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Abstract

This thesis introduces similarity measures to be used by comparing XML workflows and RDF or
OWL structures. These structures are accessed and converted into a generic graph representation.
Two graphs are compared by a measure to conclude in a single value indicating the similarity of
the graphs.

Similarity is calculated by two different similarity measures, the graph isomorphism measure
and the subgraph isomorphism measure. The graph isomorphism measure detects structurally
identical graphs and calculates the similarity upon the nearness of the node labels. Structurally
different graphs are compared by the subgraph isomorphism measure to find matching parts.
The size and the label similarity of the nodes of a matched part contribute to its similarity based
upon the compared graphs. The highest similarity value of all parts is defined to be the similarity
of the two graphs.

Performance improvements were developed and implemented which led to a decreasing run-
time. Further improvements were analyzed and proposed to be implemented at a later date.





Zusammenfassung

Diese Diplomarbeit praesentiert Aehnlichkeitsmessungen zwischen XML workflows und RDF
oder OWL Strukturen. Diese Strukturen werden in generische Graphen konvertiert, welche dann
von den Massen verglichen werden. Die Masse liefern einen Aehnlichkeitswert zurueck.

Die zwei implementierten Masse heissen Graph Isomorphism Measure und Subgraph Isomor-
phism Measure. Das Graph Isomorphism Measure vergleicht zwei strukturell identische Graphen
und liefert einen Aehnlichkeitswert anhand der Aehnlichkeit der Knotenbeschriftungen. Das
Subgraph Isomorphism Measure berechnet den groessten Subgraphen der in zwei strukturell ver-
schiedenen Graphen vorhanden ist. Die groesse und die Aehnlichkeit der Knotenbeschriftungen
des groessten Subgraphen bestimmen die Aehnlichkeit der beiden Graphen.

Verbesserungen bezueglich der Performance der Masse wurden im Verlauf von dieser Arbeit
implementiert und getestet. Weitere Verbesserungen wurden analysiert und zur Implementation
zu einem spaeteren Zeitpunkt vorgeschlagen.
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1
Introduction

This chapter describes the motivation of this thesis. Further, it discusses applications in the filed
of measuring similarities between structures and overviews the structure of the thesis.

1.1 Motivation
Searching for similarities in different structures is used in many applications. For example, to
migrate data from a legacy system into a target system the structures of the two systems have
to be analyzed and compared. The similarity resulted by comparing the systems can help for
planning a migration. The more similar two systems the less transformation to be done to migrate
the data.

Integrating data from different sources also implies analyzing and comparing data structures.
Designing a target system is done by considering the data sources and finding similarities be-
tween them.

In this thesis we focus on detecting similarities between RDF and OWL structures on the one
hand and between XML-workflows on the other. To compare these structures we first have to
convert them into a generic form of a graph. These graphs are then compared by a measure
resulting in a value representing the similarity of the graphs. The graph isomorphism measure
detects structurally identical graphs and compares their contents in form of node labels. In the
subgraph isomorphism measure the most similar part of two graphs is evaluated.

The following contributions are made by this thesis:

• Similarity measures. Two similarity measures were implemented and integrated into Sim-
Pack, a generic java library of similarity measures for the use in ontologies.

• Performance improvements. Several methods were added to improve the performance
of the measures. These improvements include a reduction in complexity of the structure
of a graph by grouping nodes. Another method reduces the number of subgraphs to be
compared by the algorithms.

• Parametrization. Through parameters the user may set his own preferences in the definition
of similarity.

• Evaluation. The implemented measures were evaluated by test cases comparing user-
defined graphs and real RDF and OWL structures as well as XML workflows. By modifying
these test graphs the different results were analyzed.
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1.2 Structure of Thesis
This thesis starts with a definition of similarity and an overview of the implemented similarity
measures. The next chapter describes the implementation of the measures and of the performance
improvements. We evaluated the measures with test cases using different graph structures and
parameterizations. A conclusion of our work and further improvements to be done if including
other graph structures are detailed in the last two chapters.



2
Similarity Analysis

This chapter gives an overview over similarity in general and similarity analysis on graphs in spe-
cific. We describe the similarity measures we used by surveying the calculation of the similarity
and the deployed algorithms.

2.1 Overview
The goal of this thesis is to find similar RDF structures or XML workflows by analyzing the graph
representation of RDF and XML. We search for consensuses in these graphs using two different
algorithms to determine their similarity. By changing these graphs we analyze how this similarity
is affected.

2.2 Related Work
In pattern recognition, the graph matching problem involves the matching of a sample data graph
with the subgraph of a larger model graph where vertices and edges correspond to pattern parts
and their relations. [14] presents rulegraphs, a method that combines the graph matching ap-
proach with rule-based approaches from machine learning. Graph pattern matching is also the
topic in [11]. Using the constraint satisfaction framework, a algorithm is presented which is su-
perior to previous approaches. The algorithm relies on neighborhood constraints, a constraint
not used before. Another graph distance measure is proposed in [9]. Using attributed relational
graphs, the maximum common subgraph and the minimum common supergraph of two graphs,
is established by means of simple constructions, which allow to obtain the maximum common
subgraph from the minimum common supergraph, and vice versa. On this basis, a new graph
distance metric is proposed for measuring similarities between objects represented by attributed
relational graphs.

[13] proposed an approach to the problem of subgraph isomorphism detection. The method
is designed for systems which differentiate between graphs that are a priori known, so-called
model graphs, and unknown graphs, so-called input graphs. The problem to be solved is to find a
subgraph isomorphism from an input graph, which is given on-line, to any of the model graphs.
Another approach about subgraph isomorphism is addressed in [7]. This paper presents a novel
approach to the problem of finding all subgraph isomorphisms of a (pattern) graph into another
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(target) graph. A relational formulation of the problem, combined with a representation of rela-
tions and graphs by Boolean functions, allows to handle the combinatorial explosion in the case of
small pattern graphs and large target graphs by using Binary Decision Diagrams (BDDs), which
are capable to represent large relations and graphs in small data structures. Calculating similarity
upon edit operations is explained in [5]. They propose a similarity measure for structured repre-
sentations that is based on graph edit operations. It is shown how this similarity measure can be
computed by means of state space search.

The problem of computing the similarity between two images is in [2] transformed to that of
approximating the distance between two extended region adjacency graphs, which are extracted
from the images in time and space linear in the number of pixels. Invariance to translation and
rotation is thus achieved. Invariance to scaling is also achieved by taking the relative size of
regions into account.

Treating types and inheritance is discussed in [3]. The concept of a rooted graph extended
with types of nodes is defined. The type system is based on inheritance, both in attributes and
successors of nodes. Such graphs allow one to introduce graph rewriting systems with potentially
more effective subgraph matching algorithms and with more semantics expressed with type in-
formation.

[1] discusses algorithmic techniques for measuring the degree of similarity between pairs of
three-dimensional (3-D) chemical molecules represented by interatomic distance matrices.

Finally [8] introduces into performance considerations. This paper identifies a condition for
which the existence of an isomorphic subgraph can be decided in linear time. The condition
is evaluated in two steps. First the host graph is analyzed to determine its strong V-structures.
Then the guest graph must be appropriately represented. If this representation exists, the given
algorithm constructively decides the subgraph isomorphism problem.

An approach of reducing the structural complexity of a graph is Compression. One approach
of compressing a graph is [10]. It simplifies a graph structure by finding adequate patterns to be
compressed. A pattern containing nodes and edges defines the structure of a certain subgraph.
The goal is to reduce the structure of a graph by replacing each subgraph, which is identical in
structure and labels to the pattern, with a single node. Such a node then represents the pattern
without keeping the information of the original state. An algorithm has to find the pattern which
best compresses the graph. The compression capability of a pattern is defined by the Equation
2.1.

Compressionpattern =
Size(InputGraph)

Size(Substructure) + Size(InputGraphCompressedbySubstructure)
(2.1)

The size of each component of the equation is defined by the number of nodes and edges con-
tained. The substructure corresponds to the investigated pattern. The smaller a pattern and the
more this pattern contributes to the compression, the higher its quality is defined. A good pattern
is a pattern which is often found in a graph. By repeatedly applying the process of compression
with different patterns, the graph is scaled down in its structural complexity. Figure 2.1 shows
the compression of a graph.

2.3 Prerequisites
In this section we describe the prerequisites the algorithms need for the calculation. First we
introduce in the used terminology and then we define the analyzed graphs.
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Figure 2.1: Left: The process detects a pattern and compresses the graph by replacing all occurrences of these
patterns with a compressed node ”S1”. Middle: At each step further patterns are compressed. Right: The compressed
graph now consists of less than half of the nodes and edges then at the beginning.

2.3.1 Terminology
This subsection describes the expressions which are often used throughout this thesis:

Graph. A graph consists of nodes which are connected by edges.

Label. Nodes and edges can be labeled. An edge label specifies the kind of relationship between
the two nodes connected by this edge.

Edge weight. Edges can have weights which indicate either a kind of distance between the two
connected nodes or a kind of importance of relationship.

Graph characteristics. Nodes and edges are identified through their characteristics. These in-
clude all the information an object owns. The characteristics of an edge are its connected
nodes, direction, label and weight. A node may have information additional to its label, for
example a description.

Multi-edged graph. A multi-edged graph contains at least two nodes which are connected by
more than one edge. These edges may be equally or differently directed.

Loop. If a graph contains loops, then there is at least one edge that connects a node with itself.

Source and target nodes. If two nodes are connected with a directed edge, a source and a target
node can be determined. The source node is defined as the node where the edge begins,
the target node where it ends. A source node is sometimes also called parent or predecessor
node and a target node may be named as child or successor node.

Directed and undirected graphs. Edges in a directed graph connect a source and a target node
which can be determined by the edge itself. In a directed graph, a path from node A to node
B does not imply that there is also a path from node B to node A. In a undirected graph, if a
path from node A to node B exists, a path from node B to node A implicitly exists, too. See
Figure 2.2 for an example of a directed and an undirected graph.

Cyclic and acyclic graphs. In a directed cyclic graph there is at least one node that contains a
directed, outgoing path leading back to it. An undirected graph, if it cannot be represented
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as a tree, possibly contains cycles. In a directed acyclic graph there is at least one node
which can be treated as a root and at least one node which represents a leaf node. A root is
defined as a node without incoming edges whereas a leaf node is defined as a node without
outgoing edges. Figure 2.2 illustrates a cyclic and an acyclic graph.

Planar graphs. A graph is planar if it can be drawn into a two-dimensional space without cross-
ing edges. Figure 2.2 contains an example of a planar graph.

Tree. A tree is a special kind of a directed graph. A tree contains exactly one root node. The rest
of the nodes can be distinguished as leaf nodes and non-leaf nodes. Between the root and
any node in the tree can only be one path. Each node can be assigned to a level in the tree.
The root is at level zero and the level of every other node can be defined as the length of the
path from the root to it.

Mapping. A mapping describes a reference of an object to another object.

Mapped node. A mapped node consists of two nodes originating from two different graphs.
These nodes refer to each other within the mapping.

Mutually exclusive mapped nodes. A mapped node is mutually exclusive to another mapped
node only if either the left nodes or the right nodes are connected in their original graphs
but not both. Two mutually exclusive mapped nodes cannot exist in the same clique.

Mapped graph. By mapping nodes from one graph to nodes from another graph at least one
connected mapped graph is created. Two mapped nodes are connected if both parts of the
two mapped nodes are connected in their original graphs and these connections have the
same direction. A mapped graph is still directed. Depending on the mapping rule a node
from one graph can be mapped with each node in the other graph. This results in individual
mapped graphs.

Entry point. An entry point is a mapped node, used by the algorithm to begin its traversal.
Not every mapped node is treated as an entry point, it depends on the chosen similarity
measure.

Clique or subgraph. By traversing a mapped graph the algorithm collects visited mapped nodes
in a clique which represent a subgraph.

Graph isomorphism. Two graphs which are structurally identical are called isomorph. In this
case a mapping of every node and every edge exists and every node and edge is only
mapped once.

Subgraph isomorphism. A subgraph is a connected part of a graph. Two subgraphs which are
structurally identical are called isomorph.

Maximal clique or maximal common subgraph. As soon as the mapping of two isomorph sub-
graphs cannot be extended, this mapping is called a maximal clique or a maximal common
subgraph.

Maximum clique or maximum common subgraph. The biggest maximal common subgraph of
two mapped graphs is called the maximum clique or the maximum common subgraph.



2.3 Prerequisites 7

Figure 2.2: Left: A directed, acyclic graph. Middle: A cyclic graph. Right: A non-planar graph.

2.3.2 Analyzed Graphs
We are interested in finding similarities between RDF structures and between XML workflows.
These files have a given structure which enables us to convert them into a generic form of a
graph. The graph representation simplifies the analysis of its structure which is the basis for a
comparison with another graph.

Definition

RDF structures and XML workflows consist of objects in relation to each other representing a
hierarchy. With this information, we are able to convert it into a labeled, directed, acyclic and non-
planar graph (see Section 2.3.1 for an explanation of these characteristics). A node has a label and
may inherit from several super classes and gives inheritance to several subclasses. Inheritance
makes relations directed and the fact that an object may inherit from several super classes and
gives inheritance to several subclasses leads to a non-planar graph. Acyclic is the graph because
no object can inherit from, and gives inheritance to itself, not even through ways of other objects.

Mappings

The derived graphs have to be mapped first to be compared. These mappings are done on node
level, step by step. In the beginning we take a single node from the first graph to be mapped with
an arbitrary node from the second graph. At this stage there are no restrictions and, therefore,
each node can be mapped with any other. Such a first mapping results in an entry point for the
algorithms.

