 be the widening parameter.
Choose the widening seed S as {=1

s}. The relations computed are:

=1
s = {〈r0, s0〉, 〈r1, s1〉〈r1, s2〉, 〈r2, s3〉, }
RO = id ∪ {〈s1, s2〉, 〈s2, s1〉}
≡A1
S = id ∪RO

The states s1 and s2, which are shaded, are in the same equivalence class
as they are both related to r1. The shaded states are merged. The widened
automaton and the fixpoint of the sequence are shown below.

p0 p1 p2
0 0

0

t0 t1

0
0

AO A∞

We can see that L(AO) = L(A∞).

The k-tails widening seed has many interesting properties. If an over-
approximation is too coarse for a certain analysis, using a larger k will result
in a more precise over-approximation. As the number of different languages
containing strings of length at most k is finite, there exists a choice of the
widening parameter that always ensures termination. However, we show
that an arbitrary choice of the widening parameter may not guarantee ter-
mination, so this choice should be made carefully. By adapting a regular
inference algorithm of Trakhtenbrot and Barzdin [1973], we identify compu-
tations in which the k-tails widening seed can be used to compute precisely
compute a regular fixpoint. We illustrate the algorithm using an example
and then discuss our modification.

Let A∞ be an automaton with n states. The algorithm requires as input
a finite, prefix-complete sample S that includes all words of length up to
2n − 1 accepted by A∞. The algorithm begins with Trie(S) and proceeds
by merging states related by =k

s for decreasing values of k. The initial value
of k for the relation =k

s is 2n − 1. If a state r in the trie has a predecessor
r′ such that r =k

s r′, the sub-tree from r is deleted and r is merged with r′.
If all pairs of states have been compared, the value of k is decremented and
the steps described above are repeated. If all states have been compared
using the relation =0

s, the algorithm terminates.

Example 14. Let S = {1, 01, 10} be the set of strings in a sample. The
algorithm begins with the trie A0 accepting S and with k = 1. Consider
the suffixes of each state of length at most 1. Suff 1(q0) = {1}, Suff 1(q1) =
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{λ, 0}, and Suff 1(q2) = {1}. The states q0 and q1 are compared. As q0 6=1
s q1,

q0 and q2 are compared. As Suff 1(q0) = Suff 1(q2), the two states are merged
to obtain A1.

We compare the states in A1. Suff 1(r0) = {1}, Suff 1(r1) = {λ, 0}, and
Suff 1(r2) = {λ}. As no two states are in the relation =1

s, the states are
compared using the relation =0

s. The states r1 and r2 both accept {λ} and
are merged to obtain A2. As all states have been compared using =0

s, the
algorithm terminates.

q0

q1

q2

q3

q4

1

0

0

1

r0 r1 r2
1 0

0

s0 s1
1

0 0

A0 A1 A2

Trakhtenbrot and Barzdin [1973] proved the following theorem about the
correctness of the algorithm.

Theorem 8 (Trakhtenbrot and Barzdin 1973, Theorem 4.1). Let A
be an automaton with n states.

1. For any states q, q′ in A, if Suff 2n−1(q) 6= Suff 2n−1(q′), Suff (q) 6=
Suff (q′).

2. Given a finite, prefix complete sample that includes all words of length
up to 2n− 1 accepted by A, there exists an algorithm for constructing
A.

We have the following lemma about the properties of the k-tails widening
seed.

Lemma 15 (Properties of {=k
s}). The k-tails widening seed {=k

s} has the
following properties:

1. If k = 0, AO has at most two states.

2. It is extrapolating.

3. Let p = |Σ| be the size of the alphabet with p ≥ 2 and `(p, k) =

2

(
pk+1−1

p−1

)
. For any k, there exists a choice of the widening param-

eter which ensures termination in at most `(p, k) steps.

4. There exists a choice of the widening parameter such that the compu-
tation does not terminate.
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5. Let A∞ be an automaton with n states representing a regular fixpoint.
If there exists an automaton A in the fixpoint computation accepting a
prefix complete sample with words of length at least 4n− 2, the k-tails
widening seed can be used to precisely compute A∞ using A as the
widening parameter.

Proof. (1) There are only two suffixes of length 0: ∅ and {λ}. If k = 0,
for all widening parameters M , ≡M

S has at most two equivalence classes:
those corresponding to final and non-final states. Hence, AO has at most
two states.
(2) Consider the minimal automaton accepting the language {01}. Choose k
as zero. Using the same automaton as the widening parameter, the widened
automaton accepts 0∗1.
(3) Let `(p, k) denote the number of languages over a p symbol alphabet
containing words of length at most k. The value `(p, k) is the number of
different choices of final and non-final states in a p-ary tree of depth k. If
no states are marked final, the language is ∅, if only the root of the tree
is marked as final, the language accepted is {λ} and so forth. The total
number of nodes in a p-ary tree of depth k with p ≥ 2 is

(
pk+1−1

p−1

)
. As every

state can be final or non-final, `(p, k) = 2

(
pk+1−1

p−1

)
.

Let A be the automaton to be widened. Choose A as the widening
parameter. If A has more than `(p, k) states, by the Pigeon hole principle,
at least two states have the same language. As A is the widening parameter,
these two states are related and are in the same equivalence class of ≡A

S .
(4) Consider the sequence of automata in Example 13. Let k = 1 and
the widening parameter always be A0. For all i ≥ 0, no two states in the
automaton Ai have the same suffixes as the states q0 or q1 in the automaton
A0. The fixpoint computation with merging is thus identical to the one
without and does not terminate.
(5) Every state in an automaton can be reached by a word of length at
most n− 1 and reached twice by a word of length at most 2n− 1 (consider
an automaton with a ring structure). By Theorem 8, any two states in a
minimal n state automaton can be distinguished by a suffix of length at
most 2n− 1. If two states in a trie corresponding to the same state in A∞
are to be related only to each other, the sub-tree below each state should
be of depth 2n − 1. As a word of length 2n − 1 may be required to visit a
state twice, the minimum depth of the trie required is 4n − 2. This proves
the bound on the size of the tree.

Let S = {=2n−1
s } and M be a widening parameter. Consider the equiv-

alence classes of ≡M
S . If a state at depth at most 2n − 1 is related to a

state at the same or lower depth in the trie, by Theorem 8, they must be
identical in A∞. If a state at depth greater than 2n− 1 is related to a state
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at a lower depth, they must once again by Theorem 8 be indistinguishable
in A∞. We only need to consider states at depth greater than 2n − 1 that
are related. Let r and r′ be two such states. If they are final states and
there exists w ∈ Σ∗ such that δ∗(r, w) = r′, w · Suff (r′) ⊆ Suff (r). There-
fore, a pair of states r, r′ at depth greater than 2n − 1 are related only if
L(r, r′) = L(r′, r) 6= ∅. As r and r′ accept words of length less than 2n− 1,
they are related by r =2n−1

s r′ iff Suff (r) = Suff (r′), and by Lemma 3,
merging such states in a deterministic automaton does not change the lan-
guage accepted. Consider any two non-final states r, r′ at depth less than
2n− 1. By a similar argument, we can show that if two non-final states at
depth greater than 2n− 1 are merged, the language of the automaton does
not change. Therefore, the language of the automaton is extrapolated only
by merging states at dept at most 2n − 1. As these states can be uniquely
identified, L(AO) = L(A∞).

Our use of the k-tails widening seed to precisely compute a fixpoint
as in Lemma 15 differs from the standard use of a widening operator. A
widening operator is typically used to detect and generalise an increment
between at least two arguments. If a single automaton is used as both
the widening candidate and parameter, the widening operator has only one
argument. This difference in usage arises because unlike representations
such as intervals or polyhedra, an automaton implicitly contains information
about the previous steps in the fixpoint computation. If the fixpoint is
regular, it may suffice to detect a pattern in the words accepted by a single
automaton rather than detect an increment between the languages of two
automata. Nevertheless, using a widening operator with a single argument
may be too restrictive. As we may have very little information about the
fixpoint, it may be difficult to decide when an automaton contains sufficient
information to be used as both the widening candidate and parameter. For
example, to precisely compute a regular fixpoint using the k-tails widening
seed, we need to guess the number of states in the fixpoint automaton.

The next widening seed we consider is {=k
p}, which is complementary to

the k-tails widening seed. Two states in the widening candidate are related
if there exists a state in the widening parameter with the same prefixes of
length at most k. As with the k-tails widening seed, there exists a choice of
the widening parameter that enforces termination. In contrast to the k-tails
widening seed, We show that there exist a family of regular fixpoints that
cannot be computed precisely using this widening seed for any choice of the
widening candidate and parameter. As usual, we begin with an example.
Example 15. The two automata below occur in the fixpoint computation in
Example 13.

r0 r1 r2
0 0

s0 s1 s2 s3
0 0 0

A1 A2
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Let A2 be the widening candidate and A1 be the widening parameter.
Choose the widening seed S as {=1

p}. The relations computed are:

=1
p = {〈r0, s0〉, 〈ri, sj〉} where i ∈ {1, 2}, j ∈ {1, 2, 3}
RO = {〈s0, s0〉, 〈si, sj〉} where i, j ∈ {1, 2, 3}
≡A1
S = id ∪RO

The shaded states in A2 are in the same equivalence class of ≡A1
S and are

related to the shaded states in A1 by =1
p. The widened automaton is shown

below.

t0 t1

0
0

AO

The fixpoint is computed precisely and is isomorphic to A∞ in Exam-
ple 13. Note that the states related and the widened automaton are different
from those obtained using the k-tails widening seed.

Lemma 16 (Properties of {=k
p}). The widening seed {=k

p} has the fol-
lowing properties:

1. If A has two or more states and k = 0, AO has two states.

2. It is extrapolating.

3. Let p = |Σ| be the size of the alphabet Σ and `(p, k) = 2

(
pk+1−1

p−1

)
. For

every k, there exists a choice of the widening parameter that ensures
termination in at most `(p, k) steps.

4. There exists an infinite family of fixpoint computations with regular
fixpoints An

∞ such that no choice of k or the widening parameter allows
for An

∞ to be computed precisely.

Proof. (1) There are only two prefixes of length 0: {λ} and ∅. If A has more
than one state, the initial state has the prefix λ and all other states have
the empty prefix.
(2) Let k = 0 and A be a minimal automaton with more than 2 states.
We know from Lemma 3 that merging states with different suffixes extrap-
olates the language of an automaton. From the previous part, the widened
automaton has only two states, so L(A) ⊂ L(AO).
(3) The value of the function `(p, k) is the number of ways to mark the nodes
in a p-ary tree of depth k as initial or non-initial. If a node in the tree is
initial, the reverse of the path from that node to the root corresponds to a
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prefix of a state in the automaton. The same argument as in Lemma 15,
part 3 applies.
(4) Consider the family of sequences of automata An

i with L(An
i ) = {0nj |0 ≤

j ≤ i} where n > 1. Two automata An
1 and An

2 are shown below.

q0 q
n

0
n

r0 rn r2n

0
n

0
n

An
1

nA2

s0 0
n t0 tk

0
k

0

An
∞ AO

For each n, the fixpoint of the sequence is the automaton An
∞ accepting

the language (0n)∗. However, for any choice of k for the relation =k
p, for

any automaton An
i with more than k states, for all states r, r′ with a prefix

w such that |w| ≥ k, r =k
p r′. Hence, the widened automaton AO as shown

above accepts the language 0k0∗. We see that 0k0∗ 6= (0n)∗ for all n > 1.

