
EvoLens: Lens-View Visualizations of Evolution Data

Jacek Ratzinger and Michael Fischer
Vienna University of Technology
Institute of Information Systems

A-1040 Vienna, Austria
{ratzinger,fischer}@infosys.tuwien.ac.at

Harald Gall
University of Zurich

Department of Informatics
CH-8057 Zurich, Switzerland

gall@ifi.unizh.ch

ABSTRACT
Visualizing software evolution is essential for identifying de-
sign erosions that have occurred over the past releases. Mak-
ing evolutionary aspects explicit via visual representations
can help the engineer identify such hot-spots quickly. One
challenge is to provide means for an engineer that allow her
to focus on particular software parts. Although many tools
exist that provide zooming-in and -out within the hierarchi-
cal decomposition of a software system, only very few allow
an engineer to view a system through a kind of lens view.
Our approach called EvoLens is a visualization approach for
efficient explorations of evolution data across multiple di-
mensions. EvoLens is based on structural and temporal lens
views, a technique similar to fisheye-views. But the graphi-
cal representation of EvoLens integrates enhanced zooming
by navigating through software hierarchies with arbitrary
selectable groups of software parts across module or pack-
age boundaries. EvoLens allows an engineer to define a focal
point for the lens view and navigate along the time dimen-
sion by user-defined time windows. The comprehension is
supported by using color for metrics of the software modules
or classes. The EvoLens prototype tool has been developed
and evaluated on basis of a medium-sized Java application
consisting of 580.000 LOC over an 18 months evolution pe-
riod.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—
interactive environments; D.2.7 [Software Engineering]:
Maintenance and Enhancement—restructuring, reengineer-
ing ; D.2.8 [Software Engineering]: Metrics—complexity
measures, evolution measures

Keywords
software architecture, evolution, information visualization,
color, interactivity

1. INTRODUCTION

SOFTVIS ’05 Saint Louis, Missouri, USA

As software evolves it changes its size, complexity, and char-
acteristics through modifications. The major costs do not
arise because of software bugs, but because new and chang-
ing requirements lead to adaptations and improvements [16].
As a result, it is important to keep software maintainable to
ensure adequate responses to the users’ needs. Parnas states
that software aging will occur in all successful products [15].
Software passes through many stages during its life cycle.
One of the models for the life cycle is the ”staged model for
the software life cycle” of Rajlich and Bennett [18]. To un-
derstand existing systems better, software engineers should
be enabled to effectively exploit the information about the
software’s evolution. Especially the relationships between
classes can lead to important findings [8]. All this infor-
mation about a program may help the developer to build a
mental model of its structure.

In this paper, we present EvoLens an approach for visu-
alization and navigation of information extracted from the
software development process. The data about the evolution
is extracted from versioning systems. In particular we ana-
lyzed Java programs that are stored and maintained within
a Concurrent Versions System (CVS) [1]. We extract the
following data: the author of each change to a file, date and
time of each change, the files included in a change event, and
the package structure of the source code. EvoLens works
with the following abstractions: time on the basis of version
history data, hierarchies on the basis of software structure,
and change couplings as representation of common change
histories of software parts.

As visualization models we use nested graphs to visualize
software structure on different levels of granularity. Further,
we use color to represent the size of software parts by map-
ping particular class metrics to a color scale ranging from
light yellow to dark red. We, thereby combine structure and
size and growth metrics into our graphical representations:
class metrics can be compared by the engineer on basis of
their color and their structural relationships to other classes
or modules. Additionally, one major visualization model is a
lens view that is significantly different in its composability to
what has been presented in literature so far. Software parts
from any decomposition level can be selected and shown in
a lens view, which is a focus+context approach. The lens
view zooms in from a module perspective to a class perspec-
tive enriching the level of detail to inter-class relationships.
In each lens view, the engineer selects a so-called focal point
that defines the center of consideration. Each EvoLens vi-

1

sualization uses this focal point as starting point and all
relationships following from this focal point to other mod-
ules or classes are represented. This is realized by pulling up
class-level change dependencies onto the higher level views.
This technique drastically reduces the amount of graphical
elements to be visualized. It allows us to show both inter-
and intra-class evolution metrics.

EvoLens further provides facilities to generate user-defined
projections of interrelated software parts that can be part
of completely different modules, into one picture. This en-
ables an engineer to visualize important relationships across
module boundaries. We support software engineers by pro-
viding navigation facilities beyond panning and zooming. In
EvoLens it is possible to move the focal point to any module
within the system and additionally on every level within the
containment hierarchy. Additionally, we also provide navi-
gation in time. The user may move around in history inter-
actively and get the dependencies between classes displayed
for the selected time frame. That allows building a mental
model of the changes appeared during the development and
maintenance phase of the software structures.

The remainder of this paper is organized as follows. In Sec-
tion 2 we describe how information is collected from config-
uration management systems. Section 3 presents the types
of visualizations EvoLens provides together with a brief re-
view of techniques for presentation of complex information
spaces. Section 4 describes the extended features of our vi-
sualization tool. Section 5 evaluates our evolution analysis
approach in combination with EvoLens. Section 6 discusses
related work and Section 7 highlights important results and
indicates some future work.