For each of these mapped nodes its adjacent mapped nodes have to be assigned to it. The two
nodes contained in a mapped node still hold the information about their adjacent nodes in the
original graphs. This information is used to build the connections between the mapped nodes.
Each predecessor of one node is mapped with all predecessors of the other node and the same is
done for their successor nodes. These mappings represent the preceding and succeeding mapped
nodes for a certain mapped node. Figure 2.3 shows the mapping of an entry point and its adjacent
mapped nodes. When all these assignments are completed a mapped graph can be clamped by
the algorithm from each of the mapped nodes.

Maximum Common Subgraph

The accumulation of mapped nodes is the result of our graph analysis. Starting from a single
mapped node which gets stored in a clique we try to add further mapped nodes. A clique is
stored in a data structure which is similar to a stack, thus implementing the ”last in first out”
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Figure 2.3: Nodes ”F” and ”g” of the original graphs are mapped to the mapped node ”F:g”. The adjacent nodes of
”F” are mapped to adjacent nodes of ”g” to become adjacent mapped nodes of ”F:g”. Since the direction of an edge
is important, only two predecessors or two successors will be mapped.

principle. Candidates for further expansions of the clique are mapped nodes which are adjacent
to a mapped node which is already contained in the clique. A candidate can only be added to the
clique if the following conditions are met for both nodes of the mapped node which make up the
candidate:

• The two nodes are not contained in any of the mapped nodes in the clique.

• If a node, in its original graph being adjacent to one of the two nodes of the candidate, is
a part of a mapped node in the clique, then the other part of the mapped node must be
adjacent in its original graph to the other node of the candidate.

• Since we have directed graphs, the edges in the original graphs between the two nodes of
the candidate and their mapped adjacent nodes must have the same direction.

As soon as there is no more mapped node left or no more mapped node can be added to the
clique, a maximal clique has been reached. Such a maximal clique gets a similarity value assigned
(see Section 2.5) and is stored in another data structure. After removing the last added mapped
node from the clique, a different mapped node is tried to be added. Each time a new mapped
node was added to the clique and it is not further extendable, it results in a new maximal clique.

If the clique is empty after removing the last mapped node, the next mapped node being an
entry point is taken and the clique is tried to be expanded again. When having passed the last
entry point, a list with all the maximal cliques is available. The maximal clique of this list with
the highest similarity value is said to be the maximum clique (maximum common subgraph) of
the two graphs.

2.4 Evaluated Graph Algorithms
The algorithms try to map as many nodes from one graph to the nodes of the other graph and
to store these mappings in a data structure representing a clique or a subgraph. Each clique is
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maximal if no further node mapping can be added to the clique. After the algorithm terminates,
the maximum clique (also called the maximum common subgraph) is the maximal clique with the
highest similarity. This maximum clique strongly depends on the passed parameters WStructure,
WContent and D (see Chapter 2.6).

2.4.1 Graph Isomorphism

The goal of this algorithm which is defined by [17] is to find a complete structural match between
two graphs. If all nodes and edges from one graph can be mapped to different nodes and edges
from the other graph, the graphs are structural isomorph. Each deviation from the structural
isomorphism ends up in a similarity of zero. Thus the number of nodes and edges have to be
equal in both graphs as a precondition and the method returns before the algorithm was even
calculated. SimStructure of the similarity is, therefore, no longer of note in that case because
it must be a hundred percent. Hence the measure only includes SimContent. SimStructure and
SimContent are described in Section 2.5.

The advantage of this algorithm is that we can assume having two structurally isomorph
graphs. Therefore, we only map two nodes if the number of incoming edges and the number
of outgoing edges are equal. This reduces the number of mapped nodes considerably without
leading to an elimination of a valid solution. For each of these mapped nodes we add a list of
common predecessors and successors. Each mapping which can be done between two predeces-
sors of the two nodes will be added to the list. The same does apply for the successor nodes. After
all the adjacent mapped nodes are allocated, the two graphs are mapped to a single (eventually
larger) or a few mapped graphs and the algorithm can traverse these graphs to find all valid
mappings (maximal cliques) of the two graphs.

Entry points are mapped nodes from where the algorithm begins its traversing. Assume we
have a hundred nodes in each graph and each node may be mapped to eight nodes in the other
graph on average. We would end up in 800 entry points for the algorithm. Because we know
by definition of isomorphism each maximal clique has to include all the nodes from both graphs,
we can reduce the entry points for the algorithm. For entry points we just take all mappings
made of a single node in one graph, hence we have eight entry points on average. Since most of
these graphs are single-rooted, we take the mapping of the root of one graph (or one of its roots).
This normally leads to just one entry point! Figure 2.4 highlights the first steps of the algorithm
beginning at the mapped roots.

At the traversal of the mapped graphs the algorithm adds as many mapped nodes as possible
to the clique which is maximal as soon as no more mapped node can be added. This algorithm
regards a clique as valid only if it contains as many mapped nodes as the size of each graph. After
figuring out all the maximal cliques, the maximum has to be determined. Since all these cliques
have the same number of nodes and edges, the maximum only depends on the similarity of the
labels. The similarities of all mapped nodes in a clique, resulted from the Levenshtein [12] string
similarity measure, are summed up to the clique’s content similarity. The Levenshtein measure
compares two strings on their similarity and returns a value between zero (no match) and one
(complete match).

The overall similarity is simply calculated as dividing SimClique of the clique by the total
number of nodes in the clique. The range of values is between zero (no label similarity at all) and
one (all the labels match perfectly).
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Figure 2.4: Upper left: Each node in the left graph is mapped to a structurally identical node in the right graph
(dashed lines). Upper right: A mapped graph is built having mutually exclusive mapped nodes (dashed lines). Lower:
Starting from the only entry point (mapped node ”1,1”) the algorithm visits the adjacent mapped nodes in alphabetical
order. Red ellipses mark an addition of the mapped node to the clique, green ellipses are removals. Numbers in the
ellipses represent the first thirteen process steps. After step six and twelve no more mapped node can be added and a
new maximal clique has been reached and stored.

2.4.2 Subgraph Isomorphism
The graph isomorphism algorithm only detects similarities in graphs which are structurally iso-
morph. If two graphs are not isomorph, we are interested in finding the most similar subgraphs
(cliques) in both graphs which are structurally identical.

[17] defined an algorithm which detects structurally identical subgraphs. If two subgraphs
are structurally identical, each two nodes in the first subgraph are connected if - and only if -
the mapped nodes in the other subgraph are connected. Additionally, these connections must
have the same direction. The subgraphs are considered in isolation to the rest of the graph. A
connection between a node in the subgraph and a node in the rest of the graph does not have to
have a corresponding connection from the mapped node in the other subgraph to a node in the
rest of the other graph. Therefore, two nodes can be mapped even if the number of adjacent nodes
are different. This increases the number of mapped nodes tremendously for bigger graphs, since
each node of one graph can be mapped to every node of the other graph.

In order not to miss any valid solution, the algorithm has to process each mapped node as an
entry point. The mapped node traversing works similar to the graph isomorphism algorithm. At
each step a new mapped node is added to the clique if possible or an existing mapped node is
removed from the clique. Each time after a mapped node was added and before a mapped node
is removed, a new maximal clique has been reached. These cliques are collected in a list whereof
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at the end the clique with the highest similarity becomes the maximum clique. Figure 2.5 shows
the first steps of the algorithm beginning at a certain mapped node.

The subgraph isomorphism measure includes both components: SimStructure and SimContent.
SimStructure measures the number of mapped nodes in a clique and SimContent measures the
label similarity of these mapped nodes. Both components are set in relation to D, the total number
of nodes in either of the two graphs, depending on the passed parameters (see Chapter 3.1.2). The
overall similarity adds the two components which may be differently weighted, depending again
on the passed parameters.

2.5 Definition of Similarity
Similarity defines the proximity of two objects. In our case, we analyze two graphs for struc-
turally identical parts and define the similarity of the two graphs by the size of these parts and
the closeness between their labels.

We define two different components which build the similarity measure by analyzing the
structures: SimStructure and SimContent. These two types of similarity are explained in the next
two sections of this chapter.

Since a parameter in the subgraph isomorphism measure defines the weighting of SimStructure

and SimContent as an integer value between zero and one hundred, the overall similarity used in
the subgraph isomorphism measure (OverallSimilaritySI ) can be defined as:

OverallSimilaritySI =
(WStructure × SimStructure) + (WContent × SimContent)

100
(2.2)

If weights are omitted, Equation 2.2 can be simplified to:

OverallSimilaritySI =
SimStructure + SimContent

2
(2.3)

In the graph isomorphism measure we do not have parameters and we can neglect SimStructure

(see Subsection 2.4.1 for an explanation), therefore, Equation 2.2 can be simplified to be used in
the graph isomorphism measure to:

OverallSimilarityGI = SimContent (2.4)

Equation 2.4 can be followed from Equation 2.2 by setting WStructure to zero and WContent to
one hundred.

The OverallSimilaritySI and OverallSimilarityGI as well as SimStructure and SimContent

have a range of values between zero and one, independent of any parameter. How SimStructure

and SimContent and, therefore, the overall similarity depend on the size and the similarity of the
clique is shown in Figure 2.6. The figure also illustrates the influence of a change in the weighting
of SimStructure and SimContent on the measure.

2.5.1 Isomorphism and Similarity
The comparison of two graphs should result in a value representing the similarity of the two
graphs. Two graphs being structurally identical are isomorph. If, in addition, the contents of
the graphs represented by their labels are equal, the complete graphs are identical. To define the
similarity of two non-isomorphic graphs we search for a preferably big part in one graph which
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resembles a part in the other graph. The next paragraph shows what ”resemble” means exactly
and what it contributes to the similarity of the two graphs.

We concluded in defining structural similarity as the ”size of the biggest part found in one
graph which is structurally identical and can, therefore, be mapped to a part found in the other
graph, in relation to the size of the whole graph these parts originate from”. Another possibility
would be to allow a part of one graph to be mapped to a part of the other graph which is struc-
turally similar instead of identical. The similarity then would have to additionally incorporate
the structural similarity of the two parts. Such a part represents a subgraph of a certain graph.
Two structurally identical subgraphs which are mapped can only be expanded if not destroying
the structural identity. In certain situations a mapped subgraph could be expanded massively by
loosening the conformity a little bit. In other words, a single node or edge can avoid the expansion
of the whole subgraph.

On the other hand, loosening the conformity has the advantage of being more flexible in find-
ing possible patterns. It depends on the definition of similarity and the kind of matching parts
one is interested in to define the adequate measure. The big disadvantage and a reason why it is
not applied, though, is in the tremendously higher complexity of the algorithm.

2.5.2 Structural Similarity
For our graphs, structure is defined as the number of contained nodes and their relations to each
other. We compare the structure of two graphs by the mappings of nodes and edges. The more
nodes are mapped the more similar the structure is. Edges have to be considered while mapping
the nodes, but they are not included into the measure of structural similarity. The formula for
SimStructure is defined as:

SimStructure =
SizeClique

D
(2.5)

The size of the clique (SizeClique) is determined by the number of mapped nodes contained.
D corresponds to the number of nodes of either of the graphs, depending on the parameter the
user passes. Default value of D is set to DAverage, the average number of nodes of both graphs.

2.5.3 Content Similarity
Since all nodes are labeled, we can determine the content similarity of two nodes. This measure
cannot be applied in isolation, hence we only compare two nodes which are mapped. The nearer
the two node labels in a mapped node, the more similar the content of such a mapping. Content
similarity for two graphs is derived by summing up the content similarities of all their mapped
nodes. The formula for SimContent is:

SimContent =
SimClique

D
(2.6)

The content similarity of the clique (SimClique) is determined by the sum of the Levensthein
similarity of each mapped node in the clique. This similarity is calculated by comparing the labels
of the left and the right node in a mapped node which results in a value between zero and one. The
label similarity of the clique may, therefore, be smaller or equal to the number of mapped nodes.
The denominator is the same in the structural as in the content similarity equation, therefore,
SimContent must be smaller than or equal to the SimStructure.
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2.6 Calculating and Weighting
The problem which came up was how to define an adequate D for SimStructure and SimContent

and how to weight these factors to get the similarity measure. Changes in these factors have
enormous impacts on the resulted similarity. The next two subsections describe how we set up
the factors of the measure by defining and weighting them.

2.6.1 Calculating the Similarity Components
SimStructure and SimContent are calculated by a division. The counter of the SimStructure is set
to SizeClique whereas the counter of SimContent is set to SimClique. The determination of the
denominator (D) was more difficult. The only conditions we wanted to fulfil for sure were to
result in a range of values between zero and one for SimStructure and SimContent and to increase
similarity the more mapped nodes or the more similar labels a subgraph contains. An empty
subgraph results in a similarity of zero - but which subgraph should result in a similarity of one?

Normalization of SimStructure

The number of mapped nodes in a maximum common subgraph can at the most be as high as the
size of the smaller graph, so why not take this size as the denominator for SimStructure? Consider
the following two situations: Let the first graph contain ten nodes and the second graph contain
one hundred nodes. If the maximum subgraph consists of ten mapped nodes, the complete first
graph was found in the second graph which results in a structural similarity of one. This may be
true from the point of view of the first graph but not of the second graph. Nobody would ever
say these two graphs were identical! Now let us take the number of nodes in the larger graph as
denominator. If we take again the assumptions from above it results in a similarity of ten percent.
The only situation where a similarity of hundred percent can be reached is when both graphs can
be mapped completely (i.e. the graphs are isomorph), which is what we wanted. But now let the
first graph also contain a hundred nodes but the subgraph still ends up in containing ten nodes.
The similarity would remain at ten percent. But it is obviously a different situation if counting the
non-matching nodes in both graphs! Figure 2.7 shows the resulting similarities choosing different
denominators. As a compromise we first took the average number of nodes contained in both
graphs for the denominator for SimStructure. The situation where the first graph contained ten
nodes would result in a similarity of 18 percent, whereas the similarity would decrease to ten
percent if the first graph contained a hundred nodes. Additionally, the similarity only reaches a
hundred percent if the graphs are isomorph.