We have demonstrated in Lemma 16 that the widening seed {=k
p} can

be extremely imprecise. The imprecision is not specific to the family of
automata we mention. If the automata in the fixpoint computation are
tries, each state has exactly one prefix and for any k in the relation, if the
trie has depth n > k, there will be n − k states with the same prefix that
will be merged. The extrapolation introduced is fairly arbitrary as different
tries having the same structure will have the same structure after widening
irrespective of the language accepted.

Next, we consider the widening seed {⊆s}. It is the first widening seed we
study that uses a preorder. In the examples presented so far, the widening
equivalence was of the form id∪RO. If the widening seed uses a preorder, all
states in the same equivalence class of the widening equivalence may not be
directly related to each other and the effect of the transitive closure comes
into play. We provide multiple examples to illustrate the varying effects of
widening. This widening seed can be used to compute the precise fixpoint for
interesting examples. Conversely, if any state in the widening parameter has
only finitely many suffixes, the extrapolation introduced may be arbitrarily
large. We also provide an example of non-terminating computations that
are accelerated using widening but still do not terminate. We conclude our
analysis of this widening seed by identifying computations with widening
that converge to the precise fixpoint.

Example 16. The automaton A0 below is a widening parameter and A1, a
widening candidate. Let S be {⊆s}.
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r0 1 s0 s1 s2

1

0

0

1

1

0

1

t0 t1

1

0

A0 A1 AO

Observe that Suff (r0) ⊆ Suff (s0) and Suff (r0) ⊆ Suff (s2). The relations
⊆s, RO and ≡A0

S are:

⊆s = {〈r0, s0〉, 〈r0, s2〉}
RO = {〈s0, s2〉, 〈s2, s0〉}
≡A0
S = id ∪RO

The shaded states in A1 related to r0 and are in the same equivalence
class of ≡A0

S . The widened automaton AO is obtained by merging s0 and s2,
and is the precise fixpoint. Our choice of A0 and A1 is not special. The ith

automaton Ai in this computation accepts the language ∪0≤j≤i1∗(00∗11∗)j .
For any two automata computation are used as the widening parameter or
candidate, the widened automaton is the precise fixpoint.

Example 17. Let the automaton A1 be the widening candidate and A0, the
widening parameter.

q0 q1 q2
0 1

r0 r1 r2 r3 r4
0 1 0 1

A0 A1

As Suff (q2) = {λ} and for every state ri, {λ} ⊆ Suff (ri), q2 is related to
every state in A1. The computed relations are:

⊆s = {〈q0, r0〉, 〈q0, r2〉, 〈q1, r1〉, 〈q1, r3〉, 〈q2, ri〉} where 0 ≤ i ≤ 4
RO = {〈ri, rj〉} where 0 ≤ i, j ≤ 4

≡A0
S = RO

The widening equivalence has unit index and the widened automaton
AO, shown below, accepts Σ∗. The fixpoint of the computation is also shown
below.

s0 0, 1 t0 t1

0

1

AO A∞

In this computation, there exists no choice of the widening candidate or seed
that for the fixpoint A∞ to be computed precisely.
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Example 18. Consider the sequence of deterministic automata An as shown
below. The language accepted by An is described by the regular expression
(01 + . . . + 0n1n)∗. The limit of the sequence of languages L(A0), . . . , L(An)
is a context free language.

01

r0

r1 r2 r3

r2n− 1 r2n− 2

r
n

r
n + 1

0 0

1 1

11

0
n−3

1

1
n−3

An

The suffixes of the state r2 are 0·Suff (r3)∪1·Suff (r2n−1) and the suffixes
of r2n−2 are 1 · Suff (r2n−1). Thus, Suff (r2n−2) ⊆ Suff (r2). In general, for
1 ≤ i < n, Suff (ri) = 1 · Suff (r2n−i+1) ∪ 0 · Suff (ri+1), and Suff (r2n−i) =
1 · Suff (r2n−i+1). Hence, Suff (ri) ⊆ Suff (r2n−i). Also note that as the
automaton is deterministic, for all states r and r′, Pre(r) ∩ Pre(r′) = ∅.

Let An be the widening candidate and parameter. The relation ⊆s is
(id ∪ {〈r2n−1, ri〉}). The relation RO is (id ∪ {〈r2n−1, ri〉, 〈ri, r2n−1〉}). The
widened automaton AO

n is shown below.

0

1

0

1

0
n−2

1
n−2

s0 s1 s2 s
n

AO
n

The effect of widening is interesting. The widening seed is extrapolating
as 001011 ∈ L(AO

n \ L(An). The language of the widened automaton is
neither an under or over-approximation of the fixpoint. The word 0n+11n+1,
which is in the fixpoint, is not accepted by AO

n and the word 001011 is not
in the fixpoint.

Let the parenthetic subscripts in an expression of the form (i exp i)
denote the level of nesting of a sub-expression exp of a regular expression.
The language L(AO

n = (1 0 · . . . (n 01 n)∗ . . . · 1 1)
∗ and can be interpreted

as representing a sequence of matched parentheses with at most n levels of
nesting. We find the effect of widening is interesting because though the lan-
guage of the widened automaton is neither an under or over-approximation
of the fixpoint, it satisfies non-trivial properties satisfied by language of the
widening candidate (in this case, that the number of 1’s and 0’s is equal).

Let Bn be a sequence of WDBAs obtained from the automata An by
marking all states final. The limit of this sequence of WDBAs is an ω-
context free language. The ω-words in the fixpoint of the sequence consist
of infinitely many finite sequences of 0s and 1s, where each sequence of 0s is
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followed by equally many 1s. The widened automaton BO
n accepts infinite

words containing finitely many sequences of 0s and 1s with at most finitely
many more 0s than 1s. Once again, the language obtained after widening is
neither an under or over-approximation of the fixpoint.

Lemma 17 (Properties of {⊆s}). Let S be {⊆s}. The widening seed S
has the following properties:

1. It is extrapolating.

2. If there exists a state r in the widening parameter M such that Suff (r) =
{λ}, AO has only one final state.

3. Enforces termination for some but not all fixpoint computations.

4. Let T = be the reflexive closure of a transition relation T with a reg-
ular fixpoint A∞. Let M be a widening parameter with states QM ,
A be the widening candidate with states Q and A∞ be minimal and
deterministic with states Q∞. If the following conditions hold:

(a) for all t, t′ ∈ Q∞, t 6= t′ ⇒ Suff (t) 6⊆ Suff (t′)

(b) for all r ∈ QM , there exists t ∈ Q∞ such that Suff (r) ⊆ Suff (t)
and for all t′ ∈ Q∞ : t 6= t′ ⇒ Suff (r) 6⊆ Suff (t′).

the fixpoint computation with widening converges to the precise fix-
point.

Proof. (1) See Examples 16, 17 and 18.
(2) If Suff (r) = {λ} for some state r, all final states are in the widening
candidate are related to r and are in the same partition, hence AO has only
one final state.
(3) Widening ensures termination for the computations in Examples 16,
and 18. We provide an example where the computation with widening does
not terminate. Consider the sequence of automata AO

n in Example 18. Each
state si in this automaton accepts the word 1i, not accepted by any other
state. Thus for all si, sj in AO

n , 〈si, sj〉 /∈⊆s. As the widening parameter is
also an automaton in this sequence, no two states in the widening candidate
are related to the same state in the widening parameter and the computation
does not terminate.
(4) From Remark 16, we know that it is sufficient to prove that L(A/ ≡M

S
) ⊆ L(A∞). We show that M has the prefix property and that the states in
the same equivalence class satisfy the conditions of Theorem 7.

By condition 4b, for each state r ∈ QM , there exists a unique state in
t ∈ Q∞ such that Suff (r) ⊆ Suff (t). As there exists v ∈ Suff (r) such that
for all t′ 6= t in Q∞, v /∈ Suff (t′) and L(M) ⊆ L(A∞), it must be that
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Pre(r) ⊆ Pre(t). For each r, this state t is unique, so each r ∈ QM and
consequently M has the prefix property.

Consider an equivalence class of ≡M
S with n + 1 states. By definition of

≡M
S , for any q, q′ in the equivalence class, there exist two sequences of states

q = q0, . . . qk = q′ ∈ Q and r1, . . . , rk ∈ QM such that 0 ≤ k ≤ n and for
each 1 ≤ i ≤ k, ri ⊆s qi−1 and ri ⊆s qi. We show by induction on k that the
conditions of Theorem 12 are satisfied. For the base case, take k = 0. By
Lemma 12, either F (q0) or G(q0) is defined. Clearly, if an equivalence class
has only one state, F or G agree for that state. For the induction hypothesis,
assume that for k = n− 1, f(qn−1) is defined and that f(q) = f(qn−1).

Consider the case k = n. We show that states qn−1 and qn agree on f ,
which implies the conditions of Theorem 7. There exists rn ∈ QM such that
rn ⊆s qn−1 and rn ⊆s qn. As rn has the prefix property and condition 4b
holds, we have that Suff (rn) ⊆ Suff (f(rn)). By the definition of ⊆s, we have
that Suff (rn) ⊆ Suff (qn−1), which implies that there exists v ∈ Suff (qn−1)
such that v ∈ f(r) and for all t′ 6= f(r) in Q∞, v /∈ Suff (t′). Hence, there
exists a unique state f(r) in Q∞ such that Suff (qn−1) ⊆ Suff (f(r)) and
Pre(qn−1) ⊆ Pre(f(r)). It follows that qn−1 has the prefix property and
that f(qn−1) = f(r). By a similar argument, we have that qn has the prefix
property and that f(qn) = f(r) and hence, f(qn) = f(qn−1) as required.
We have shown that for any two states q, q′ in the same partition of the
widening equivalence, the prefix property holds and f(q) = f(q′).

We know from Lemma 10 that if for all states in a block of a partition
π the prefix property holds and f(q) = f(q′), then L(A/π) ⊆ L(A∞). It
follows that the computation with widening converges to the precise fixpoint.

The next widening seed we consider is {⊆p}. Unlike the widening seeds
{=k

s} and {=k
p}, where the second seed introduced more imprecision this

widening seed relates far fewer states than {⊆s}. In fact, if all the automata
in the fixpoint computation are deterministic, the computation with widen-
ing is identical to the one without! This can be verified by examining the
states in any sequence of deterministic automata featured in previous ex-
amples. We show that this widening seed does extrapolate the language of
NFAs and may even allow for computing a fixpoint precisely.

Example 19. Consider the following fixpoint computation with NFAs.

q0 q1
1

r0 r1

r2

1

1 0

s0 s1

s2 s3

1

1 0

0

0

A0 A1 A2

Let us compare the prefixes of states in the automata A0 and A1. Pre(q0) =
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Pre(r0) = {λ}, Pre(q1) = Pre(r2) = {1} and Pre(r1) = {1, 10}. The rela-
tions required for widening are:

⊆p = {〈q0, r0〉, 〈q1, r1〉, 〈q1, r2〉}
RO = {〈r0, r0〉, 〈r1, r2〉, 〈r2, r1〉
≡A0
S = id ∪RO

The states that are equivalent in A1 are shaded. The widened automaton
obtained by merging r1 and r2 is shown below and is the precise fixpoint for
this computation.

t0 t1

1
0

AO

If A0 and A3 are used as the widening parameter and candidate, the
equivalent states in A3 are shaded. The structure of the widened automaton
differs from that of AO above, but the language accepted is the same. Let Ai

be the ith automaton in the computation above, obtained by adding a state
si+1 and transitions (si, 0, si+1) and (si+1, 0, si) to Ai−1. For any choice of
the widening candidate and parameter, only states s1 and s2 are merged, so
the widened automaton obtained is always isomorphic to AO above.

