
Mining Evolution Data of a Product Family∗

Michael Fischer, Johann Oberleitner and Jacek Ratzinger
Distributed Systems Group

Information Systems Institute
Technical University of Vienna

A-1040 Vienna, Austria
{fischer,oberleitner,ratzinger}@infosys.tuwien.ac.at

Harald Gall
University of Zurich

Department of Informatics
s.e.a.l. – software

evolution & architecture lab
{gall}@ifi.unizh.ch

ABSTRACT
Diversification of software assets through evolving requirements
impose a constant challenge on the developers and maintainers of
large software systems. Recent research has addressed the mining
for data in software repositories of single products ranging from
fine- to coarse grained analyses. But so far, little attention has been
payed for mining data about the evolution of product families. In
this work, we study the evolution and commonalities of three vari-
ants of the BSD, a large open source operating system. The re-
search questions we tackle are concerned with how to generate high
level views of the system discovering and indicating evolutionary
highlights. To process the large amount of data, we extended our
previously developed approach for storing release history informa-
tion to support the analysis of product families. In a case study we
apply our approach on data from three different code repositories
representing about 8.5GB of data and 10 years of active develop-
ment.

1. INTRODUCTION
Unanticipated evolution of a single software system through chang-

ing requirements can lead to diversification and will result in differ-
ent closely related products. These related products require a high
maintenance effort which could be avoided by building a platform
for a Product Family (PF) from existing assets. To identify candi-
dates for building a software platform for a PF from related prod-
ucts, retrospective software evolution analysis can help to point out
artifacts which exhibit a strong change dependency.
Most of the proposed mining approaches such as Zimmermann

et al. for mining the change history [13] or Collberg et al. for
visualizing a systems evolution [3] are justified to analyze data
from a single source and would therefore need adaption to sup-
port data from multiple product variants. Analyzing a single prod-
∗The work described in this paper was supported in part by the
Austrian Ministry for Infrastructure, Innovation and Technology
(BMVIT), the Austrian Industrial Research Promotion Fund (FFF),
the European Commission in terms of the EUREKA 2023/ITEA
project FAMILIES (http://www.infosys.tuwien.ac.at/Cafe/) and the
European Software Foundation under grant number 417.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

uct variant implies a strict order on historical information such as
checkins into source code repositories. In contrast to this, multi-
ple product variants can be roughly characterized through arbitrary
and asynchronous release dates, unanticipated information flow be-
tween variants, different development goals and requirements.
Based on this conditions, with our PfEvo approach we address

the problem of handling multiple, asynchronously maintained ver-
sion control systems. The problem which has to be tackled first is
the comparability of the different systems since they are frequently
modified independent of each other. Thus release intervals are dif-
ferent, naming conventions, module structure, programming styles,
etc. To obtain comparable results from different product variants,
a fine grained time-scale—similar to sub-sampling—will facilitate
synchronization of historical data from different source code repos-
itories.
Artifacts with a strong change dependency frequently have ar-

chitectural dependencies as research by Briand et al. has shown [1,
2]. Another frequently reason is duplicated code through copy’n
paste. For the analysis of such change dependencies it would be
beneficial if existing approaches and techniques could be adapted
and reused to study their impact onto the module structure.
Based on results from change history analysis an expert may

draw conclusions about commonalities of dependencies of the mod-
ule structure. Then the identified software artifacts can be used as
foundation for building a platform for a product family. A Repre-
sentative of such a family of related products is the BSD operating
system with its variants and derivations such as NeXTStep, Ma-
cOS X, or SunOS. In our case study we will use the free variants
FreeBSD, NetBSD, and OpenBSD to show the applicability of our
approach for data management and analysis.
In this paper we (1) apply and extend our approach [5] for ex-

tracting change history information and generating a release history
database; (2) compare product variants on quantitative level for a
coarse assessment of the historical development and assessment of
the repository information for further research; and (3) apply our
approach for the visualization of change dependencies [4].
The remainder of this paper is organized as follows: Section 2

presents our approach for studying product family evolution. In
Section 3 we present our case study about three BSD variants. Sec-
tion 4 presents related work and Section 5 draws conclusions and
indicates future work.