Normalization of SimContent

To find a convenient content measure was even more challenging. The first idea was to set the
summed label similarity of mapped nodes in the subgraph in proportion to the total number of
mapped nodes in the subgraph. If 99 of a hundred mapped nodes in the subgraph have an equal
label, the SimContent ends up in 99 percent, which is less than if a subgraph contains only one
mapped node and its labels are equal!

Another problem occurred while running the test cases. Having SimStructure and SimContent

weighted to fifty percent each, a certain subgraph was not enhanced although additional mapped
nodes could be added. The reason was the disproportional SimContent. Consider again the two
graphs with a hundred nodes each and a maximum common subgraph containing ten mapped
nodes. SimStructure is ten percent and SimContent (assuming all nodes having a equal label) is
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a hundred percent, which results in a overall similarity of 55 percent. If the algorithm would
have added an additional mapped node which had a label similarity of zero, SimStructure would
have increased to eleven percent but SimContent would have decreased to 91 percent. Thus, the
overall similarity decreased to 52 percent and the subgraph was not treated to be a new temporary
maximum common subgraph. Instead of preferring small subgraphs with lots of label matched
mapped nodes to much larger subgraphs with little less label matching mapped nodes, we set the
denominator of SimContent to the average number of nodes contained in both graphs (hence the
same denominator as in SimStructure).

The only disadvantage of the solution is the dependency of the SimContent on the SimStructure.
The counter of SimContent cannot be higher than the counter of SimStructure, because all the
mapped nodes in the subgraph add up to the counter of SimStructure but only the ones of these
mapped nodes which have a similar label add up to the counter of SimContent. The denominators
of SimStructure and SimContent are the same, hence SimContent must be smaller than or equal to
SimStructure. But we settled for this dependency because it was the only way to ensure the overall
similarity increases always by adding a mapped node to an existing subgraph or by removing a
node from a graph while leaving the subgraph unchanged.

Parametrization

Although we agreed in setting up the denominator as mentioned above, we came to the conclu-
sion that in certain situations another denominator would make more sense. Consider the case
where someone wants to find a certain graph structure (pattern) within other graph structures
(search structures). This user may only want to find as much of the pattern as possible within
the search structures regardless of their size. Hence, it does not matter how many nodes in the
search structure cannot be mapped and, therefore, defining the denominator as the number of
nodes in the pattern is adequate. We concluded to parameterize the denominator. The possible
denominators are:

• Number of nodes in the first graph structure (”first”)

• Number of nodes in the smaller graph structure (”small”)

• Number of nodes in the larger graph structure (”big”)

• Average number of nodes in both graph structures (”average”)

If someone wants to find a pattern within search structures, the pattern must be passed as
the first file structure and DFirst can be taken as denominator. If wanting to know how much of
the smaller or bigger file structure is found in the other file structure without knowing the size
of the files, taking DSmall and DBig respectively. The default case if not passing a parameter is
set to DAverage. In all four cases, the range of values of SimStructure and SimContent and of the
similarity itself is between zero and one.

The four denominators are defined as:

DAverage =
|V1|+ |V2|

2
, DFirst = |V1|, DSmall = min(|V1|, |V2|), DBig = max(|V1|, |V2|) (2.7)

|V1|, |V2| are the number of nodes in the first and the second graph respectively.
The resulting similarity value (SimilaritySmall) for a certain clique by passing DSmall is in

relation to the resulting similarity value (SimilarityBig) for the same clique by passing DBig in
the following way:
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SimilaritySmall =
SimilarityBig ×GraphBig

GraphSmall
(2.8)

GraphBig corresponds to max(|V1|, |V2|) and GraphSmall corresponds to min(|V1|, |V2|). Equa-
tion 2.8 can be proved by inserting Equations 2.5 and 2.6 into 2.3 and replacing D with the corre-
sponding terms DSmall and DBig respectively from Equation 2.7:

SizeClique

min(|V1|,|V2|) + SimClique

min(|V1|,|V2|)
2

=

SizeClique
max(|V1|,|V2|)+

SimClique
max(|V1|,|V2|)

2 ×max(|V1|, |V2|)
min(|V1|, |V2|) (2.9)

Reducing the term on the right side in Equation 2.9 by max(|V1|, |V2|), we get two identical
terms on both sides.

2.6.2 Weighting the Similarity Components
Weighting SimStructure and SimContent is only relevant for the subgraph isomorphism algorithm
because in the graph isomorphism SimStructure must be 1.0 and can be neglected (see Chap-
ter 2.4.1). At the beginning we have set the weights to fifty percent each. A subgraph where
SimStructure is weighted with eighty percent (WStructure = 80) and SimContent is weighted with
twenty percent (WContent = 20) results in the same overall similarity as one with inverse per-
centages. But someone may not regard these two subgraphs equally significant. The resulting
maximum common subgraph may contain different mapped nodes and its size may vary while
changing the weights. Hence, the way of letting the user set the weights of SimStructure and
SimContent himself enables him to define his own preferences. Equation 2.10 shows the three
restrictions to WStructure and WContent:

0 ≤ WStructure ≤ 100, 0 ≤ WContent ≤ 100,WStructure + WContent = 100 (2.10)

WStructure and WContent can be set to an integer value between zero and a hundred. If the
parameter is left away, the default value is fifty percent each.

2.6.3 Restrictions
This subsection describes the restrictions to the factors in the equations of the similarity measures.

Subgraph Isomorphism Measure

From Equations 2.2, 2.5 and 2.6 follows the rewritten formula of the overall similarity:

OverallSimilaritySI =
(WStructure × SizeClique

D ) + (WContent × SimClique

D )
100

(2.11)

While inserting Equation 2.7 into 2.11 and also default the weights WStructure and WContent to
50 each, we obtain:

OverallSimilaritySI =
(50× 2×SizeClique

|V1|+|V2| )

100
+

(50× 2×SimClique

|V1|+|V2| )

100
(2.12)

If we reduce the fraction we get:
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OverallSimilaritySI =
SizeClique + SimClique

|V1|+ |V2| (2.13)

Out of Equations 2.13 we can conclude restrictions and limitations being valid for the sub-
graph isomorphism measure. Because Levenshtein returns a value between zero and one for
each mapped node in the maximum common subgraph, the value SimClique is at most as high as
the value SizeClique. Since a maximum common subgraph can at most contain all nodes of the
smaller graph, the following three equations are always fulfilled:

SimClique ≤ SizeClique, SizeClique ≤ |V1|, SizeClique ≤ |V2| (2.14)

Following from formula 2.13 and 2.14 we only obtain the maximum similarity if the following
equation is true:

SimClique = SizeClique = |V1| = |V2| (2.15)

Graph Isomorphism Measure

In the graph isomorphism measure only SimContent is relevant since SimStructure must be the
maximum value as a precondition. Each deviation in the structure of the two graphs results to a
similarity of zero. To fulfil the precondition the following formula must be true:

SizeClique = |V1| = |V2| (2.16)

Since we have two graphs with equal number of nodes the parameter denominator is unnec-
essary. The structural component must always reach the same value and is therefore dispensable,
too. Hence, SimClique is the only variable to be applied. The following equation must always be
true:

SimClique ≤ |V1| = |V2| (2.17)

From Equations 2.4, 2.7 and 2.17 follows the similarity formula in the graph isomorphism
measure:

OverallSimilarityGI =
SimClique

|V1| (2.18)
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Figure 2.5: Top: Since each node in the left graph can be mapped to every node in the right graph, the mappings are
left away except for the examined entry point ”G,d”. Middle: The complete mapped graph of the entry point ”G,d”.
Mutually exclusive mapped nodes by reason of containing an identical node are connected or surrounded by a dashed
line. Red dashed lines connect mutually exclusive mapped nodes which are only in one of the two graphs connected.
Processing steps of the algorithm are marked by ellipses, where red means an addition of a mapped node to the clique
and green its removal. Bottom: The clique and the candidate set is shown at each step of the algorithm. Red marked
cliques indicate a maximal clique.
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Figure 2.6: Left: The bigger the clique or the more similar the node labels within the clique, the higher the value of
the overall similarity in the subgraph isomorphism measure. When weighting SimStructure stronger, the isolines turn
left (shown with the arrows) to the dashed lines. The yellow ”x” marks a clique reaching a similarity of about 0.68
before and about 0.72 after the weights have been changed. The clique marked by a blue ”x” has a similarity of 0.5
and 0.75, respectively. The maximum clique has changed from the yellow to the blue clique. Weighting SimStructure

or SimContent with a hundred percent, the isolines are vertical and horizontal respectively (red dotted lines). Right:
The graph isomorphism measure returns a similarity of zero if not all nodes are contained in the clique. The red line
on the right side is the only state where similarity values above zero appear. The clique receives a different similarity
in the graph isomorphism measure and the subgraph isomorphism measure, except if the clique contains all nodes of
both graphs and SimContent is weighted with a hundred percent.
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Figure 2.7: SimStructure in relation to the chosen denominator. Cliques on the same isoline return the same
SimStructure. Red isolines mark DAverage, green, DBig and blue isolines indicate DSmall. Cliques cannot be
bigger than the smaller graph (y-axis). The bigger the difference of the sizes of the two graphs, the more deviate
DSmall and DBig from each other.





3
Implementation

This chapter describes the details of the implementation of the algorithms. Additionally we ex-
plain the implemented performance measures due to the difficulties in processing certain graph
structures and how further performance improvements could be done.

3.1 Architecture
The similarity search process is integrated into the Java-based generic similarity framework called
SimPack 1 which has the purpose to find similarities between concepts (complex objects) in on-
tologies [4]. Figure 3.1 illustrates the architecture of the similarity search process.

3.1.1 Package Layout
The packages involved are listed below:

simpack.accessor.graph This package contains the accessors which convert the file structures
into a generic form.

simpack.measure.graph Herein the similarity measures are defined.

simpack.util.graph Node classes which are instantiated in the accessors belong to this package.

simpack.measure.sequence Contains the Levenshtein measure which compares the similarity
of strings, respectively node labels.

simpack.api These interfaces regulate the functionality of the accessors, the node classes and the
similarity measures.

3.1.2 Workflow
The next two subsections describe the invocation and the similarity search process.

1http://www.ifi.unizh.ch/ddis/simpack.html
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Figure 3.1: When the class Action is launched by the user the corresponding accessor is executed which parses the
passed file. Graph representations of the parsed files are built and returned by the accessors by creating and connecting
instances of the class GraphNode. The class Action then instantiates the measures by passing two accessors and
parameters defined by the user. Grey classes are existing classes of the SimPack which were partially changed to be
adjusted to the new classes.

Invocation

To start the search process a user has to invoke the class Action by passing the filenames storing
the graphs and the measure to be calculated. This class then uses the corresponding graph ac-
cessor class and instantiates the measure with the instances of the graph accessors. The measure
can then be executed and returns the highest similarity number found, and the corresponding
subgraphs. By passing additional parameters, the user has the ability of influencing the search
process and the result.
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Parameters

There are four parameters to be passed for the subgraph isomorphism measure but only one for
the graph isomorphism. Figure 3.2 lists the constructors with its parameters of the two measures.
The boolean parameter groupNodes which is used in both measures, allows the algorithm to
group leaf nodes due to a better performance. The other three parameters only belong to the
measure subgraph isomorphism because they are fixed in the graph isomorphism measure. The
integer parameter minCliqueSize defines the number of mapped nodes a clique must contain
to be considered as a valid subgraph. It only influences the output of the measure if the most
similar subgraph found not includes enough mapped nodes to be a valid clique.

Figure 3.2: The most extensive constructors of the subgraph isomorphism measure and the graph isomorphism
measure containing the two graph accessors and further parameters.

A direct influence to the resulting similarity measure is reached by the parameters WStructure,
WContent and D. Changing the weights of the similarity components yields to different subgraphs
including either more mapped nodes at all or more similar labeled mapped nodes. Depending
on the graph structures the similarity value of the measure differs. D determines the perception
of the measure. Accepting four different values either of the two graphs is taken as a basis of
the examination. Since we may have strongly variable graphs in their size, setting a subgraph
in relation to a certain graph is relevant. The choice of D does not affect the constitution of the
maximal common subgraph, but its similarity value.

Similarity Search Process

While executing the search process, the files have to be parsed and converted into a graph rep-
resentations. These graphs are compressed if possible and mapped node by node. Compression
is useful to accelerate the traversal of the algorithms. The mapping method converts two sin-
gle graphs into several mapped graphs which are not connected to each other. Each node of the
two graphs may occur more than once per mapped graph as well as in several of these mapped
graphs. Each mapped graph has its entry points from which the algorithm begins to clamp all
possible graphs to evaluate the most similar common subgraph.

3.2 Design

This section describes the design of the implementation which consists of three main components,
Graph Accessor, Graph Node and Similarity Measures. We shortly explain these components and
how they interact with each other.
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3.2.1 Graph Accessor

The functionality the graph accessor should provide is to store a list with all the nodes of the
graph under comparison. The accessor itself does not know anything about the relationships
between these nodes, this is the requirement of the nodes.

A graph accessor is like an interface between the graphs and the measures. It converts objects
into a generic graph representation the measures understand. It must implement a method which
detects and accesses these objects and can interpret their relationships. The measures need two
instances of a graph accessor to get access to the graphs.