2. EXTRACTING CVS INFORMATION
CVS allows handling of different versions of files in a co-
operating team of developers. As CVS logs every action,
it provides the necessary information about the history of
a system. The log-information—pure textual, human read-
able information—is retrieved via standard command line
tools, parsed and stored in a relational database [4]. Follow-
ing the import of the logs, the required evolutionary infor-
mation is reconstructed in a post processing phase.

Log groups Ln are sets of files which were checked-in into the
CVS by a single author within a short time-frame—typically
a few minutes. By applying a dynamic time-frame, larger
check-in transactions can be captured as well. Following,
log groups are then used in the evaluation of logical coupling
between software entities. We refer to logical coupling as:
Two entities (e.g. files) are logically coupled if a modification
to the implementation affected both entities over a significant
number of releases [7].

The degree of logical coupling between two entities a, b can
be determined easily by counting all log groups where a and
b are members of the same log group, i.e., C = {〈a, b〉|a, b ∈
Ln} is the set of logical coupling and |C| is the degree of
coupling. In the next reconstruction step the file size history
is recovered. Since CVS records the number of lines added
and lines deleted for each check-in of each source file, their
values are summed-up on a per file basis. This information is
used as source for size and growth metrics. And finally, the

module structure is reconstructed from the path information
provided for each file in the repository and listed in the logs.
A more detailed description of the extraction- and import-
process can be found in [4, 22].

3. VISUALIZING DEPENDENCIES
We aim to support the software engineer when s/he has to
learn and understand large legacy software. As legacy sys-
tems are often sporadically documented, we incorporate his-
torical data as another source of information into the reverse
engineering process. With the help of EvoLens the developer
obtains deeper insight into the evolution and maintenance
process of the analyzed software. Research questions such
as ”What are the common work patterns within the develop-
ment process?” or ”How are inner class metrics about size
related with inter class couplings?” can be addressed with
our approach.

The extracted dependencies between programming entities
like classes are depicted by utilizing graphs. The nodes,
which describe classes, are connected with each other based
on the historical coupling. The thickness of edges between
classes represents the strength of the relationship. The more
often classes were changed together the stronger is their cou-
pling. However, the resulting graph can become very large.
Therefore, we need strategies to support software engineers
in handling such large information spaces. Our idea is to
group the classes based on structural information and to
filter important parts of the graph by using focal points.

While examining the system for common change patterns
the attention is drawn towards the modularity of applica-
tions. Maintainability can be improved when the system is
well composed of self-contained components. An ideal situa-
tion would allow changing each component independently of
others. If changes must be propagated, the smallest possible
set of components should be involved. As a result we orga-
nized the graph according to the module structure of the
application. The resulting graph groups files, which contain
classes according to their package membership.

3.1 Lens View
The lens-view allows an engineer to focus on a particular
software part (e.g. ROOT/chkclass or ROOT/jvision/main).
This module is shown in full detail and it is described as sur-
rounding rectangle. The directly included classes and sub-
modules are drawn within this box. On the one hand sub-
modules are depicted as rectangles too. On the other hand,
classes are represented through ellipses. Our technique dis-
plays a hierarchical tree as a nested graph. The leaf nodes
of the module hierarchy are classes. Modules build up the
nesting levels of the grouped graph. Figure 1 and Figure 2
describes the correspondence between a hierarchical struc-
ture and its nested graph representation. The grey box of
Figure 1 represent the focal point for the nested graph visu-
alization. We focus on module chkclass, which is shown as
surrounding box in Figure 2. Within this module the sub-
modules at Level 3 are incorporated as rectangles. Classes
included in the subhierarchy of module chkclass are pro-
jected on this plain containing chkclass and its children At-
tic, jfolder, and dicomsend. If chkclass would contain classes
itself they would be directly displayed within the box of this

2

ROOT

chkclass

Attic
CHKFolderPanel
SendPanel
NetworkDicomDirSave
SendProgressBar
DicomDirCDWriterPanel
DicomDirSave
Dicom2Image

jfolder dicomsend
DicomSend

jvision

applet
DisplayApplet
StandAloneDisplay
DisplayApplication

main
MainFrame2
SeqPanel2
JVision2
AbstractToolBarTabPanel
MainToolBar2
PluginTabConfig
MaintButtonPane2
TabManager

overlay
PolygonOverlay
RectangleOverlayMPR
Localizer
EllipseOverlay

CurveOverly
curve

image
ImgView2
View
RawDataContainer16CT
RawDataContainer8CT
ImgView

Level n+1

Level n−1

Level n
Projection Plane = Level n

Classes

Level n+2

Figure 1: A Java package structure

module. Other classes down the hierarchy are projected on
the submodules (e.g. CHKFolderPanel on jfolder).

Based on nested graph representations of module structures
we visualize evolution data. For the evolution of software
items we define coupling as the relationship based on com-
mon changes. In EvoLens this coupling information is inter-
weaved with the hierarchy information of the module struc-
ture. Classes that are strongly coupled with each other are
visualized together with their module decomposition. Edges
of different thickness connecting ellipses, which represent
classes, give an impression on the common change patterns.
An interesting aspect of coupling is the distinction between
internal and external. We define internal coupling as a de-
pendency that happens between classes in respective parts
of the system; e.g. the relations between classes of a single
module and its submodules are defined as internal couplings.
The connections between classes within this module and any
other part of the software (i.e. another module or another
subsystem) are considered as external couplings.