Lemma 18. The widening seed S = {⊆p} has the following properties:

1. It is not extrapolating for fixpoint computations with DFAs or WDBAs.

2. It is extrapolating for fixpoint computations with NFAs.

3. Enforces termination but not of all fixpoint computations.

4. Let M∞ be the left canonical automaton representing the fixpoint of a
computation, A be the widening candidate and M the widening param-
eter. If the following conditions hold:

(a) for all t, t′ ∈ Q∞, t 6= t′ ⇒ Pre(t) 6⊆ Pre(t′)

(b) for all r ∈ QM , there exists t ∈ Q∞ such that Pre(r) ⊆ Pre(t)
and for all t′ ∈ Q∞ : t 6= t′ ⇒ Pre(r) 6⊆ Pre(t′).

the fixpoint computation with widening converges to the precise fix-
point.

Proof. (1) Let r and q be states in a widening parameter M and candidate
A respectively. If r ⊆p q, Pre(r) ⊆ Pre(q). As A is deterministic, for all
states t′ 6= t, Pre(t) ∩ Pre(t′) = ∅. It follows that for all t 6= t′, r 6⊆p t′.
Hence, each state in the widening parameter is in a relation with at most

65



one state in the widening candidate, and the widening equivalence is the
identity relation.
(2) See Example 19.
(3) In Example 19, we provided an example of a computation that termi-
nates. For all fixpoint computation with deterministic automata, termina-
tion is not enforced.
(4) We proceed in a similar manner as in Lemma 17. It is sufficient to
show that for any A, M and A∞ satisfying the conditions of the lemma,
L(A/ ≡M

S ) ⊆ L(A∞). We show that M has the suffix property and that for
any two states q, q′ in the same equivalence class of ≡M

S , g(q) = g(q′).
By condition 4b, for each state r ∈ QM , there exists a unique state in

t ∈ Q∞ such that Pre(r) ⊆ Pre(t). As there exists u ∈ Pre(r) such that
for all t′ 6= t in Q∞, u /∈ Pre(t′) and L(M) ⊆ L(M∞), it must be that
Suff (r) ⊆ Suff (t). For each r, this state t is unique, so each r ∈ QM and
consequently M has the suffix property.

Consider an equivalence class of ≡M
S with n + 1 states. By definition of

≡M
S , for any q, q′ in the equivalence class, there exist two sequences of states

q = q0, . . . qk = q′ ∈ Q and r1, . . . , rk ∈ QM such that 0 ≤ k ≤ n and for
each 1 ≤ i ≤ k, ri ⊆p qi−1 and ri ⊆p qi. We show by induction on k that
g(q) = g(q′). For the base case, take k = 0. Clearly, g(q) = g(q). For the
induction hypothesis, assume that for k = n− 1, g(q) = g(qn−1).

Consider the case k = n. There exists rn ∈ QM such that rn ⊆s qn−1

and rn ⊆s qn. As rn has the suffix property and condition 4b holds, we
have that Pre(rn) ⊆ Pre(g(rn)). By the definition of ⊆p, we have that
Pre(rn) ⊆ Pre(qn−1), which implies that there exists u ∈ Pre(qn−1) such
that u ∈ Pre(g(r)) and for all t′ 6= g(r) in Q∞, u /∈ Pre(t′). Hence, there
exists a unique state g(r) in Q∞ such that Pre(qn−1) ⊆ Pre(g(r)) and
Suff (qn−1) ⊆ Suff (f(r)). It follows that qn−1 has the suffix property and
that g(qn−1) = g(r). By a similar argument, we have that g(qn) = g(r) and
hence, g(qn) = g(qn−1) as required. We have shown that for any two states
q, q′ in the same partition of the widening equivalence, the suffix property
holds and g(q) = g(q′).

It follows from Lemma 11 that L(A/π) ⊆ L(M∞).

The next widening seed we consider is {∩s}. If two states are in the
relation ⊆s, they are also in the relation ∩s, thus we may already infer some
properties about this widening seed from what we have proved so far. For
example, as {⊆s} is extrapolating, so is {∩s}. If {⊆s} enforces termination
for some fixpoint computation, so does {∩s}. For precision, the implication
of results is in the other direction. That is, if a class of fixpoint computations
with widening using {∩s} converges to the precise fixpoint, the computation
converges to the precise fixpoint if {⊆s} is used as the widening seed.

Angluin [1982] identified a subclass of regular languages called the re-
versible languages and provided an algorithm for inferring reversible lan-
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guages from positive data. The algorithm is developed for zero-reversible
languages and generalised to the entire class of reversible languages. A reg-
ular language L is zero-reversible iff the left-canonical automaton for L is
deterministic. We show that the set of fixpoints that can be computed pre-
cisely using {∩s} for any choice of the widening candidate and parameter
is the set of zero-reversible languages. In fact, the algorithm of [Angluin
1982] for inferring a zero-reversible language from a sequence of examples
corresponds precisely to a fixpoint computation with widening using {∩s}
as the widening seed. Thus, we see that another algorithm for manipulating
automata in a fixpoint computation is an instance of our framework.
Example 20. We use the family of automata from the proof of Lemma 16,
part 4. Two automata An

1 and An
2 from the fixpoint computation are shown

below. The automaton An
i accepts the set of words {0nj |0 ≤ j ≤ i}.

q0 q
n

0
n

r0 rn r2n

0
n

0
n

s0 0
n

An
1 An

2 AO

The state q0 has two suffixes λ and 0n. Every other state qi has exactly one
suffix, 0n−i. Let An

1 be the widening seed and An
2 the widening parameter.

The relations for computing the widening equivalence are:

∩s = {〈qi, ri〉, 〈qi, rn+i〉, 〈qn, r0〉} where 0 ≤ i ≤ n

RO = {〈ri, ri〉, 〈ri, ri+n〉} where 0 ≤ i ≤ n

≡A0
S = RO

The widened automaton is obtained by merging state ri with ri+n and r0

with r2n to obtain the automaton AO, which is the precise fixpoint. Recall
that this fixpoint could not be computed precisely using the widening seed
{=k

p}.
Example 21. We consider a fixpoint computation for which the widened
automaton over-approximates the fixpoint.

q0

0

r0 r1 r2

0

1

1

0

1

s0 s1 s2 s3

0

1

1

0

1

0

0

A0 A1 A2

Let A0 be the widening parameter and A2 the widening seed. A0 accepts
the language 0∗. Observe that each state in A2 accepts the word 0, so for all
0 ≤ i ≤ 3, Suff (q0) ∩ Suff (si) 6= ∅. Every pair of states in A2 is related by
the widening equivalence and the widened automaton AO is shown below.
Let us compare this result with that obtained using the widening seed {⊆s}.
The states s0, s2 and s3 all accept the language 0∗ accepted by q0 and are
merged. The widened automaton is shown as A′O below. In both cases, the
widened automaton accepts Σ∗.
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p0

0, 1

1

0

p
′

0
p
′

1

0, 1

1

t0 t1

t2

0

0

0

1

1

1

AO A′O A∞

If A1 is used as the widening parameter instead, the widened automaton
isomorphic to AO. There is no choice of the widening candidate and pa-
rameter in this computation that improves the precision of the automaton
computed by widening.

Lemma 19 (Properties of {∩s}). Let S be {∩s}. The widening seed S
has the following properties:

1. It is extrapolating.

2. AO has at most one final state.

3. Enforces termination but not for all computations.

4. Let A∞ be the canonical automaton with states Q∞ representing a
regular fixpoint. Let M be a widening parameter with states QM and
A be the widening candidate with states Q. If the following conditions
hold:

(a) for all distinct t, t′ ∈ Q∞, Suff (t) ∩ Suff (t′) = ∅
(b) for all r ∈ QM , there exists t ∈ Q∞ such that Suff (r) ⊆ Suff (t)

the fixpoint computation with widening converges to the precise fix-
point.

Proof. (1) See Examples 20 and 21.
(2) Let r be a final state in M . For all final states q in A, Suff (r)∩Suff (q) =
{λ}, so all final states are related and hence in the same equivalence class of
the widening equivalence. Thus, the quotient automaton has only one final
state.
(3) The computations in Examples 20 and 21 terminate with widening. For
a non-terminating computation, we reproduce an automaton from Exam-
ple 18.
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0

1

0

1

0
n−2

1
n−2

s0 s1 s2 s
n

An

Let An be the nth automaton in a fixpoint computation. For any pair of
states si, sj , Suff (si)∩Suff (sj) = ∅. The widening equivalence is the identity
relation and the computation does not terminate.
(4) The sequence of arguments we use is similar to that in Lemma 17,
part 4, so we only present the steps that differ. We show that M has the
prefix property and that any two states in the same partition agree on the
function f .

By condition 4b, for each state r ∈ QM , there exists t ∈ Q∞ such that
Suff (r) ⊆ Suff (t). As the suffixes of states in A∞ are disjoint, this state t
is unique and as L(A) ⊆ L(A∞), it must be that Pre(r) ⊆ Pre(t). We have
established that M has the prefix property.

Consider a pair of states q, q′ in an equivalence class of ≡M
S . We only

show the inductive step here. Assuming there exists r ∈ QM such that r∩s q
and r ∩s q′, we need to show that f(q) = f(q′). As Suff (r) ∩ Suff (q) 6= ∅,
and Suff (r) ⊆ Suff (f(r)), we conclude that Suff (q) ∩ Suff (f(r)) 6= ∅. As
no state besides f(r) accepts words in this intersection, it must also be
that Pre(q) ⊆ Pre(f(r)), whereby we further conclude that q has the prefix
property and that f(q) = f(r). By a similar argument, we have that f(q′) =
f(r), hence f(q) = f(q′). Convergence to the precise fixpoint follows from
Lemma 10.

How do our results compare to those in [Angluin 1982] about zero-
reversible inference? Let ZR-Inference be the algorithm for inference of
zero-reversible languages, which takes a sequence of tries as input. Angluin
[1982] provides the following theorem about the zero-reversible inference
algorithm.

Theorem 9 (Angluin 1982, Theorem 27). Let S0, S1, . . ., be a sequence
of finite, positive samples, ordered by inclusion, of a zero-reversible regular
language L. Let A0, A1, . . . be a sequence of tries with Ai accepting the sam-
ple Si. Let A′i = ZR-Inference({A0, . . . , Ai}). The sequence A′0, A

′
1, . . .

converges to the canonical automaton accepting L.