3.2.2 Graph Node

A graph accessor traverses the graph structure to visit all the contained nodes and edges. During
such a traversal, pairs of nodes are identified which represent a relation between these two nodes.
For each object the accessor is checked whether it already contains the corresponding node for this
object. If the accessor contains this node, it will be returned, otherwise a new node is created out
of the object to be stored in the accessor.

Because we always receive pairs of nodes, we know about the relation among themselves.
These relations represent edges in a graph which have to be assigned to the graph nodes itself
instead of storing them as edges in the accessor. See Figure 3.3 for an overview. An edge consists
of a source and a target node. The source node can be considered as a predecessor or parent or
super class node whereas the target node also represents a successor or child or subclass node.
For each edge the target node is assigned to the source node as its successor and the source node
is assigned to the target node as its predecessor. This information about the relationship is stored
for both nodes of an edge, because the graph traversal in the algorithms is done bottom up as
well as top down. The allocation of adjacent nodes is the main task of a graph node.

Figure 3.3: Left: The accessor detects edges and the corresponding nodes. Right: Each node is stored in a node
list with pointers to its predecessor and successor nodes. The red edge on the left side led to the red entries in the
predecessor and successor lists on the right side.

Graph nodes have to implement a method for checking equality. Since an object may be visited
several times within an accessor, its existence as a node in the accessor has to be recognized. Node
comparison is done by the node labels.
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3.2.3 Similarity Measures

The measures are invoked by passing two accessors, each containing a node set of a graph. Since
the information about the edges is stored within the nodes itself, the only method an accessors
provides returns a node set, which is sufficient to the measure to do its task.

Within the measures, nodes from both accessors will be mapped to result in a single graph
containing mapped nodes. These mapped nodes are made up of a left and a right node which
still include the lists of adjacent nodes from their originating graphs. Additionally a mapped
node contains a list of adjacent mapped nodes, which corresponds to a mapping of every two
predecessors or successors of both nodes.

Through a method invoking itself recursively, the mapped nodes are visited (several times)
and by clamping every possible graph starting from each of the mapped nodes, all the possible
common subgraphs are evaluated.

3.3 Implementation

In this section we describe the implementation of the three main components mentioned in Chap-
ter 3.2.

3.3.1 Graph Accessor

The project implements two accessors for different graph structures, the JenaGraphAccessor ac-
cepting RDF [15] or OWL [16] file structures and the ScufleXMLGraphAccessor accepting XML
workflows. These two accessors inherit from an abstract GraphAccessors which implements only
one main method. This method enforces a file structure to be parsed into graph nodes having
relations between each other. It doesn’t dictate how this has to be done, because this must be
implemented in the subclasses considering the characteristics of the particular file structure.

JENA [6] Ontology Accessor

RDF and OWL files consist of so called triples which represent class hierarchies. A triple contains
a subject, a property and an object. Each triple can be interpreted as two connected nodes. The ac-
cessor creates an ontology model out of the file by using the packages com.hp.hpl.jena.ontology
and com.hp.hpl.jena.rdf.model. This model is then parsed by filtering out the subclass re-
lationships which are converted by the method setGraphAccessor(..) to nodes and edges.
See Figure 3.4 for an excerpt of an RDF file.

Scufl XML Accessor

The Scufl XML accessor also creates its own model representing a XML workflow. This model
consisting of source and sink ports is traversed by the accessor while nodes and edges are created
again by the method setGraphAccessor(..) which differentiates only little to the method in
the JENA ontology accessor. See Figure 3.5 for an excerpt of an XML workflow with its corre-
sponding graph representation.



26 Chapter 3. Implementation

Figure 3.4: An excerpt from a RDF file containing three classes. A class at least consists of a identifier, called
rdf:ID. Additional information (e.g. properties) may exist as well. A property with the tag subClassOf refers
to a super class.

Figure 3.5: Left: An excerpt from an XML workflow containing objects and links. An object contains a processor
name and links contain a source and a sink object. Right: The converted graph representing the XML workflow.

3.3.2 Graph Node
The class IGraphNode defines our node interface. Nodes in the graphs have to be instances of
the class GraphNode which implements this interface. A node provides information about its
label and its adjacent nodes. Since the graph only includes directed edges, adjacent nodes have
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to be distinguished in predecessor and successor nodes. A method called equal(..) compares
two nodes and returns true if their labels are equal.

Instances of the class GraphNode are created while accessing an input file, hence within a
subclass of the abstract class GraphAccessor. The only parameter a constructor of a GraphNode
needs is the node label. It is the task of a graph accessor class to handle structures which contain
non-unique node labels. Our file structures contain unique object labels, hence we do not accept
duplicate node labels in a graph accessor.

3.3.3 Implemented Similarity Measures

This subsection describes the three main tasks a similarity measure has to do to return a result. It
receives two node sets from the graph accessors wherewith a number of mapped graphs can be
created to be traversed by the algorithm. The method calculate() prepares the necessary infor-
mation and executes the algorithm which is implemented as a recursively self invoking method
visiting adjacent mapped nodes.

Mapped Node List

To enable the algorithm to calculate a similarity between two graphs, these graphs have to be
mapped together node by node. Such a mapped graph consists of mapped nodes which are
created by the union of two single nodes from each of the graphs. A mapped node is an instance
of the class MappedVertex which implements the method equal(..). Two mapped nodes are
equal if their left and right nodes are equal.

The requirement to the method map() is to set up two lists of mapped nodes. The startCandidateList
contains all mapped nodes which are used as entry points for the algorithm. This list is part of the
mappedVertexListwhich contains all mappings from each node of both graphs. The algorithm
uses the mappedVertexList while traversing the mapped graphs. After the node mapping, the
accessors are no longer needed.

The two similarity measures use different methods to build these lists. To improve the per-
formance of the algorithms the lists have to be as small as possible without avoiding any results.
How this reduction of mapped nodes in the measure graph isomorphism takes place is explained
in Chapter 2.4.1. Further optimizations used for both measures due to a better performance are
described in Chapter 3.4.

Adjacent Mapped Nodes

To clamp graphs out of the mapped nodes, we need edges. These edges exist in the original
graphs and have to be applied to the mapped nodes in the mapped graphs. A mapped node
consists of a left and a right node, both of which contain information about their adjacent nodes
in the original graphs. These adjacent nodes are brought together by mapping each predecessor
of the left node to each predecessor of the right node and each successor of the left node to each
successor of the right node. Out of it results for each mapped node a list of mapped adjacent
nodes which represent edges. In order to keep the lists as small as possible, a mapped adjacent
node is only added to the list when existing in the mappedVertexList which is much smaller
than the number of all possible mappings in the measure graph isomorphism.
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Algorithms

After adding edges to the mapped nodes we can clamp a graph from each of the mapped nodes in
the startCandidateList by invoking the method nextMaximalClique(..) which consists
of four parameters. One parameter is the clique or subgraph which contains the mapped nodes
included in the clamping graph. Another parameter containing the mapped nodes which are
adjacent to one of the mapped nodes in the clique used to further expand the clique is called
candidateList. In order not to accept two mapped nodes in the clique which are mutually
exclusive, two further parameters need to be passed. LeftImpossible and rightImpossible
contain information about nodes which must not be added to the clique. If for any mapped node
in the clique another mapped node is not adjacent, but both left or both right nodes are connected,
then this mapped node cannot be added to the clique.

By regenerate the parameters and invoking the method again at each visited mapped node, the
clique gets extended. As soon as no more additional adjacent mapped node can be added (empty
candidateList) the clique, which is now maximal, is saved, the method returns and the last
mapped node in the clique is removed. When mapped nodes remain in the candidateList the
clique is expanded by invoking the method again.

By adding and removing mapped nodes to respectively from the clique, all possible combi-
nations of adjacent mapped nodes are evaluated and stored. All the cliques with the highest
similarity are returned by the method getCliqueList().

3.4 Performance and Optimization
The calculation of the maximal common subgraph belongs to an NP-complete problem, hence the
performance decreased massively while applying the algorithms to bigger graphs. By testing the
algorithms with small graphs we could observe the runtime behavior and found the parts which
had the most negative impact on the performance. The following sections show what we have
noticed and how we improved performance.

3.4.1 Inspiration
After the algorithm was tested about its correctness we had to use very small samples to verify
the results, since for big graphs creating the maximum common subgraph manually is difficult.
Then the performance was secondary and the only goal was to cover all possible characteristics,
a graphs can contain. While testing the accessors with real world examples, performance became
the main task to be improved.

Hence we had to find a way to accelerate the process. First we tried to provide the algorithm
with as much information as possible, which have been prepared beforehand. These information
include for each mapped node a complete list of other mapped nodes which cannot exist in the
same clique, wherewith the algorithm should be able to quicker traverse the mapped graphs. The
problem then was the time to prepare these information and to always get a fast access to them
which was needed during the runtime of the algorithm.

Since we not succeeded in decreasing the runtime we had to think about other improvements.
When not supporting the algorithm in the way of processing, then trying to reduce its task has
become the new challenge. By observing the process steps of the algorithm we could divide
its problems into two parts. On the one hand the algorithm needed a lot of time to explore all
possible maximal common subgraphs for a single entry point and on the other hand it had to do
it for a large number of entry points. A lot of maximal common subgraphs found at the different
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entry points were redundant. Even for a single entry point the algorithm found many duplicates.
Hence, the objective was to bring down the runtime by reducing redundancies.

Compressing a Graph

To shorten the graph traversal implied to reduce the number of edges. This reduction means
a compressing of the graph. One approach of compressing a graph is [10] which is explained
in Section 2.2. Such a compressed graph is easier to be traversed by the algorithm. Since the
information about the original structure of the graph has been lost, it can’t be reconstructed. We
may straightforward find the maximum common subgraph of two compressed graphs, but we are
also interested in receiving the parts of the original graphs which are contained in this maximum
common subgraph. Because this was not possible in this thesis, we could not implement it in that
way. Nevertheless it gave us inspiration to further think about this topic. We had to realize a way
of compressing a graph without losing information about its original structure. A first step in this
direction is described in Subsection 3.4.3.

Avoiding Duplicates

The second problem which was mentioned at the beginning of this subsection concerns the num-
ber of entry points which are made up by the mapping of each node in one graph to any node
in the graph. We considered and compared the maximal common subgraphs resulted from dif-
ferent entry points. As already mentioned, a lot of these subgraphs were redundant. The nearer
the two entry points, the more duplicates appeared. While regarding adjacent entry points we
found entry points which didn’t contribute to new subgraphs. Omitting these entry points would
not affect the result. The implementation of a process which reduces entry points is explained in
subsection 3.4.2.

3.4.2 Reduction of Entry Points
Since we don’t want to omit a possible maximal subgraph, we have to invoke the algorithm for
each mapped node in the subgraph isomorphism measure (see Chapter 2.4.2). Starting from each
mapped node to clamp all possible graphs takes a lot of time. If we could reduce the number of
entry points without missing a valid solution, the runtime would decrease. There are entry points
delivering only cliques which already have been found by other entry points. We had to define
these redundant entry points and ensure at the same time not to reduce the number of resulting
cliques. The implemented performance improvements described in this subsection only belong
to the subgraph isomorphism measure, in the graph isomorphism measure a different approach
to reduce entry points was adopted (see Chapter 2.4.1).

The smallest possible clique has a size of two mapped nodes. Let ”A” and ”B” be these two
mapped nodes. Since the clique only contains these two mapped nodes, they have to be adjacent.
Because of this confirmation we can guarantee finding this clique of size two when starting from
either of the two mapped nodes. Assume mapped node ”A” is only connected with mapped
node ”B”, which may have connections to several other mapped nodes. Each clique found when
starting from ”A” must include ”B”, because this is the only adjacent mapped node. Therefore,
these cliques will also be found when starting at ”B” and we can get rid of the entry point ”A”.
In order to generalize this condition, assume ”A” is connected to several other mapped nodes. If
we can ensure to include all mapped nodes which are connected to ”A” as entry points, we can
disclaim to start at ”A”. In the rest of the subsection we explain how to identify mapped nodes to
be omitted as entry points.
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Leaf Nodes

To circumvent a set of mapped nodes used as entry points from one which can be left away, we
have to split all mapped nodes into two homogenous groups. The group to be omitted (group
”A”) may only include mapped nodes which are not adjacent to any other mapped node in this
group. Since no mapped node is stand alone, these mapped nodes must be connected to at least
one of the mapped nodes in the other group (group ”B”). If we consider all the mapped nodes in
group ”B” to be taken as entry points, we can omit to start at any mapped node of group ”A”.

To isolate mapped nodes to be omitted in a simple way was to examine leaf nodes. Since we
have directed edges, leaf nodes are nodes without children. These nodes fulfill the conditions to
be omitted. A leaf node cannot be connected to any other leaf node, but must be connected to at
least one of the non leaf nodes. Each clique which would have been found by starting at a leaf
node, will also be found by starting at any of the non-leaf nodes. Hence, mapped nodes consisting
of at least one leaf node are no longer considered to be entry points for the algorithm.

This reduction of entry points is very useful when having graphs with lots of leaf nodes, but
loses its affect the more non-leaf nodes exist in relation to the leaf nodes.

Non-Leaf Nodes

although we have graphs instead of trees we can distinguish between leaf nodes, non-leaf nodes
and root nodes. A leaf node has no successor nodes whereas a root node has no predecessor
nodes. All other nodes are treated as non-leaf nodes. A directed, acyclic graph must have at least
one node without predecessors and one without successors. The difference between our graphs
and a tree is that these graphs may have several roots as well as several directed paths or even no
directed path between a root and a leaf node. Hence, we cannot exactly determine the level of a
non leaf node as it can be done in a tree. Because of the acyclic characteristic of the graph, each
node resides on at least one directed path from a certain root node to a certain leaf node.