For the module in the focal point, we paint inner couplings
and also couplings to other external modules. For exter-
nal modules we limit couplings to the ones with the focused
module. Hence, we build a boundary of couplings related to
the focused module. We get the impression of a magnifying
glass, where only the focal point is emphasized. Addition-
ally, the couplings outwards of this focal point are visible.
But the structure of the surrounding modules is depicted in
the same fashion as the focused one.

EvoLens is not the first tool to leverage hierarchical visual-
izations. In earlier work, researchers have presented views
for hierarchical-organized, two-dimensional graphs [3]. How-
ever, our nesting level and the handling of leaf nodes differ.
The nested graph does not depict the entire package hierar-
chy. In every step just two levels are shown. The outer box
of the focal point describes a package, which is selected by
the user. Within the box the direct children are included.
Thus, we assemble classes as members of the package and the
subpackages on the next lower level. All classes below these
submodules are projected into these submodules regardless
how deep they are located in the hierarchy. In Figure 2
we show how classes are projected onto the nested module
graph. The reference information was taken from Figure 1.
We avoid too many levels of the hierarchy that may overload
the graph because of the density of the evolution data.

jfolder

DicomSend
Attic

chkclass

dicomsend

Projection
Plane

. . .

SendPanel

CHKFolderPanel

Figure 2: Nested graph representing part of a Java
package structure

The graph view addresses the need to describe orthogonal in-
formation. The grouping and boxing of classes within mod-
ules represents the structure of the software system. The
display is recursively broken up into rectangular areas, rep-
resenting the nested modules. Classes depicted through el-
lipses are projected onto the nesting structure. The evolu-
tion data as second information source relates the classes
with each other. Thus, the edges connecting the elliptic
nodes concern logical coupling between files. As a third di-
mension within the visualization color is used to describe
the size of each class. The more lines of code each class con-
tains at the end of the given time frame the more reddish
the ellipse is.

3.2 Interactive Visualization
Based on the lens-view we provide navigation facilities for
an effective exploration of the analyzed software. We depict
the coupling of classes; the coupling between modules re-
sults from the coupling of its member classes. However, the
developer may select the degree of the details he is interested
in:

• One can interactively decide which module histories
to inspect. This is important since we just show a
rather detailed part of the entire information space.
Every module on every hierarchical level is reachable
through interactive navigation. The focal point may
be moved to any sibling module.

• One can determine the strength and number of cou-
plings to see in one picture. He can define the thresh-
old value beyond which couplings are shown.

• The user of EvoLens does not have to switch to an-
other view to navigate in time. He can drag the frame

3

over the time line and adjust the size of the time frame
itself. The graph responses interactively to these adap-
tations.

4. EvoLens
This section describes the capabilities EvoLens, and pro-
vides some examples. The screen shots are taken from an
industrial case study, a Picture Archiving and Communi-
cation System (PACS) in the medical domain. The PACS
includes a viewing workstation, which supports concurrent
displaying of pictures as well as accessing different image
sources. The images are acquired from different modali-
ties such as magnetic resonance, or ultrasound scanning and
saved in distributed archive storages. The software is imple-
mented in Java. The information of the whole application is
maintained with the help of CVS. The development of the
software started in 1998. For the visualization examples we
used 18 months of the development history. At the end of
the observation period, PACS was composed of more than
580 000 lines of code and contained more than 6000 classes.

4.1 Color indicating Class Metrics
We decided to use color to indicate metrics about the evo-
lution of single classes. The basic idea is to color the el-
ements according to their attributes’ values. EvoLens can
indicate three size metrics: The size of each class at the (a)
beginning or (b) end of the time window for couplings, or
the (c) growth of classes during this time period. This is
achieved by mapping size metrics of classes to a color scale
from light yellow to dark red (, , , , and). The
advantages are that size and growth measures are visualized
together with system structure and evolution data. Further,
numerical values are mapped to colors, so that the process
of comparing these values becomes a perceptive task. The
user can visually compare different class metrics based on
their coloring. Important events such as a rapid change of
size can be easily spotted by navigating over the time line.

Our approach is entirely based on historical data. No source
code has to be parsed. The evolution information enables
reasoning about the architecture of the system and its de-
velopment process. We extract all necessary data by parsing
change event logs. All change logs declare how many lines
of code where added and deleted during the intervention of
the programmer. Hence the actual number of lines of code
can be determined for every step in time within the software
maintenance. For consistence reasons we visualize the size
of classes at the end of the observation time frame.

4.2 Multi-dimensionalVisualization (Structure
and Evolution)

Our visualization framework was designed to enable software
engineers to browse the evolution of large systems. EvoLens
integrates different dimensions of information. We use a
combination of structural information enriched with evolu-
tion data to provide better understanding of the develop-
ment process of large software.

Figure 3 shows an example of coupling visualization based
on the industrial case study. The focal point (fp) of this
figure is on the package jvision. The coupling level, which
is described in Section 4.7, is set to 10. The time frame

Figure 3: fp=jvision, coupling-level=10, time-
window=04.2003-09.2004

describing the inspection period for the coupling and other
metrics is set from April 2003 to September 2004. The abil-
ities of EvoLens to move the time window is described in
detail in Section 4.8.