2. AN APPROACH TO STUDY PRODUCT
FAMILY EVOLUTION

Our PfEvo approach is an extension of existing techniques for
the study of the evolution of a single software system and comprises
the visualization of different aspects of the evolution of a software

ROOT src

gnu

sys

arch

i386

dev

lib libc

sbin

usr_sbin

share

man

usr_bin

FreeBSD

OpenBSD

NetBSD
Visualization

Consolidated DB

RHDB

RHDB

RHDB

RHDB

Import

Import

Import

Figure 1: Process outline of PfEvo: results are a consolidated
RHDB and visualizations

system. Besides some quantitative aspects such as the number of
artifacts, checkin transactions, etc., these systems can be compared
on a qualitative aspect as well. These quality aspects can be related
to the type and extent of information flow between different sys-
tems, the impact of other related products on a single product, or
hot-spots in the evolution of a single system with respect to infor-
mation from other product variants.
To answer this research questions we have adopted our earlier ap-

proach for building a release history [5] and visualizing evolution-
ary information of large-scale software [4] and propose the process
depicted in Figure 1. Since all data sources must undergo the same
preprocessing steps—log file extraction, import into Release His-
tory Database (RHDB), detection of coupling groups, etc.—we use
separate databases to store results. For subsequent analysis transac-
tional data from the separate databases are filtered and merged into
a new consolidated database which is better suited for queries span-
ning multiple product variants. Currently we use modified variants
of existing queries to gather data from the three product databases.
Another approach to compare system characteristics, is by visu-
ally comparing graphs describing a systems history. We will use:
(1) histograms showing the distribution of change log data over the
observation period; and (2) a graph indicating the impact of change
dependency with respect to the module structure of the system.
In previous studies it was possible to use the release dates of the

system under study as input for time scale information. Since the
BSD variants are developed independently, an artificial, common
time scale has to be created. This ensures comparableness of the
different system histories. Disadvantageous is that is not possible
to examine and compare the processes between the release dates,
since the release intervals of the different product variants are cross-
cut at arbitrary points. Since our requirement is the visualization of
the resulting data-sets, we will use a sub-sampling interval of one
month.
To detect and relate information flow between BSD variants we

decided to use lexical search in change logs to find hints for infor-
mation flow from other systems into the system under inspection.
Alternatives to a pure lexical search are clone detection in source
code, comparison of the structure of changes, or advanced indexing
and text-analysis techniques.

3. CASE STUDY
For this case study we decided to use derivatives of the Berkley

System Distribution also known as BSDUnix. The selected variants–
FreeBSD, NetBSD, and OpenBSD–of BSD are large software sys-
tems consisting of an operating system kernel and a number of ex-
ternal programs such as ls, passwd, the GNU Compiler Collection
(GCC), or the X windows system. The selected three variants have

 0

 50

 100

 150

 200

 250

 300

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Nu
m

be
r o

f r
ef

er
en

ce
s

NetBSD OpenBSD Linux

Figure 2: Number of references to keywords NetBSD, OpenBSD,
and Linux found in FreeBSD change logs

between 4800 for the OpenBSD variant and 8000 directories for
the NetBSD variant. The number of files varies between 30,000
(FreeBSD) and about 68,000 (NetBSD). They are long lived, ac-
tively maintained software systems representing about 8.5GB of
data stored in three different repositories. Furthermore, release in-
formation is available as CVS [7] data for all three variants with
direct access to the current repositories. The systems itself possess
different characteristics which can be described as follows:

• The FreeBSD1 projects aims to be more user application cen-
tric and thus it can seen as desktop OS rather than server
platform. First release was in December 1993.

• NetBSD2 is targeted onto portability and supports more than
10 different CPU types with together more than 50 different
hardware platforms. Among them are exotic platforms such
as Acorn, Amiga, Atari or VAX. First release was in October
1994.

• As representative of a server platform the aim of theOpenBSD3
project lies on security and the integration of cryptography.
First release was in October 1996.