Beginning at the leaf nodes we move along the paths to the roots by recursively invoking the
method markNodes(..) to flag nodes to be deleted. The particular set of predecessor nodes is
passed to the method while traversing the graph toward its roots. The mark which determines
whether the nodes gets deleted switches from delete to keep and then back again at each step.
Hence, every second node in the path gets the delete flag having only adjacent nodes with the
keep flag. This is sufficient to the condition for a node to be deleted.

Two paths starting from two leaf nodes and consolidating in a non leaf node do not have to
have the same length. Therefore, the method can visit nodes several times being at a different
delete stage, determined by the delete flag. To avoid deleting two adjacent nodes, already visited
nodes can only be overridden by the keep flag but not by the delete flag. While visiting a node
for not the first time the traversal gets stopped for this path. Because overriding a node with the
keep flag is allowed, adjacent nodes which are both kept may occur. Figure 3.6 shows the process
of marking nodes to be deleted.

A mapped node where either of the two involved nodes were set to be deleted was not in-
cluded in the starting set. Consider the simple situation where we have one graph with just a root
with two predecessor nodes and one graph where these two predecessor nodes additionally have
another predecessor each. Figure 3.7 illustrates these graphs. To find the complete first graph
within the other graph we only have to map the roots and the two predecessors of the roots. Ob-
taining this subgraph implies starting the algorithm either at the mapped roots or at one of the
four mappings of the roots predecessors. Since the method markNodes(..) flags the predecessors
in the first graph and the root in the second graph to be deleted, neither the mapped roots nor the
mapped predecessors will be included in the starting set and the clique will never be found.
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Figure 3.6: Left outer: When starting the process all leaf nodes are marked to be deleted. Left inner: The preceding
nodes of the leaf nodes are visited and marked to be kept. Right inner: The process moves again a node toward the
root and the current nodes are marked. A node already marked with a keep flag cannot be overridden by a delete flag.
Right outer: Overriding a delete flag is possible, hence the node with the green cross will not be deleted.

Figure 3.7: Left outer: Green nodes are marked to be mapped. Middle: Without restrictions in the mappings the
maximum clique consists of three mapped nodes. Right: Only accepting the green nodes to be entry points the
maximum clique (one of the four maximal cliques) contains only two mapped nodes. The real maximum (middle) has
been missed.

Concluding in only deleting nodes in one graph we avoided the problem of loosing a clique.
By applying the method to the mapped graphs we could also ensure to catch all cliques without
changing anything in the logic of the method. But the effect would be similar if mapping only
half of the nodes in one graph to all the nodes in other graph to deleting half of the mapped nodes
afterwards. We applied this procedure to one of the unmapped graphs.

Since this reduction of entry points is transparent for the user, i.e., the output of the similarity
measure and the number of cliques as well as their compositions are unchanged, it cannot be
deactivated through a parameter.
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3.4.3 Grouping of Leaf Nodes
The reduction of entry points does not prevent the algorithm of visiting any mapped node. In
situations where both graphs have nodes with lots of succeeding nodes, the algorithm has to do a
hard job. We will explain what problems the algorithm was confronted with and how we relieved
the traversal of nodes.

Permutation

We first demonstrate the problem with the simplest example of two nodes, to be called roots, hav-
ing two successors each. Hence, four possible mapped nodes result to be assigned to the mapped
roots. The algorithm starting from the mapped roots has four mapped nodes as candidates to
be visited. After including one of these candidates, only one other candidate is left. Hence, by
starting at any of these four candidates, we receive four combinations of two mapped nodes each,
whereof two combinations are unique. Figure 3.8 shows the different combinations obtained.

Figure 3.8: When mapping the two roots, only two of the four adjacent mapped nodes can be added to the clique.
Adding each time a different mapped node first, four combinations result whereof two of these are different.

Consider the worse case where two nodes belonging to each of the graphs contain ten succes-
sor nodes each. When the algorithm visits the mapped node containing the two nodes, its one
hundred mapped successors are added to the candidateList and have to be visited all after-
wards. While then visiting one of these mapped nodes, there are still nine nodes left in one graph
to be arbitrarily mapped with any of the nine nodes left in the other graph. Hence, It follows 81
possible combinations with these remaining nodes, all of these to be taken once as next mapped
node to be visited. Because the algorithm cannot have enough information to avoid visiting the
same mapped nodes in another order, each possible permutations of any ten of the one hundred
mapped nodes have to be visited in every possible order. This results in checking thirteen trillion
combinations each consisting of ten mapped nodes, although these combinations only include 3.6
million different solutions! Consider Equations 3.1 and 3.2 for the calculation of these results. The
algorithm proposed in [17] needs to check much less combinations but it was not applicable to
our graphs (see Chapter 3.5.1 for the differences in the algorithms).

The formula to calculate the number of combinations of mapped nodes to be traversed in
a different order by the algorithm belonging to the example above, is shown in the following
equation where n determines the number of nodes in each graph to be mapped (in our example
n is ten):

i=n∏

i=1

i2 (3.1)



3.4 Performance and Optimization 33

The equation to calculate the different solutions to the example from above is defined as:

i=n∏

i=1

i (3.2)

Again n determines the number of nodes in each graph to be mapped.
Since these different solutions all come up with the same number of mapped nodes, the ne-

cessity to check them all is due to a potentially different SimContent. The primary goal of the
similarity measure is to return a single number displaying the highest similarity. Another task
is to store all the different cliques having the highest similarity. As long as there are any similar
labels in the two graphs, SimContent of the cliques will differ and only a few cliques have to be
stored.

Grouping

To simplify the traversal of the algorithm we wanted to reduce the visiting of these combinations
as far as possible. The idea was to group structurally identical succeeding nodes. If we could
group these 2 × 10 nodes to two single group nodes, the algorithm would only have to visit one
mapped group node!

When grouping nodes, information about these nodes have to be maintained. These infor-
mation consist of the node label and the adjacent nodes. When loosing these information, the
algorithm is no longer able to traverse such a group correctly. To replace a node in a graph by a
group, the group must be connected to other nodes. In order to not break the structure of a graph,
only structural identical nodes can be grouped. Two nodes are structural identical when having
the same predecessors and successors. A group containing these nodes must be connected to the
same predecessors and successors. See Figure 3.9.

In consideration of further restrictions explained later we pursued a simple approach of group-
ing leaf nodes only. The grouping is applied for both graphs separately. The following restrictions
have to be fulfilled to unify a number of leaf nodes to a group:

• A group must include at least two nodes.

• All nodes have to be leaf nodes.

• These leaf nodes must have the same predecessor nodes.

• These predecessors must not have any other successor nodes.

Without the first condition grouping does not make sense. Since leaf nodes are excluded as
entry points, the second condition guaranties not taking groups as entry points. The second and
third condition together warrant for the structural identity of the group members by force them of
having the same predecessors and no successors. Violating the last condition would complicate
the mapping of nodes and groups which has to be done afterwards.

The method setGroups(), available in both measures, checks for each node in a graph
whether its succeeding nodes can be grouped. At this step a group does not replace any sin-
gle nodes, but will be added as an additional successor node to all its predecessors. This method
guaranties for each node having a succeeding group node that all its succeeding non group nodes
are member of the group node. The method which assigns the adjacent mapped nodes for each
mapped node then makes use of the grouped nodes. A mapping is only done between two group
nodes or between two non-group nodes. Hence, if non or only one of the nodes contained in
a mapped node have a succeeding group node, then only non-group successor nodes will be
mapped.
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If both nodes in a mapped node have a group node assigned, the two group nodes are mapped
to be the only successor for the mapped node instead of mapping all the single nodes. These
mapped groups are useful to reduce the traversal time of the algorithm but should not be re-
turned in a clique at the end. Hence, a group must store the information about its composition
to be collapsed again. This information consists of a unique label which has to be generated, the
involved mapped nodes and the size of the group. At the generation of a new mapped group the
best mapping of single nodes in each group has to be found. In order not to loose too much time
to reach the most similar match of all nodes, since this is a performance issue, a simple approach
has been chosen. To reach a high content similarity each node in the smaller group is mapped to a
not yet mapped node in the bigger group having the highest label similarity. This does not guar-
anty the highest possible label similarity since this would mean to maximize the label similarity
of the whole group. The size of the mapped group gets the same size as the smaller group. A few
nodes in the bigger group will not be mapped at all. Figure 3.9 shows the reduced complexity the
algorithm has to consider by grouping leaf nodes.

The reason why a group is only built and assigned to the predecessor nodes when the group
members are the only successors of its predecessors, is because of the mapping afterwards. Figure
3.10 illustrates the problem. Consider the case where node ”A” in the first graph contains four
successors, two which cannot be grouped (nodes ”B” and ”C”) and two grouped leaf nodes (nodes
”D” and ”E” to group ”G1 g1”). Node ”a” in the second graph contains three grouped leaf nodes
(”b”, ”c”, ”d” respectively to group ”G2 g1”). Node ”A” is mapped with node ”a” to mapped
node ”A:a”. We now have to map the successors of ”A” and ”a” to get adjacent mapped nodes
for ”A:a”. We can enforce the single nodes ”B” and ”C” to be mapped with different nodes in
the second graph. Let ”B” be mapped with ”b” to ”B:b” and ”C” with ”c” to ”C:c”. If we want to
map group ”G1 g1”(”D”, ”E”) to group G2 g1”(”b”, ”c”, ”d”), we may map node ”D” with ”d” to
”D:d” because ”d” has not been mapped at all. But then to map node ”E” we have to arbitrarily
take one of the nodes ”b” or ”c” which have already been mapped. Lets map node ”E” with ”c”
to ”E:c”. The algorithm visits mapped node ”A:a” and the clique now includes ”X:x”, ”Y:y” and
”A:a”. New candidates for ”A:a” are ”C:c”, ”D:d” and ”E:c”. Since node ”B” is connected with
”Y”, ”b” is not connected with ”y” and mapped node ”Y:y” is already in the clique, ”B:b” must
no longer be allowed for being a new candidate. The candidates ”C:c” and ”E:c” are mutually
exclusive because they consist of the same node ”c”. Thus, the clique may be extended with two
mapped nodes, either ”C:c” and ”D:d” or ”D:d” and ”E:c”, but not with three mapped nodes if
we would for example map ”C”, ”D” and ”E” with ”c”, ”d” and ”b” respectively. By preventing
to assign a group as well as single nodes which do not belong to this group to a predecessor, we
do not have problem at the mapping and will therefore not avoid a possible clique extension.

Since the highest possible label similarity cannot be guaranteed while mapping groups, we
parameterized the activation of the grouping by the boolean flag groupNodes.

3.5 Valiente’s Algorithms
This section shows the differences between the algorithms of Valiente and ours. Then we explain
the problems we had while using the approach of Valiente.

3.5.1 Difference to Valiente’s Algorithms
Valiente proposes in [17] after mapping each node in the first graph with each node in the second
graph to connect each two mapped nodes if either the left and the right nodes contained in the
two mapped nodes have an equally directed edge or non of them have an edge at all in their
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Figure 3.9: Upper left: The original graphs before the mappings took place. Upper right: Leaf nodes which belong
to the same predecessor nodes and which are their only succeeding nodes can be grouped. Lower left: The mapped
node ”G:b”, derived from the graphs which have not been grouped, has thirteen adjacent mapped nodes from which
each possible combination has to be evaluated. Lots of these mapped nodes are mutually exclusive which has to be
considered when adding them to a clique. Lower right: When considering the grouped graphs, mapped node ”G:b”
only has two adjacent mapped nodes. The successor is a mapped group which contains the members ”H:h”, ”I:f”
and ”J,g”. These members are also contained in the left mapped graph (green mapped nodes) and no other possible
combination in the left mapped graph results in a higher similarity.

original graphs. Hence, a mapped node is connected to every mapped node which is allowed
to be in the same clique. This leads to much more connections in the mapped graphs where
connected mapped nodes do not have to be mandatorily adjacent. Since a candidate does not
have to be connected to any of the mapped nodes in the clique, the result may contain cliques
with several subgraphs not being connected with each other. Because we are only interested in
connected cliques we omitted to connect mapped nodes where the left and the right nodes are not
connected with each other. The big advantage of Valiente’s approach is due to the performance of
the algorithm. Undermentioned we like to show the difference between the algorithms of Valiente
and ours.

We use entry points from where the algorithm begins with a single mapped node as candidate
without having information about what was done before while processing other entry points.
Valiente’s algorithm starts only once with the complete set of mapped nodes as candidates. At
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Figure 3.10: Top left: The two original graphs. Top middle: The two graphs with grouped leaf nodes. Top right: The
algorithm beginning at mapped node ”Y:y” as entry point will not be able to add mapped node ”B:b” to the clique
since nodes ”Y” and ”b” are connected showed by the red dashed line. The grouping led to a wrong mapping of the
nodes. Bottom: Without grouping all possible mapping are evaluated and the maximal clique will be found.

each step in the algorithm the candidate set in Valiente includes all mapped nodes which are not
mutually exclusive to any of the mapped nodes in the clique whereas a mapped node in our case
must additionally be connected to at least one mapped node in the clique to become a candidate.
Hence, in our case the candidate set can be extended at each step by additional adjacent mapped
nodes while in Valiente all possible candidates are known at the beginning. This information
enables Valiente’s algorithm to traverse the candidate set at each position only in the alphabetic
order without missing any maximal clique. While never accepting to visit a node being smaller
in the alphabetic order than the even visited mapped node, the algorithm gets faster the more it
proceeded respectively the higher the even visited mapped node is in the alphabetic order.