Let us compare the conditions of Lemma 19, part 4 to those of Theo-
rem 9. Condition 4a in Lemma 19 is identical to the requirement that the
samples Si be from a reversible language. Let Ai be a trie as in Theorem 9.
As each state in a trie has a unique prefix and the fixpoint of the com-
putation is represented by a deterministic automaton, the trie Ai has the
prefix property. As L(Ai) ⊆ L(M∞), it follows that for each state q in Ai,
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p0

p1

p2 1

0

1

q0

q1

q2

q3

1

0

0

1

1

0

r0

r1

r2

r3

r4

1

1

0

0

1

1

A0 A1 A2

Figure 4.1: Fixpoint computation in Example 4.1

Suff (q) ⊆ Suff (f(q)). Thus, if a sequence of tries satisfies the conditions of
Theorem 9, condition 4b of Lemma 19 holds for each trie in the sequence. If
the sequence of tries Ai is viewed as a fixpoint computation, we may say that
if conditions of Theorem 9 hold for a fixpoint computation, the conditions
of Lemma 19, part 4 hold for that computation. Thus, our result is more
general than Theorem 9. To see that it is strictly more general, observe that
we do not impose the restriction that the languages of the automata in the
fixpoint computation be finite.

The last widening seed we study in this section is {∩p}. As we may
expect, widening using this seed can be compared to widening using {⊆p}.
The seed {⊆p} is extrapolating for computations with nondeterministic au-
tomata and enforces termination and {∩p} has these properties as well. In
addition, the seed {∩p} is also extrapolating for computations with deter-
ministic automata. In addition, the class of languages for which the fixpoint
can be computed precisely is once again the zero-reversible languages.

Example 22. The three minimal automata in Figure 4.1 occur in a fixpoint
computation. The state p1 in A0 has the prefixes {1, 01}. The states q1

and q3 in A1 have the prefixes {1} and {01, 11, 101} respectively. Let A0 be
the widening parameter and A1, the widening candidate. The relations for
computing the widening equivalence are:
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∩p = {〈p0, q0〉, 〈p2, q2〉, 〈p1, q1〉, 〈p1, q3〉}
RO = id ∪ {〈q1, q3〉, 〈q3, q1〉}
≡A0
S = RO

The states q1 and q3 are in the same equivalence class. The widened au-
tomaton AO and the fixpoint A∞ are shown below.

0

1

s0

s1

s2

s2

1

0

1

1

t0 t1 t2

1

0 1

AO A∞

The fixpoint of the sequence is the language (1∗ + 1∗01). The states s0

and s1 in AO accept the same language, which is (1 + 01)∗, a non-trivial
over-approximation of L(A∞). If A2 is used as the widening candidate and
A0 as the widening seed, the states that are shaded in A2 are in the same
equivalence class and the widened automaton is the same. If A2 is the
widening candidate and A1, the widening parameter, the states r2 and r4

in A2 are merged. The widened automaton is not isomorphic to AO but
accepts L(AO).

Consider the sequence of tries A′0, A
′
1, . . . such that L(A′i) = L(Ai) for

Ai in the computation above. Each state in any automaton A′i has exactly
one prefix, so a state in one automaton is related to at most one state in
any other automaton in the computation and the widened automaton is
isomorphic to the widening candidate. Thus, if this widening seed is being
used, better over-approximations may be obtained by first minimising the
automaton.

Lemma 20 (Properties of {∩p}). The widening seed {∩p} has the follow-
ing properties:

1. It is extrapolating.

2. If A is the widening parameter and candidate, AO is deterministic.

3. It enforces termination, though not for all fixpoint computations.

4. Let M∞ be the left-canonical automaton with states Q∞ representing
a regular fixpoint. Let M be a widening parameter with states QM , A
be the widening candidate with states Q. If the following conditions
hold:
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(a) M∞ is deterministic
(b) M has the prefix property

the fixpoint computation with widening converges to the precise fix-
point.

Proof. (1) See Example 22.
(2) Consider a block of the partition of Q induced by the widening equiv-
alence. Let q1, . . . , qn the states therein. The prefixes of the state [q1] in
the widened automaton are Pre({q1, . . . , qn}) ·L({q1, . . . , qn}). For any two
states q and q′ in different equivalence classes, Pre(q)∩Pre(q′) = ∅. There-
fore, Pre([q]) ∩ Pre([q′]) = ∅. As the states in the widened automaton have
disjoint prefixes, it is deterministic.

As A is the widening parameter, every state is related to itself. In addi-
tion, every pair of states with a common prefix are in the same equivalence
class. The states in different
(3) See Example 22 for a fixpoint computation that terminates with widen-
ing. Consider any fixpoint computation with tries. As each state in each
automaton has exactly one prefix, a state in one automaton is related to at
most one state in any other automaton. The computation with widening is
identical to the one without, so any non-terminating fixpoint computation
does not terminate with widening.
(4) The initial steps are similar to the proof of Lemma 18, part 4. We only
show that any two states in the an equivalence class of ≡M

S have the suffix
property and that g(q) = g(q′).

By condition 4b, for each state r ∈ QM , there exists t ∈ Q∞ such that
Pre(r) ⊆ Pre(t). As the prefixes of states in M∞ are disjoint, this state t is
unique and as L(A) ⊆ L(A∞), it must be that Suff (r) ⊆ Suff (t). We have
shown that M has the suffix property.

Consider a pair of states q, q′ in an equivalence class of ≡M
S . Assuming

there exists r ∈ QM such that r ∩p q and r ∩p q′, we need to show that
g(q) = g(q′). As Pre(r) ∩ Pre(q) 6= ∅, and Pre(r) ⊆ Pre(g(r)), we conclude
that Pre(q) ∩ Pre(g(r)) 6= ∅. As no state besides g(r) has prefixes in this
intersection, it must also be that Suff (q) ⊆ Suff (f(r)), whereby we further
conclude that q has the suffix property and that g(q) = g(r). By a similar
argument, we have that g(q′) = g(r), hence g(q) = g(q′). Convergence to
the precise fixpoint follows from Lemma 11.

Consider the language of A∞ in Example 22. The left canonical automa-
ton for this language is shown below.

t0 t1 t2

1

0, 1 1

M∞
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Recall that no choice of the widening parameter or candidate allowed for
the fixpoint to be computed precisely. We can see that the second condition
of Lemma 20, part 4 does not hold as M∞ is not deterministic.

We conclude this section with a discussion on other widening seeds, in
particular, how we use results about elementary widening seeds to study
other widening seeds. We only comment on but do not analyse the use of
simulation relations as widening seeds. Simulation relations and language
inclusion are identical notions for deterministic automata, so the widening
seed using direct simulation {vdi}, has the same properties as {⊆s} for
deterministic automata.

Additional widening seeds can be constructed from the union or inter-
section of the relations we introduced in Section 4.1. Let R1 and R2 be two
binary relations in U . If R1 ⊆ R2, the widening seed {R2} has stronger ex-
trapolation and termination properties and weaker precision properties than
{R1}. That is, if a widening step using {R1} is extrapolating or enforces
termination, the widening step using {R2} is also extrapolating and also
enforces termination. As R2 may be a larger relation than R1, more states
in the widening candidate might be related and a widening step using {R1}
that computes the precise fixpoint may only compute an over-approximation
if {R2} is used. The converse though is true. If a computation with widen-
ing converges to the precise fixpoint using {R2}, it converges to the precise
fixpoint if {R1} is used as the widening seed.

These observations are useful for constructing other widening operators.
For example, if a widening seed S1 does not enforce termination for a class
of computations, we can choose a widening seed S2 ⊇ S1 that does. On
the other hand, if the widening seed using a relation R1 introduces too
much imprecision, a more precise widening seed can be construct using the
relationR = R1∩R2. As fewer states are related, the imprecision introduced
decreases.

4.4 The Bartzis-Bultan Widening Seed

Bartzis and Bultan [2004] propose a widening operator that uses the re-
lations ∩p and =s for accelerating computations with automata encoding
arithmetic. Though these relations are used, we show that the widening op-
erator and widened automaton proposed in [Bartzis and Bultan 2004] differ
from those in our framework. Despite the difference, we refer to {∩p,=s}
as the Bartzis-Bultan (BB) widening seed. Our analysis proceeds as in
Section 4.3. We discuss and demonstrate the effect of widening with a few
examples and make a formal statement about the properties of the widening
seed.

Bartzis and Bultan [2004] define a widening relation, denoted ≡O, using
two automata A1 and A2 and claim it is an equivalence relation. Consider
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the relation RO, constructed from the widening seed {∩p,=s} using Con-
struct Equivalence. The relation ≡∇ as defined in [Bartzis and Bultan
2004] is any transitive relation that includes RO. Thus, if RO, is not re-
flexive, as per the definition in [Bartzis and Bultan 2004], ≡∇ need not be
either. Even if a ≡∇ is required to be reflexive, it may not be well defined.
A second problem arises in the definition of the widened automaton.

Definition 25 (Bartzis and Bultan 2004, Widened Automaton).
Let A1 = (Q1,Σ, δ1, r0, F1) and A2 = (Q2,Σ, δ2, t0, F2) be two trim, de-
terministic automata in a fixpoint computation and π ⊆ Q1 ∪ Q2 be the
partition induced by the widening relation ≡O. The widened automaton
∇BB(A1, A2) = (Q,Σ, δ, q0, F ) is defined as follows: Q = {[q]|q ∈ Q1 ∪Q2},
q0 = [r0], F = {[q]|q ∈ F1 ∪ F2} and δ([q], a) = [q′] where ∀r ∈ Q1 ∩ [q] :
δ(r, a) ∈ [q′] and ∀t ∈ Q2 ∩ [q] : δ(t, a) ∈ [q′].

Examine the definition of δ in the widened automaton. This definition is
problematic because a transition on a symbol a between two states [q] and
[q′] in the widened automaton is defined only if the transition from every
state in [q] on the symbol a, if defined, ends in a state in [q′]. If this condition
is not satisfied, a transition that exists in an automaton may not exist in the
widened automaton, which has the drastic consequence that the language
of the widened automaton may not include the language of the widening
candidates. The following example illustrates a computation with widening
in which this occurs.

Example 23. Two automata in a fixpoint computation are shown below.

q0 q1
1

r0

r1

r2

r3
1

1

0

0

1

s0 s1 s2
1

1

A1 A2 ∇BB(A1, A2)

The relations computed are shown below.

∩p = {〈q0, r0〉, 〈q1, r1〉, 〈q1, r2〉}
=s = ∅
RO = {〈r0, r0〉, 〈r1, r1〉, 〈r1, r2〉, 〈r2, r1〉, 〈r2, r2〉}

[≡∇] = R∗O = {{r0}, {r1, r2}, {r3}}

There are three equivalence classes. The states in the same equivalence
class have the same shading pattern. The automaton computed using Defi-
nition 25 is also shown. It is obvious that language of this automaton does
not include the language of A2.

74



The BB-widening seed is constructed from two relations we have studied.
If a widened fixpoint computation using the widening seed {∩p} is extrap-
olating, so is computation using the BB-widening seed. In addition, if the
widened automaton computed using {∩p} over-approximates the fixpoint,
so does the widening step using the BB-widening seed. We use the fixpoint
computation from Example 22 to illustrate.

Example 24. Let S be the BB-widening seed. Consider the automata A0 and
A1 in the fixpoint computation in Example 22. The relation RO is computed
using ∩p and =s. The relation ∩p is identical to that in Example 22 and =s

is as shown below.

