
Diploma Thesis
June 30, 2008

Improving
ChangeDistiller

Improving Abstract Syntax Tree based Source
Code Change Detection

Michael Würsch
of Zürich, Switzerland (01-701-754)

supervised by

Prof. Dr. Harald C. Gall
Beat Fluri; Christoph Kiefer

Department of Informatics software evolution & architecture lab

Diploma Thesis

Improving
ChangeDistiller

Improving Abstract Syntax Tree based Source
Code Change Detection

Michael Würsch

Department of Informatics software evolution & architecture lab

Diploma Thesis

Author: Michael Würsch, wuersch@ifi.unizh.ch

Project period: April 3, 2006 - October 3, 2006

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

First of all, I would like to thank the S.E.A.L.-team at the Department of Informatics at the Univer-
sity of Zürich, especially Prof. H. Gall for giving me the opportunity of writing this thesis, Beat
Fluri as my supervising assistant, Martin Pinzger and Patrick Knab for their support and advice.
They did not get tired of promptly answering the many questions that have arisen over the past
six months of work on my thesis and showed me that work can also be a lot of fun. Furthermore,
I thank Beat and Patrick for proofreading my thesis extensively and giving valuable feedback.

Next, I would like to thank my two colleagues, Andreas Jetter and Roman Flückiger. A prob-
lem shared is a problem halved!

Special thanks to my parents, Jutta and Arnold Würsch, for their support and for showing me
that dinner can be quite healthy and relaxing after a hard day of work.

Last but definitely not least, I would like to thank my girlfriend Claudine for her patience and
her love during the last six months.

Abstract

Changes are a crucial part of the life-cycle of modern software systems. Common versioning
systems such as CVS store version histories of source code. Usually, they are not capable of
tracking changes on a more sophisticated level. They provide lexical but not syntactical change
analysis.

The existing Eclipse-plug-in ChangeDistiller bridges this gap by providing a sophisticated
analysis of structural source code changes. It uses an abstract syntax tree (AST) representation
of subsequent revisions of source code files and compares the trees by using a change detection
algorithm for hierarchically structured information. The outcome is an edit script describing the
operations that are necessary to transform the original version of the tree into the modified one.

We aim at improving the sub-algorithm responsible for matching trees. It yields insufficiencies
in terms of matching leaves in general, it often produces sub-optimal results for small subtrees,
and it is not able to handle large number of changes adequately. To overcome this issues, we
propose customized similarity measures and a similarity ranking algorithm for leaves, as well as
dynamic modulation of the tree similarity thresholds whenever small tree structures are encoun-
tered.

To prove our claims, we establish an extensive benchmark for investigating runtime perfor-
mance and accuracy. The benchmark is based on the JUnit regression testing framework and
relies on artificial source code examples, as well as on examples taken from a medium-sized real
project.

Zusammenfassung

Änderungen sind ein wichtiger Bestandteil im Lebenszyklus eines jeden modernen Software Sys-
tems. Versionierungssysteme, wie zum Beispiel CVS, verwalten die Änderungen von Programm-
code über Zeit. Werkzeuge zum Vergleich zweier Programmversionen basieren üblicherweise auf
lexikalischen, also text-basierten, Methoden und sind nicht in der Lage strukturelle Änderungen
zu erfassen.

ChangeDistiller, ein existierendes Plug-In für Eclipse, geht einen Schritt weiter, indem es eine
umfassende Analyse von Änderungen in der Programmstruktur bereitstellt. Um dies zu be-
werkstelligen, generiert das Werkzeug eine auf abstrakten Syntaxbäumen basierende Repräsenta-
tion von Programmcode. Die Bäume werden mittels eines auf Änderungen in hierarchisch-
strukturierten Informationen spezialisierten Algorithmus verglichen. Das Resultat ist eine Menge
von Änderungsoperationen, die die ursprügliche Programmversion in die modifizierte Fassung
überführen.

Diese Diplomarbeit bezweckt eine Verbesserung des Teilalgorithmus, welcher Übereinstim-
mungen zwischen Bäumen lokalisiert. Der Algorithmus birgt einige Schwächen. Ähnlichkeiten
zwischen Bättern der verglichenen Bäume werden nicht immer erkannt. Desweiteren werden
meist suboptimale Resultate erzielt, wenn kleine Subbäume analysiert werden oder zu umfan-
greiche Änderungen zwischen zwei aufeinanderfolgenden Versionen von statten gegangen sind.

Um diesen Einschränkungen Herr zu werden, schlagen wir nun folgende Massnahmen vor:
Zum Einen empfehlen wir neue, auf Programmcode spezialisierte, Metriken zur Ähnlichkeits-
bestimmung. Zum Anderen haben wir den Algorithmus dahingehend angepasst, dass er eine auf
Ähnlichkeiten basierende Rangfolge zwischen möglichen Paaren von Blättern berechnet. Um das
Problem kleiner Subbäume zu mildern, verwenden wir eine dynamische Anpassung der Grenz-
werte, welche darüber entscheiden, ob zwei Teilbäume in ausreichendem Masse Ähnlichkeiten
aufweisen, um als Übereinstimmung gewertet zu werden.

Um die Auswirkungen unserer Massnahmen zu untersuchen, stellen wir umfangreiche Unter-
suchungen an. Wir testen das Laufzeitverhalten, sowie die Präzision unseres Algorithmus mittels
dem JUnit-Framework für Regressionstests. Als Testgrundlage wählen wir eine Kombination aus
konstruierten Testfällen und realen Beispielen, die einem Projekt mittlerer Grösse entnommen
wurden.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Envisioned Outcome of the Thesis . 2
1.3 Structure of Thesis . 3

2 Related Work 5
2.1 Change Detection Based on Lexical Differencing . 5
2.2 Change Detection Based on Syntactic Differencing 7
2.3 Change Detection Based on Semantic Differencing 7
2.4 Code Clone Detection . 8

3 Improving ChangeDistiller 11
3.1 ChangeDistiller - A Tool for Classifying Change Types 11
3.2 Background Information . 12

3.2.1 Tree-like Data-structures in General . 13
3.2.2 Abstract Syntax Trees (AST) . 13
3.2.3 Source Code Characteristics . 14

3.3 Outline on the Change Detection Algorithm by
Chawathe et al. 17
3.3.1 Calculating an Edit Script . 18
3.3.2 The Matching Procedure in Detail . 18

3.4 When Does Matching Fail? . 22
3.4.1 Node Values . 22
3.4.2 Small Subtrees . 23
3.4.3 When Matching Criterion 3 Fails... 25

3.5 Customizing the Algorithm for Source Code Changes 28
3.5.1 Desired Improvements . 28
3.5.2 Evaluated String Similarity Measures . 28
3.5.3 Evaluated Tree Similarity Measures . 33
3.5.4 A Better Matching Algorithm . 36

3.6 Conclusions and Shortcomings . 45

4 Establishing a Benchmark 47
4.1 Requirements . 47

4.1.1 Matchings, Change Operations or Classified Changes? 49
4.1.2 Accuracy - Precision and Recall . 50
4.1.3 Performance . 50

viii CONTENTS

4.2 Choosing the Test Data . 51
4.2.1 Artificial Test Cases . 51
4.2.2 Real Life Data from ArgoUML . 55

4.3 Results . 57
4.3.1 Running the Artificial Test Cases . 57
4.3.2 Declaration Changes . 57
4.3.3 Body Changes . 58

4.4 Conclusions and Limitations . 61

5 Conclusions 63
5.1 Summary of Contribution . 63
5.2 Lessons Learned . 64
5.3 Future Work . 64

A Additional Benchmark Data 67

B Contents of CD-ROM 75

CONTENTS ix

List of Figures
2.1 Enhanced control-flow graphs representing two subsequent versions of a method

(source: [AOH04]). 8

3.1 Change Distiller is a plug-in for the Eclipse Platform. 12
3.2 A generic tree structure and the relationships between some of the nodes. The

right-most leaf shows how we annotate labels and values of nodes. 13
3.3 The AST generated by org.eclipse.jdt.core.dom and visualized by the Eclipse

plug-in AST View for the Java class FooBar introduced in Listing 3.1. 15
3.4 A tree representing a Java class containing a field and three methods. On the second

level of the tree, ordering is irrelevant, whereas on the third level—inside of the
method-body—the order among the statements must be preserved. 16

3.5 Simplified AST representations of a part of a structured document on the left op-
posite to a source code fragment on the right. 17

3.6 Phases 1-5 of the edit script generation algorithm by Chawathe et al. Nodes with
the same letter are intended to match (example: A matches A’) and values have
been omitted unless they changed from T1 to T2. 19

3.7 Snapshot taken while matching leaves. Node x is one of the leaves of the left tree
T1 and y its counterpart in the right tree T2. 22

3.8 An example of two similar trees T1 and T2 for which the algorithm fails to calculate
a minimal edit script. 24

3.9 First step of bottom-up-matching-example: We decide wether the leaf-nodes match
or mismatch by using a dedicated leaf-comparator. 25

3.10 Second step of bottom-up-matching example: If a certain amount of leaf-nodes
does not match, we decide to mismatch the parent node. 25

3.11 Third and last step of bottom-up-matching-example: The whole subtree is consid-
ered as mismatched. 26

3.12 Suboptimal results are very likely to occur whenever Matching Criterion 3 does not
hold. 26

3.13 The two strings s1 and s2 have 14 pairs of characters in common out of a total of 32
pairs. 31

3.14 Nodes 1 and 3 do no longer match. Node 2 was deleted whilst node 4 is an inser-
tion. Otherwise, the trees T1 and T2 are isomorphic. 34

3.15 Another matching example: The trees are isomorphic except that node 5 has been
inserted between T1 and T2. The labels of the dashed lines represent the similarity
between the values of the interconnected leaves. 39

3.16 A trivial example of two trees, where the post-processing step will not be able to
improve matching. 40

3.17 To determine the best match overall, we cannot simply focus on finding the most
similar partner y ∈ T2 for x ∈ T2. We have to ensure that this relation is symmetric. 43

4.1 Tree representation of the classes from Listing 4.5. MD denotes a method decla-
ration, PAR denotes a parameter declaration. T denotes type, N denotes name, B
denotes the method body, and MI denotes a method invocation. 55

x CONTENTS

List of Tables
3.1 Changes expected and found for Figure 3.12 . 27

4.1 Original algorithm by Chawathe et. al., using Levenshtein. f = 0.7. Distilling took
8053 ms. 58

4.2 Original algorithm by Chawathe et. al., using Dice with 2-grams for string similar-
ities. f = 0.7. Distilling took 4815 ms. 59

4.3 Base algorithm by Chawathe et. al., using Dice for inner nodes and Levenshtein.
f = 0.7. Distilling took 7924 ms. 59

4.4 Base algorithm: BestMatch, using tree similarity by Chawathe et. al. and Leven-
shtein. f = 0.7. Distilling took 27964 ms. 60

4.5 Base algorithm: BestMatch, using dynamic thresholds, tree similarity by Chawathe
et. al., and Levenshtein. f = 0.7. Distilling took 28587 ms. 60

4.6 Base algorithm: BestMatch, using dynamic thresholds, tree similarity by Chawathe
et. al., and Dice with 2-grams for string similarities. f = 0.6. Distilling took 6106 ms. 61

A.1 Original algorithm by Chawathe et. al., using Levenshtein. f = 0.6. Distilling took
7673 ms. 67

A.2 Original algorithm by Chawathe et. al., using Dice with 2-grams for string similar-
ities. f = 0.6. Distilling took 4779 ms. 67

A.3 Original algorithm by Chawathe et. al., using dynamic thresholds, Levenshtein.
f = 0.7. Distilling took 8735 ms. 68

A.4 Original algorithm by Chawathe et. al., using dynamic thresholds, Levenshtein.
f = 0.6. Distilling took 7336 ms. 68