While NetBSD and FreeBSD were directly derived from the 386
BSD 0.0 branch, OpenBSD was derived from the NetBSD branch in
October 1995.

3.1 Quantitative comparison
First we give a quantitative comparison of the number of arti-

facts which are common for the different systems. To determine
the number common C files in the different RHDBs we use a multi-
database SQL queries. Table 1 shows the result for the different
variants. While column “all modules” indicates the total number
of common files found, column “src/sys only” indicates the com-
mon files within this subtree. Interesting is the high number of
artifacts which are common in NetBSD and OpenBSD. This can be
explained by the fact that OpenBSD was derived from NetBSD as
mentioned previously.

1http://www.freebsd.org/ [31 December 2004]
2http://www.netbsd.org/ [31 December 2004]
3http://www.openbsd.org/ [31 December 2004]

2

 0

 50

 100

 150

 200

 250

 300

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Nu
m

be
r o

f r
ef

er
en

ce
s

FreeBSD OpenBSD Linux

Figure 3: Number of references to keywords FreeBSD, OpenBSD,
and Linux found in NetBSD change logs

Table 1: Common files in different BSD variants

Variant Variant all modules src/sys/ only
FreeBSD NetBSD 3810 1333
FreeBSD OpenBSD 3839 1079
NetBSD OpenBSD 6969 6847

3.2 Change report text analysis
As substitution for a detailed text and code clone analysis, we

use keywords which were frequently used by the program authors
and recorded in change reports. As useful keywords we identified
freebsd, netbsd, openbsd, and interestingly linux.

Table 2: Information flow between variants of the BSD systems
based on lexical search

Variant Keyword all revisions revision > 1.1
FreeBSD netbsd 5131 3577
FreeBSD openbsd 2729 1353
FreeBSD linux 1791 1387
NetBSD freebsd 2852 2186
NetBSD openbsd 2679 2224
NetBSD linux 1547 1125
OpenBSD freebsd 2406 1933
OpenBSD netbsd 16802 7423
OpenBSD linux 775 463

Table 2 lists the number of referenced artifacts between product
variants based on a lexical search for the keywords freebsd, netbsd,
openbsd, and linux in the change logs. Column one lists the name
of the product variant used to retrieve the change logs and column
two the respective keyword. Column three titled “all revisions”
lists the number of distinct artifacts found in the RHDB having
change logs with the specified keyword. Column four titled “revi-
sion> 1.1” lists the number of distinct artifacts found in the RHDB
having change logs with the specified keyword and not having a re-
vision number of “1.1” (which denotes the initial revision). The
significant difference between the values in column three and four
can be interpreted in such a way, that a larger number of files was
imported from other systems and further maintenance is decoupled
from the originating version.

3.3 Reference distribution
During the lexical search for the given keywords we recorded

in total 12,540 change logs for FreeBSD, 9,468 for NetBSD, and
20,906 for OpenBSD. Based on this results, the Figures 2, 3, and

 0

 50

 100

 150

 200

 250

 300

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Nu
m

be
r o

f r
ef

er
en

ce
s

FreeBSD NetBSD Linux

Figure 4: Number of references to keywords FreeBSD, NetBSD,
and Linux found in OpenBSD change logs

4 depict the distribution of references with respect to the observa-
tion period. Visually the histograms for FreeBSD and NetBSD indi-
cate an increasing trend whereas the histogram for OpenBSD sug-
gest a strong decreasing trend in the information flow from other
platforms into OpenBSD. To underpin the visual perception of the
trends we use linear regression analysis to find the dependency be-
tween the number of references and time-scale intervals.
Table 3: Linear regression for referenced keywords as y = d + kx
for the whole, for the years 1995–2001 (y = d1,2 + k1,2x) and the
years 2001–2004 (y = d3,3 + k3,3x)

Variant d k d1,2 k1,2 d3,3 k3,3

FreeBSD 22.7 0.897 -2.67 1.46 387 -2.35
NetBSD -22.7 1.28 -15.7 1.14 -21.3 1.31
OpenBSD 407 -2.57 543 -4.90 668 -4.48