∩p = {〈p0, q0〉, 〈p2, q2〉, 〈p1, q1〉, 〈p1, q3〉}
=s = {〈p0, q1〉, 〈p2, q2〉, 〈p1, q3〉}
RO =

(
∩−1

p ◦ ∩p

)
∪

(
=−1

s ◦ ∩p

)
∪

(
∩−1

p ◦=s

)
∪

(
=−1

s ◦=s

)
= id ∪ {〈q1, q3〉, 〈q3, q1〉} ∪ {〈q0, q1〉, 〈q1, q0〉}[

≡A1
S

]
= {{q0, q1, q3}, {q2}}

The states related by the two relations in S are different. The pair 〈p0, q1〉 is
in the relation =s but not in ∩p. Consequently, RO differs from Example 22.
We explicitly show how RO is constructed from the widening seed, following
the steps in Algorithm 2. The relation (id ∪ {〈q1, q3〉, 〈q3, q1〉}) is computed
using only ∩p. The pair 〈q0, q1〉 is in the relation

(
∩−1

p ◦=s

)
. We only show

the equivalence classes of the widening equivalence. All the final states in
A1 are related and the equivalence partition is coarser than in Example 22.
The widened automaton is shown below.

0

1

t0 t1

1

t0 t1 t2

1

0 1

AO A∞

The language accepted by AO is identical to that accepted by the widened
automaton in Example 22 but the automaton obtained here is minimal. For
any choice of the widening parameter and candidate in this computation,
the widening automaton obtained is isomorphic to AO above.

Recall from Lemma 13, part 2 that if {=s} is the widening seed and
the same automaton is the widening parameter and candidate, the widened
automaton is minimal. The same holds for the BB-widening seed. In general,
the widened automaton may not be minimal.

Example 25. Widening is applied to the fixpoint computation shown below,
using the BB-widening seed.
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p0 p1
1

q0 q1 q2 q3
1 1 1 r0 r1

0

0

A0 A1 AO

The relation ∩p is {〈r0, t0〉, 〈r1, t1〉} and =s is {〈r0, t2〉, 〈r1, t3〉}. The states
in the same equivalence class have identical shading patterns. The widened
automaton AO obtained by merging these states is deterministic but not
minimal.

We provide a third example of a computation with widening that termi-
nates with the exact fixpoint being computed.

Example 26. The tries A0, A1 and A2 in Figure 4.2 represent the same fix-
point computation as in Example 24. Let A0 be the widening parameter and
A1 be the widening candidate. The states p0 and q0 both have the prefix
{λ}. As both A0 and A1 as tries, each state has exactly one prefix. The
relation ∩p is {〈pi, qi〉} for 0 ≤ i ≤ 3. The relation =s relates states with
the same suffix. Of these, the pair 〈p0, q1〉 is of interest. The tries from the
states p0 and q1 are isomorphic. The states q0 and q1 are in the same class of
the widening equivalence as they both relate to p0. The widened automaton
is also shown below.

s0

s1

s2

1

1

0

1

t0 t1 t2

1

0 1
t0 t1 t2

1

0, 1 1

AO A∞ M∞

The widened automaton accepts the same language as A∞. Unlike the
widened automaton in the previous example, AO is nondeterministic but
minimal. Unlike Example 24, the fixpoint is computed precisely! The
choice of the automata is not important. Given any widening candidate,
if any automaton that appeared previously in the computation is used as
the widening parameter, the language accepted by the widened automaton
is the same.

Our observation in the previous example, deserves emphasis. Given a
sequence of languages, admitting different representations as automata, the
effect of widening is heavily dependent on the structure of the automaton.
In Example 24, we considered a sequence of minimal automata representing
the sets in a fixpoint computation and saw that for any choice of the widen-
ing parameter and candidate, the fixpoint computation terminated and the
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Figure 4.2: Automata in the fixpoint computation in Example 26

language of the widened automaton was an over-approximation of the fix-
point. Further, no choice existed for which the precise fixpoint could be
computed. In Example 26, we considered the same fixpoint computation
using tries instead of minimal automata to represent the sets. In this case,
for any choice of the widening seed and widening parameter, the widened
automaton accepts the language of the precise fixpoint.

Lemma 21 (Properties of {∩p,=s}). Let S be the BB widening seed. It
has the following properties:

1. It is extrapolating.

2. If A is deterministic and is the widening parameter, then AO is mini-
mal.

3. If A is minimal and is the widening parameter, then AO is determin-
istic.

4. It enforces termination, though not for all fixpoint computations.

5. Let M∞ be the left-canonical automaton with states Q∞ representing
a regular fixpoint. Let M be a widening parameter with states QM , A
be the widening candidate with states Q. If the following conditions
hold:

(a) M∞ is deterministic

(b) M has the prefix property
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the fixpoint computation with widening converges to the precise fix-
point.

Proof. (1) See Example 24.
(2) The states in A have disjoint prefixes, so ∩p is the identity relation. The
widening equivalence is identical to that obtained with the widening seed
{=s}. It follows from Lemma 13, part 2 that AO is minimal.
(3) If A is minimal, =s is the identity relation and the widening equivalence
is determined by ∩p. It follows from Lemma 20, part 2 that the widened
automaton is deterministic.
(4) The computation in Example 24 terminates with widening. For an ex-
ample where termination is not enforced, consider the sequence of automata
An in Example 18, for which the fixpoint is context-free. As the prefixes and
suffixes of each state in each automaton are unique, for any choice of the
widening parameter and candidate, the widening equivalence is the identity
relation. Widening does not enforce termination of this computation.
(5) We proceed in a similar manner as previous precision proofs. We have
shown in Lemma 20, part 4 that given conditions 5a and 5b, M has the
suffix property. We show that for each state r ∈ QM , f(r) = g(r). Then,
we show that all states in an equivalence class of ≡M

S agree on both f and
g.

For each state r ∈ QM , by condition 5b, f(r) is defined. As M∞ is
deterministic and L(M) ⊆ L(M∞), Suff (r) ⊆ Suff (f(r)). As the suffixes of
states in M∞ are disjoint, g(r) is also defined and f(r) = g(r).

Consider an equivalence class of ≡M
S with n + 1 states. By definition of

≡M
S , for any q, q′ in the equivalence class, there exist two sequences of states

q = q0, . . . qk = q′ ∈ Q and r1, . . . , rk ∈ QM such that 0 ≤ k ≤ n and for
each 1 ≤ i ≤ k, either ri ∩p qi−1 or ri =s qi−1. The states ri and qi are
similarly related.

We show by induction on k that f(q) = g(q) = g(q′) = f(q′). For the
base case, take k = 0. As a singleton equivalence class does not affect the
language accepted, we are done. For the induction hypothesis, assume that
for k = n − 1, f(q) = g(q) = g(qn−1) = f(qn−1). For the case k = n, we
consider two possibilities for rn and qn−1

1. If rn ∩p qn−1, as M∞ is deterministic, it holds that Suff (qn−1) ⊆
Suff (f(rn)). As M∞ is left-canonical, for all t ∈ Q∞ such that
t 6= f(rn), we have that Suff (qn−1) ∩ Suff (t) = ∅. Thus, g(qn−1)
is defined and is f(rn). As M∞ is deterministic, it also holds that
Pre(qn−1) ⊆ Pre(g(qn−1) and that g(qn−1) is unique. Hence, f(qn−1)
is defined and f(qn−1) = g(qn−1).

2. If rn =s qn−1, then Suff (rn) = Suff (qn−1) and as M has the prefix
property, Suff (qn−1) ⊆ g(rn). As M∞ is left canonical, this state is
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unique and g(qn−1) = g(rn). As L(A) ⊆ L(M∞), we also have that
Pre(qn−1) ⊆ Pre(g(qn−1) and from M∞ being deterministic, f(qn−1)
is defined and is g(qn−1).

In both cases, f(rn) = f(qn−1) = g(qn−1). By the same argument, we can
show that f(rn) = f(qn) = g(qn). As all state in the same partition agree
on f , we have from Lemma 10 that L(A/π) ⊆ L(M∞). Convergence to the
precise fixpoint follows.

4.5 The Boigelot-Legay-Wolper Widening Seed

Boigelot et al. [2003] propose a widening seed that uses the relations =s and
=p. Their technique is aimed at accelerating fixpoint computations with
transducers is not explicitly called widening. The acceleration algorithm in
[Boigelot et al. 2003] involves comparing the states in a sequence of minimal,
deterministic transducers using simulation relations. As the automata are
deterministic and simulation relations are used, the comparisons can equiv-
alently be made with the relations =s and =p. The acceleration step that
is proposed is not a quotient construction but involves adding transitions to
the automaton. We conjecture that the effect of the construction proposed
by Boigelot et al. [2003] when applied to any pair of automata in a fixpoint
computation is the same as applying widening as defined in our framework
using {=p,=s} as the widening seed. We refer to this widening seed as the
BLW-widening seed.

It may seem counter-intuitive that such a widening seed can be useful,
since we have seen in Lemmas 4 and 14 that the seeds {=s} and {=p} are
non-extrapolating and do not ensure termination for any fixpoint compu-
tations. However, Boigelot et al. [2003, Table 1] contains several examples
of fixpoint that were precisely computed using the BLW-seed. In addition,
we prove that for any computation with a regular fixpoint, the computa-
tion using the BLW-widening seed converges in the limit to the precise fix-
point. In [Boigelot et al. 2003], precise convergence of computations using
the BLW-seed is reduced to a synchronisation problem for automata with
counters and a statement is made without proof. We provide a direct proof
similar to previous proofs of precision.

Consider the fixpoint computation in Example 26. The sets in the com-
putation are represented as tries. Each state in a trie has a unique prefix, so
if a pair of states in different automata are related by ∩p, they have the same
prefix. That is, for states r and q in different tries, r∩pq ⇔ r =p q. Thus, for
all fixpoint computations using tries as representations, the widened compu-
tations using the BB-seed and the BLW-seed are identical. We find it justi-
fied to make the bold claim that such an observation is a direct consequence
of the framework we use. Boigelot et al. [2003] do observe that comparing
automata occurring in a fixpoint computation “makes our technique similar
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to the widening technique found in [Bouajjani et al. 2000; Touili 2001]”.
Bartzis and Bultan [2004], in comparing their work to [Boigelot et al. 2003]
say: “Our technique is also generic but is based on widening instead of iter-
ating relations.” Despite these statements, no precise statement about the
connection between the two techniques has been made.

As the BLW-widening seed and the BB-widening seed are identical for
computations with tries, Example 26 also illustrates the operation of the
BLW-widening seed. For a second example, we consider the same compu-
tation using minimal automata. Recall that neither the BB-widening seed
nor {∩p} could be used to compute the precise fixpoint of this computation.
Example 27. Consider the fixpoint computation in Example 22. Let A0

be the widening parameter and A1, the widening candidate. The relations
required to compute the widening equivalence are:

=p = {〈p0, q0〉}
=s = {〈p0, q1〉, 〈p2, q2〉, 〈p1, q3〉}
RO = id ∪ {〈q0, q1〉, 〈q1, q0〉}[
≡A0
S

]
= {{q0, q1}{q2}{q3}}

Only two states have identical prefixes and as p0 and q0 have identical suf-
fixes, the states q0 and q1 are in the same equivalence class. The widened
automaton is shown below.

t0 t1

t21

1

0 1

t0 t1 t2

1

0 1

AO A∞

We see that L(AO) = L(A∞). Recall that this fixpoint could not be com-
puted precisely using {∩p} or the BB-seed for any choice of the widening
parameter or candidate.