A.5 Original algorithm by Chawathe et. al., using dynamic thresholds, Dice with 2-grams
for string similarities. f = 0.7. Distilling took 4456 ms. 68

A.6 Original algorithm by Chawathe et. al., using dynamic thresholds, Dice with 2-grams
for string similarities. f = 0.6. Distilling took 4615 ms. 69

A.7 Base algorithm by Chawathe et. al., using Dice for inner node similarity and Lev-
enshtein. f = 0.6. Distilling took 7257 ms. 69

A.8 Base algorithm by Chawathe et. al., using Dice for inner node and string similari-
ties. f = 0.7. Distilling took 4408 ms. 70

A.9 Base algorithm by Chawathe et. al., using Dice for inner node and string similari-
ties. f = 0.6. Distilling took 4324 ms. 70

A.10 Base algorithm: BestMatch, tree similarity by Chawathe et. al. and Levenshtein.
f = 0.6. Distilling took 28286 ms. 70

A.11 Base algorithm: BestMatch, tree similarity by Chawathe et. al. and Dice with
2-grams for string similarities. f = 0.7. Distilling took 6001 ms. 71

A.12 Base algorithm: BestMatch, tree similarity by Chawathe et. al. and Dice with
2-grams for string similarities. f = 0.6. Distilling took 6084 ms. 71

A.13 Base algorithm: BestMatch, using dynamic thresholds, tree similarity by Chawathe
et. al. and Levenshtein. f = 0.6. Distilling took 27414 ms. 71

A.14 Base algorithm: BestMatch, Dice for inner node similarity and Levenshtein. f =
0.7. Distilling took 27304 ms. 72

A.15 Base algorithm: BestMatch, Dice for inner node similarity and Levenshtein. f =
0.6. Distilling took 27595 ms. 72

A.16 Base algorithm: BestMatch, Dice for inner node and string similarities. f = 0.7.
Distilling took 6002 ms. 72

CONTENTS xi

A.17 Base algorithm: BestMatch, Dice for inner node and string similarities. f = 0.6.
Distilling took 5999 ms. 73

List of Listings
2.1 Two subsequent versions of a .java-file. 6
2.2 The output of GNU diff for the two files shown in Listing 2.1. 6
3.1 An example class in Java. 14
3.2 Two versions of a sequence of statements for intializing a graphical user interface

in Java. 21
3.3 The original if-statement. 23
3.4 The modified if-statement: The method invocation a.c(); was replaced by a.d(); . . 24
3.5 A small if-block. 37
3.6 A logging statement has been added to the example introduced in Listing 3.5 . . . 37
4.1 The identifier of test methods in JUnit 3.8 or earlier had to begin with test 48
4.2 In JUnit 4, test methods are simply annotated by @Test 48
4.3 Data for the first test case. The class denoted by ’Left’ is the original version, while

’Right’ denotes the modified one. 52
4.4 Data for the second test case. 53
4.5 Data for the third test case. 54

xii CONTENTS

Chapter 1

Introduction

1.1 Motivation
Since Lehman stated his Laws of Program Evolution in the 1980’s [Leh80], in particular the Law of
Continuing Change, it is well understood that software has to be adapted to changing requirements
and environments or becomes progressively less useful. Hence, changes are broadly accepted as
a crucial part of a software’s life-cycle.

Admitting such an importance to changes and putting a focus on them during the software
development process allows to manage software aging adequately. Nevertheless, many chal-
lenges remain: The above-mentioned awareness is only a sufficient precondition for mastering
large-scale software engineering; The developer needs further assistance in applying and track-
ing changes in a complex software system consisting of e.g., several millions lines of code.

If a software engineer modifies a certain source code entity, it is desirable to give him some
further information about his work, for example whether the modification was functionality-
modifying or functionality-preserving and to perform an impact analysis to tell if or even how
other source code entities are affected.

A tool capable of delivering such insights can also be extended to guide programmers along
related changes by telling them ”Programmers who changed these functions also changed...” as
mentioned in [ZWDZ04] and thus suggest and predict likely changes, prevent errors due to incomplete
changes or detect couplings undetectable by program analysis. Furthermore an overall view of the
changes, applied to a software system, can be used for quality assurance concerns.

To gain a deeper insight on source code changes, it is self-evident to take a closer look at
version histories usually stored in common versioning systems such as CVS,1 SUBVERSION,2 or
RATIONAL CLEARCASE.3 Unfortunately, these systems do not track structural changes of source
code, but rather rely on computing textual differences and are therefore only able to tell that a
certain line was added, deleted, or—at best—moved between two versions of a file.

Since these systems are not natively capable of delivering us the information we are interested
in, we are in need of algorithms to reconstruct the missing parts using common infrastructure.
The differencing algorithm has to perform an comparison of two versions of a program, an original
version and a modified version, to find atomic changes between these two versions. We want to
detect the location of the changes within the source code entities as well as provide a mapping
from the original version to the modified counterpart. Then, we classify the changes to tell that
e.g., a statement s has been added to—or removed from—a method m or that the identifier of a

1Concurrent Versions System - http://www.nongnu.org/cvs/
2http://http://subversion.tigris.org/
3http://www.ibm.com/software/awdtools/clearcase/

2 Chapter 1. Introduction

field f has been renamed from a to b. The results shall be used to assign a certain significance level
to each change (for example: ”This particular change has a very high significance level, since
it effects the public interface of a class” or even ”The method A.foo() experienced a series of
changes with very high significance level between revisions 1.3 to 1.7”) or to reveal code smells
and change couplings.

CHANGEDISTILLER [FG06], our source code extraction plug-in for ECLIPSE,4 already imple-
ments some of the above-mentioned functionality. It uses a tree differencing algorithm, developed
by Chawathe et al. [CRGMW96] and finds tree edit operations between two intermediate abstract
syntax trees (AST) based on a matching set of tree nodes. The outcome of the algorithm is an
edit-script transforming the first into the second tree. The set of edit operations, which compose
the edit script, reflects the changes that a developer has applied to transform the original program
into the modified one.

The approach taken by Chawathe et al. yields some insufficiencies in terms of source code.
They use a heuristic based on the assumption that changes between the two input trees are small.
This is valid for source code in most cases, since changes between subsequent versions of a class
are usually small. In return, this leads to non-minimal edit scripts if the amount of changes be-
tween the two versions of the Java source file exceeds a certain size. Matching on the leaf-level,
i.e., matching of single statements, is imprecise because of the implemented string similarity mea-
sure. Furthermore, the matching algorithm often produces suboptimal results for small subtree
structures due to the characteristics of the similarity measure that is used to decide whether two
subtrees do match or do not match. The result in this case is—again—a non-minimal edit script.

Having a non-minimal edit script is unfavorable, since the edit operations are used to classify
the significance levels of the changes. Under these circumstances, we are therefore not able to
assess the impact of changes on other source code entities precisely, i.e., we cannot reliably decide
whether a change was relevant or irrelevant to the structure of a program.

1.2 Envisioned Outcome of the Thesis
This thesis aims at improving the matching algorithm presented by Chawathe et al. to make its
edit script calculation more flexible. We focus on enhancements to the tree matching algorithm
for reaching a more accurate and comprehensible outcome. To realize them, we investigate the
suitability of different similarity measures or, to be exact, of combinations of them. In particular,
we want to establish more intuitive matching between leaves, including a similarity-ranking, and
a heuristic to handle small trees more accurately.

Furthermore, we aim to develop a benchmark to investigate accuracy (precision and recall)
and efficiency (runtime performance) of the improved algorithm in comparison with the actual
approach. The benchmark will also serve as an extensible and important tool for the evaluation
of future work. We use artificial test cases as well as data taken from the medium-sized project
ARGOUML5 to cover common program structures.

4http://www.eclipse.org
5http://argouml.tigris.org

1.3 Structure of Thesis 3

1.3 Structure of Thesis
The remainder of the thesis is structured as follows: Chapter 2 presents work related to source
code change detection. We discuss the advantages as well as the disadvantages in comparison
with our approach.

In Chapter 3, we deliver backround information on tree-like data-structures and point out the
characteristics of source code in contrast to other structured documents. Next, we discuss the
approach taken by Chawathe et al., before we propose step-by-step customizations for improving
change detection in terms of source code.

Chapter 4 establishes a benchmark that puts our improvements to their paces. We investigate
whether our customizations are able to outperform the work done by Chawathe et al. during
change detection. For this, we use artificial source code examples and real data taken from the
ARGOUML-repository.

Conclusions are drawn in Chapter 5, where we also suggest perspectives of future work. Fi-
nally, Appendix A lists additional benchmarking results.

Chapter 2

Related Work

This chapter presents and discusses the related work in the field of change detection and summa-
rizes the shortcomings as well as the advantages in contrast to our approach.

2.1 Change Detection Based on Lexical Differencing
Techniques and tools for computing textual differences between documents are well-known and
approved. However, existing tools such as GNU diff deal with flat, rather than with hierarchical
information. They usually calculate a list of lines that must be changed, inserted, or deleted to
make a first document match a second one. Listing 2.1 shows two subsequent revisions of a Java
class file and Listing 2.2 the corresponding output of GNU diff under Apple’s OSX. Lines from
the first file are prefixed by < and lines from the second are prefixed by >. In other words, to
transform the original version into the new version, you have to delete all lines prefixed by < and
append those lines prefixed by >.

Apparently, the major shortcoming of GNU diff is that we are able to tell that e.g., line 2 has
changed, but we are not able to decide whether the change was relevant to a program’s struc-
ture or to its functionality. We cannot, for example, distinguish between changes concerning
license information or documentation and changes affecting classes or methods. Furthermore,
large, but syntactically irrelevant changes, for instance indentation or reformatting, easily lead
to a mismatch between two versions of a file. Regarding our example in Listing 2.2, GNU diff
cannot detect, that the class has been renamed, that an attribute of the class was deleted and that
a method invocation has been added between the old and the modified version.

Our approach, using abstract syntax trees for representing the hierarchical relationships be-
tween entities of a document, allows to detect a lot more changes more precisely and we are able
to assign a particular change to a concrete source code entity (such as the declaration or body
part of a method), rather than to a line number. This establishes additional possibilities, e.g., fine-
grained distinction between source code changes according to tree edit operations or classification
of the significance level of changes, depending on their type and on the source code entity that
they were applied to. Looking at the example above, we are now not only able to detect that a
developer applied a class renaming, an attribute deletion, and that he inserted a method invo-
cation statement into the main(String[] args)-method, as well as that the class renaming
will have a strong impact on other source code entities (since a part of the public interface of the
class has changed), and that the attribute deletion or insertion of the method invocation statement
respectively, will not involve other changes.

6 Chapter 2. Related Work

//original version:

public class HelloWorld {

private HelloWorld theInstance = new HelloWorld();

public static void main(String[] args){

}

}

//modified version:

public class NewHelloWorld {

public static void main(String[] args){

System.out.println("Hello World");

}

}

Listing 2.1: Two subsequent versions of a .java-file.

unix-machine:˜/$ diff -b HelloWorld.java NewHelloWorld.java

1,2c1

< public class HelloWorld {

< private HelloWorld theInstance = new HelloWorld();

> public class NewHelloWorld {

3a3

> System.out.println("Hello World");

Listing 2.2: The output of GNU diff for the two files shown in Listing 2.1.

2.2 Change Detection Based on Syntactic Differencing 7

2.2 Change Detection Based on Syntactic Differencing

We have implemented and modified the change detection algorithm for hierarchically structured
data that has been presented by Chawathe et al. [CRGMW96]. Their algorithm addresses the
problem of detecting and representing changes to hierarchically structured information. They
cover structure in ordered trees and describe the deltas between two versions of hierarchical data
using the notion of a minimum edit script, defined by node insert, node delete, node update and subtree
move as basic editing operations. Although the approach applies well to the problem of AST-based
source code change detection, it has been validated by calculating and representing changes in
structured documents—LATEX documents, in particular—and thus had to be further adapted to
satisfy our special needs (see Section 3.2.3 for more details on the acyclic label condition, which
often is a characteristic of structured text, but not of source code in particular).