Figure 3.11 illustrates the different procedures of the two algorithms. If starting from node
”A:a” Valiente’s algorithm visits first ”B:c” then ”C:b”, our algorithm first visits ”C:b” then ”B:c”
since ”A:a” is not adjacent to ”B:c”. If starting from ”C:b” Valiente’s algorithm cannot visit an-
other mapped node anymore because the candidates (”A:a” and ”B:c”) appear before ”C:b” in the
alphabetic order. Our algorithm again visits ”A:a” and ”B:c”. If our algorithm would traverse
the mapped graph in the alphabetic order, the maximal clique consisting of mapped nodes ”A:a”,
”B:c” and ”C:b” could never be found. Since our algorithm never knows with which mapped
nodes a candidate set may be extended, a list of mapped nodes being mutually exclusive to one
of the mapped nodes in the clique must always be present. This list corresponds to the parameter
impossible in the method nextMaximalClique(..). A mapped node which is adjacent to
the last added mapped node in the clique only becomes a candidate if not contained in the list
of mutually exclusive mapped nodes. This exclusion list can be omitted in Valiente’s algorithm
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Figure 3.11: Left: The two original graphs. Middle: Our mapping only connects adjacent mapped nodes. In Valiente
all mapped nodes are mapped which are not mutually exclusive. Right: Valiente traverses in the alphabetic order.
Therefore, the cliques get smaller when proceeding. We have to traverse all possible combinations which leads to
redundant cliques to be rejected.

since this is implicitly done at the alignment of the candidate set.

Figure 3.12: Left: The two original graphs. Middle: Valiente’s mapped graph starting from mapped node ”A:a”.
A candidate mapped node must be connected to all mapped nodes in the clique. Hence two maximal cliques arise
(surrounded by a dashed circle) whereof one is determined to be the maximum clique (surrounded by a blue dashed
circle). The maximum clique is not a connected clique, since mapped node ”D:d” is not connected any of the other
mapped nodes. Right: Our algorithm also detects two maximal cliques, since mapped nodes ”B:b” and ”C:b” cannot
be added to the same clique. The resulting maximum clique differs to the one in Valiente because Valiente’s maximum
clique is not found.

An example how a clique which is not connected may occur is shown in figure 3.12. Mapped
node ”D:d” which is not mutually exclusive, but not connected to any mapped node in the clique
is added to that clique.

3.5.2 Problems with Valiente’s approach
Since the performance led to a huge problem in processing bigger graphs we considered about
implementing Valiente’s approach. Valiente’s resulting maximal cliques do not have to be con-
nected. Because we do not want loose cliques we implement a method converting these loose
clique to connected cliques while determining the maximum clique. After the algorithm termi-
nates a list with all maximal loose cliques is available. Each of these loose cliques had to be split
into several connected cliques.
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This was done by copying the first mapped node with all its adjacent mapped nodes in the
loose clique into a new clique. The new clique was enriched by further mapped nodes from
the loose clique which were adjacent to any mapped node in the new clique. This procedure
is invoked recursively until no further adjacent mapped node in the loose clique exist. Then a
further new clique was created by adding the next mapped node in the loose clique which has
not already been copied. After all the mapped nodes of a loose clique have been copied, a new
loose clique containing these connected new cliques in form of a kind of subcliques was built.
This procedure is illustrated in figure 3.13.

Figure 3.13: Left: The maximal loose cliques produced by the algorithm of Valiente. A method must detect adja-
cency between the mapped nodes in such a clique (red lines). Right: Each maximal loose clique is split into groups
(subcliques) containing only connected mapped nodes. The subclique with the highest similarity has to be
evaluated and becomes the maximum clique. Black dashed ellipses indicate cliques which do not have to be maximal.
The blue dashed line marks the maximum clique.

After all the loose cliques were processed another list of loose cliques containing connected
subcliques was available. Although these subcliques are valid cliques they may be redun-
dant and they do not have to be maximal cliques. While considering all these subcliques a
similarity value has to be assigned to each of them. The subclique with the highest similarity
value becomes the maximum clique.

We implemented this algorithm from Valiente but the performance was not much better. The
performance is only of interest while testing bigger graphs. While mapping two big graphs we
receive a lot of mapped nodes. Each mapped node contains as candidates any other mapped node
not being mutually exclusive. Assume we have two graphs containing a hundred nodes each. A
node has two preceding and two succeeding nodes on average. For a certain mapped node the
mapping of each predecessor of the left (right) node with any other node except a predecessor of
the right (left) node gets a mutually exclusive mapped node. The same is true for the mappings
of the succeeding nodes. Each of these predecessors and successors can be mapped to 98 nodes
on average which leads to 784 mutually exclusive mapped nodes. This is the number of mapped
nodes which do not have to be connected to a certain mapped node. Since we have 10000 mapped
nodes at all a certain mapped node is connected to more than ninety percent of all mapped nodes!

Although the algorithm of Valiente gets faster the more it proceeds, the performance problem
was not solved. Since the algorithm was confronted with so many candidates at the beginning,
it never proceeded so far where it could get faster. Another time consuming process was to split
the loose cliques into connected cliques. But the time needed to do that could be neglected while
considering the time needed for the algorithmic process for bigger graphs.
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Evaluation

This chapter describes the evaluation of the implemented graph algorithms, in terms of measur-
ing the similarity between graph structures. After a short overview on the chosen approach, we
show the results of the analysis. In a first part we analyzed user-specified constructed graphs, in
the second part real world RDF files and XML workflows.

4.1 Approach
The analysis was done in two parts. First we built two identical user-defined graphs where the
similarity had to be maximal. After renaming node labels and removing nodes and edges the
similarity decreased. In the second part we took seven sample XML workflows to be compared
with each other in several test runs. Finally, we compared two parts of RDF structures with each
other. After modifying one of the structures we analyze the changes in the resulting similarity.

4.2 Constructed Test Cases
Testing of constructed graphs was done in two parts. First we created four test cases comparing
identical graphs. Different graphs were then compared in four further test cases. The graph
isomorphism measure only returned similarity values above zero in the first part of the test cases.

4.2.1 Analysis Objects
Overview

As a basis for our test cases we always took the same constructed graph which reflects a typical
pattern of an RDF file or an XML workflow. To show the functionality of the isomorphism mea-
sures we compared this basic graph with itself and with several mutant forms of it. The test cases
to improve the functionality of the subgraph measure were made using different graphs.

Test Case A: Compare two identical graphs

In a first test we compared two graphs with an equal structure and equal node labels. The results
of the measures had to be the maximum value, independent of the chosen measure or parameter.
This is a trivial form for proving the correctness of the algorithms.
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Test Case B: Rename node label in identical graphs

Only a single node in the second graph was renamed. The structure was not changed and there-
fore the graphs still show an isomorph structure. Since the two measures do not identically cal-
culate the similarity, the results should deviate from each other unless the similarity reaches an
extreme value like zero or one.

Test Case C: Remove node in identical graphs

A node with all its incoming and outgoing edges has been removed which leads to a difference in
the structure of the two graphs. The graph isomorphism measure should now return a similarity
of zero.

Test Case D: Remove edge in identical graphs

We removed an edge without its connecting nodes. The number of nodes remained the same,
nevertheless the structure is affected. This may lead to either more or less mutually exclusive
mapped nodes which affects the creation of the cliques.

Test Case E: Compare two different graphs

In a next step we compared the basic graph with a graph which has less nodes and edges. Because
these two graphs are not isomorph at all, the graph isomorphism measure should return zero for
all of the following test cases. The subgraph isomorphism measure should still return a similarity
value above zero.

Test Case F: Rename node label in different graphs

The label of a node, which was a member of the maximum common subgraph in test case E,
was renamed. The labels before and after the change are both existing in the other graph, hence
an increasing or decreasing similarity value would be possible in general. Since the node was
included in the result of test case E, this test case can either return a different similarity for the
same clique or a lower similarity for another clique.

If the mapped node containing the node which is renamed now displays a higher label sim-
ilarity, the clique should remain unchanged and the overall similarity will increase. If renaming
does not affect the label similarity of the mapped node, the resulting similarity as well as the
clique will remain the same. In the case where the label similarity decreases, the clique either
remains unchanged with a lower similarity value, or a new clique not containing the renamed
node emerges, also having a lower similarity.

Test Case G: Remove node in different graphs

We then removed a node which was contained in both results of the test cases E and F. It must
result in a different solution with a similarity which is equal to or lower than in test case F.

Test Case H: Remove edge in different graphs

We deleted again an edge without touching the nodes. The two nodes which were connected by
the edge were contained in the result of test case G. These nodes may still be contained in the
result of this test case, but mapped to different nodes.
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4.2.2 Results
This subsection contains the resulted similarity values and the derived common subgraphs which
led to the corresponding similarity values. Since a maximum similarity can be reached by more
than one subgraph, we present all of them. With a graphical representation of each maximum
common subgraph we demonstrate the results of the changes of the graphs. These graphics be-
long to the default parameters where WStructure and WContent are equally weighted, i.e., WStructure =
50 and WContent = 50, and set in relation to DAverage.

A list of the results of all test cases illustrated in Figure 4.2 additionally includes similarity
values derived by different parameter settings. Each test case was executed several times by
changing one of the parameters at a time while leaving the other parameters unchanged. The
changed parameters led to different maximum common subgraphs. The following five test runs
were executed for each of the test cases:

• Default: all parameters are defaulted, i.e., WStructure = 0.5 and WContent = 0.5 are set in
relation to DAverage.

• Structure: WStructure = 0.75 and WContent = 0.25 are set in relation to DAverage.

• Content: WStructure = 0.25 and WContent = 0.75 are set in relation to DAverage.

• Small: WStructure = 0.5 and WContent = 0.5 are set in relation to DSmall.

• Big: WStructure = 0.5 and WContent = 0.5 are set in relation to DBig .

Test Case A: Compare two identical graphs

Comparing two identical graphs must result in a similarity of one, independent of the measure
or the parameters applied. We compared the graphs in Figure 4.1. Both measures just found
one maximal clique which became the maximum common subgraph. This maximum common
subgraph contained all nodes in both graphs. Each node was mapped with an identically la-
beled node, hence the similarity value resulted in one, regardless of the chosen parameters. The
maximum common subgraph is listed in Figure 4.1.

Test Case B: Rename node label in identical graphs

Renaming a node label causes no structural difference in the graphs, hence even the graph iso-
morphism measure should return a similarity value above zero. Since we have unique node
labels in both graphs the renaming of one node label must affect the similarity. Because test case
A only returned a single maximum common subgraph we know at least the graph isomorphism
measure must again return only a single maximum common subgraph. This maximum common
subgraph consists of exactly the same mapped nodes as in test case A. The only difference is: one
of the mapped nodes now contains the renamed node. Since this mapped node now returns a
lower label similarity derived by the string comparison of Levenshtein, SimContent must have
decreased.

This is what has happened. The label similarity of the mapped node containing the renamed
node decreased to 0.5. Levenshtein’s similarity measure still returned a value above zero, since
half of the strings ”12” and ”18” are still equal. The decreased content similarity affected the
two measures differently. The similarity of the graph isomorphism measure decreased stronger
because SimContent is the only component of the overall similarity. It corresponds to SimContent

weighted with a hundred percent. If weighting SimContent in the subgraph similarity measure
with a hundred percent, the two measures would result in the same similarity values.
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Figure 4.1: Top: The two equal graphs to be compared in test case A. Node ”12” was renamed to ”18” for test case
B. In test case C node ”6” was removed. Finally the edge connecting nodes ”3” and ”7” was removed in test case D.
Bottom: A list of all resulted maximum common subgraphs of the four test cases. The subgraphs in test cases A and
B consist of all nodes of both graphs. The node removal caused a smaller subgraph in test case C. The removal of an
edge in test case D again reduced the subgraph although the number of nodes in the graphs did not decrease.

As we can see from Figure 4.2 if weighting WStructure and WContent differently the similar-
ity differs, too. SimStructure is bigger than the SimContent. If we therefore weight SimStructure

stronger than SimContent, it results in a higher overall similarity. The last two columns show the
same similarity since the two graphs still contain the same number of nodes.

Test Case C: Remove node in identical graphs

A node removal has an impact on the structural similarity of the two graphs, which are no longer
identical in their structure. Since the graph isomorphism measure only accepts isomorph graphs,
it returns zero in this case without executing the algorithm at all. This pre-check is done by count-
ing the number of nodes having the same number of incoming and outgoing edges and compar-
ing these numbers with the counted numbers in the other graph. Only if all these comparisons
return equal, the two graphs are isomorph.

The subgraph isomorphism measure is still able to find a maximum common subgraph. This
subgraph is shown in Figure 4.1. It just misses one single mapped node which had a label sim-
ilarity of one in test case B. Since the rest of the mapped nodes are still the same, SimStructure
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Figure 4.2: Test case delivered for all test runs a similarity of a hundred percent. The graph isomorphism measure
suddenly dropped to zero while changing the structure in test case C. The subgraph isomorphism measure returned
different results while running with distinct parameter values.

and SimContent were only affected by this lost mapped node. The counters of SimStructure

and SimContent decreased by one, but the denominator which is the same in SimStructure and
SimContent also decreased because of the smaller number of nodes in one graph. DAverage de-
creased by a value of only 0.5. The node removal, therefore, diminished the reduction of the
overall similarity only a little.

The results shown in Figure 4.2 now present a different value in the last two columns. Since
the two graphs contain a different number of nodes after the removal, taking the size of a certain
graph affects the similarity. In the view of the smaller graph (taking DSmall) still all nodes could
be mapped which results in a similarity of 98.4 percent. One node in the bigger graph could not be
mapped which decreased the similarity to 92.6 percent when taking DBig . See also the dropping
of the green column from the test case B to the test case C in Figure 4.3.

Test Case D: Remove edge in identical graphs

Again the graph isomorphism measure detects a structural difference and returns a similarity of
zero. We will not go deeper into explaining this measure since we already did it in test case C.