Several aspects of the software can be extracted from Fig-
ure 3: The focal point displayed at the top represents module—
in Java package—jvision. This module is further divided
into submodules. All classes displayed for package jvision
are included in its submodules. Thus, the user has an im-
pression how the system is structured, how many modules
are related with each other, and if the modules are further
divided into smaller units.

In addition to this structural information, the image de-
scribes the evolution of the software. It shows which parts
were changed at the same time by the programmers of the
development team. This provides hints for further mainte-
nance. This coupling describes implications like: ”If class
MainFrame2 has to be changed, then consider also treat-
ing other classes like JVision2, VisDisplay2, etc.. Do this
because they have typically been changed together.

Within the high level picture of the package jvision, an inter-
esting phenomenon can be recognized: jvision has no exter-
nal couplings which satisfy the lower bound constraint de-
fined by the user. Hence the outer border of jvision, marks
the border of the display itself. In the following parts, we
will adjust parameters within EvoLens to see whether jvi-
sion really has no couplings.

4.3 Folded Gross Structure
Often it is important to get a coarse grained picture of large
software systems. Then, not the couplings between classes
are of main interest, but the relationships between entire
modules. In EvoLens such folded views as depicted in Fig-
ure 4 provide a good general map of the system. Within the
gross structure only the strongest couplings between mod-
ules are shown. Classes are not displayed, but instead all
classes are denoted through empty circles within modules.
The user may be interested in the individual classes that
take part in the overall coupling. In that case s/he can
unfold the graph and its parts again. The unfolded total

4

Figure 4: coupling for folded module jvision

graph is cluttered, so the user has to reduce the coupling
strength and navigate to the points of interest. Through
unfolding it is possible to get a fine grained view with all
involved classes. Every submodule and every module can
be unfolded on its own. For example, it is possible to unfold
the focal point to see all the internal couplings but leave the
external modules folded. Then only the strongest external
couplings are shown. An example for such a view is rep-
resented by Figure 5. The user may decide on the balance
between the clarity of the image and the detail detailing of
the class level.

Folding lays the emphasis on modules. In fact coupling
of modules is based on classes, which is indicated through
empty circles in Figure 4. The strongest couplings between
classes are projected on module level. In Figure 4 the fo-
cal point is laid on package jvision. Many submodules (e.g.
main, vis, image) are displayed. We may easily spot how
the internal structure of module jvision is build up.

4.4 Selective Coupling
Since module boundaries are sometime too restrictive for in
depth inspections, we decided to incorporate the visualiza-
tion of individually selected sets of classes. The user can
mark some classes during the inspection of modules and let
EvoLens show the evolutionary relationships for the selected
set of classes. EvoLens identifies the top level modules con-
taining the classes of interest and visualizes them together
with the coupling structure. As a result the user can start
navigating through the system or select any other arbitrary
set of interesting classes.

For Figure 5 we selected four classes: MainFrame2, VisDis-
play2, ImgView2, and Localizer of Figure 3. These classes
are the ones that build up the coupling between submod-
ules. In Figure 5 we folded all modules except for the focal
point. By utilizing the features of EvoLens we wanted to
find out whether these classes are really just related two by
two. We set the coupling intensity to a low level to receive
also the weak connections. Now we realize that all four
classes are related with each other, even though not very
strongly. Furthermore, Figure 5 indicates that these classes
were changed together with classes of package jvision. The

Figure 5: fp=individual selected classes, coupling-
level=10, time-window=04.2003-09.2004

classes of module jvision involved in the coupling of the set
of selected classes are displayed in Figure 3. Additionally to
these interesting findings, Figure 5 shows that class Main-
Frame2 has weak coupling with classes of module chkclass.
With the help of this feature the user can select classes from
all over the software system and inspect their coupling.

4.5 Zooming through Module Hierarchy
EvoLens is capable of describing two levels of a class hier-
archy. For each module all directly included classes and all
submodules on the next level are displayed. Within the sub-
modules, classes are directly included as if there were no fur-
ther levels down the hierarchy. Classes with strong coupling
that are located within the sub-hierarchy of submodules are
projected onto the submodule level. EvoLens allows one to
step up and down the hierarchy interactively. The lens view
shows one particular module in detail. Within this module
the next level of submodules can be directly reached. Thus,
the user of EvoLens steps down to one of the displayed sub-
modules. In the same manner s/he can step up the module
structure. On every step the evolutionary coupling is inter-
actively displayed.

When the level within the hierarchy is changed, also the
basis for coupling computation changes. As a result, when
zooming in into one submodule new but weaker couplings
can be displayed that were filtered on the higher level. When
navigating up the hierarchy, weak couplings on lower levels
may lose importance, and are omitted given the coupling
threshold of the upper layer.

Figure 6 describe the zoom-in into module jvision/main vi-
sualized in Figure 3 with the focal point jvision. After the
zoom-in into module main the coupling intensity was set
to a lower threshold, because the overall coupling strength
of this module is on a lower level. Nevertheless, the class
MainFrame2 of module the focused module main is still re-
lated with other modules of the software. Now this class
is related with two other classes of module jvision beyond
main. Many classes of module main are involved into the
couplings.
There are many external couplings too. In Figure 6 a new
module called chkclass is related to the classes of the focused
module main. These coupling between chkclass and main
is also detected in the gross structure of Figure 4. The new
focused image shows that the following classes build up the

5

Figure 6: fp=jvision/main, coupling-level=10, time-
window=04.2003-09.2004

Figure 7: fp=chkclass, coupling-level=10, time-
window=04.2003-09.2004

intermodule coupling: JVision2, SendPanel, and CHKFold-
erPanel.