Xing and Stroulia presented an algorithm for tracking structural changes between designs of subse-
quent versions of object-oriented software in [XS05]. They perform reverse engineering on two source
code versions to recover the corresponding UML class models and use them as input for their tool
UMLDIFF. The outcome is an edit script, similar to the one calculated in our approach, consisting
of additions, removals, moves, renamings of different entities, changes to their attributes and changes
of the dependencies amongst them. Unlike our tool CHANGEDISTILLER, UMLDIFF is also able to
track moves between different classes. However, UMLDIFF focuses on recovering higher-level de-
sign knowledge evolution, i.e., changes on the interface level, whereas our work additionally allows
fine-grained differencing on the implementation-level, i.e., changes on single statements inside of
method-bodies.

2.3 Change Detection Based on Semantic Differencing

Apiwattanapong et al. describe a completely different approach in [AOH04]. They define a new
representation, based on control-flow graphs, for modeling the behavior of object-oriented pro-
grams. Enhanced1 control-flow graphs of two subsequent program versions are used as input for
their algorithm CALCDIFF, which identifies modifications using graph isomorphism. Doing so,
Apiwattanapong et al. are able to detect behavioral changes between two versions of a method.

We discuss this difference by taking a closer look at Figure 2.1, showing an example for two
enhanced control-flow graphs, each representing a version of a method. The source code state-
ment corresponding to node 7 throws the exception E3. Node 20 explicitly catches the exception
E2, whereas node 22 explicitly catches exception E1. Assume now, that the supertype of the ex-
ception E3 has changed from E2 to E1 between the original (represented by graph (a)) and the
modified (represented by graph (b)) version of the method. In the original program, the excep-
tion E3 was caught by node 20, since it is a subclass of E2. Due to the change to the exception
hierarchy in the modified version, it is now a subclass of E1 and therefore it is caught instead
by node 22. Although the modification took place at a single line of the program—the class dec-
laration part of E3—the control-flow between the statements, i.e., the behavior of the program,
has changed completely. Our algorithm detects a Parent Class Update and rates the impact of the
change on other source code entities as crucial, but misses the change in behavior. We claim that
both approaches, the one presented by Apiwattanapong et al. and our work, are complementary
and that semantic differencing can be used to extend and refine our classification.

1Enhanced, in a way that traditional control-flow graphs are enriched by information covering object-oriented features
of the programming language, e.g., dynamic binding or exceptions.

8 Chapter 2. Related Work

Figure 3. ECFGs for D.m3 in P and P ′ (Figure 1).

and 4) because a’s dynamic type can be either A or B. Both
added nodes correspond to the same method, and thus have
the same label, because B does not override method m1.

Consider now one of the two differences between P and
P ′ in Figure 1: the redefinition of method m1 in B. Such a
change causes a possibly different behavior in P and P ′ for
the call to a.m1 in method D.m3: if the dynamic type of a
is B, the call results in an invocation of method A.m1 in P
and results in an invocation of method B.m1 in P ′.

Figure 3(b) shows how the different binding, and the pos-
sibly different behavior, is reflected in the ECFG for method
D.m3: the call edge labeled B from the call node for a.m1
(i.e., the call edge representing the binding when a’s type
is B) is now connected to a new callee node that repre-
sents method B.m1. This difference between the ECFGs
for D.m3 in P and P ′ lets our analysis determine that this
call to a.m1 may behave differently in P and P ′. Note that
a simple textual comparison would identify the addition of
the method, but it would require a manual inspection of the
code (or some further analysis) to identify the points in the
code where such change can affect the program’s behavior.

Variable and object types

When modifying a program, changing the type of a variable
may lead to changes in program behavior (e.g., changing
a long to an int). To identify these kinds of changes, in
our representation, we augment the name of scalar variables
with type information. For example, we identify a variable
a of type double as a double. This method for representing
scalar variables reflects any change in the variable type in
the locations where that variable is referenced.

Another change that may lead to subtle changes in pro-
gram behavior is the modification of class hierarchies (e.g.,
moving a class from one hierarchy to another, by changing
the class that it extends). Effects of these changes that re-
sult in different bindings in P and P ′ are captured by our

method-call representation. Other effects, however, must
be specifically addressed. To this end, instead of explic-
itly representing class hierarchies, we encode the hierar-
chy information at points where a class is used as an ar-
gument to operator instanceof , as an argument to opera-
tor cast, as a type of a newly created exception, and as the
declared type of a catch block. To encode the type infor-
mation, we use globally-qualified class names. A globally-
qualified class name for a class contains the entire inheri-
tance chain from the root of the inheritance tree (i.e., from
class java.lang.Object) to its actual type.2 The inter-
faces that are implemented by the class are also included in
globally-qualified names. If a class implements more than
one interface, the names of the interfaces are inserted in al-
phabetical order. This method reflects changes in class hi-
erarchies in the locations where the change may affect the
program behavior. For example, nodes 7 and 19 in Figure 3
show the globally-qualified name for class E3 in P and P ′,
respectively.

Exception Handling

As for dynamic binding, program modifications in the pres-
ence of exception-handling constructs can cause subtle side
effects in parts of the code that have no obvious relation to
the modifications. For example, a modification of an excep-
tion type or a catch block can cause a previously caught ex-
ception to go uncaught in the modified program, thus chang-
ing the flow of control in unforeseen ways.

To identify these changes in the program, we explicitly
model, in the ECFG, exception-handling constructs in Java
code. We represent such constructs using an approach simi-
lar to that used in Reference [3]. For each try statement, we
create a try node and an edge between the try node and the
node that represents the first statement in the try block.

We then create a catch node and a CFG to represent each
catch block of the try statement. Each catch node is labeled
with the type of the exception that is caught by the corre-
sponding catch block. An edge connects the catch node to
the entry of the CFG for the catch block.

An edge, labeled “exception”, connects the try node to
the catch node for the first catch block of the try statement.
That edge represents all control paths from the entry node
of the try block along which an exception can be propagated
to the try statement. An edge labeled “exception” connects
also the catch node for a catch block bi to the catch node for
catch block bi+1 that follows bi (if any). This edge repre-
sents all control paths from the entry node of the try block
along which an exception is (1) raised, (2) propagated to the
try statement, and (3) not handled by any of the catch blocks
that precede bi+1 in the try statement.

2For efficiency, we exclude class Object from the name, except that for
class Object itself.

Figure 2.1: Enhanced control-flow graphs representing two subsequent versions of a method (source: [AOH04]).

2.4 Code Clone Detection
The field of code clone detection research is closely related to change detection; To identify the
parts of a program that have changed, it is necessary to find those parts first that have experi-
enced only small modifications or that have not changed at all. These parts can be considered
as near miss clones and clones (between files representing subsequent versions of a source code
entity) respectively, if spoken in terms of code clone detection. Nevertheless, there are notewor-
thy differences between the requirements for a good code clone detection algorithm and a good
change detection algorithm that have to be taken into consideration while evaluating the use of
the former for change detection:

• Edit script generation: In terms of changes, it is desirable to have a set of basic instructions
as output of the algorithm, explaining how to transform the original version of a program
into the modified one. Code clone detectors usually do not provide anything similar, al-
though they sometimes calculate macros or patches that refactor the investigated source
code in a way that duplicated parts can automatically be removed.

• Taking program structure into consideration: The reason for using abstract syntax tree
comparisons in code clone detections is to achieve better accuracy. Locating the hierarchical
position of duplicates is not as important, as it is for change detection to know where a
particular change took place. Hence, token-based approaches as presented for example in
[KKI02] are perfectly suited for code clone detection, but are less or not at all applicable to

2.4 Code Clone Detection 9

change detection.

• Restrictions concerning comparisons: Code clones can occur between classes that have oth-
erwise nothing in common. Thus, comparisons between each source code entity contained
by a software system can become necessary. We, in contrast, only have to detect changes
between subsequent versions of a file. If we presume that the versioning system was used
in a disciplined manner, then we can exploit this knowledge by applying several heuristics,
such as that changes between subsequent versions are usually quite small. This allows us
to search more specifically for particular changes.

There are a number of algorithms applicable to detecting code duplicates, so our discussion
will be limited to those approaches that are most related to our work:

Sager et al. [SBPK06] used several tree matching algorithms for detecting similar Java classes.
First, they convert the abstract syntax tree as generated by ECLIPSE into the intermediary model
FAMIX [DTS99]. In a second step, they transform the model into a generic tree format. The
generic tree representations of all classes of a software system are then matched against each other
in order to find duplicated code. Sager et al. evaluated three different tree similarity algorithms for
this purpose, derived from a bottom-up maximum common subtree isomorphism, a top-down maximum
common subtree isomorphism and an edit distance of two given trees, all three originally presented in
[Val02]. These algorithms can be used to replace the tree similarity measure calculated in our tool
CHANGEDISTILLER.

Baxter et al. describe another tool for code clone detection in [BYM+98]. Their approach also
relies on abstract syntax trees, but categorizes subtrees by hashing. This reduces the number
of comparisons needed significantly, since only subtrees with the same hash values have to be
compared. Classification using hash values works well for exact duplicates, but fails for locating
near-miss clones, i.e., code duplicates that are very similar, but experienced for example parameter
renaming. Baxter et al. are able to overcome this shortcoming by choosing an artificial bad hash
function, i.e., a function that ignores identifier names.

Chapter 3

Improving ChangeDistiller

This chapter covers the first part of the main contributions of this thesis. First, we give a brief
introduction to CHANGEDISTILLER. Next, we set the stage for our improvements by providing
some background information on tree data structures and similarity analysis of structured docu-
ments in general. Furthermore, we carefully point out the characteristics of documents containing
source codes and their differences in contrast to other structured text such as LATEX. Eventually,
we discuss the work by Chawathe et al., before we present and evaluate some options. Finally, we
draw conclusions and suggest an improved algorithm for finding changes between two versions
of a source code entitity. An empiric evaluation can be found in Chapter 4, where we apply a
benchmark to put our efforts through their paces.

3.1 ChangeDistiller - A Tool for Classifying Change Types
Fluri and Gall presented their tool CHANGEDISTILLER in [FG06]. It implements a source code
change extraction algorithm. This thesis focusses on finding improvements to this algorithm, so
that it can handle changes more adequately. Before we dive into the main subject, we give an
overview on the architecture of CHANGEDISTILLER and how it is embedded into the infrastruc-
ture.

The tool integrates into the reengineering workflow, due to the fact that it is built as a plug-in
for the ECLIPSE-platform. See Figure 3.1 for an overview on the integration of CHANGEDISTILLER
into ECLIPSE. Focal to all efforts lies the Release History Database (RHDB), originally presented in
[FPG03]. The RHDB-approach accounts the fact that versioning systems provide only insufficient
support for a detailed analysis of software evolution aspects. CHANGEDISTILLER is a logical next step
towards understanding software evolution, i.e., the way how software changes over time. It ex-
tends the insufficient capabilities of modern versioning systems for tracking changes by provid-
ing structural- instead of lexical change analysis between subsequent revisions of file containing
source code.