Lemma 22 (Properties of {=p,=s}). Let S be the BLW widening seed.
It has the following properties:

1. It is extrapolating.

2. If A is the widening parameter, then AO is minimal.

3. It enforces termination, though not for all fixpoint computations.

4. Let N∞ be an automaton with states Q∞ representing a regular fix-
point. Let M be a widening parameter with states QM , A be the
widening candidate with states Q. If for each r ∈ QM , F (r) is de-
fined and F (r) = G(r) the computation with widening converges to the
precise fixpoint.
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Proof. (1) See Examples 26 and 27.
(2) If A is the widening parameter, all states in A with the same suffixes are
related and the widened automaton is minimal.
(3) The computations in Examples 26 and 27 terminate with widening.
The BLW seed has weaker termination properties than the BB-widening
seed ∩p,=s. As the BB-seed does not enforce termination, neither does the
BLW-seed.
(4) Let M be the widening parameter with states QM , A be the widening
candidate with states Q and N∞ be an automaton with states Q∞ repre-
senting the fixpoint satisfying that for each r ∈ QM there exists t ∈ Q∞
such that Pre(r) ⊆ Pre(t) or Suff (r) ⊆ Suff (t). We know from Lemma 12
that N∞ exists. To examine the language of the widened automaton, it is
sufficient to Pre([q]) · Suff ([q]) for each q ∈ Q.

Consider the equivalence class [q] in the widened automaton with n + 1
states. By definition of ≡M

S , for any q, q′ ∈ [q], there exist two sequences of
states q = q0, . . . qk = q′ ∈ Q and r1, . . . , rk ∈ QM such that 0 ≤ k ≤ n and
for each 1 ≤ i ≤ k, ri ⊆s qi−1 and ri ⊆s qi. We show by induction on k that
Pre([q]) ·Suff ([q]) ⊆ L(N∞). For the base case, consider k = 0. If the equiv-
alence class has only one state, Pre([q]) = Pre(q) and Suff ([q]) = Suff (q)
and the language of the automaton does not change. For the induction hy-
pothesis, assume that for k = n − 1, one of the following conditions holds:
F (q) = F (qn−1) or F (q) = G(qn−1) or G(q) = F (qn−1) or G(q) = G(qn−1).
For the case k = n, we show that states qn−1 and qn also satisfy these
conditions.

The state rn is related to qn−1 and qn by either =s or =p. If rn =s qn,
then F (rn) = F (qn) and if rn =p qn, then G(rn) = G(qn). The same holds
for qn−1. We only consider the case r =s qn and r =p qn−1. All other cases
are similar. We have that G(rn) = G(qn) and F (rn) = F (qn−1) and by the
condition of the lemma, F (rn) = G(rn), hence F (qn) = G(qn−1).

We have shown that for any states q and q′ in an equivalence class of
≡M
S , either F (q) = F (q′) or G(q) = G(q′). From Theorem 7, we have that

if this condition holds L(A/ ≡M
S ) ⊆ L(N∞), which completes the proof.
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Chapter 5

Approximating Fixpoint
Computations

We have introduced various widening seeds and studied their extrapolation,
termination and precision properties. In the previous chapter, we illustrated
the effect of widening on various least fixpoint computations. In this chapter,
we show how widening can be used in other fixpoint computations. We begin
with the use of dual widening for under-approximating greatest fixpoint
computations and then study the use of widening and dual widening for
model checking.

5.1 Dual Widening for Greatest Fixpoint Compu-
tations

Our focus till this point has been on least fixpoint computations. The lattice
theoretic setting we use allows us to apply the duality principle and obtain
results for greatest fixpoint computations. Recall the duality principle that
the dual of any statement about a partially ordered set S also holds for S.
If a statement is true of a sequence of automata, the dual statement holds
for the sequence of complemented automata. We begin by briefly stating
the dual of the problem we have studied so far and restrict our attention to
fixpoint computations with regular languages.

The dual of an over-approximation of a least fixpoint is and under-
approximation of a greatest fixpoint. Convergence of the greatest fixpoint
computation is accelerated and termination enforced using dual-widening.
If we take a learning theory view, a greatest fixpoint computation with dual-
widening can be viewed as learning with subset queries using an oracle that
either returns Yes or a negative example. This problem is also related to
inductive inference of a regular language from a sequence of negative exam-
ples. Algorithms for inference of regular languages from negative examples,
if they exist, can be used to design dual-widening operators. Conversely,
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a dual-widening operator that can be used to precisely compute a class of
fixpoints directly provides an inference algorithm for that class of regular
languages.

The greatest fixpoint computations we consider are infinite sequences of
regular languages of the form, L0, L1, . . . such that L0 is the initial set, and
for each i ∈ N Li ⊇ Li+1. The languages are represented by a sequence
of automata A0, A1, . . ., where the automaton Ai accepts the language Li.
A dual-widening candidate Ai is an automaton in a fixpoint computation.
A dual-widening parameter is an automaton Aj such that j ≤ i. A dual-
widening seed S is identical to a widening seed and is combined with Aj

to construct an equivalence relation between the states of Ai. As we make
no assumption about the language of the two automata for constructing the
equivalence relation, this step does not change. Let M denote the dual-
widening parameter and ≡M

S the dual-widening equivalence. The final step
is computing the dual-widened automaton. For least fixpoint computations,
the quotient automaton Ai/ ≡M

S was defined as the widened automaton. If
the aim is to extrapolate a greatest fixpoint computation, we have to de-
crease the language accepted by the widening candidate. Let Ai denote the
complement of a complete, deterministic automaton Ai. The dual-widened
automaton is defined as

(
Ai/ ≡M

S
)
. The automaton Ai accepts the com-

plement of the language L(Ai) and as L(Ai) ⊆ L(Ai/ ≡M
S ), we have that

L(Ai) ⊇ L
((

Ai/ ≡M
S

))
. This definition of the dual widening operator sat-

isfies the convergence property of Definition 10 for dual widening opera-
tors. However, the nested complement operations obscure the changes in
the structure of the automaton Ai. We propose an equivalent dual quotient
operation for use with greatest fixpoint computations. Let q⊥ be the unique
sink state in any automaton. That is, q⊥ is not final and for all a ∈ Σ,
δ(q⊥, a) = q⊥. The dual notion is the universal state q>, a final state such
that for all a ∈ Σ, δ(q>, a) = q>. Observe that L(q⊥) = ∅ = Σ∗ = L(q>).

Definition 26 (Dual Quotient). Let A = (Q,Σ, δ, q0, F ) be a complete
finite automaton and π a partition of Q. The dual quotient A\π is the
automaton (Qπ,Σ, δπ, [q0], Fπ), where Qπ = {[q]|q ∈ Q}, Fπ = {[q]|[q] ⊆ F}
and δπ([q], a) = {[q′]|∀q ∈ [q] : δ(q, a) ⊆ [q′] ∪ {q>}}.

The set of states and the initial state in the dual quotient automaton are
defined as in a quotient automaton. A block in π is final iff every state in the
block is final. If a block contains final and non-final states, the corresponding
state is not final. Thus, there may be a word w such that the run of A on
w leads to a final state but the corresponding run of A\π does not. A
transition between two blocks [q] and [q′] is defined iff all transitions from
states in [q] end either in a state in [q′] or in q>. Though the introduction
of the state q> in Definition 26 may seem unexpected, there is an intuitive
explanation. Recall the definition of the transition function of a quotient
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automaton. There exists a transition between two blocks [q1] and [q2] if
there exists a transition from any state in [q1] to any state in [q2]. The
effect is that

⋃
q∈[q1] Suff (q) ⊆ Suff ([q1]). In the dual-quotient automaton,

as all transitions from states in a block [q1] must either end in states in
the same block or the state q>, we have that Suff ([q1]) ⊆

⋃
q∈[q1] Suff (q).

Here, we only prove that the two definitions of a dual quotient are equivalent
for deterministic, complete automata. We show that w 6∈ L(A\π) iff w ∈
L(A/π).

Lemma 23. Let π be a partition of the states of a complete deterministic
automaton A = (Q,Σ, δ, q0, F ). It holds that L(A\π) = L(A/π)

Proof. By definition of the complement of an automaton, we know that
L(A) = L(A), so it is sufficient to examine L(A) \ L(A\π). It suffices to
prove that for any w ∈ Σ∗, w ∈ L(A) \L(A\π)⇔ w ∈ L(A/π) \L(A). That
is, any word accepted by L(A) that is removed from the language of the
dual-quotient automaton is a word that is not accepted by A but is added
to the language of the dual-quotient automaton.

The partition π is of index at most |Q|. We prove the lemma by induction
on the index of the partition. For the base case, let the index of π be |Q|.
As A\π = A and A/π = A, we are done. For the induction hypothesis,
assume that for π of index k + 1 ≤ |Q|, A\π is deterministic and that
L(A\π) = L(A/π).

We show that the same holds for a partition of index k. It is sufficient
to consider a partition in which only two states are merged. Let q, q′ be
the states that are merged in A and q, q′ be the corresponding states in A.
Consider a word w = uxv ∈ L(A/π)\L(A) such that u ∈ Pre([q])\L([q], [q])
and v ∈ Suff ([q]) \ L([q], [q]). That is, the run of A on u visits q or q′ for
the first time and the run of A on v that begins in q or q′ does not revisit
these states. We show that w ∈ L(A)\L(A\π).

Without loss of generality, let δ(q0, u) = q. We consider three cases.
(1) xvλ, (2) x = λ and v 6= λ and (3) x, v 6= λ.
(1) If xv = λ, then, by assumption, the run of A ends in q, which must be
non-final as u /∈ L(A). As u is in L

(
A/π

)
, the state q′ must be final. In the

automaton A, q must be final and q′, non-final, so [q] is not final and the
run of A\π on u ends in a non-final state. Thus w ∈ L(A)\L(A\π).
(2) If x = λ and v 6= λ, as δ(q0, u) = q by assumption, it must be that
v ∈ Suff (q′) \ Suff (q). Let v = av′ for some symbol a. If δ(q, a) = q⊥,
then δ(q, a) = q>, so by the definition of the transition of the dual-quotient
automaton, we have that δπ([q], a) = [δ(q, a)]. By the definition of the
complement, we have that Suff (δ(q, a)) = Suff (δ(q, a)), so if v ∈ Suff (q′),
then v /∈ Suff (q′), hence w ∈ L(A)\L(A\π). If δ(q, a) = q1 such that
q1 6= q⊥, it must be that q1 6= q′. By the definition of the dual quotient,
δ([q], a) = q⊥ as δ(q, a) 6= δ(q′, a), so v /∈ Suff ([q]) and w ∈ L(A)\L(A\π).
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(3) If x 6= λ, let x = y1 · · · yn, where yi ∈ L({q, q′}). It is sufficient consider
the case where uv ∈ L(A) and uxv /∈ L(A). Note that for each yi, either
δ(q, yi) ∈ {q, q′} or δ(q′, yi) ∈ {q, q′}. Say δ(q, yi) ∈ {q, q′} and yi = ay′i
and δ(q, a) = q1. If δ(q′, a) /∈ {q1, q>}, then δ([q], a) = q⊥, which implies
that for any x′ ∈ a · Σ∗, x′ /∈ L(A\π), so we have that xv /∈ Suff ([q]) and
uxv ∈ L(A) \ L(A\π) as required. If δ([q], a) = q1, then δ([q], a) = [q1] and
δ([q], yi) = [q]. It remains to show that v /∈ Suff ([q]) ∪ Suff ([q′]). There
are only two possibilities. Either v is accepted by both states q and q′, or
v is accepted by exactly one of these states. If v ∈ Suff (q) ∩ Suff (q′), then
v /∈ Suff (q) ∪ Suff (q) by the definition of the complement and we are done.
If v is accepted by exactly one of q and q′, by a similar argument to the case
where x = λ in the word w = uxv, we can show that v /∈ Suff ([q]). Thus, if
x 6= λ, uxv ∈ L(A) \ L(A\π).