4.6 Navigation between Modules
As well as navigating through the hierarchy, the user of Ev-
oLens can navigate to sibling modules and submodules. This
horizontal navigation incorporates extended ”panning” into
our visualization framework. Thus, EvoLens provides navi-
gation not only vertically but also horizontally. Interactively
users can move the magnifying glass over a related module.
Then this module becomes the new focused one. Such a
transition takes place from Figure 6 to Figure 7.

In Figure 7 we selected module chkclass as the new focal
point. The classes connecting chkclass and main are visi-
ble in both figures. However, only two of them (i.e. class
CHKFolderPanel and class JVision2 have still coupling dis-
played in Figure 7. The other couplings are filtered out in
order to maintain the clarity of the resulting image. By ad-
justing the coupling intensity, the user of EvoLens has the
opportunity to increase the amount of displayed couplings.
However, when setting the coupling threshold very low the
picture becomes often crowded. Before the navigation to the
sibling module chkclass classes SendPanel and CHKFolder-
Panel of module chkclass are connected to class JVision2
in Figure 6
In Figure 7 most couplings of package chkclass are based

Figure 8: fp=jvision, coupling-level=15, time-
window=04.2003-09.2004

on classes down the hierarchy. As a result, we see a very
dense graph of internal couplings within module chkclass.
With the help of extended panning to sibling modules and
extended zooming through the module hierarchy the entire
software system can be explored using EvoLens.

4.7 Coupling Intensity
Users of EvoLens may decide to navigate through the struc-
ture and decide which part of the system they are interested
in. On each step only the strongest couplings are depicted.
To find a good balance between clarity and information de-
tails, the user can individually adjust the lower threshold of
the visualized couplings. So she can decide to inspect only
coupling with strength higher than any number of common
changes, or to see the entire coupling spectrum. However,
a view with all couplings shown for a selected module often
overloads the display. Classes and modules overlap or cover
each other. In such a dense picture the historical couplings
can not be easily spotted.

Based on the settings of Figure 3 we instructed EvoLens
to set the lower bound of couplings to 15. Figure 8 shows
the resulting image. For the visualization of the evolution
information of the industrial case study, we extracted the
historical data from CVS. The data of each change to all
classes during the entire lifetime of the system were pro-
cessed. Then we computed which classes where changed
together. The mechanism for this data condensation is de-
scribed in section 2.

If some files have strong coupling but are on a very low level
in the class hierarchy, they are still displayed in visualiza-
tions of the higher level packages. This is accomplished by
the projection of leaf nodes onto the lowest visualized level.
Thus, the depicted submodules contain all classes of their
own, their submodules and so on. The strongest couplings
down the hierarchy are always presented regardless their ex-
act location down the visualized sub-hierarchy.

4.8 Navigation in Time
Evolutionary couplings are measured on a time frame given
by the users of EvoLens. For example, the software engineer

6

Figure 9: fp=jvision, coupling-level=10, time-
window=04.2003-12.2003

may be interested in the coupling of a module through the
last six months. With the help of EvoLens he can set the
desired time frame and interactively retrieve the coupling
information. To realize the lens view for timely data, we
use the Normal Distribution Nµ,σ in our weighting function
for coupling data. The middle of the time frame t0 specifies
the mean µ = t0 and the width of the time frame∆t specifies
its variance σ = ∆t, respectively.

By navigating through the time line software engineers ad-
just the position of the time frame. They obtain immedi-
ately the image of the coupling for the selected period. Fig-
ure 3 shows the coupling of module jvision within the last
eighteen months. In contrast, Figure 9 describes the first
half of the eighteen months. So we see how the relation-
ships between the classes evolved. In Figure 9 no coupling
can be detected between class MainFrame2 and class Vis-
Display2. At the end of the eighteen month period these
two classes are strongly related.

The coloring provides additional hints about what happened
during this time. In contrast to MainFrame2, which was
already large at the beginning of the selected time frame,
VisDisplay2 has much more lines of code at the end of the
observation period then in the middle This fact is visualized
in Figure 9. MainFrame2 was already large at the begin-
ning of the time frame and remained almost constant. Nev-
ertheless, the strong growth of classes is still an alarming
sign, because the strong coupling renders the replacement
of the large class or its decomposition into smaller pieces
more difficult. The relationship of View and ImgView2 is
also striking. Although View grew by more than 300 lines
of code, ImgView2 remained almost constant at 150 lines
of code. This information is obtained from the coloring of
the classes. Although these two classes have strong coupling
only one grows whereas the other remains equal in size and
is continuously modified. Thus, ImgView2 is instable, which
is a sign of design erosion.

5. EVOLUTION ANALYSIS WITH EvoLens
To support developers in understanding software develop-
ment dynamics it is critical to effectively structure histori-
cal information. Understanding a software system is often
difficult due to the overwhelming information mass. Recent

studies suggest that programmers use both top-down and
bottom-up techniques for the maintenance of software [21].
In our previous work [8] we presented an approach for soft-
ware evolution analysis. This analysis included several steps
combining specific metrics extracted from versioning sys-
tems. However, we just presented manually drawn images
for a better understanding. In this paper, we present Ev-
oLens, a full-fledged visualization and navigation tool. It
bases on the idea of logical couplings—evolutionary change
dependencies between software parts—but allows an engi-
neer a much more effective exploration of a software system.
Release histories contain a wealth of information about the
software structure. EvoLens leverages such release data to
support software maintainers in their daily work through
interactive navigation facilities.