The link to the versioning system is established by EVOLIZERBASE, a plug-in that relies on
org.eclipse.team for checking out multiple revisions of a file from a versioning system such
as CVS. Evolizer also provides an object-oriented interface to the RHDB by using the O/R-
mapper Hibernate.1 CHANGEDISTILLER exploits the compare plug-in of Eclipse to extract the
declaration and body changes between the subsequent revisions of the Java source code files that
were checked out before and uses the API of org.eclipse.jdt to retrieve their abstract syntax

1http://www.hibernate.org

12 Chapter 3. Improving ChangeDistiller

RHDB

JDT Change
Distiller

Eclipse
Platform

Versioning
System

Eclipse
Team

Evolizer
BASE

Figure 3.1: Change Distiller is a plug-in for the Eclipse Platform.

tree. Next, it transforms the AST into an intermediate tree-representation, where leaves are state-
ments valued with their string representation. The intermediate ASTs are used as input for the
source code change extraction algorithm. The output is a set of basic tree edit operations, trans-
forming the tree of the original revision into the modified one. CHANGEDISTILLER stores the edit
operations via EVOLIZERBASE into the RHDB and classifies them further. It also provides visu-
alization and additional analysis integrated to an Eclipse-perspective. For details, please refer to
[FG06].

The approach yields promising, but improvable results, under the precondition that changes
between subsequent versions of a source code file are relatively small. This is usually guaranteed
whenever the versioning system was used in a disciplined manner, i.e., when commits happen on
a regular basis. The generated edit script (and consequently the classification of the changes) will
always be correct—even if these circumstances are not given—but accuracy will suffer in terms of
a non-minimal number of classified source code changes. In other words, the algorithm detects
unnecessary changes, but applying them will transform the original program version correctly
into the modified one.

In the remainder of this chapter, we will point out the issues of the process described above
and present our efforts on improving CHANGEDISTILLER.

3.2 Background Information
The following sections introduce the concept of tree-like data-structures and define some im-
portant vocabulary. We render the utility of abstract syntax trees as a representation for docu-
ments containing source code and talk about the nature of source code as a subset of structured
documents. This knowledge will prove itself useful later on, when we present the approach by
Chawathe et al. and how we tempt to customize it for source code change detection.

3.2 Background Information 13

3.2.1 Tree-like Data-structures in General
In computer sience, a tree is a commonly used data-structure. Speaking in terms of graph theory, a
tree is a directed acyclic graph consisting of nodes interconnected by edges representing a parent-
child relationship. If a node n has a child m, then n is called parent node of m, which we denote n
= p(m) according to the notation used by Chawathe et al. in [CRGMW96]. Nodes along the path
to the top of the tree are called ancestors of m. In return, m is called their descendant. The top-
level node, i.e., the only node in the tree that has no parent, is called root node or simply root. The
bottom-level nodes, i.e., the nodes that have no children, are called leaf nodes. Nodes in-between
are inner nodes. Whenever the distinction between root, inner node and leaf doesn’t add to our
discussion, we will talk about nodes in general. A node n typically has a value denoted v(n) and
can have an optional label denoted l(n), storing e.g., a type or name value for the node. Figure 3.2
illustrates the vocabulary that we have discussed. The colored leaf on the bottom right shows
how we illustrate labels and values from now on: The leaf is labeled as A and has the value val.

Root

Inner Node Inner Node

Leaf Leaf Leaf Inner Node Inner Node

Leaf Leaf L: A

Child of Parent of

Descendant of

Ancestor of

V: "val"

Figure 3.2: A generic tree structure and the relationships between some of the nodes. The right-most leaf shows how
we annotate labels and values of nodes.

3.2.2 Abstract Syntax Trees (AST)
Tree-based data-structures became very popular in the field of compiler development: Whenever
a file containing source code is sent to the compiler, several steps are performed before machine-
instructions can be generated. The code has to be tokenized by a Lexer first: It separates the input
stream into individual tokens and passes them to the Parser, which uses a context-free grammar
of the programming language to build an intermediate code representation, a so-called Parse Tree.
Each token found by the lexer is represented by a node in the parse tree. Not every token/node
has a semantic value: Some tokens, for instance parentheses and semicolons, are purely syntactic
sugar and can be therefore omitted. The resulting data-structure is called an Abstract Syntax Tree
(AST). Now that the source code is represented as a tree, it can be analyzed in a more sophisticated
manner than while parsing the flat token stream: The tree can be traversed or searched in various
ways (e.g., pre- or post-order, and depth- or bread-first respectively) or its structural appearance

14 Chapter 3. Improving ChangeDistiller

public class FooBar {

public void foo() {

System.out.println("foo");

}

}

Listing 3.1: An example class in Java.

can be used to determine possible compiler optimizations.
Listing 3.1 shows the source code of a simple Java compilation unit, i.e., a class FooBar

containing a single method called foo(). The method contains a single method-invocation-
statement that causes the Java Virtual Machine to print a short string to the standard output.
Figure 3.3 shows the same class represented by an abstract syntax tree. As mentioned before, we
will find a node-equivalent in the tree for each semantically relevant token in the source code:
There is for example a node MODIFIERS present, having a leaf-descendant KEYWORD: ’public’
that reflects that the class FooBar was declared with public access. There is also a subtree rooted
by the node BODY DECLARATIONS that contains the declaration- and body-part of the method
foo() including the above-mentioned method-invocation-statement.

This tree representation of source code is not only useful for the compiler, it can also be used
to perform other analysis since it covers the structure of the program. It is easy to traverse a tree
while collecting infos on its nodes. For example, we can write a simple visitor that returns nodes
representing a method declaration to quickly gather all methods of a program together. Last but
not least, we can use the trees of two source code entities to compare them on a structural basis.
Abstract syntax trees are therefore fundamental to our approach.

3.2.3 Source Code Characteristics
This section outlines some of the specifics of source code in contrast to other (structured) docu-
ments and discusses the implications while using tree-structures to represent and analyze syntac-
tic program structure.

Vocabulary for Node Values

When dealing with natural language, e.g., while comparing LATEX documents, one faces a very
broad and diverse vocabulary, making it more unlikely to find two identical leaf-values in one
sub-tree. The pool of possible instructions in a programming language, such as Java, is usually
more limited and a lot of statements follow the scheme object.message(list of params).
Furthermore, programmers often use reoccurring idioms and patterns and short identifiers, lead-
ing to more than one possible pair of matching nodes in many cases. If this issue is not taken into
account, algorithms for source code change detection will produce non-optimal matching results
compared to algorithms for structured documents in general.

Ordered vs. unordered Trees

The most common form of a tree is an ordered structure, i.e., a tree where there is an order im-
posed for the children of any given node, established e.g., by assigning a natural number to each
child. Unordered trees, on the other hand, do not posses an ordering on their nodes. We illustrate

3.2 Background Information 15

Figure 3.3: The AST generated by org.eclipse.jdt.core.dom and visualized by the Eclipse plug-in AST
View for the Java class FooBar introduced in Listing 3.1.

this issue by discussing tree representations for source code: In most object-oriented languages,
the order in which attributes and methods are declared inside the class body is completely irrele-
vant, i.e., it doesn’t matter if method m1() is declared before or after method m2() or even before
or after field f1. Hence, an unordered tree is perfectly suited for representing the parent-child
relationship between a class and the attributes and methods declared inside of the class. Com-
pletely different for individual statements inside of the method body, where the sequence of their
execution plays a decisive role: It is crucial, whether the declaration of a variable var1 took place
before using it for example as operand in an assignment such as var = m1(); or not. Figure 3.4
shows the relation between ordered and unordered tree-levels in Java.

The question, whether ordered or unordered trees are on hand, impacts the applicability of
particular matching algorithms: Although any algorithm, designed solely for comparing ordered
trees, is also valid for unordered ones, it will fail to match the trees if the ordering of nodes has
changed. Even if the (sub-)tree is unordered and—consequently—ordering change should have
no relevance. An algorithm for unordered trees allows to overcome this limitation, but in return
it misses relevant ordering changes on the statement-level.

16 Chapter 3. Improving ChangeDistiller

Class

Method 1 Method 2 Method 3Field 1

Statement 1 Statement 2 Statement 3

Statement 1 Statement 1 Statement 2

Ordered

Unordered

Figure 3.4: A tree representing a Java class containing a field and three methods. On the second level of the tree,
ordering is irrelevant, whereas on the third level—inside of the method-body—the order among the statements must
be preserved.

Acyclic vs. Cyclic Labels

Chawathe et al. stated in [CRGMW96] that nodes in tree-representations of hierarchical informa-
tion often follow a so-called acyclic labels condition, meaning that there is a natural ordering<label

between possible values of a label for a tree-node, so that a node with the label l1 can appear as
the descendant of a node with the label l2 only if l1 <label l2.

A structured document usually consists of chapters, which are divided into sections, which are
composed of paragraphs and so on, whereas it is not possible for e.g., paragraph-nodes to have
children that are labeled as chapter or even as paragraph. The acyclic labels condition is satisfied.
However, labels of source code nodes do not follow this ordering in general; Code usually consists
of nested if-/else-blocks and nested loops.2

Figure 3.5 shows possible AST representations of a part of a structured document in com-
parison with a source code fragment. Values of the nodes have been omitted due to reasons of
convenience. L: CHAP denotes a node labeled as chapter, L: SEC denotes a section and L: PARA
denotes a paragraph. There is a natural ordering so that Lparagraph < Lsection < Lchapter is assured.
The labels are acyclic. L: IF denotes an if-statement, L: THEN denotes the then-clause, whereas
L: ELSE denotes the else-clause. L: MI denotes a method invocation. The condition Lthen < Lif

and Lelse < Lif does not hold, since it is possible to have for example a nested if-statement in the
else-clause. In this case, the labels are cyclic.

The presence of acyclic labels can be exploited for building simpler or faster tree matching
algorithms. Since we cannot assert this condition to source code, we are not able to use the exploits
for our concerns.

2Note: There are also relationships between certain (sub-)structures so that they cannot have cyclic labels, e.g., methods
cannot contain qualified class definitions

3.3 Outline on the Change Detection Algorithm by
Chawathe et al. 17

L: IF

L: THEN

L: MI L: MI

L: ELSE

L: MI L: IF

L: THEN

L: MI

cyclic
labels:L: CHAP

L: SEC L: SEC

L: PARA L: PARA L: PARA

acyclic
labels:

LCHAP > LSEC > LPARA

cycle

Figure 3.5: Simplified AST representations of a part of a structured document on the left opposite to a source code
fragment on the right.

3.3 Outline on the Change Detection Algorithm by
Chawathe et al.

The approach taken in CHANGEDISTILLER builds upon the algorithm for change detection which
was presented in detail in [CRGMW96]. Nevertheless, we give a short outline on the whole
algorithm and have an elaborate look on those parts where we think that we can contribute en-
hancements regarding source code change detection. We start our discussion by showing how
Chawathe et al. split the problem of change detection into two subtasks:

• Finding a ”good” matching between the nodes of the two trees.

• Finding a minimum ”conforming” edit script for the two trees given a computed matching.

Finding a correct and accurate matching between the nodes is crucial to the outcome of the edit
script algorithm. Assume that all nodes are matched perfectly, except those that were actually
inserted or deleted. In this case, the edit script, calculated as suggested by Chawathe et al., will
be correct and minimal by all means. Hence, we found only little clearance in improving the edit
script calculation, but focussed on customizing the matching algorithm for source code change
detection instead. For this reason, we will explain edit script calculation very briefly in the next
section, before we will cover the matching procedure in more detail in Section 3.3.2. Later on, in
Section 3.4, we will discuss the circumstances under which matching unintentionally fails.

18 Chapter 3. Improving ChangeDistiller

3.3.1 Calculating an Edit Script
The whole algorithm starts by matching the left and the right (i.e., the original and the modified)
tree in a bottom-up manner (see Section 3.3.2 below for a detailed discussion on the matching
procedure) and then passes the calculated matching set of node pairs to the next step. The edit
script generation sub-algorithm then runs through five phases, each designed for detecting a par-
ticular edit operation. In each phase, we will traverse the trees in a breadth-first order, which
ensures that parent nodes will be visited before their children. The five phases are discussed be-
low and illustrated in Figure 3.6. Note that some details were omitted due to reasons of simplicity
and—again—that a thorough discussion including a more sophisticated running example can be
found in [CRGMW96]:

1. The update phase: The algorithm first looks for pairs of nodes that made it into the match-
ing set but differ in terms of their value. Whenever such a condition is met, an update-
operation is added to the edit script.