To test the development of the references over the given obser-
vation period we computed the values for the whole period and two
sub-intervalls: the first interval accounts for about 2/3 (variables
k1,2 and d1,2) of the observation period which corresponds to the
years 1995–2001; the second interval accounts for about the last
1/3 (variables k3,3 and d3,3) of the observation period which rep-
resents the last 36 month of the development history or the years
2001–2004.
Table 3 shows the results for the three variants indicating a strong

increasing trend for FreeBSD and NetBSD (k > 0 for both vari-
ants over the whole observation period). For FreeBSD this trend
reverses for the last 36 month (k3,3 < 0). In contrast to this
OpenBSD exhibits a decreasing trend in both sub-intervals and the
whole observation period starting from a high level.
The low number of total change logs found for NetBSD and the

positive trend in the change dependency of NetBSD suggest that
large amounts of source code are still derived from other OS. This
perception is also supported by Table 2 since NetBSD has the high-
est ratio between the two counted categories “all revisions” and
“revisions > 1.1”.
In the next sections we provide a more detailed look onto the

change relationships with respect to different products.

3.4 Change impact analysis
To show the impact of changes onto the module structure with

respect to foreign source code we selected OpenBSD for closer in-
spection since we counted here the most references from other OS

3

ROOT src

gnu

sys

arch

i386

dev

lib libc

sbin

usr_sbin

share

man

usr_bin

Figure 5: Change coupling between modules of the source code
structure of the OpenBSD system

(see Table 2). The relevant artifacts were identified through lexi-
cal search as previously described. Based on the search results and
the the change log data the impact of change dependencies on the
module structure is evaluated. The result of this step is depicted
in Figure 5. It shows the module structure together with change
dependencies derived from the change log data. While filled cir-
cles indicate the nodes of the directory tree, shaded boxes indicate
different product variants. We use as glyph for FreeBSD, for
NetBSD, and is used for Linux. The approach for generating the
layout for change dependences information is based on Multi Di-
mensional Scaling (MDS) [9] and has been used by our group to
visualize to impact of problem report data onto the module struc-
ture of a large software system [4].
To avoid cluttering the figure with the several hundred modules

of the source code package, we shifted relevant information from
lower level nodes of the nested graph structure towards the root
node until a predefined threshold criterion is met. The node sizes
indicate the number of references found for each node and its sub-
trees.
While dashed lines indicate the directory structure of the source

package, solid gray and black lines (pink and red on color displays)
indicate the logical coupling between different parts of the system.
Interesting to see is the strong logical coupling within the system
related parts of OpenBSD such as src/sys/arch/ i386 and src/sys/
dev. This results supports our expectations about the dependencies
between different parts of the system. Easy to see are also the larger
sizes of the nodes src/sys/arch/ i386, src/sys, and src/sys/dev.

Table 4: Topmost referenced files with one of the given keywords
in the change logs of OpenBSD

Keyword Count Path
freebsd 59 src/sys/dev/pci/files.pci
. 52 src/sys/dev/pci/pciide.c
. 52 src/sys/dev/pci/pcidevs
netbsd 45 src/sys/arch/i386/i386/machdep.c
. 43 src/sys/dev/pci/pciide.c
. 39 src/sys/conf/files
linux 14 src/sys/compat/linux/linux socket.c
. 14 src/sys/compat/linux/syscalls.master
. 5 src/sys/dev/ic/if wireg.h

Table 4 lists an excerpt of the topmost referenced artifacts which

suggests a high information exchanges with other software sys-
tems. An example for the propagation of commonly required fea-
ture is the introduction of PCI devices. Since this bus type was not
widely available at the time of the OpenBSD fork in 1996. Sup-
port for this bus type had to be added later requiring several sepa-
rate changes as Table 4 suggests. Another interesting aspect is the
relationship with Linux. The listing of if wireg.h suggest that spe-
cific information about WLAN adapters are obtained from Linux as
well.