In our work on Relation Analysis [8] we measured dependen-
cies and interrelations of classes affecting the maintainabil-
ity of an object-oriented system. Based on a large industrial
case study we evaluated the usefulness of historical data for
the assessment of software architectures. In addition to the
previously published technique, we show how EvoLens ef-
fectively supports the Relation Analysis process in terms of
visualization, navigation, and analysis:

• Revealing logical couplings: Relation Analysis allows
one to find change dependencies over time. Although
no source code has to be parsed, the amount of pro-
cessed data is still very large. This results from the fact
that couplings are binary information relating single
data items. Thus, the computational effort is O(n2).
Despite this high number of findings EvoLens is able
to provide visualizations very fast.

• Architectural shortcomings: Many architectural defi-
ciencies can be discovered through metrics based on
historical data. Examples of such findings are spaghetti
code, blurred interfaces of components, and poorly de-
signed inheritance hierarchies. These software anoma-
lies are even easier to detect with EvoLens. We use
color to indicate size and growth metrics of software
components. Due to the coloring evolution anomalies
can be spotted easily. The intensity of change depen-
dencies between classes provides further hints at what
kind of “bad smell” we recognize and where to start
resolving it.

• Frequent changes between system blocks: Relation Anal-
ysis revealed many internal and external dependencies.
Internal links are likely to point out limitations within
packages. External couplings are even more challeng-
ing, because they may bring to light limitations of the
architecture of the entire system. With the navigation
capabilities of EvoLens the developers can explore the
software structure as a whole and interactively reach
any point in the software. Further, any point in time
may be also reached by specifying the time window of
particular interest.

• Simple navigation: Due to the huge base of results as
output of the Relation Analysis, visualization and nav-
igation of the information space improves findings of
architectural hot spots. EvoLens uses only minimal

7

FactsRequest

RHDB

(e) Classes selected (Figure 5)

(g) Coupling strength modified (Figure 8)

(c) Module "zoom" (Figure 6)

(a) All modules folded (Figure 4)

(1) Gross Structure View (2) Vertical / Horizontal Navigation

CVS data

(3) Adjustments

Release History Database

(d) Module "pan" (Figure 7)

(b) Focal point unfolded (Figure 3)

(f) Time frame modified (Figure 9)

Figure 10: The EvoLens analysis process

information to fulfill its function. As a result EvoLens
can be applied on very large legacy systems. Infor-
mation about the historical development of software is
often available, as it was demonstrated by using CVS.

5.1 Effective use of EvoLens
The features of EvoLens provide many possibilities to “walk
through” a software system and its evolution. But it is im-
portant to guide an engineer in this analysis process so that
we provide an effective use guide as follows:

Step (1) of Figure 10 is concerned with folding and unfolding
of the gross structure of the software system under study.
Folding reduces the scope from class level to module level:
(a) depicts this state; whereas unfolding opens up modules
and shows their class content in (b). It is important to
note that all visualizations include the logical coupling in-
formation between any software parts. In the folding and
unfolding, the engineer marks all interesting software parts:
EvoLens allows an engineer to select arbitrary classes and/or
modules by mixing the level of detail. Classes of some un-
folded modules can be selected together with folded mod-
ules. As a result, EvoLens gets a user-defined set of software
parts of particular interest.

Depending on the strength and intensity of the graphically
shown logical couplings, in step (2) the engineer then nav-
igates vertically or horizontally through the system hirar-
chy: s/he defines the new focal point either by clicking on a
module: (c) represents navigation through zooming and (d)
navigation through panning, or (e) by selecting an arbitrary
number of classes. This defines the new major point of at-
tention for the further visualizations. As a result, the lens
view can be generated and shown to the engineer.

Step (3): For any time frame—(f) depicts this intermediate-
step—the engineer might be interested in, EvoLens calcu-
lates the evolution data given the marked set of software
parts and the focal point. Further, the engineer can define
a logical coupling threshold in (g), above which the logical
coupling edges are computed and visualized. This enables to
consider situations of many common check-ins and fine-tune
the graphical outcome generated by EvoLens.

The lens view then can be used to navigate in the software
system providing specific lens magnifications for each col-
lection consisting of: a set of observable software parts on
module and/or class level, a focal point, a coupling thresh-
old, and a time window.

Since each part of the collection can be adjusted by the
engineer, the resulting evolution visualizations can be re-
ally effective. Of course, EvoLens offers so-called “conve-
nience views” with pre-defined parameters for logical cou-
pling thresholds and time windows for a faster analysis to
the engineer. Lens view settings can be saved for later reuse
in the tool together with the analyzed software system. Ad-
ditionally, this allows us to save lens view settings that can
or should be used for software systems within the same ap-
plication domain. For the future, we are also thinking of
exploiting this feature for a more systematic analysis of po-
tential system families.