2. The insert phase: Now that all nodes are aligned, the algorithm searches for nodes to insert,
i.e., nodes that are present in the right tree, but not in the left one. For that, unmatched
nodes in the right tree are located. If their parent belongs to the matching set, then they are
considered as insertion and a corresponding operation is added to the edit script.

3. The move phase: Whenever two nodes n and m belong to the matching set, the set is queried
for their parents p(n) and p(m). If we cannot find a matching node pair containing both, p(n)
and p(m), then we add a move-operation to the edit script.

4. The align phase: In this phase, only parent-preserving moves are applied. After all up-
dates have been applied, the algorithm aligns the children of each inner node by performing
move-operations. Two children are considered ’aligned’ if they have the same relative order
in the original as in the modified tree, i.e., if node n is left of node m in the first tree then its
counterpart has to be also on the left of m’s counterpart in the second tree. Note, that it does
not matter if there are any nodes in-between n and m. Only their relative position to each
other decides whether they are aligned or misaligned. Using an algorithm based on the
notion of a longest common subsequence ensures that the number of moves is held minimal.

5. The delete phase: Last but not least, the remaining nodes, i.e., nodes found in the left tree,
but not in the right tree, will be deleted. Therefore, the algorithm adds the according delete-
operations to the edit script.

3.3.2 The Matching Procedure in Detail
Finding a appropriate matching for hierarchical keyless data is a non-trivial task, especially when
the acyclic label condition (see Section 3.2.3) does not hold. The first question that arises is, ”Under
what circumstances can two trees be considered as matching each other?” The answer is chal-
lenging, especially since we do not want to test the trees on exact equality, but rather on similarity.
Chawathe et al. starts by defining three fundamental matching criterions in [CRGMW96], neces-
sary for the algorithm to produce an optimal result:

Matching Criterion 1: For leaf nodes x ∈ T1 and y ∈ T2, (x, y) can be in a matching only if
l(x) = l(y) and compare(v(x), v(y)) ≤ f for some parameter f such that 0 ≤ f ≤ 1.

3.3 Outline on the Change Detection Algorithm by
Chawathe et al. 19

A

B C

A'

B' C'

F' D'H

V: "aVal"

G

V: "val"

D FE E'

Phase 1: Update

Phase 4: Alignment

Phase 2: Insert

Phase 3: Move

Phase 5: Delete

T1 T2

Figure 3.6: Phases 1-5 of the edit script generation algorithm by Chawathe et al. Nodes with the same letter are
intended to match (example: A matches A’) and values have been omitted unless they changed from T1 to T2.

The first matching criterion defines how leaves are matched. Only leaves—or nodes in gen-
eral—of the same kind are allowed match: It is not possible for e.g., a if-statement to be updated
into a method invocation statement. This is assured by pre-testing their labels for equality. The
function compare(s1, s2) then compares the values of the leaves and returns a normalized number
in [0, 1] representing the edit distance between them. A distance value of 0.0 means that they are
completely equal, whereas 1.0 denotes that they have nothing in common. The parameter f de-
notes the threshold above which the edit distance is considered to long and leaves are no longer
allowed to match. In contrast to Chawathe et al., we prefer to use similarities later on, rather
than distances: We change the matching condition for values from compare(v(x), v(y)) ≤ f to
sim(v(x), v(y)) ≥ f and consider a similarity of 1.0 as a 100%-match and a similarity of 0.0 as
a complete mismatch. Although there is not a big difference between both notations, we claim
that similarities are slightly more intuitive than distances. But for now, we will finish this section
using Chawathe et al.’s notation.

Matching Criterion 2: Consider a matching M containing (x, y), where x is an internal node
in T1 and y is an internal node in T2. Define:

common(x, y) = {(w, z) ∈M |x contains w, and y contains z}

Then in M we must have l(x) = l(y) and

|common(x, y)|
max(|x|, |y|)

≥ t

for some t satisfying 1
2 ≤ t ≤ 1.

The next matching criterion addresses inner nodes. Again, labels are pre-tested for equality to
assert that the nodes are of the same kind. However, the inner node matching does not use sim-
ilarities of the node-values. Instead it uses a more natural measure, taking into account how
many leaves the trees have in common. The number of common leaves—previously matched
using matching criterion 1—is put into proportion to the number of total leaves of either the left
or the right tree, depending on which one has more leaf-nodes. This tree similarity measure
puts a strong focus on the leaf nodes and is therefore good for e.g., LATEX documents, where

20 Chapter 3. Improving ChangeDistiller

the leaves—words or sentences of natural language—cover a lot of semantics, whereas inner
nodes—chapters, sections, paragraphs, etc.—serve primarily for structuring purpose. However,
intuitively, we claim that this measure is not well-suited for source code since inner nodes, repre-
senting for example if-statements, have a much stronger semantic value and should be therefore
taken into consideration for making a decision whether two sub-trees should match or not. We
discuss alternative tree similarity measures later on.

Matching Criterion 3: For any leaf x ∈ T1, there is at most one leaf y ∈ T2 such that
compare(v(x), v(y)) ≤ 1. Similarly, for any leaf y ∈ T2, there is at most one leaf x ∈ T1 such
that compare(v(x), v(y)) ≤ 1.

The last matching criterion is one of the main reasons why the approach by Chawathe et al. of-
ten produces suboptimal results for source code comparisons. The assumption that there is at
most one leaf in the right tree that matches a particular leaf in the left tree (and vice versa) is
a necessary precondition for the algorithm to produce an optimal matching and a minimal con-
forming edit script, consequently. Even if the criterion fails, Chawathe et al. can often post-process
the sub-optimal solution to obtain an optimal solution provided that the acyclic labels condition is taken
for granted. Neither the matching criterion nor the acyclic labels condition (as argued before, see
Section 3.2.3 for more information) can be guaranteed for source code. While the matching cri-
terion is likely to hold for documents containing sentences of natural language, i.e., sentences
composed of broad and diverse vocabulary, it is not applicable to source code in general. Subse-
quent similar statements, however, are very common in programs. A popular example is shown
in Listing 3.2. Although only the statement ordering was changed between the original and the
modified code-block, the algorithm is very likely to detect statement updates instead, since more
than one pair of leaves fulfills the condition compare(v(x), v(y)) ≤ 1. We will discuss this issue
further in Section 3.4.

Now that we have defined the three matching criterions, it is time to present the complete
matching algorithm: The algorithm starts by initializing a datastructure that shall accommodate
the pairs of matching nodes,—the matching set. Additionally, it marks all nodes of the both trees
as unmatched. That followed, it compares each node of the left tree with each node in the right
trees, starting at the left-most leaf and traversing the tree in a post-order manner. Comparison of
nodes takes place by invoking an equal-function. Whenever a node pair is considered equal, it
is added to the matching set. Marking both nodes as matched, ensures, that they will not be com-
pared with other nodes again. According to Criterion 3, the first time a nodes matches has to be
both, the best and the only match, so proceeding in this way is perfectly correct. The equal(x, y)-
function is defined for leaves as follows. f is a parameter such that 0 ≤ f ≤ 1:

equal(x, y) =
{

true, if l(x) = l(y) and compare(v(x), v(y)) ≤ f
false, otherwise

Comparison of inner nodes is done by a dedicated equal-function, where t ≥ 1
2 is a parameter:

equal(x, y) =

{
true, if l(x) = l(y) and |common(x,y)|

max(|x|,|y|) > t

false, otherwise

The complete matching algorithm can be reviewed in Algorithm 3.1. Next, we will discuss the
circumstances under which matching fails to produce an optimal solution.

3.3 Outline on the Change Detection Algorithm by
Chawathe et al. 21

//original

JButton button1 = new JButton("OK!");

button1.addActionListener(this);

JButton button2 = new JButton("NOT OK!");

button2.addActionListener(this);

JPanel panel = new JPanel();

panel.add(button1);

panel.add(button2);

//modified

JButton button2 = new JButton("NOT OK!");

button2.addActionListener(this);

JButton button1 = new JButton("OK!");

button1.addActionListener(this);

JPanel panel = new JPanel();

panel.add(button2);

panel.add(button1);

Listing 3.2: Two versions of a sequence of statements for intializing a graphical user interface in Java.

Data: Trees: T1, T2

Result: The matching set: M

M ← φ;1

Mark all nodes of T1 and T2 ”unmatched”;2

foreach unmatched node x ∈ T1, if there is an unmatched node y ∈ T2 such that equal(x, y) do3

Add (x, y) to M ;4

Mark x and y ”matched”;5

end6

Algorithm 3.1: The algorithm Match by Chawathe et al. (source: [CRGMW96]).

22 Chapter 3. Improving ChangeDistiller

3.4 When Does Matching Fail?
Before we go deeper into the discussion on the shortcomings of the algorithm by Chawathe et
al., outlined in the preceding sections, we have to render more precisely what failing means: The
whole algorithm cannot fail in a sense that it will yield incorrect results, i.e., leading to edit scripts
that do not transform the left into the right tree correctly. The edit script will always be correct,
but if the matching is inadequate, the solution may not be optimal in terms of a non-minimal
result.

We have already mentioned some of the issues in the sections before: The quality of the
compare-function and the associated threshold parameter f introduced in the first matching cri-
terion are crucial for an optimal matching on the leaf-level. When Matching Criterion 3 does not
hold, a mismatch on leaves—no matter if legitimate or not—can be propagated to inner nodes,
leading to a mismatch on higher levels. This can happen whenever a certain number of children
of a inner node violate Matching Criterion 3, although this is particularly pronounced for small
subtrees. We will take a closer look on issues concerning leaf-matching based on node values
next, before we will illustrate mismatch-propagation later on, using small subtrees as example.

3.4.1 Node Values
Matching leaf-nodes is based on two conditions: The leaves have to be of the same kind, which
we can verify by testing their labels for equality. The second condition applies to the values of
the leaves and is evaluated using the function introduced in Matching Criterion 1. In terms of the
abstract syntax trees that we use, values correspond to statements (or to the condition in case of a
if-statement) which are stored as strings. Figure 3.7 shows a snapshot of the matching algorithm,
taken while trying to match a leaf x from T1 with its counterpart y in T2. From a humans’ point
of view, we state intuitively, that they are similar enough to be considered as an original and a
modified version of the same statement, especially against the background that the statements
where found in the same context, i.e., in subsequent versions of the same method of a class.

L: Method Invocation L: Method Invocation

V: "this.veritcalDrawAction()" V: "this.drawVerticalAction()"

if [equals(l(x),l(y)) and compare(v(x),v(y)) ≤ f] then [(x,y) -> M] endif

x y

T1 T2

✓ ✗

Figure 3.7: Snapshot taken while matching leaves. Node x is one of the leaves of the left tree T1 and y its counterpart
in the right tree T2.

Deciding whether the two leaves, are similar or not is a trivial task for a human, since he
knows the semantics of the words draw, vertical and action. From a machine’s point of view, it

3.4 When Does Matching Fail? 23

if (a > b) {

a.b();

a.c();

}

Listing 3.3: The original if-statement.

is not that easy. We will discuss some approaches later on (see Section 3.5.2), but for now, let us
just accept, that the string similarity measure originally implemented in CHANGEDISTILLER—the
Levenshtein Distance—is very susceptible to word or even character ordering changes. As we
can see in our example, common renaming of identifiers during refactoring often involves chang-
ing the word order. Correcting typos (take a close look at leaf x: the characters ’i’ and ’t’ were
interchanged by accident) leads to a even worse miscalculation. If we want to allow the example-
leaves to match, we have to lower the string similarity threshold f significantly, possibly resulting
in a lot more false negatives.