3.5 Detailed change analysis
Since the three BSD variants originate from the same UNIX

branch, it is to expect that also a number of source code changes
exhibit the same or at least similar structure. For a manual ver-
ification we selected randomly one file which is available in all
three variants. For this file–ufs quota.c from the src/sys/ufs/ufs/
directory–we manually inspected the revision history for signifi-
cant changes.
One significant change was the modification of a function call

in the FreeBSD version of ufs quota.c on 1994-10-06 (revision 1.2
→ 1.3) resulting in eight modified source lines. The diff-snippet–
depicted below–for the affected source code revision shows a sin-
gle change of a source line. The first line indicates the removed
code, whereas the third one shows the replacement code. The three
dashes in-between indicate a delimiter line.

< sleep ((caddr t)dq , PINOD+2);
−−−
> (void) tsleep ((caddr t)dq , PINOD+2, ”dqsync”, 0);

In the change log we found the following comment, which indicates
the reason for the source code modification: “Use tsleep() rather
than sleep so that ’ps’ is more informative about the wait.”
The same modification in the NetBSD version has been applied

on 2000-05-27 which is six years later than the original modifi-
cation (revision 1.16 → 1.17) and in OpenBSD more than eight
years later on 2001-11-21 (revision 1.7→ 1.8)–though without the
(caddr t) type cast listed in the preceding example. The diff-snippet
below depicts the modification.
< sleep ((caddr t)dq , PINOD+2);
−−−
> (void) tsleep (dq , PINOD+2, ”dqsync”, 0);
In the NetBSD variant of the change log the comment is less in-

formative: “sleep() -> tsleep()”. While in NetBSD this change still
produces similar results when building the revision deltas via diff,
in OpenBSD the change was part of a larger source code change
consisting of 380 added and 161 deleted source lines (CVS does
not identify modified lines, instead every modified lines accounts
for one added and one deleted line). Similar to the given exam-
ple, many changes can be found with varying degree of “identity”
making it difficult to identify identical changes.

3.6 Discussion
During evaluation of our RHDB we noticed some shortcomings

which have to be resolved prior to a thorough analysis of the differ-
ent product variants. Firstly, through moving and renaming files in
the CVS repository by the developers of the software systems, the
historical information is segmented. Thus related segments have to
be identified and concatenated to describe a continuous historical
time-line of an artifacts history. Secondly, as result of the import
process artifacts which have identical file names are assigned dif-
ferent IDs in the RHDB. This may adversarial effect multi-database
queries for comparison of artifacts since artifacts with common ori-
gins have to identified for every evaluation of a database query.

4

This mapping of IDs will be ideally stored in the consolidated part
of the RHDB as indicated in Figure 1.
From the software evolution analysis point of view, BSD repre-

sents an interesting software system which opens a wide field for
further analysis. Since detailed information about the source code
is available it would be beneficial to apply a tool for code clone de-
tection such as [8] proposed by Kamiya et al. To improve the results
of text analysis we currently evaluate the application of techniques
related to Latent Semantic Indexing (LSI) [10].

4. RELATED WORK
Within the EU projects ARES, ESAPS, CAFE, and Families

much work has been done in areas such as the identification of as-
sets for product family architectures, evolution and testing of exist-
ing product families, architectural models for product families (Van
der Linden [12]).
More related with our work is the approach with respect to prod-

uct family evolution presented by Riva and Del Rosso in [11]. They
investigated the evolution of a family platform and present approaches
which enable architecture assessment and architecture reconstruc-
tion. In contrast to their work, we investigate the evolution of dif-
ferent variants to identify candidates for building a family platform.
In [6] Gall, Hajek and Jazayeri examined the structure of a Telecom-

munications Switching Software (TSS) over more than 20 releases
to identify logical coupling between system and subsystems. This
coupling is used in higher further processing steps to reveal evolu-
tionary aspects such as hot-spots.
For the detection and visualization of evolutionary hot-spots we

have developed a methodology which relates software feature and
release history information [4]. In this paper we used information
from the release history with respect to different keywords instead
of feature data. This information was reflected onto the source base
structure and visualized to generate the high level views of a soft-
ware system.