6. RELATED WORK
Several research projects have proposed utilization of vi-
sualization in software maintenance activities such as [12].
Our approach differs from previous works that it combines
two dimensions of information (structure and evolution) in
nested graph views. We enrich these representations with
the description of additional metrics through color. With
the help of folding the user receives a good overview of the
interrelationships between modules. However, our empha-
sis is on the presentation of details in relation to other ap-
proaches such as [2]. For an in-depth information we refer
the reader to one of the studies on visualization taxonomies
[14, 17].

6.1 Evolution
Longitudinal empirical studies show potential in identifying
phases in the life cycle of software where different activities
need to be set to stabilize the development and maintenance
process. A stable process is the foundation for a product of
high quality. By focusing on the types of changes, costs and
efforts to evolve, Kemerer and Slaughter [11] suggest that fu-
ture trends within a particular system are predictable. Cou-
pling and cohesion measures are a way to measure structural

8

cohesiveness of a design. The basic idea is that the more de-
pendencies exist among modules, the less maintainable the
system is because a change in one module will necessitate
changes in dependent modules. Our measures may be used
not only as coupling measures to guide restructuring efforts
but also to validate the effectiveness of predictive and code-
level coupling measures [10].

Clustering techniques may be used to improve modularity
and support evolution. A measure for similarity or dissim-
ilarity between two objects has to be identified to subdi-
vide objects into clusters. Chung-Horng Lung [13] presents
examples for utilizing clustering techniques for the improve-
ment of software architecture. He suggests incorporating re-
verse engineering tools to identify the dependencies among
classes. Zimmermann et al. developed a methodology for
evolution mining based on CVS version archives [23]. They
extracted rules from history data to enable a fine grained
decision on which software items have to be considered too,
if a programmer changes some part of the software. They
evaluated their approach to find out how limited such pre-
dictions are.

The development process has large impact on program com-
plexity and affects software related events such as release
dates. Negative effects on software can be detected by ex-
amining logs of the source code repository [9]. Mathematical
concepts from information theory can guide the investiga-
tion of software evolution. Textual descriptions of changes
often indicate the type of the performed change. Mockus et
al. discovered that a strong relationship exists between the
type and size of a change and the time required to carry it
out. This supports the necessity to visualize additional at-
tributes of changes within the graph representation of soft-
ware evolution.

6.2 Graph Visualization
Furnas specified general fisheye views. He explored a general
formalism and implemented a first graphical program using
this type of views. Fisheye views are an important represen-
tative of focus+context visualization. They account for the
fact that humans often perceive their vicinity in detail and
remote regions in successively less detail [6]. Fisheye views
were applied on graph visualizations. Sarkar and Brown
[19] contribute a general transformation to fisheye views to
introduce layout considerations into the fisheye formalism.
They interpret the size and level of graph items as functions
of an object’s distance from the focal point.

Storey et al. combined hierarchical views with focus+context
and multiple perspectives into a single tool [20]. In our ap-
proach, we use graphical elements in the following way for
user interaction: we use colors to depict metrics–dependent
on the cumulated value for the selected time frame–such
as complexity or coupling dependent on their; the width of
edges is used to visualize a metric related to the linked nodes,
e.g., strength of logical coupling; different types of source
model entities are depicted via different node-shapes; within
the different views, edges are always connected with lower
level source model entities such as classes or sub-modules
rather than their surrounding modules. This is in contrast
to the SHriMP approach were edges frequently connected
to higher level source model entities without revealing the

exact connection endpoint. As outcome the folding and un-
folding operations are perceived in a more intuitive way. In
addition to the navigation within the static structure, i.e.,
class and module hierarchy, EvoLens supports the declara-
tion of time-frames as selection criterion for dynamic data
within the historical context, i.e., evolutionary coupling.

7. CONCLUSIONS AND FUTUREWORK
Visualizing evolutionary aspects of software evolution can
help the engineer identify hot-spots of design erosion or
structural decay rather quickly. Although many tools ex-
ist that provide zooming-in and -out within the hierarchical
decomposition of a software system, only very few allow an
engineer to view a system through a kind of lens view. We
presented EvoLens, a visualization approach and tool for
efficient explorations of evolution data across multiple di-
mensions. EvoLens is based on structural and temporal lens
views, a technique similar to fisheye-views. But the graphi-
cal representation of EvoLens integrates enhanced zooming
by navigating through software hierarchies with arbitrary se-
lectable groups of software parts across module or package
boundaries.

All historical and structural information is retrieved from
CVS and stored in our Release History Database for uni-
form and fast access. From that we identify all logical cou-
plings that represent many common modifications of par-
ticular software parts over a significant number of releases.
This evolutionary coupling is then visualized in the struc-
tural and temporal lens views and available for navigation
and user-defined analysis.

As a result EvoLens allows an engineer to define a focal
point for the lens view and navigate along the time dimen-
sion by user-defined time windows. The comprehension is
supported by using color for metrics of the software mod-
ules or classes. EvoLens facilitates this analysis process of a
software system’s structural evolution through the following
navigation functions: (a) lens views for intuitive orientation;
(b) vertical “zooming” and horizontal “panning” functions
to navigate through the structural information space; (c)
folding and unfolding of structural entities such as modules;
and (d) specification of time frames and selection of entities
on quantitative basis.