3.4.2 Small Subtrees
A mismatch on a single leaf-pair, as it occured in the example discussed in the section above, does
not have a noteworthy impact on the quality of the outcome of the algorithm; We find additional
insert- and a delete-operations instead of an update-operation in the edit script. Unfortunately, as
mentioned before, these mismatches can be propagated to higher levels of the tree, leading to a
complete mismatch of a whole subtree and therefore to many unnecessary operations making the
edit script not even approximately minimal. The situation even escalates in case of lowering f too
much while Matching Criterion 3 does not hold and while the statement ordering has changed
awkwardly at the same time. If these three unfavorable constraints meet, unintended moves may
not only propagate mismatching to their whole subtree of origin, but also to the whole subtree of
destination. This will cause the edit script to deteriorate further.

We discuss the propagation of mismatches using small trees as an example: Between Listings
3.3 and 3.4, a single statement was deleted and new one was inserted instead. Assume, that we
experienced a swap of unrelated statements, rather than an update and that the surrounding code
did not change at all. In addition, threshold t introduced in Matching Criterion 2, shall be more
than 0.5. This results to the following matching criterion for the inner nodes x ∈ T1 and y ∈ T2:

l(x) != l(y) and
1
2

!
<
|common(x, y)|
max(|x|, |y|)

Figure 3.8 visualizes the same source code using an abstract syntax tree representation. L: IF
denotes an if-statement. Its value corresponds to the if-condition. L: THEN denotes the then-
block. Since it has no immanent value, it inherits that of its parent to emphasize their affiliation.
Last but not least, L: MI denotes method invocation statements, that are listed as values.

We traverse the trees post-order from left to right, thus starting with the left-most leaves.
The leaf nodes representing the method invocation a.b(); in T1 and T2 do match according to
Matching Criterion 1. So, they are added to the matching set and marked as matched. Since the
first leaf of the left tree is now already matched, we can directly proceed to the second one. We do

24 Chapter 3. Improving ChangeDistiller

L: IF

L: THEN

L: MI L: MI

V: "a.b();" V: "a.c();"

V: "(a > b)"

V: "(a > b)"

L: IF

L: THEN

L: MI L: MI

V: "a.b();" V: "a.d();"

V: "(a > b)"

V: "(a > b)"T1 T2

Figure 3.8: An example of two similar trees T1 and T2 for which the algorithm fails to calculate a minimal edit script.

if (a > b) {

a.b();

a.d();

}

Listing 3.4: The modified if-statement: The method invocation a.c(); was replaced by a.d();

not have to compare the right leaf of T1 with the left leaf of T2, because we just now have matched
the latter. Therefore we skip the first leaf of the right tree and continue with the second one.
Although the labels are the same, the values a.c(); and a.d(); cannot be matched. Figure 3.9
illustrates the situation after all leaves were visited. We proceed to the next level in the tree and
reach the inner node representing the then-statement in T1. We do not have to compare it with
the leaves of T2, since their labels differ. Hence, we can proceed directly to the next node with
the same label, i.e., the then-node in T2. Remember, inner nodes are matched in accordance to
Matching Criterion 2, so we count the number of common leaf-descendants of the both nodes
under investigation and divide them by the maximum number of leaves of either trees, leading
to the following tree similarity and therefore to a mismatch:

|common(x, y)|
max(|x|, |y|)

=
1
2

The tree and its matchings after these steps are illustrated in Figure 3.10. The then-blocks can not
be matched, because their similarity was 0.5 (remember, threshold t was fixed above this value).
No other nodes with the same label can be found in the tree. We proceed to the root of the subtree,
in this case the if-statement, which we are not able to match either, due to the same reasons: We
count the common leaves (disregarding the inner node descendants, so the common nodes stay
the same as for the then-node before), divide them by the maximum number of leaves and thus
calculate a similarity of 0.5 again. The final (mis-)matching is shown in Figure 3.11.

Although the trees T1 and T2 are very similar and—intuitively spoken—should match, the al-

3.4 When Does Matching Fail? 25

L: IF

L: THEN

L: MI L: MI

V: "a.b();" V: "a.c();"

V: "(a > b)"

V: "(a > b)"

L: IF

L: THEN

L: MI L: MI

V: "a.b();" V: "a.d();"

V: "(a > b)"

V: "(a > b)"T1 T2

Figure 3.9: First step of bottom-up-matching-example: We decide wether the leaf-nodes match or mismatch by using
a dedicated leaf-comparator.

L: IF

L: THEN

L: MI L: MI

V: "a.b();" V: "a.c();"

V: "(a > b)"

V: "(a > b)"

L: IF

L: THEN

L: MI L: MI

V: "a.b();" V: "a.d();"

V: "(a > b)"

V: "(a > b)"T1 T2

Figure 3.10: Second step of bottom-up-matching example: If a certain amount of leaf-nodes does not match, we
decide to mismatch the parent node.

gorithm fails to do so. Regarding small subtrees, the question therefore arises, whether a match-
ing based on labels and values only, rather than similarities based on descendants of the root of
subtrees, produces better results. We will take this question into account while discussing possi-
ble improvements in Section 3.5. To anticipate a little bit, we prefer to keep on using similarities
for subtrees in spite of the mentioned concerns, since we think that it is a good way to deter-
mine changes, especially when e.g., more than one if-else-blocks with similar conditions are
involved in a single source code entity.

3.4.3 When Matching Criterion 3 Fails...
We already mentioned that Matching Criterion 3 has to hold in order to get a minimal conforming
edit script. We also mentioned the dependence of Matching Criterion 2 on Matching Criterion 1’s
ability to to match values accurately. But what happens if the values of several node pairs (x, yi),
where x ∈ T1 and yi is one of the many possible counterparts of x in T2, are too similar, i.e., if their
edit distance lies above threshold f?

26 Chapter 3. Improving ChangeDistiller

L: IF

L: THEN

L: MI L: MI

V: "a.b();" V: "a.c();"

V: "(a > b)"

V: "(a > b)"

L: IF

L: THEN

L: MI L: MI

V: "a.b();" V: "a.d();"

V: "(a > b)"

V: "(a > b)"T1 T2

Figure 3.11: Third and last step of bottom-up-matching-example: The whole subtree is considered as mismatched.

Figure 3.12 shows the tremendous consequences that a single unfortunate, but common, state-
ment insert can have. The matching algorithm starts again, traversing the tree post-order. The

L: IF

L: THEN

L: MI

V: "a.b();"

V: "(a > b)"
V: "println("foo");"

L: MI

V: "println("foobar");"

T1 T2

L: MI

L: M_BODY

L: IF

L: THEN

L: MI

V: "(a > b)" V: "println("foo");"

L: MI

L: M_BODY

21

3

V: "(a > b)"V: "(a > b)"

V: "a.b();"

First Match

Best Match

Figure 3.12: Suboptimal results are very likely to occur whenever Matching Criterion 3 does not hold.

left-most leaves match, but there is no leaf counterpart in T1 that matches Leaf 3 in T2 at this time.
Hence, the then-nodes cannot be matched due to Matching Criterion 2: They have one common
leaf, whereas the maximum number of leaves in either trees is two, resulting in a similarity of 0.5.
The mismatch is propagated to the if-statements. And finally, the remaining leaves are tried to
match.

This is where the influence of Matching Criterion 3 becomes apparent: There is more than one
possible counterpart for node 1 in the right trees, namely Nodes 2 and 3. Unfortunately, the tree
is searched in a post-order manner again and thus, Nodes 1 and 3 are put into the matching set,
whereas the better match, i.e., the pair of identical Nodes 1 and 2, is not even considered to match.
In T1, the root is the only node that remains.

Due to the simplicity of our example, we are able to intercept mismatching propagation on this

3.4 When Does Matching Fail? 27

third level: According to Matching Criterion 2, the roots match because they have two common
leaves divided by a maximum of three leaves in T2, leading to a similarity of 2

3 , which lies above
threshold t. Table 3.1 summarizes the changes that we expected on the one hand, compared to
the changes found on the other hand. Even for our trivial example, the algorithm found six times
the changes we expected.

Change type expected found
Insert 1 4
Delete 0 3
Move 0 1
Total 1 6

Table 3.1: Changes expected and found for Figure 3.12

During our research on source code taken from real life projects such as ARGOUML,3 we
encountered mismatch propagations over two or three levels very often, e.g., in nested if-else-
and try-catch-blocks. Every now and then, we discovered even more sophisticated examples,
where matching failed disastrously, leading to dozens of unnecessary change operations. The
levels of propagation seem to correlate with the nesting depth of e.g., if-then-statments or loops
and the number of involved statements.

Albeit their low frequency, these excessive propagations can have huge implications on clas-
sifying the significance of the impact of changes on other source code entities. This motivates the
heuristics, that we will present during the next few sections, more than sufficiently.

3http://argouml.tigris.org

28 Chapter 3. Improving ChangeDistiller

3.5 Customizing the Algorithm for Source Code Changes
In the sections above, we motivated that the hierarchical change detection algorithm by Chawathe
et al. needs to be adapted further to take the specialties of source code into account. In addition,
we have discussed the circumstances under which the algorithm fails to calculate a minimal so-
lution for the edit script that transforms an original tree T1 into a modified tree T2. Next, we
summarize the improvements that we intend to achieve, before we outline our efforts in detail.

3.5.1 Desired Improvements
Consequentially to the shortcomings that were summarized before, we can compile the enhance-
ments that we aim to achieve as follows:

1. We present a string similarity measure that is customized for matching tree node values
representing source code statements. We contrast several possibilities in Section 3.5.2

2. Propagation of mismatches leads to an enormous amount of deletions and insertions under
some circumstances. This is especially pronounced for small trees. Thus, we aim at finding
a solution for matching small trees more adequately. We present our thoughts on this issue
in Section 3.5.4.

3. Chawathe et al.’s Matching Criterion 3 does not apply to source code in general. Often we
can find more than matching candidate for an original node. Under this circumstances, it is
very likely, that the first match will not always be the best match. Our approach for finding
the best match is outlined in Section 3.5.4.

We proceed by developing measures for reaching the desired improvements step by step.
Before we gather them altogether into a single algorithm, we are going to provide some helpful
basics along the way of outlining the string and tree similarity measures, that we have taken into
consideration.

3.5.2 Evaluated String Similarity Measures
String similarities—or similarities in general—are an important point of research in many scien-
tific fields. Text processing, e.g., information retrieval systems or data mining, DNA-research in
biology, spell checkers and many more applications are depending on string similarities, since
simple equality checks fail way too much often on data where misspellings and modifications are
daily business.

Next, we discuss some approaches for string matching. Most of the presented metrics are
provided by SIMPACK, a generic Java library for similarity measures in ontologies [BKKB05].
SIMPACK is not only useful in ontologies. It can contribute to many of the domains that were
mentioned above; Amongst others to source code change detection.