We have shown that for any word w = uxv, if uxv ∈ L(A/π)\L(A), then
uxv ∈ L(A) \ L(A\π). The other direction is proved via a similar sequence
of arguments.

Having shown that the dual-quotient operation we have defined is the
dual of the quotient operation, we may literally harvest the benefits of the
duality principle. To appreciate the significance of this, we revisit a few
results from the previous sections. We begin with the characterisation of
the search space for dual-widening. Recall that the set of quotients of an
automaton form a lattice. Similarly, the set of dual quotients also form a
lattice. Define a negative sample of a language L as a set of words S ⊆
L. The dual of the notion of structural completeness applies for negative
samples.

Definition 27 (Dual-Structural Completeness). A negative sample
S ⊆ Σ∗ is structurally complete with respect to a complete, determinis-
tic automaton A = (Q,Σ, δ, q0, F ) iff

1. S ⊆ L(A)

2. For each q /∈ F , there exists w ∈ S such that δ(q0, w) = q.

3. For each q, q′ ∈ Q and a ∈ Σ such that q′ 6= q> and δ(q, a) = q′, there
exists w = uav ∈ S such that δ(q0, u) = q.

That is, a negative sample is structurally complete with respect to a
complete automaton if it contains words corresponding to a run ending in
each non-final state and if every transition not leading to the universal state
is exercised. We now have the dual of the sufficient condition in Theorem 4.

Theorem 10. Let the automata A = (Q,Σ, δ, r0, F ) and A∞ = (Q∞,Σ, δ∞,
t0, F∞) be complete and deterministic. If L(A) is a dual-structurally com-
plete negative sample with respect to A∞ and if for all w ∈ L(A), it holds
that Pre(δ(r0, w)) ⊇ Pre(δ∞(t0, w)), then A∞ belongs to Lattice(A).
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0, 1

0

r0

r1

r2

r3

r4

r5

1

1

0

0

1

1

1

0, 1

0, 1

A0 A1 A2

Figure 5.1: Fixpoint computation in Example 28

Proof. Follows from Theorem 4 and the duality principle.

What is the intuition behind this theorem? The idea behind the char-
acterisation in Theorem 4 was that if a state in an automaton A has more
prefixes than any state in A∞, a quotient of A may accept words that are
not accepted by A∞. Similarly, as the dual-quotient reduces the language
accepted by an automaton, a fixpoint can be obtained by merging states in
A only if each state in A has more prefixes than the corresponding state in
A∞.

We refrain from reproducing the contents of this thesis as a sequence
of dual statements and only present a dual-widening operator for greatest-
fixpoint computations. Lesens et al. [2001] introduce a widening operator
for automata in a greatest fixpoint computation. Their widening technique,
though presented as an informal heuristic, uses the dual widening seed {=p

,=s}.
Example 28. The three minimal automata in Figure 4.1 occur in a greatest
fixpoint computation. The complement of each of these automata appears
in the least fixpoint computation in Example 22. Observe that L(A0) ⊇
L(A1) ⊇ L(A2).

Let A0 be the widening parameter and A1 the widening candidate. The
initial states have the same prefixes and are related. The state q1 accepts the
same language as p0. In fact, the part of the automaton reachable from q1
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is isomorphic to A0. Hence, p0 is related to two states in A1. The relations
required for computing the widening equivalence are shown below.

=p = {〈p0, q0〉}
=s = {〈p0, q1〉, 〈p2, q2〉, 〈p1, q3〉, 〈p3, q4〉}
RO = id ∪ {〈q0, q1〉, 〈q1, q0〉}[
≡A0
S

]
= {{q0, q1}, {q2}, {q3}, {q3}}

The relations =p and =s are identical to the relations computed in Exam-
ple 27, in which we used the complement of the automata considered here.
The shaded states in A1 are in the same partition and are merged in the
dual-quotient construction. The widened automaton shown below is the
precise fixpoint of this computation.

0

t0 t1 t2 t3

1

0 1 0, 1
0, 1

AO

The widened automaton AO is the complement of the widened automaton
obtained in Example 27.

The purpose of this example was to demonstrate that greatest fixpoint
computations with dual widening are the dual of least fixpoint computations
with widening. We now focus on using widening and dual widening for model
checking.

5.2 Model Checking

The problem we consider in this section is automatically determining if a
system satisfies a formally specified property. A system Sys is described
by a set of initial states S0 from a domain D and a transition relation
T ⊆ D × D. (We have previously considered T as a function from ℘(D)
to ℘(D) but the formulation as a relation is notationally convenient for the
discussion that follows.) Let S ⊆ D be a set of states. The successors of
states in S are denoted post[T ](S). The predecessors of states in S are
denoted pre[T ](S). The states with all their predecessors in S is denoted
p̃ost[T ](S). The states with all their successors in S is denoted p̃re[T ](S).
These notions are formally defined below.

Definition 28. Let T ⊆ D × D be a transition relation and S ⊆ D be a
set of states.

• post[T ](S) = {s′ ∈ D|∃s ∈ S : 〈s, s′〉 ∈ T }
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• p̃ost[T ](S) = {s′ ∈ D|∀s ∈ D : 〈s, s′〉 ∈ T ⇒ s ∈ S}

• pre[T ](S) = {s ∈ D|∃s′ ∈ S : 〈s, s′〉 ∈ T }

• p̃re[T ](S) = {s ∈ D|∀s′ ∈ D : 〈s, s′〉 ∈ T ⇒ s′ ∈ S}

If the transition relation used is clear, we do not write it. A state s is
reachable iff s ∈ post[T ∗](S0). A run of Sys is a possibly infinite sequence
of states s0, s1, . . . such that s0 ∈ S0 and for all si, si+1 in the sequence,
〈si, si+1〉 ∈ T .

An invariance property or invariant, I ⊆ D, is a set of states. A sys-
tem Sys with initial states S0 satisfies an invariant I, denoted Sys |= I iff
post[T ∗](S0) ⊆ I. A counterexample for I is a finite run of Sys, s0, s1, . . . sk

such that s0 ∈ S0 and sk /∈ I. There are different ways to check if a system
satisfies an invariant.

• Forward Analysis: Involves computing the set of reachable states. Let
F be the function F (X) = post(X) ∪ S0, with F 0 = S0 and F i+1 =
post(F i(F 0)). The set of reachable states is the least fixpoint of F . The
system satisfies the property if lfp(F ) ⊆ I. If Sys 6|= I, there exists
k such that F k 6⊆ I. A counterexample is constructed by finding a
sequence s0, . . . , sk such that for 0 ≤ i < k, si ∈ F i and sk ∈ F k \ I.
That is, a sequence of valid transitions leading to a state that does not
satisfy the invariant.

• Backward Analysis: Involves computing the states from which a state
violating the invariant is reachable. Let I denote the set D \ I of
states violating the invariant. The system satisfies the property if
the set of states from which I is reachable does not include a state
in S0. Let B be the function B(X) = pre(X) ∪ I, with B0 = I and
Bi+1 = pre(Bi(B0)). The set of states from which I is reachable is the
least fixpoint of B. The system satisfies the property if S0∩lfp(B) = ∅.
If Sys 6|= I, there exists i such that S0 ∩ Bi 6= ∅. A counterexample
is constructed by finding a sequence s0, . . . , sk such that s0 ∈ Bk ∩ S0

and for 0 ≤ i < k, sk−i ∈ Bi.

• Greatest Fixpoint Analysis: Involves computing the is the largest set
of states that never violates the invariant. This set is also called the
greatest inductive invariant. Let G be the function G(X) = p̃re(X)∩I
with G0 = I and Gi+1 = Gi(G0) ∩ p̃re(Gi(G0)). The set of states
that always satisfy the invariant is gfp(G). The system satisfies the
property if S0 ⊆ gfp(G). If Sys 6|= I, this conclusion can only be
reached after gfp(G) has been computed because an initial state may
not be in Gi but may be in Gi+1. If S0 6⊆ gfp(G), there exists a state
s in S0 \ gfp(G) that may lead to a state in I, but a counterexample
cannot be directly constructed from the greatest fixpoint computation.
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The preference for a given method depends on the system and the prop-
erty that must be verified. Forward and backward analyses can be used to
generate counterexamples if verification fails. Backward and greatest fix-
point analyses take the property into account, so the size of the sets in the
fixpoint computations may be smaller. Lesens et al. [2001] exhibit systems
for which the set of reachable states only has a context-free representation
but the greatest inductive invariant has a regular representation. In such
cases, the greatest fixpoint analysis is preferrable. The systems we consider
have infinitely many states, so, in general none of the fixpoint computations
above may terminate.

Wolper and Boigelot [1998] identify two approaches that have been adopted
to tackle the termination problem. The first is to study classes of infinite
state systems for which the fixpoint computation does terminate. Timed
automata [Alur and Dill 1994] are one such class. The second approach is
to consider larger classes of systems and provide an algorithm that may not
terminate for all inputs. A third approach we see is that adopted in abstract
interpretation and more recently in abstraction based techniques: Provide
an algorithm that always terminates but may return a false negative if the
system satisfies the property.

The widening techniques can be used with the second and third ap-
proaches mentioned above. A widening seed such as {∩s}, can be used to
precisely compute a class of fixpoints, but may not enforce termination of all
computations. In contrast, if the k-tails widening seed is used, the fixpoint
computation is guaranteed to terminate but may return a false negative,
particularly if the fixpoint is not regular or is regular but is represented by
an automaton with more than k states.

Our widening framework is general, in that it can be combined with
the forward, backward and greatest fixpoint analyses. Forward and back-
ward analyses, being essentially least fixpoint computations, can be com-
bined with widening and greatest fixpoint analysis can be combined with
dual widening. We discuss the use of widening with forward and backward
analysis.

In Algorithm 1, we described a least fixpoint computation with widening.
Forward analysis is an extension of this algorithm that at each step includes
a check for whether the invariant is satisfied. Let S0, . . . be the sequence
of sets in a forward analysis with widening and let I be the invariant. If
for some k ∈ N, Sk ∩ I 6= ∅, we have found a state, say s, that violates the
invariant. As a widening step may have been applied, we do not know if s
is a reachable state. We tackle this problem in steps.