5. CONCLUSIONS
Retrospective analysis of variants of related products opens in-

teresting perspectives on the evolution of large software systems.
With minimal changes and additions to existing tools it is already
possible to recover the information flow between the different vari-
ants and evolutionary hot-spots with respect to the module struc-
ture. Through the application of a lexical search in the change logs
we were able to reveal the increasing information flow of two vari-
ants of the systems. For the third system we found a decreasing
flow starting from a very high level. For one selected system we
applied an adapted method which generates high-level views of the
module structure of system with respect to their coupling and infor-
mation flow from other product variants. To support these findings
about the information flow we performed detailed change analysis
of a randomly selected file.
For future work we plan the application of a code clone detection

process to identify related modifications. An analysis can reveal
the degree and frequency how tight product variants are coupled.
Another interesting area for future work is the detailed analysis of
change log information for commonalities. Since change logs can
provide additional hints about the origin of a particular information,
they provide relevant information about the source of a particular
change.

6. REFERENCES
[1] BRIAND, L., DEVANBU, P., AND MELO, W. An

investigation into coupling measures for C++. In

Proceedings of the 19th international conference on
Software engineering (1997), ACM Press, pp. 412–421.

[2] BRIAND, L. C., DALY, J. W., AND WÜST, J. K. A Unified
Framework for Coupling Measurement in Object-Oriented
Systems. IEEE Transactions on Software Engineering 25, 1
(1999), 91–121.

[3] COLLBERG, C., KOBOUROV, S., NAGRA, J., PITTS, J.,
AND WAMPLER, K. A system for graph-based visualization
of the evolution of software. In Proceedings of the 2003
ACM symposium on Software visualization (2003), ACM
Press, pp. 77–ff.

[4] FISCHER, M., AND GALL, H. Visualizing Feature Evolution
of Large-Scale Software based on Problem and Modification
Report Data. Journal of Software Maintenance and
Evolution 16, 6 (November/December 2004), 385–403.

[5] FISCHER, M., PINZGER, M., AND GALL, H. Populating a
Release History Database from Version Control and Bug
Tracking Systems. In Proceedings International Conference
on Software Maintenance (ICSM’03) (September 2003),
pp. 23–32.

[6] GALL, H., HAJEK, K., AND JAZAYERI, M. Detection of
Logical Coupling Based on Product Release History. In
Proceedings International Conference on Software
Maintenance (March 1998), IEEE Computer Society Press,
pp. 190–198.

[7] GRUNE, D., BERLINER, B., POLK, J., KLINGMON, J.,
AND CEDERQVIST, P. Version Management with CVS, 1992.
http://www.cvshome.org/docs/manual/ [5 April 2004].

[8] KAMIYA, T., KUSUMOTO, S., AND INOUE, K. Ccfinder: A
multilinguistic token-based code clone detection system for
large scale source code. IEEE Transactions on Software
Engineering 28, 7 (2002), 654–670.

[9] KRUSKAL, J. B., AND WISH, M. Multidimensional Scaling.
Quantitative Applications in the Social Sciences 11 (1978).

[10] LETSCHE, T. A., AND BERRY, M. W. Large-scale
information retrieval with latent semantic indexing.
Information Sciences 100 (August 1997), 105–137.

[11] RIVA, C., AND DEL ROSSO, C. Experiences with software
product family evolution. In Proceedings Sixth International
Workshop on Principles of Software Evolution (IWPSE’03)
(September 2003), IEEE Computer Society Press,
pp. 161–169.

[12] VAN DER LINDEN, F., Ed. Software Product-Family
Engineering: 5th International Workshop, PFE 2003, Siena,
Italy, vol. 3014 of Lecture Notes in Computer Science.
Springer-Verlag Heidelberg, 2004.
http://www.springerlink.com/link.asp?id=HK53BTEN9EV9.

[13] ZIMMERMANN, T., WEISSGERBER, P., DIEHL, S., AND
ZELLER, A. Mining Version Histories to Guide Software
Changes. In Proceedings 26th International Conference on
Software Engineering (ICSE) (May 2004), ACM Press,
pp. 563–572.

5