3.5 Customizing the Algorithm for Source Code Changes 29

The Levenshtein String Similarity Measure

The Levenshtein Distance is a well-known measure to determine the similarity of two given
strings sa and sb and is often used e.g., by spell checkers. It is relatively cheap to calculate, since the
problem can be reduced to a runtime-complexity ofO(n∗m), where n is the number of characters
in sa and m is the number of characters in sb, using an algorithm based on dynamic program-
ming. Levenshtein calculates the minimum number of operations needed to transform one string
into the other. These operations can be one the following:

1. Insert a character

2. Delete a character

3. Substitute a character

A larger distance means, that the strings are less similar, i.e., that more operations are necessary
to transform one string into another, whereas a distance of 0 operations denotes that the strings
are the same. The algorithm is based on the problem of the longest common subsequence, since it
must find the characters first, that sa and sb have in common. Afterwards, we can decide whether
the subsequence was interrupted and if so, applying which operations will fill the gaps. Let us
discuss an example:

s1 L e v e n s h t e i n
s2 L e v n s c h t a i n
Op D I S

The two strings s1 = Levenshtein and s2 = Levnschtain are intuitively as well as phonetically
very similar. The letters in bold mark the longest common subsequence of s1 and s2, namely
’Levnshtin’. The bottom line shows the edit operations that have to be applied to transform s1

into s2: D denotes a Delete-Operation, I a Insert-Operation and S an Substitution. In our example,
there are three edit operations necessary to change the first string into the second one: A delete of
the letter ’e’, an insert of the letter ’c’ and a substitution of ’e’ against ’a’. The cost for all operations
are the same for Levenshtein4, thus leading to the following distance- or cost-function:

D(sa, sb) = c(sa, cb) = d+ i+ s

for d, i and s ∈ N , representing the number of delete-, insert- and substitution-operations needed.
In our example, the edit distance between s1 and s2 is 3. For our concerns, distances are less useful
than similarities, since we cannot state that a distance of 3 is generally better than a distance of 4. -
It depends on the lengths of the compared strings. If both strings have a length of three characters,
then a distance of 3 would be terribly bad. If both strings have a length of 100 characters, the
same distance would suggest, that they are almost identical. To overcome this issue, we have to
normalize and convert the distance, using a distance-to-similarity conversion:

simLev(sa, sb) = 1.0− D(sa, sb)
Dworstcase(sa, sb)

4Other related measures use variable cost adjustment. Needleman-Wunch, for example, uses variable costs for gaps,
i.e., insert/delete, depending on e.g., typographic frequencies or amino acid substitutability, — according to the domain
requirements.

30 Chapter 3. Improving ChangeDistiller

The denominatorDworstcase is equal to the maximum costs experienced under the assumption that
the longest common subsequence of s1 and s2 has a length of 0, i.e., that they have no characters
in common. If s1 and s2 are of the same length, then Dworstcase is equal to their length, since each
single character provokes a substitution. If their lengths differ, then we additionally have to take
insertions, and deletes respectively, into account. In our example, the strings s1 and s2 are both
11 in length and the edit distance was 3. This results in a similarity of:

simLev(s1, s2) = 1− 3
11

= 0.72

The Levenshtein Distance has some limitations. The measure is very susceptible to changes
of word or even of character order. The longest common subsequence lacks in robustness against
such kind of changes as we will show next:

s3 L e v e n s h t e i n
s4 s h t e i n L e v e n
Op D D D D D I I I I I

The strings s3 = Levenshtein and s4 = shteinLeven are, again, intuitively very similar. If
they are even found at about the same place in two version of a source code document, then it is
very likely that someone has performed refactorings e.g., by unifying identifier-nomenclature or
changing the order of method parameters. The Levenshtein Distance does not recognize this sim-
ilarity as our example illustrates: The longest common subsequence shrunk drastically to ’shtein’.
The remaining characters cause five insertions and five deletions, i.e., a total of ten change opera-
tions or a distance of 10 respectively. In terms of similarity:

simLev(s3, s4) = 1− 5 + 5
11

= 0.09

Levenshtein’s performance is rather poor in this case. Since we noticed during prototyping
that a lot of unintentional mismatches on the leaf-level were actually based on the deficiencies of
the string similarity measure, we are eager to find an algorithm showing more robustness. We
will present an alternative to the Levenshtein Distance in the next section.

3.5 Customizing the Algorithm for Source Code Changes 31

String Similarity Measures using n-grams

A family of string similarity measures is based on the Dice Coefficient [Dic45]—a modification of
the Jaccard Coefficient [Jac12]. Adamson and Boreham used the Dice Coefficient to rate the simi-
larity of strings by setting their n-grams into relation [AB74]. n-grams are constructed by putting
a sliding-window of length n over a string and extracting at each position the n underlying char-
acters. For instance, the 3-grams of the string “vertical” are: 3-grams(vertical) = {‘ver’, ‘ert’, ‘rti’,
‘tic’, ‘ica’, ‘cal’}. The n-gram similarity measure defined by Adamson and Boreham is the ratio of
twice the number of shared n-grams and the total numbers of n-grams in two strings:

simng(sa, sb) =
2× |n-grams(sa) ∩ n-grams(sb)|
|n-grams(sa) ∪ n-grams(sb)|

Dice Coefficient with bi- and tri-grams are popular word similarity measures. In combination
with source code, bi-grams are used by Xing and Stroulia for their UMLDiff approach [XS05],
tri-grams by Weidl and Gall for their CORET approach [WG98]. In the following, we will restrict
our investigations to Dice with 2-grams .

s1 = VerticalDrawAction s2 = DrawVerticalAction

ve er rt ti ic ca al

ld

dr ra aw wa

ac ct ti ioon

dr ra aw

wv

ve er rt ti ic ca al

la

ac ct tiio on

ve
er

ti
ic

ca

al

dr
ra

aw
ac

ct
ti

io
on

ld

wa

wv

la

Union = 32 Pairs
Intersection = 14 Pairs

Figure 3.13: The two strings s1 and s2 have 14 pairs of characters in common out of a total of 32 pairs.

Figure 3.13 shows an example for two similar strings, namely s1 = V erticalDrawAction and
s2 = DrawV erticalAction. Levenshtein almost fails to recognize their similarity (simLev(s1, s2) =
0.55), whereas Dice perform very well:

sim2g(s1, s2) =
2 ∗ 14

32
= 0.875

Using a hash-table to store the n-grams of both strings, the runtime complexity of the n-gram
similarity measure is in O(n+m)—one order of magnitude faster than Levenshtein.

32 Chapter 3. Improving ChangeDistiller

The Dice Coefficient seems to be more robust to changes to the order of words, since it does
not rely on the longest common subsequence. Instead, it focusses on common characters and
treats ordering subordinate. For our concerns regarding source code in general and source code
identifiers in special, the metric seems to allow a more intuitive similarity scoring. The measure
performs worse than Levenshtein only under rare circumstances (rare, at least in conjunction with
source code): It seems to be more susceptible to (real, i.e., not caused by moves) substitutions in-
cluding misspellings due to phonetical reasons that are common in natural language. The strings
Levenshtein and Levnshtain for example, score with a similarity 0.72 when Levenshtein is used, but
only with 0.5 when the Dice algorithm is used. We assume furthermore that the measure is lim-
ited to strings of a certain maximum length (i.e., fuzzy scoring can occur when comparing huge
classes or whole programs) due to the following reason: The given number of different charac-
ters is finite. As a string gets longer, it will become more likely that most permutations between
characters are exhausted. The amount of character pairs in the intersection will therefore increase,
leading to a kind of blurred similarity. However, we were not yet able to prove this expectation
experimentally, but instead, we were able to confirm the applicability of the algorithm to source
code on the statement- and even method-level.

Other Similarity Measures

Besides the Levenshtein Distance and the Dice Coefficient, we also experimented with most of the
other measures that are implemented in SIMPACK. Although some of them performed very well
in special cases, their overall performance in terms of source code statement comparison was not
as promising as the approach using 2-grams . Nevertheless, we describe two of them representa-
tively and discuss the circumstances under which they will score best in a very briefly manner.
A more elaborate view on different string similarity measures for name-matching purpose can be
found in [CRF03]:

• Jaro: Jaro presented his string distance metric first in 1989 in [Jar89]. The metric tries to
cover typical spelling deviations between two strings sa and sb and is defined as follows:

simJaro(sa, sb) =
1
3

(
|s′a|
|sa|

+
|s′b|
|sb|

+
|s′a| − Ts′a,s′

b

2|s′a|

)

|s′a| is the number of characters in sa that are common with characters in sb. |s′b|, in return, is
the number of characters in sb that are common with those in sa. Next, |sa| and |sb| are the
lengths of sa or sb, respectively. Ts′a,s′

b
is the number of necessary character-transpositions.

On the one hand, the approach by Jaro shows very robust behavior against changes in word
or character order. On the other hand, it behaves often too fuzzy and matches uninten-
tionally statements such as the assignments b = Math.round(Math.random()); and
b = Math.abs(number); with high similarity scores. Furthermore, it did calculate a
similarity of 0.0 in rare cases, even if the strings where almost the same. We were not able
to determine whether this is an implementation issue of SIMPACK or desired behavior.

• Monge-Elkan: Monge and Elkan suggest a recursive matching scheme in [ME96]. We found
that it shows a good overall performance (as also stated empirically in [CRF03]). Neverthe-
less, it was not as robust to ordering changes during our experiments as the approach using
Dice.

3.5 Customizing the Algorithm for Source Code Changes 33

Conclusions on String Similarity Measures

We have evaluated several ways to compare the similarity between a string sa and another string
sb during the last few sections. Our goal was to find a measure that allows intuitive scoring
of node-values, taking the peculiarities of source code on the statement-level into account. The
measure must therefore meet the following requirement: Common refactorings, for instance re-
naming including insertions or removals of single words and changes in the order of the words,
must be detected. Furthermore, correction of misspellings, including changes on single charac-
ters, should not be overrated. Hence, the desired metric must be robust to random small changes
as well as to larger changes caused particularly by reordering. On the other hand, it should not
behave too fuzzy, i.e., it must not produce too many false negatives. Levenshtein cannot fully sat-
isfy this conditions, since it is too susceptible to changes to the longest common subsequence of
two strings. The Dice Coefficient using 2-grams yields a very good overall performance, although
other approaches are superior under rare circumstances. We therefore prefer this algorithm for
comparisons of leaf-values. For values of inner nodes, e.g., for if-conditions and other short
strings, where it is more likely that the longest common subsequence remains almost equal in
subsequent versions to the whole strings, Levenshtein scores more precisely at least in theory.
However, as we will explain later on in Chapter 4, we were not able to verify this speculation
during our case study, possibly due to the character of our test data.

3.5.3 Evaluated Tree Similarity Measures
Chawathe et al. presented a simple but quite powerful tree similarity measure for inner node
matching when they introduced Matching Criterion 2 (see Section 3.3.2). In this section, we will
evaluate its theoretical suitability in terms of source code compared to an approach using also the
Dice Coefficient, which was for example used by Baxter et al. for code clone detection.

Tree Similarity after Chawathe et al.

Next, we review the similarity measure for inner nodes that Chawathe et al. use in their work:

simChawathe(x, y) =
|common(x, y)|
max(|x|, |y|)

Although its solid performance during our experiments speaks for it, we see some theoretical
limitations concerning source code. The measure takes only leaf descendants into account, when
deciding whether two nodes should match. Inner node descendants are ignored completely. This
seems to be an adequate approach for similarity analysis of structured documents such as those
that are written in LATEX, where the inner nodes are only used for structuring means and do not
hold any—or only few—semantics. For source code, inner nodes are far more important, since
some of them additionally cover fundamental constructs, for instance iterations and alternatives
or exceptions handling. We are not yet sure about the implications on the quality of our similar-
ity analysis and whether we should try to cover this issue with our syntactical/structure-based
approach or if we should leave this to purely semantic work such as the already mentioned algo-
rithm based on control-flow in [AOH04].

A second concern applies to the influence of leaves that are not common between the left and
the right tree. We noticed that the amount of common leaves is somewhat underrated when it
comes to large changes. We think that common statements should be weighted more significantly,
since we compare subsequent versions of methods where it is very likely that inner nodes with

34 Chapter 3. Improving ChangeDistiller

a certain critical number of common leaf-descendants should match: We found examples, where
dozens of statements were extracted from an if-statement into a new method during refactoring.
Although the core of the if-block remained the same, the original subtree could not be matched
anymore with the modified one using the formula by Chawathe et al.