First, we do a bounded backward analysis for k steps, starting from the
set Sk ∩ I. If the state s is reachable in k steps, an initial state is reached
after at most k steps of the backward analysis. In this case, we can generate
a counterexample and the analysis terminates. Let E be the set of states
computed by the bounded backward analysis. If E does not contain initial

89



Forward Analysis With Widening(T , S0, I)1

Input: Transition relation T , Initial States S0,
Invariant I

begin2

Define F (X) as (post(X) ∪ S0)3

i← 14

repeat5

Si ← F (Si−1)6

Si ←Widen(Si)7

if
(
Si ∩ I

)
6= ∅ then8

Define B(X) as
(
pre(X) ∪

(
Si ∩ I

))
9

if Bi ∩ S0 6= ∅ then10

Generate counterexample and stop11

else12

Si ← Si \Bi13

end14

end15

i← i + 116

until Si ⊆ Si−117

end18

Algorithm 3: Forward analysis with widening and
counterexample generation

states, we continue the forward analysis with the set Sk \ E. This heuristic
is sound. As E does not contain any initial states, S0 ⊆ Sk. If some s′ ∈ E
is reachable, there exists some n such that s′ ∈ Fn(S0). Hence, there exists
m ≤ n such that s′ ∈ Fm(Sk \ E) and the soundness of the analysis is
preserved. Forward analysis the incorporating bounded backward analysis
described above is shown in Algorithm 3.

Checking if a counterexample exists, is in general undecidable and in fact
as hard as verifying an infinite state system. To see this, consider an invari-
ant I with I = {s}. Let the widening operation in the kth step of a fixpoint
computation extrapolate the set of states to the precise fixpoint and let this
set Sk contain a state violating the invariant. Checking if a counterexam-
ple exists reduces to the backward analysis problem, which we know may
not terminate. Generating counterexamples in a backward analysis with
widening is similar, so we do not discuss the issue here.

The heuristic we suggest is just one of many possible ways to search for
a counterexample after a property violation is detected in an infinite state
system. There is much work on model checking infinite state systems using
abstraction, where a related problem arises. An abstract counterexample is
a sequence of states in an abstract domain. Each abstract state corresponds
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to a possibly infinite set of concrete states. Let a1, . . . , an be a sequence
of abstract states and C1, . . . , Cn be the corresponding sequence of sets of
concrete states. How can counterexamples be generated from these sets?

Pace et al. [2004] obtain a set of constraints that the counterexample
must satisfy and use a testing tool to generate sequences of inputs satisfying
those constraints. If a test run leads to a state in I, a concrete counterex-
ample is found. [Erez et al. 2004] use bounded model checking (an efficient
technique for exploring the set of states reachable within a bounded number
of steps) to search for counterexamples, starting from states in C0. [Clarke
et al. 2003] attempt to find a transition from a state s′i−1 ∈ Ci−1 to a state
si ∈ Ci, and a run from the state si to s′i for each 1 ≤ i ≤ n, where n is
the number of states in the abstract counterexample. Only a few heuristics
exist for finding counterexamples and the search for better heuristics is an
area of active research.

5.3 Selecting the Widening Parameter

The last topic we discuss in this section is the selection of the widening
parameter. One possible choice is to always choose Ai as the widening
parameter and Ai+1 as the widening candidate, where Ai and Ai+1 are
automata in the fixpoint computation. We call such a choice the näıve
strategy. We show in Example 29 that the näıve strategy may not always
be the best choice.

Example 29. Let T be a transition function such that for a set of words S
over the alphabet {0, 10}, T (S) = S ∪ {w · 0|w ∈ S ∧w = u · 1 for some u ∈
Σ∗} ∪ {w · 1|w ∈ S ∧ w = u · 0 for some u ∈ Σ∗}. Let the initial set S0 be
{0}. We demonstrate the effect of using the näıve widening strategy with
the Bartzis-Bultan seed in this computation.

p0 p1
0

q0 q1 q2
0 1

r0 r1
0

1

A0 A1 A′1

A0 and A1 are the first two automata in the sequence. The states p1 and
q1 have the prefix 0 and p1 and q2 have the suffix set {λ}. Hence, q1 and
q2 are related and are merged to obtain the widened automaton A′1. The
transition function is applied to A′1 to obtain A2 below. No two states in
A′1 have the same prefix as a state in A2 and no state in A2 has the same
suffixes as a state in A′1, so every state in A2 is only related to itself by the
widening equivalence. The automaton A3 appears next in the computation.
The states s2 and t2 have the same prefixes and s2 and t3 have the same
suffixes, so t2 and t3 are related in A3.

91



s0 s1 s2
0

1

0
t0 t1 t2 t3

0

1

0 1

A3 A4

The widened automaton A′4 is shown below. The pattern of the computation
with widening should be clear. If the näıve widening strategy is used, the
computation does not terminate and converges in the limit to the language
0 ·Σ∗. If the computation is allowed to progress in the initial steps without
applying widening, choosing A3 as the widening candidate and A0 as the
widening parameter results in the widened automaton A∞ below, which is
also the fixpoint of the computation.

u0 u1 u2
0

1

0

1
1

0

v0 v1 v1
0

A′4 A∞

The previous example demonstrates that given the same widening oper-
ator and fixpoint computation, the widening parameter and candidate that
are chosen affect the precision and termination properties of the fixpoint
computation with widening. The näıve strategy may not always be the
best.

As the effect of a widening differs with each widening seed, the widening
parameter and candidate that are chosen depend on the widening seed. We
do not undertake such a study here, but survey existing heuristics and adapt
them to our framework.

Boigelot et al. [2003] consider automata over the alphabet {0, 1}, accept-
ing words that are a binary encoding of the natural numbers. They observe
that the näıve widening strategy does not introduce any extrapolation, but
choosing the automata A2i and A2i+1 does. Using a sub-sequence is a general
strategy that may work for regular fixpoints, but choosing the sequence A2i

is not necessary, even for automata accepting binary encodings of natural
numbers. We illustrate this in Example 30

Example 30. Let a word w ∈ {0, 1}∗ be a most significant bit, binary en-
coding of a natural number. Any word in the language 0∗ represents 0,
a word in 0∗1 represents 1 and so forth. Consider the transition rela-
tion in Example 29. The first four sets of words in the computation are,
{0}, {0, 01}, {0, 01, 010} and {0, 01, 010, 0101}. The corresponding sequence
of numbers is {0}, {0, 1}, {0, 1, 2} and {0, 1, 2, 5}. The fixpoint of this se-
quence can be considered as possible set of values of the variable x in the
following program:
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begin
x← 0
repeat

if x is odd then
x← 2x

else
x← 2x + 1

end
until Eternity

end

Thus, we have a sequence of automata corresponding to the kind of system
considered in [Boigelot et al. 2003]. If the BLW seed is used with a candidate
Ai, for i ≥ 2, any widening parameter Aj such that j < i and (i − j) is a
multiple of 2 suffices to precisely compute the fixpoint.

Boigelot et al. [2003] suggest an additional heuristic to be used after
choosing the widening parameter and candidate but before applying widen-
ing. We discuss the heuristic within our framework. Let Ind = {s0, . . . , sk}
be a set of indices and the automata Ai for i ∈ Ind be a sub-sequence
of a computation without widening. Let A′i for i ∈ Ind\{s0} denote the
widened automaton computed using two automata from the subsequence as
the widening candidate and parameter. If L(A′i) = L(A′j) for all i, j ∈ Ind,
the computation continues from A′sk

. If L(A′i) 6= L(A′j) for some i, j, then
the computation proceeds without the widening step.

This heuristic is useful for checking that an extrapolation introduced by
widening does correspond to a repeated pattern and helps avoid bad choices
as in Example 30. If the fixpoint is not regular, it there may be no choice
that satisfies the conditions of the heuristic and hence, widening may never
be applied. In such a situation, if a choice between a set of possible widening
parameters and candidates is to be made, we suggest the choice that results
in a widening equivalence of smallest index. Simply put, we choose the pair
that results in the greatest extrapolation.

Selecting the widening parameter is a heuristic. A formal study can
establish the effect of a specific choice on the computation, but the true
test of a heuristic is performance in practical applications. In addition,
the heuristic used may vary with the problem domain and the sets that
are encoded as automata. Determining the utility of a heuristic requires
experimental evidence, which we neither have nor provide in this thesis.
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Chapter 6

Conclusion

The original contributions of this thesis are several. We have developed a
framework for designing widening operators and for using these operators
to over-approximate fixpoint computations with regular and weak ω-regular
sets. To the best of our knowledge, no such framework exists in the litera-
ture. We have established a connection between widening fixpoint computa-
tions and inductive inference. Three widening operators and two inductive
inference algorithms in the literature are instances of our framework. In
addition, each widening operator defined within our framework gives rise to
a new inductive inference algorithm. The highlights of this thesis are: A
sufficient condition for computing a regular fixpoint using widening, which
generalises the results of [Dupont et al. 1994], and an analogous condition
for computing weak ω-regular fixpoints. Criteria for any widening operator
to be extrapolating and for any computation with widening to converge to
the precise fixpoint. A study of extrapolation, termination and precision
properties of eight different widening operators. In our opinion, this thesis
is just a starting point in a fruitful and challenging research direction. We
now discuss some open problems and conclude.

Several authors have commented that defining a widening operator that
guarantees termination of all fixpoint computations without introducing too
much imprecision is difficult [Lesens et al. 2001; Bartzis and Bultan 2004].
In fact, the widening operator obtained from the k-tails widening seed is the
only one we are aware of, which does guarantee termination and can be used
to compute a non-trivial over-approximation. It would be both interesting
and useful to discover if other such operators exist.

A second open problem is the design of widening operators for automata
on infinite words. We are only aware of one paper on this topic [Boigelot
et al. 2004]. As many existing tools use ω-automata as a representation, the
practical implications of useful widening operators for ω-automata is signif-
icant. Such widening operators can be defined within our framework. The
challenge is to find the appropriate widening seed and analyse its properties.
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The genesis of this thesis was the search for acceleration techniques for
model checking infinite state systems. In Section 5.2 we indicated how our
widening techniques can be combined with model checking algorithms and
suggested heuristics for generating counterexamples and for selecting the
widening parameter. A strong statement about the practical utility of the
widening operators we have studied can only be made after they are inte-
grated in an automata-based model checker.

On the same day that we began this thesis, Halbwachs [Halbwachs 2006]
commented, in his tutorial on widening for polyhedra, that widening is
treated with disdain, and began with the manifesto: “This tutorial aims
at correcting this opinion, by showing that the design of widening operators
can follow some principles.” Our efforts in this thesis show that such design
principles can be both rigorous and conceptually simple and simultaneously
lead to rich and exciting research problems.
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Blumensath, A. and Grädel, E. 2000. Automatic Structures. In Proceedings of 15th
IEEE Symposium on Logic in Computer Science LICS 2000. 51–62.

Boigelot, B., Jodogne, S., and Wolper, P. 2005. An effective decision procedure
for linear arithmetic over the integers and reals. ACM Trans. on Computational
Logic 6, 3, 614–633.

Boigelot, B., Legay, A., and Wolper, P. 2003. Iterating transducers in the large
(extended abstract). In Computer Aided Verification. 223–235.

Boigelot, B., Legay, A., and Wolper, P. 2004. Omega-regular model checking.
In Tools and Algorithms for the Construction and Analysis of Systems, 10th Inter-
national Conference, TACAS 2004. Lecture Notes in Computer Science, vol. 2988.
Springer, 561–575.

Bouajjani, A., Jonsson, B., Nilsson, M., and Touili, T. 2000. Regular model
checking. In CAV ’00: Proceedings of the 12th International Conference on Computer
Aided Verification. Springer-Verlag, London, UK, 403–418.

96



Bruyère, V., Hansel, G., Michaux, C., and Villemaire, R. 1994. Logic and p-
recognizable sets of integers. Bulletein of the Belgian Mathematical Society 1, 191–
238. Corrigendum, Bull. Belg. Math. Soc. 1 (1994), 577.
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