An edge removal would not generally squeeze the maximum common subgraph to be re-
duced. Since we had the two nodes which were connected by the removed edge in the maximum
common subgraph it must result in a different maximum common subgraph not containing ei-
ther of the two nodes. The reason is, no two mapped nodes contained in a maximum common
subgraph may be connected in one graph but not in the other graph. Looking at the Figure 4.1
we find two resulting maximum common subgraphs, one containing the mapped node ”3,3” the
other containing mapped node ”7,7”. The algorithm correctly detected the differently connected
nodes ”3” and ”7” in the two graphs.

The columns in Graphic 4.3 decreased by almost the same value from test case C to test case
D. The mapped node which is omitted in the maximum common subgraph of the current test
case contributed one in the test case C to each of the counters of SimStructure and SimContent.
Nodes were not removed, hence the denominators of SimStructure and SimContent remain the
same. Since the two counters had almost the same value in test case C and decreased in test case
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Figure 4.3: In test case A all the test runs returned a similarity of a hundred percent. The node removal in test case
C led to a drop down of the similarity to zero in the graph isomorphism measure. It also led to a divergence of the
orange and the green columns. The orange column almost remained constant since the counter (SizeClique) and the
denominator (DSmall) of the equation were both reduce by the same value.

D both by 1, the values of SimStructure and SimContent also decreased by a similar value.

Test Case E: Compare two different graphs

Figure 4.4 illustrates the two different graphs to be compared. Since these graphs are not equal
the graph isomorphism measure will return a similarity of zero. The next test cases are all built by
applying changes to one of the graphs, hence the graph isomorphism measure will never return
a value different to zero in the following test cases. To detect similarities in different graphs
the subgraph isomorphism measure is applicable. In this and the following test cases only the
subgraph isomorphism measure is analyzed.

By inspecting the graphs we may locate several patterns which exist in both graphs. The top
seven nodes in both graphs are structurally equal and the pattern containing the nodes ”7”, ”10”,
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Figure 4.4: The two original graphs to be compared. Changes in the structure of the graph which led to the following
test cases were only applied to the right graph.

”11”, ”12”, ”16” and ”17” in the left graph can be mapped to the nodes ”5”, ”10”, ”11”, ”12”, ”4”
and ”17” in the right graph whereas four of these six mapped nodes are equally labeled. Since
these mappings detected by glancing at the two graphs are valid solutions, the clique which
is determined by the measure to be the maximum common subgraph should have at least the
similarity of the better of these two mappings.

The measure found a resulting clique which has a completely different mapping. These cliques
are sometimes not simple to be reproduced nor to be checked on their correctness manually. The
simplest way to verify the result is to demonstrate the graphs graphically and to connect the
mapped nodes which was done in Figure 4.5. Since two structurally identical subgraphs do not
have to be drawn identical, it is still difficult to comprehend the mapping, the displayed order of
adjacent nodes is not a relevant structural characteristic.

The test run with default parameters returns a similarity of 46,4 percent. When regarding
the number of nodes being mapped, then more than half of the nodes in the first graph and
more than eighty percent of the nodes in the right graph are contained in the resulting clique.
Hence SimStructure must be above fifty percent, independent on the chosen denominator. When
applying DAverage then SimStructure results in a value of 64,3 percent. The Levenshtein measures
returns a value of 4 for SimClique. Thus, SimContent is less than half as high as SimStructure.
Using DAverage, the SimContent is set to 28,6 percent. The different size of the two graphs causes
the distinct similarity values when changing the denominator parameter. When choosing DBig ,
the similarity reaches 38,2 percent. When using DSmall, the similarity increases to 59,1 percent.

When applying different weights to SimStructure and SimContent, not only the similarity changes
but also the cliques themselves. Weighting SimStructure with 75 percent, the algorithm finds a
clique containing ten mapped nodes of which only two mapped nodes are equally labeled. When
weighting SimStructure stronger, the similarity of the clique found in the default case increases
to 55,4 percent, whereas the similarity of the new clique increases to 57,1 percent. Hence, the
algorithm was correct in returning the new clique. In the other situation where SimContent is
weighted with 75 percent, the resulting clique does not differ from the clique in the default case.
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Test Case F: Rename node label in different graphs

Node ”4” in the right graph in Figure 4.6 was renamed to node ”16”. Since node ”4” was con-
tained in the clique resulted from test case E and was mapped to node ”16” in the left graph,
the label similarity of the corresponding mapped node increased from zero to one. The resulting
clique must remain the same, because no other clique can increase more in similarity.

Since the size of the clique did not change, SimStructure did not change as well. But the
renamed node causes a higher SimContent, because ”16” is more similar now, and therefore
the overall similarity increased to fifty percent. Applying different weights to SimStructure and
SimContent the clique did not differ from the default case. The resulting clique in case of a stronger
weighted SimContent is the same in test cases E and F. But since the label similarity increased for
this clique, the overall similarity increased as well to 42,9 percent.

The test run with a stronger weighted SimStructure returned a result which is different from
the clique found in test case E also weighted SimStructure with 75 percent. The similarity of
this test run returned an unchanged similarity value of 57,1 percent. The different affect of the
renaming to SimStructure and SimContent is illustrated in Figure 4.7. The more SimContent is
weighted, the more the similarity increased, hence the constant size of the black column and the
increasing size of the yellow column between test cases E and F.

Test Case G: Remove node in different graphs

We removed node ”2” in the right graph of Figure 4.5 which was mapped to node ”6” in the left
graph. Since this mapped node was contained in the clique the new result must be different. Node
”6” in the left graph which was mapped to the removed node in the right graph is still contained
in the new clique, being mapped to node ”12” in the right graph. The algorithm had to choose a
different path when starting from node ”3” in the right graph (see Figure 4.8. When regarding the
two red marked subgraphs in the figure they look very similar in their collocation. This is different
to the situation in test cases E and F where the mapping was difficult to be comprehended. On
closer examination of the mappings in Figure 4.8 it stands out that the alignment of the nodes at
the bottom is different. The left part of one subgraph is mapped to the right part of the other and
vice versa. This is nevertheless a correct mapping since the order of adjacent nodes is irrelevant
for similarity.

Regarding Figure 4.7 the orange and the green columns, representing the test runs where
DSmall and DBig respectively, attract attention. The orange column decreases less than the green
column. Since we only removed a node in the right, smaller graph, the size of the bigger graph
remained unchanged. In comparison with the test case F, this led to a smaller denominator in the
orange test run, but to an unchanged denominator in the green test run. Because the cliques were
reduced by the same number of mapped nodes in the two test runs, the reduced denominator in
the orange case compensated the mitigation of the similarity a little.

The results of differently weighted SimStructure and SimContent are shown in Figure 4.9. The
test run with a stronger weighted SimStructure led to two cliques including one more mapped
node than the default case. Although the content similarity decreased from 33,3 percent in the
default case to 14,8 percent, the overall similarity increased from 46,3 percent to 53,7 percent. The
additional mapped node caused SimStructure to increase from 59,3 percent to 66,7 percent. The
growth of SimStructure was smaller than the reduction of the content similarity. Since SimStructure

was weighted stronger, the overall similarity increased nevertheless.
The test run with a stronger weighted SimContent returned one clique having a mapped node

less than the default case. In exchange the labels in the clique were a bit more similar. SimStructure

decreased from 59,3 percent to 51,9 percent and SimContent increased from 33,3 percent to 37,0
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percent. Although the overall similarity drop to 40,7 percent the returning of the new clique was
correct, since the clique in the default case would have led to a similarity of 39,8 percent.

Test Case H: Remove edge in different graphs

The removed edge between the nodes ”12” and ”17” in the right graph made it impossible for
the clique to still consist both of the mapped nodes ”6:12” and ”9:17”. Hence, again a new clique
must result. The roots were for the first time not mapped in the default case. The left root was not
mapped at all, as Figure 4.10 shows. The resulted clique again looks strange at first glance. While
considering the figure more precisely the clique turns out to be correct, nevertheless. The clique,
still containing eight mapped nodes, had a lower similarity value than in test case G. The content
similarity declined from 37,0 percent to 29,6 percent which caused the dropping of the similarity
from 46,3 percent to 42,6 percent.

We again received a different clique while running the test case with a stronger weighted
content similarity. The result of this test run was similar in test case G and H. In test case G the
clique contained the mapped nodes ”12:12” and ”17:17”. Since the edge connecting the nodes
”12” and ”17” in the right graph was removed, the algorithm, no longer able to include both
mapped nodes, replaced mapped node ”12:12” by ”6:3”. Hence the size of the clique did not
change, but the content similarity decreased because the new mapped node has not equal labels.
The similarity in this test run decreased from 40,7 percent to 35,2 percent.

4.3 Real World Examples

4.3.1 Analysis Objects
We compared seven XML workflows with each other to demonstrate the functionality of the sub-
graph measure. Furthermore we compared a certain part of an RDF file with a part of another file
which has been modified several times to present the flexibility of the measures.

4.3.2 Results
In this subsection we present the results received by comparing XML workflows and RDF struc-
tures and describe demonstrative findings.

XML workflows

In a first part we compared arbitrarily chosen XML workflows to each other. A screen shot from
the tarverna workbench 1 shows the chosen XML workflows. Figure 4.13 shows the results of
these tests. The tests are ordered descending by its similarity value, resulted while setting the
default parameters. The files compared in a test case are listed in Figure 4.11. For each test
case we made fife test runs with different parameter settings. We explain certain test results by
referring to the number of the test case available on the x-axis of the diagram.

Test case 1 This test case returned the highest similarity in all of the test runs except, where
DSmall was taken. The orange and the green line, which refer to DSmall and DBig re-
spectively, lie on top of each other since the compared files have the same size. The files
are rather small and consist by accident of similar labels, thus even the test run with the

1http://taverna.sourceforge.net/
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stronger weighted SimContent returned a similarity above forty percent. We did not classify
small files as relevant since there the similarity value could come off by chance.

Test case 6 We again compared two files with a similar size. Weighting SimStructure and SimContent

differently had a big influence to the result. Structurally these files are rather similar because
less than thirty percent of all nodes could not be mapped. Labels have nothing in common,
therefore SimContent is very low.

Test case 10 These files are very different in their size. Exceptionally the content of the smaller
file could be matched pretty good to a part of the bigger file. This specific part describes a
workflow which is similar to the one in the smaller file, hence the high content similarity.
Although the smaller file could be completely mapped to the other file SimStructure is far
below a hundred percent. The reason therefore is using DAverage (black line in the figure).
If choosing DSmall the similarity reaches a values above sixty percent.

Test case 11 Here the files again differ in their size. Although not the complete smaller file could
be mapped, SimStructure increased compared to the last test case. This was caused through
a smaller difference in the size of the files. Regarding the contents the files do not have much
in common, hence SimContent decreased rapidly.

RDF structures

Instead of comparing a number of different files we chose parts of two sample files for testing.
These parts belong to the files 2 and 3. While modifying one of the files the similarity is checked
again. We wanted the algorithm to return a higher similarity value while modifying the structure
of the RDF graph toward a more similar structure.

After describing the modifications to the file which have been done in two steps, we show
and explain the different similarity values resulted through the modifications and the parameter
settings.

Figure 4.14 shows the graphs before and after the modifications. At the beginning the graphs
in left and in the middle were compared. The middle graph was structurally modified which led
to the right graph. This graph was again compared with the unchanged graph on the left side.
Finally six nodes in the right graph were equally labeled to the mapped nodes in the left graph to
do the last comparison.

Original The original graphs were compared resulting in a clique with a size of eleven mapped
nodes. These eleven mapped nodes included in the black dashed circle of the left graph in
Figure 4.14 were mapped to the black nodes in the middle graph. To map the last non-leaf
node of the middle graph was not possible since this node has connections to the already
mapped leaf nodes. SimStructure of this clique is 59,5 percent. Node labels did not have lots
in common, hence SimContent is only 21,6 percent. Therefore the overall similarity ends up
in 40,5 percent.

Realigned We wanted the algorithm to map the leaf nodes in the middle graph. Since their
connections to two preceding nodes were the problem of being mapped, we removed them
(except one). These ten leaf nodes then only had a connection to either of the two preceding
nodes. This is illustrated as the right graph in Figure 4.14. The algorithm was now able
to map all these leaf nodes. The new mapped nodes contained the red nodes in the right
graph being mapped to the nodes which are included in the red circle of the left graph. With

2http://ontology.teknowledge.com/
3http://lsdis.cs.uga.edu/projects/semdis/sweto/
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these leaf nodes the clique contained three more mapped node than before which led to an
increased SimStructure to 75,7 percent. The SimContent is at 27,0 percent and the overall
similarity increased to 51,4 percent.

Renamed To observe the effect of SimContent we renamed the labels of six of the leaf nodes in
the right graph. We set them to an equal label to one of the leaf nodes in the left graph.
The algorithm had to map these leaf nodes properly to increase in SimContent. The size of
the clique as well as the number of nodes in the graphs did not change, hence SimStructure

remained at 75,7 percent. Since we now have much more similar labels SimContent increased
to 48,6 percent. We finished with an overall similarity of 62,2 percent.

4.4 Discussion and Limitations
In this section we discuss the results the graph isomorphism measure and the subgraph isomor-
phism measure produced and the significance of the chosen parameters.

4.4.1 Remarks
The files being used for testing the real world examples are of limited size since the bad perfor-
mance made it impossible to include larger files. Smaller files may sooner lead to a relatively high
similarity since the possibility to reach a good match between two graphs is higher if comparing
small graphs.

Since these files contain contents belonging to different topics the similarity of their labels is
rather low in most of the cases. Nevertheless, the Levenshtein string comparison measure rarely
returns a similarity value of zero and therefore SimContent of the similarity is also meaningful.