In contrast to other approaches we rigorously use projec-
tion and focus+context in our visualizations. The EvoLens
prototype tool has been evaluated on basis of a medium-
sized Java application consisting of 580.000 LOC over an
18 months evolution period. The navigation functions to-
gether with our visualization approach has shown to be an
effective and intuitive way to quickly locate and highlight
areas of evolutionary coupling in nested structures of large
software systems.

In future work we will enhance the layout of the graphs: we
will further investigate the placement of the depicted items.
At the moment we use a force-directed method to handle
the layout [5]. Additionally, EvoLens provides abilities to
manually correct the layout, but this should be better sup-
ported. As this prototype is an Eclipse plugin, we plan to
make it available as open source to a broader community.

9

8. ACKNOWLEDGMENTS
We thank our industrial partner that provided the case study
and helped us with the interpretation of the results. The
work described in this paper was supported by the Aus-
trian Ministry for Infrastructure, Innovation and Technol-
ogy (BMVIT), The Austrian Industrial Research Promo-
tion Fund (FFF), and the European Commission in terms of
the EUREKA 2023/ITEA project FAMILIES (http://www.
infosys.tuwien.ac.at/Cafe/). We further thank Andrej
Sramko (Vienna University of Technology, email: sramko@
infosys.tuwien.ac.at) who implemented the Java proto-
type of EvoLens.

9. REFERENCES
[1] P. Cederqvist. Version Management with CVS.

Network Theory Ltd., December 2002.

[2] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and
K. Wampler. A system for graph-based visualization
of the evolution of software. Proc. of the 2003 ACM
symposium on Software Visualization, pages 77–86,
June 2003.

[3] J. Dill, L. Bartram, A. Ho, and F. Henigman. A
continuously variable zoom for navigating large
hierarchical networks. Proc. of the 1994 IEEE
Conference on Systems, Man and Cybernetics, pages
386–390, October 1994.

[4] M. Fischer, M. Pinzger, and H. Gall. Populating a
Release History Database from Version Control and
Bug Tracking Systems. In Proceedings International
Conference on Software Maintenance (ICSM’03),
pages 23–32, September 2003.

[5] T. M. J. Fruchterman and E. M. Reingold. Graph
drawing by force-directed placement. Softw. Pract.
Exper., 21(11):1129–1164, 1991.

[6] G. W. Furnas. Generalized fisheye views. Proc. CHI
’86 Conf. on Human Factors in Computing Systems,
pages 16–23, September 2003.

[7] H. Gall, K. Hajek, and M. Jazayeri. Detection of
logical coupling based on product release history. In
Proceedings International Conference on Software
Maintenance, pages 190–198. IEEE Computer Society
Press, March 1998.

[8] H. Gall, M. Jazayeri, and J. Krajewski. CVS release
history data for detecting logical couplings. Proc. of
the 6th International Workshop on Principles of
Software Evolution, pages 13–23, September 2003.

[9] A. E. Hassan and R. C. Holt. The chaos of software
development. Sixth International Workshop on
Principles of Software Evolution (IWPSE’03),
page 84, September 2003.

[10] M. Jazayeri. On architectural stability and evolution.
7th Int. Conf. on Reliable Software Technologies -
Ada-Europe 2002, June 2002.

[11] C. F. Kemerer and S. A. Slaughter. An empirical
approach to studying software evolution. IEEE
Transactions on Software Engineering, 25(4):493–509,
July-August 1999.

[12] M. Lanza and S. Ducasse. Understanding software
evolution using a combination of software visualization
and software metrics. LMO 2002 Proceedings
(Languages et Modeles a Objets), pages 135–149, 2002.

[13] C.-H. Lung. Software architecture recovery and
restructuring through clustering techniques. Proc. of
the 3rd Int Workshop on Software Architecture, pages
101–104, November 1998.

[14] B. A. Myers. Taxonomies of visual programming an
program visualization. Journal of Visual Languages
and Computing, 1(1):97–123, March 1990.

[15] D. L. Parnas. Software aging. Proc. of the
International Conference on Software Engineering
(ICSE 16), pages 279–287, May 1994.

[16] T. M. Pigoski. Practical Software Maintenance. John
Wiley and Sons, New York, 1997.

[17] B. A. Price, I. S. Small, and R. M. Baecker. A
taxonomy of software visualization. Proc. 25th Hawaii
Int. Conf. System Sciences, 1992.

[18] V. T. Rajlich and K. H. Bennet. A staged model for
the software life cycle. IEEE Computer, 33(7):66–71,
July 2000.

[19] M. Sarkar and M. H. Brown. Graphical fisheye views
of graphs. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 83–91.
ACM Press, 1992.

[20] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A.
Mueller. On integrating visualization techniques for
effective software exploration. In Proceedings of the
1997 IEEE Symposium on Information Visualization
(InfoVis ’97), pages 38–45. IEEE Computer Society,
1997.

[21] A. von Mayrhauser and M. A. Vans. Program
comprehension during software maintenance and
evolution. IEEE Computer, pages 44–55, August 1995.

[22] T. Zimmermann and P. Weibgerber. Preprocessing cvs
data for fine-grained analysis. In In Proceedings of
International Workshop on Mining Software
Repositories (MSR’04), May 2004.

[23] T. Zimmermann, P. Weigerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes.
Proc. of the 26th Int. Conf. on Software Engineering
(ICSE’04) - Volume 00, pages 563–572, May 2004.

10