Because there are no two files which are isomorph, we only tested the subgraph isomorphism
measure. By testing a few smaller examples manually we found this measure worked correctly.

4.4.2 Adequacy of the Results
Since the subgraph isomorphism measure and the graph isomorphism measure can return differ-
ent results upon the same comparison and the graph isomorphism measure is very restricted in
its application, we discuss the results of the two measures separately.

Graph Isomorphism Measure

This measure was only applied for the constructed test cases because we did neither have dupli-
cates in our real world examples nor were two of these examples structurally identical.

Since the graph representations of the files have to be structurally identical to result in a sim-
ilarity above zero with this measure, SimContent was the only significant part of the measure.
Changes in the content of a file influence the similarity stronger than in the subgraph isomor-
phism measure. Hence we have seen strong implications to the similarity by changing node
labels.

Subgraph Isomorphism Measure

To get a similarity by comparing arbitrarily structured graph representations of files we used the
subgraph isomorphism measure. The output of this measure strongly depends on the passed
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parameters and is, therefore, susceptible to changes in these parameters. On the other hand,
SimStructure and SimContent making up the similarity can have a leveling effect to each other. A
bigger maximum common subgraph with less label similarity may end in the same similarity.

This affect could be observed while renaming and removing nodes in the test graphs. The
subgraphs could vary in size and in their contents resulting in only a little different similarity.
While choosing the test cases we were confronted several times with this characteristic of the
measure. We wanted to demonstrate a certain functionality of the measure by modifying the
graphs. This should have led to a desired output which was often not the case. By considering
the unexpected results we always found the algorithm was calculating correctly and we had to
redesign the test cases again.

Finally, the chosen test cases illustrate the effects of changes to the similarity as desired. The
intended dependency of the similarity on changes in the subgraph or in the underlying graph as
defined in Chapter 2.6.1 could be realized.

4.4.3 Parameters
Figure 4.13 illustrates the different similarities depending on the parameters. The discrepancies
of the highest and the lowest result were between twenty and almost fifty percent. In this sub-
section we discuss the significance of the results by interpreting the influence of the parameter
settings. These parameters are only used in the subgraph isomorphism measure and therefore
this subsection only refers to this measure.

Denominator

Differently chosen denominators led to the biggest discrepancies in similarity in the test cases.
This is not amazing since the graphs varied strongly in their size. Consider again Equation 2.8
which shows the relation of the resulting similarities. SimilaritySmall denotes the resulting simi-
larity by choosing DSmall. The size of the smaller graph is indicated by GraphSmall. If a graph is
twice as big as another graph, the higher of the similarity values is also twice as big as the other
one.

Since the discrepancies in similarity by choosing different denominators only depend on the
size of the graphs but not on the clique itself, the resulting clique is the same. Therefore, variably
chosen denominators do not mean to interpret the definition of similarity differently, but to look
at it from a different perspective.

Weight

Changes in the weights of SimStructure and SimContent can influence the similarity in cliques
differently. Therefore the maximum clique can vary by weighting differently. Choosing certain
weights depends on the interpretation of similarity. If SimStructure of two graphs is regarded
more important than SimContent then resulting in a clique with the biggest size is reasonable. In
the opposite case, a clique containing similar labels is adequate.

Since SimContent cannot be higher than SimStructure the similarity can only decrease or remain
the same while moving the weighting toward SimContent. This has to be the case because we are
only interested in SimContent within a maximum clique and not within the whole graphs.

Another approach could be to involve all node labels in a graph for the comparison, may be
in relation to content similarity within the clique. As we do not consider additional structural
similarities in the remaining parts of the unmapped graphs, we decided to only incorporate node
labels within the clique for the calculation of SimContent.
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Figure 4.5: The measure detected the red nodes to be mapped to get the highest similarity of all maximal common
subgraphs in the default case. The mapping at node level is shown with dashed lines. The green circles mark the
nodes which were mapped while weighting SimStructure with 75 percent. The result shows two maximum common
subgraphs which led to the same similarity value. Mappings are not illustrated for this test run to get a clearer overview.
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Figure 4.6: The renamed node in the right graph led to the same clique having a higher SimContent. Mapped
nodes contained in the clique are again marked red and connected by a dashed line.
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Figure 4.7: The fife test runs delivered different similarity values since these values based upon different calculation
methods. Even the changes in similarity were differently affected in the four test cases.
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Figure 4.8: Nodes ”8” and ”13” in the left graph are for the first time included in the clique.

Figure 4.9: Test case G delivers different cliques while executing the test runs. Weighting SimStructure with 75
percent results in two cliques (green marked nodes) including one more mapped node than the clique in the default
case. On the other hand weighting SimContent with 75 percent leads to a single clique (blue circles around the
nodes) having one mapped node less than the default case, however, containing mapped nodes with more similar
labels.
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Figure 4.10: The removed edge again led to a curious clique in the default case (red marked nodes) being able to
include mapped nodes ”12:12” and ”9:17” since the nodes ”12” and ”17” are no longer connected in the right
graph. Weighting SimContent with 75 percent leads to the clique indicated by blue circles around the nodes.

Figure 4.11: The seven XML workflows were compared to each other in a test case.
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Figure 4.12: A screen shot of the taverna workbench containing a graphical representation of the seven XML work-
flows used for the test cases.
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Figure 4.13: The derived similarities from comparing a couple of XML workflows with the subgraph isomorphism
measure. The tests are listed in descending similarity order resulted from the default case. Testing was made with fife
test runs per test case which had been differently parameterized.

Figure 4.14: Left: The black dashed circle mapped with the black nodes in the middle graph. Right: After deleting
edges in the right graph, the red nodes could be mapped to the nodes in the red dashed circle of the left graph.





5
Conclusions

In this thesis we described the implementation of graph similarity measures. By comparing two
graphs, a value determining the nearness of the two graphs is calculated. This value is called the
similarity of the two graphs. Structure and content of the graphs are included in the calculation
of the similarity.

We implemented two measures, the graph isomorphism measure and the subgraph isomor-
phism measure. Graphs have to be in a generic form to be processed by the measures. Two
accessors parse RDF structures and XML workflows respectively to convert them into generic
graphs.

The graphs are accessed and traversed by the measures to be compared to each other. The
measures have the following functionality:

• Graph Isomorphism Measure. In this measure only structural identical graphs are com-
pared. Each deviation in the structure leads to a similarity value of zero. Structural identical
graphs are compared by their contents, i.e., their nodes labels. The nearer the node labels
the more similar the graphs.

• Subgraph Isomorphism Measure. This measure is implemented to find the biggest sub-
graph contained in both graphs. The size of these subgraphs and the similarity of their
labels determine the similarity of the whole graphs.

Similarity may be defined differently, therefore we concluded to implement parameters to be
passed to the measures to incorporate the preferences of a user. These parameters define the
importance of the components of the similarity measure. Structure and content can be differently
weighted to be included in the similarity measure.

5.1 Results
To comprehend a similarity result of two graphs manually is difficult or, if the graphs are big, even
impossible. While setting up the test cases the resulted similarity value often differed from the
expected value. But we always found out that our forecast was wrong and the measure calculated
correctly.

The constructed test cases illustrate the dependency of the similarity value on the parameters
which can influence the resulting similarity strongly. By modifying the graphs to be compared
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again we observed the changes in the resulting similarity values. The measures worked as ex-
pected.

Since all possible subgraphs have to be compared by the measures, bigger graphs cause an
enormous effort for the calculation. While testing bigger real world examples the performance
decreased rapidly. We had to implement features to improve the performance. For certain graph
structures these improvements led to a drastically reduced runtime. These features include:

• Elimination of redundancies. We marked nodes which can be omitted for the algorithm as
a starting point, without missing a valid solution.

• Reduction of complexity. By grouping structurally identical nodes we could bring down
the size of a graph and, therefore, its structural complexity.



6
Future Work

We propose extensions to the design when adding new accessors to the model which have to
handle file structures leading to different graph structures to the one we used in calculating sim-
ilarities. Further improvements due to the performance should be implemented in compressing
the graph representations to process bigger files.

6.1 Design
The file structures the measures aimed for, can be represented as directed, uniquely labeled, single
edged, acyclic graphs. The following subsection explain shortly how to change the accessor or the
measure to handle any difference in the characteristics of the represented graphs.

6.1.1 Indirected Graphs
An indirected graph can be modeled as a directed graph by converting a indirected edge into
two contrarily directed edges. The accessor has to provide the source and target node of each
indirected edge with the opposite node as a predecessor and a successor. A simpler solution is to
only provide a node with adjacent nodes instead of predecessors and successors. Depending of
the chosen approach in the accessor, the measure has to be adjusted correspondingly. Since the
measure can cope with directed edges using the first approach would not involve any changes in
the measure. For the second approach the measure has to be simplified to only consider adjacent
nodes when mapping and clamping the mapped graphs to be traversed by the algorithm.

6.1.2 Different Node and Edge Characteristics
The accessors can only deal with uniquely labeled nodes whereas the measures do not consider
any other characteristics of a node than its label and others of an edge than the connected nodes.
If a represented graph consists of non unique node labels or unlabeled nodes the accessor must be
able to distinguish between such nodes by assigning them unique labels. These generated node
labels must be excluded in the node comparison to get SimContent of the similarity measure. If
a few or non of the nodes have labels SimContent may be deactivated at all. To include other
characteristics of a node than the label itself to be compared with other nodes, an object of the
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class GraphNode must be enhanced to store these characteristics which have to be considered in
its equality checking method.

The only information we get out of an edge is its connected nodes. in our files the edge
label always indicates a subclass relationship and is therefore omitted. Edge weights are not
available either. Since we do not store the edges at all, the accessor has to be enriched to store edge
information. Another possibility is to add these information to the adjacent nodes of each node.
The measures have to be changed accordingly to consider edges for the structural congruence.
A different edge label or weight probably leads to a decreasing SimContent and depending on
the perception, to a structural inequality. WStructure and WContent may have to be completely
redefined. The importance of the labels and weights may influence the definition of the similarity
measure.

6.1.3 Multi-Edged Graphs
While our accessors would neglect duplicate edges, an edge list must be stored to handle the
cases where the same two nodes may have several edges connecting them. The measure must be
enhanced to distinguish between single and multi edges and to compare edge labels. Again the
question of the structural similarity comes up. Should two nodes which are connected by a single
edge be mapped to two nodes having a multi-edged connection? And if they should be mapped,
should SimStructure of the similarity measure decrease therefore?

6.1.4 Cyclic Graphs
In a class hierarchy cycles are not possible, hence we always have at least one root node and one
leaf node. The existing accessors would be able to handle cycles, but not the measures. Changes
in the measures only affect the special feature of reducing the entry points. There we start at leaf
nodes to traverse all paths to the roots. The changes in the measures are minor since the reduction
of entry points may be omitted at all.

6.2 Performance
The performance improvements described in chapter 3.4 were a first step of compressing a graph.
Grouping structural identical leaf nodes reduced the number of mapped nodes to be visited by
the algorithm. Further groupings could be done for structurally identical non-leaf nodes. These
nodes are treated to be structurally identical when having the same predecessors and successors.
To not get the mapping problem as discussed in chapter 3.4.3 non-leaf nodes should only be
grouped if they are the only successors of their predecessors and if they are the only predecessors
of their successors. In the reduction of entry points the grouped non-leaf nodes have to be treated
with care. At the moment a single node is never mapped to a group node, which is not a problem
since group nodes are always leaf nodes which have been omitted to be entry points anyway.
Grouped non leaf nodes have to be mappable with any node in the other graph to be an entry
point, hence with single nodes too. This is done by mapping the single node to the node in the
group having the most similar label to this single node.

Other considerations may be done to group structurally identical nodes even if they are not
the only predecessors or successors of their successors or predecessors respectively. To allow a
node having edges with the same direction to single nodes as well as group nodes complicates
the mapping massively. The advantage is in the additional reduction of entry points. Consider
again the situation we have seen at the end in chapter 3.4.3 where we mapped the successors of
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two nodes to be their adjacent mapped nodes. Now assume one node has two single nodes as
well as a group node of size two as its successors, the other node has a succeeding group node of
size three. Since these successors cannot be mapped properly, we must establish restrictions. The
problem is to assign the group containing three nodes to two single nodes and a group of size
two. See again Figure 3.10 which illustrates the problem of the mapping. Since two of the four
nodes on the left side have to be mapped with the same node on the right side, the group on the
right side must be split up and each node on the left side is mapped to each node on the right
side.

Figure 6.1: The cardinality for the successors of node ”A” in the left graph is four (two single nodes plus two group
members). In the right graph the cardinality for the succeeding nodes of node ”a” is one (one group). Since both
groups exceed with their size the cardinality number in the other graph, they do not have to be split up. In the
mapping all four nodes from the left side have to be considered at the same time to be mapped to the group on the
right side. The mapping should result in the highest possible SimContent for these four mapped nodes. Then the
maximum cliques should not differ whether the nodes were grouped or not.

The criteria of splitting a group must be defined. Let us initiate a kind of a cardinality number
for all successors (and predecessors) of each node. This cardinality number belonging to the
left side consists of the minimal number of nodes a group on the right side must contain to be
mapped. If a single group is the only successor of node the cardinality number is set to one. In
every other case the cardinality number contains the number of all nodes, whether these nodes are
single nodes or they belong to a group node. In our case the left side would have a cardinality of
four whereas the right side only has a cardinality of one. Since the group on the left side exceeds
the cardinality number on the right side, it does not have to be split up. The size of the group on
the right side otherwise is smaller than the cardinality number on the left side and therefore this
group must be split up. If the group on the right side contained four nodes, the mapping could
be done properly without splitting any group. Figure 6.1 shows these properly mapped groups.
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