Dice Coefficient for Inner Nodes

Baxter et al. use another metric for computing the similarity of abstract syntax trees in [BYM+98].
Although their work applies to code clone detection, it yields some interesting perspectives to
our approach. They use the Dice Coefficient to calculate the similarity between two subtrees:

simDice(Ta, Tb) =
2× |nodes(Ta) ∩ nodes(Tb)|
|nodes(Ta) ∪ nodes(Tb)|

where nodes(Tx) denotes all nodes of Tx including the root. Note that Baxter et al. involve all
nodes—not only leaves—in the similarity calculation. This accommodates to one of the points
that we have criticized in the approach of Chawathe et al. The other point that we have ques-
tioned, was whether commonalities amongst descendants should have more influence on the
similarity value of two inner nodes. The Dice Coefficient takes this issue into account by weight-
ing common nodes with a factor of 2. Let us do an exemplary calculation on the example in
Figure 3.14. T1 and T2 are isomorphic, except the following nodes: Node 2 has been deleted;

L: IF

L: THEN

L: MI L: MI

T1

L: MI L: IF

L: THEN

L: MI

L: MI
3

4

T2

L: THEN L: THEN

L: MI

L: ELSE

L: IFL: IF

1

✘

2

Figure 3.14: Nodes 1 and 3 do no longer match. Node 2 was deleted whilst node 4 is an insertion. Otherwise, the
trees T1 and T2 are isomorphic.

Nodes 1 and 3 do not match and Node 4 has been inserted between T1 and T2. Note that we
choose to ignore the then- and the else-nodes, since they belong to each if-statement implic-
itly and add nothing of interest to the tree structure. So, we count three shared nodes, i.e., the
two if’s and a single method invocation statement. There are two nodes in T1 that do not have
a counterpart in T2: Nodes 1 and 2. In T2, however, there are the nodes 3 and 4 which have no

3.5 Customizing the Algorithm for Source Code Changes 35

partner in T1. This leads to: S = 3, L = 2 and R = 2 and hence to the following calculation:

simDice(T1, T2) =
2 ∗ 3

2 ∗ 3 + 2 + 2
= 0.6

A similarity of 0.6 denotes that the trees T1 and T2 match. In contrast, Chawathe et al.’s Matching
Criterion 2 states a similarity of 0.33, which lies clearly below threshold t. As we can see, when
we use the Dice Coefficient for calculation, the differences between the both trees have somewhat
taken a back-seat in comparison to the commonalities.

Conclusions on Tree Similarity Measures

Even though the approach by Baxter et al., using the Dice Coefficient, was able to convince us
regarding artificial examples such as shown above, we see some issues. To illustrate them, we
draw the conceptual difference between Chawathe et al.’s and Baxter et al.’s work as follows:
Our matching algorithm proceeds through the tree in a bottom-up manner, i.e., using post-order
traversal. Consequently, we match leaves before inner nodes. Next, Chawathe et al. use leaf-
node-descendants only, to decide whether two inner nodes are similar or not. That is completely
unproblematic, since all leaves were visited before we did proceed to the inner node. In contrast,
Baxter et al.’s metric involves the root of the subtree to decide whether two code blocks are clones
or not, which is a kind of more holistic view on subtrees, rather than a focus on individual inner
nodes.

The conclusion is, that if we simply exchange both tree similarity measures with each other,
we change the semantics of our comparison slightly. In other words, the first approach—that
by Chawathe et al. —focusses on determining whether two inner nodes are the same merely
because of their children, whereas the second approach—that by Baxter et al. —already involves
the equality of the labels and the similarity of the values of the inner nodes under investigation to
determine whether the whole subtrees match. The first approach seems to apply better to source
code changes, since we are interested whether two particular inner nodes are similar (for example
to perform an update-operation on them if their values undergone a slightly change between two
versions), whereas the second approach is customized for detecting whole blocks of duplicated
code, where a single node is somewhat subordinate.

Suprisingly, as we show in Chapter 4, Chawathe et al.’s tree similarity metric produced better
results on our test data than the Dice Coefficient. Nevertheless, we like the way how Baxter
et al. weight common nodes stronger than mismatches and that they also involve inner-node-
structure, rather than just leaves. Future work should therefore aim at integrating these two
aspects into CHANGEDISTILLER. Unfortunately, good alternatives for tree similarity measures
that are applicable to ASTs are rare. Most of other work in tree similarity research seems to be
locked to a particular domain, e.g., chemistry or biology. The tree edit distance approach by
Sager et al. in [SBPK06] might contribute to our efforts, but we were not yet able to evaluate this
assumption.

36 Chapter 3. Improving ChangeDistiller

3.5.4 A Better Matching Algorithm
We have discussed the limitations of Chawathe et al.’s matching algorithm in Section 3.4. Next, we
present an algorithm which is still based on the work by Chawathe et al., but has been improved
in terms of its applicability to source code. Our enhancements allow us to overcome most of
the shortcomings that we have mentioned earlier. This proposition is proven in Chapter 4 by
providing an extensive benchmark based on a medium-sized real world software project.

We introduce our approach in a bottom-up manner, starting with improvements regarding
matching of leaf nodes. Next we discuss solutions for inhibiting propagation of mismatches to
higher levels of the tree. Last but not least, we suggest a heuristic for damping down the negative
impact of Matching Criterion 3 which was introduced in Section 3.3.2 and generally fails to hold
for source code. Interestingly, we experience synergetic effects between our efforts, which we
discuss later on. A second improvement—at least theoretically, since we were not yet able to
prove better results using our test data—is the way how Baxter et al. weights shared or common
nodes by using the Dice Coefficient: By weighting shared nodes by a factor of two, common nodes
have a greater influence on the similarity of two subtrees than different ones.

Improving Leaf Matching

Leaves of the same kind are matched on a per-value basis by comparing strings. A good string
similarity measure is crucial to the outcome of the algorithm. We have outlined several options
and have concluded that the Dice Coefficient using 2-grams for the calculation of string similar-
ities yields more promising results than the originally implemented Levenshtein Distance mea-
sure. Since we no longer use a distance metric to define the compare-function, but rather a similar-
ity, we have to invert the relationship between the compare-function and the threshold parameter
f . By applying the new metric to Chawathe et al.’s Matching Criterion 1, we can conclude the first
step of improvement. The modifications are highlighted in blue:

Modified Matching Criterion 1: For leaf nodes x ∈ T1 and y ∈ T2, (x, y) can be in a
matching only if l(x) = l(y) and compare(v(x), v(y)) ≥ f for some parameter f such
that 0 ≤ f ≤ 1. The compare-function is defined as follows:

compare(v(x), v(y)) = simXS(v(x), v(y))

Inhibiting Propagation of Mismatches for Small Trees

Solving the problem of propagation of mismatches is much harder to achieve than customizing
leaf-matching. We are not yet able to get rid of it completely, but we can improve the algorithm’s
behavior in terms of small subtrees. We propose two different approaches to the problem: The
first and probably most obvious solution are dynamic thresholds. The second approach relies on
a tree similarity measure that is equivalent good for small- as well as for larger subtrees. The
approaches are—at least theoretically—complementary.

• Dynamic Thresholds: The idea behind lowering the threshold t for trees that do not reach
a certain number of children, is to weaken the disproportionately high impact that small
changes can have to small subtrees. We have experienced a lot of small subtree structures
while analyzing common software, such as small if-blocks where single statements were
added or removed. Such an example is drawn between Listing 3.5 and Listing 3.6: The
developer decided somewhere between committing the original code block and the mod-
ified one that he wants to implement a logging factory and therefore he introduced log-
statements e.g., along the program path for debugging purpose. The inner nodes represent-
ing the if-statement have one single leaf-descendant in common, whereas the maximum

3.5 Customizing the Algorithm for Source Code Changes 37

if (cancelled()) {

close();

}

Listing 3.5: A small if-block.

if (cancelled()) {

close();

logger.debug("user has cancelled the action);

}

Listing 3.6: A logging statement has been added to the example introduced in Listing 3.5

number of leaves in either trees is two. The node similarity is therefore 0.5 according to
Matching Criterion 2. Thus, a mismatch occurs if we fix threshold t above 0.5. In case that
there are additionally e.g., ten unchanged statements in both if-blocks while the single in-
sert remains, the similarity would rise up to more than 0.9. We experience some kind of
imbalance.

As a quick and dirty solution, we can decide to lower the threshold for all inner nodes,
no matter how many leaf-descendants they count. This injects undesired behavior into
the algorithm: Imagine a god-class with methods that contain if-blocks made up of 500
statements. Can we still consider the if-blocks as similar when 250 statements change
completely between two versions? Especially, when there are other if-blocks involved that
show also a significant similarity relationship to the modified one. Hence, we summarize
our thoughts in one sentence, before we turn towards a better approach: We cannot achieve
a intuitive similarity scoring if we use the same thresholds for all inner nodes, disregarding
their number of leaf-descendants.

Alternatively, the threshold t shall be chosen dynamically. Dynamically, meaning in regard
to the size of the subtrees under investigation. Hence, we customize Matching Criterion 2.
Again, the modifications are highlighted in blue:

Modified Matching Criterion 2, Variant a: Consider a matching M containing
(x, y), where x is an internal node in T1 and y is an internal node in T2. Define:

common(x, y) = {(w, z) ∈M |x contains w, and y contains z}

Then in M we must have l(x) = l(y) and

|common(x, y)|
max(|x|, |y|)

≥ t

for some t satisfying

1
2
≤ t ≤ 1

if each, x and y, have more than n ∈ N leaf-descendants or

38 Chapter 3. Improving ChangeDistiller

0 ≤ t ≤ 1
2

otherwise.

We experience good matching results for t = 0.6 if n > 4 or t = 0.4 for n ≤ 4. See Chapter 4
for details. It is even imaginable to use a more nuances for setting the threshold. This should
be a subject to future research.

• Another Tree Similarity Measure: Another approach aims at integrating another tree simi-
larity measure into Matching Criterion 2, - in order to be exact, a measure that is more robust
to single mismatches. More robust in a way, that more changes between the descendants
are accepted, before a mismatch is propagated to a higher level.

A good solution involves all node descendants—not only leaves—on the one hand and
assesses a bigger importance to commonalities on the other hand. We have discussed the
reasons for both claims before, but until now we have failed to mention an acceptable side-
effect of the first one: If we use a measure that takes inner nodes into account, we do not
only cover more of the structure of the tree, we furthermore distribute mismatches over a
greater number of nodes, supporting our efforts to dilute mismatch propagation. A possible
candidate for replacing Chawathe et al.’s tree similarity measure has been introduced above:
Baxter et al. weight common nodes (inner nodes as well as leaves) twice the times that
changes are taken into account. Their Dice-based metric is therefore predestinated to replace
the one of Chawathe et al.’s Matching criterion 2. The modifications that were necessary are
highlighted in blue as usual:

Modified Matching Criterion 2, Variant b: Consider a matching M containing
(x, y), where x is an internal node in T1 and y is an internal node in T2. Define:

common(x, y) = {(w, z) ∈M |x contains w, and y contains z}
and

dx = {∀w|x contains w, but y does not contain w}
and

dy = {∀w|x does not contain w, but y contains w}

Then in M we must have l(x) = l(y) and

2 ∗ common(x, y)
2 ∗ common(x, y) + dx + dy

≥ t

for some t satisfying 1
2 ≤ t ≤ 1.

Take a closer look at the differences between the Modified Matching Criterion 2, Variant b and the
original one: dx and dy denote the number of nodes that are found in either tree, but not in both.
Moreover, the formula is no longer limited to leaves only, but to all descendants—including inner
nodes—of x and y.

We have now applied all promised enhancements that we were able to implement without
modifying the matching algorithm by Chawathe et al. fundamentally. At the present point in
time, the improved algorithm is more flexible than its predecessor when it comes to matching
node-values and it is able to prevent most propagations of unintended mismatches from lower to
higher levels in small subtrees. What is still left over, is the instance, that a non-minimal edit script
will be calculated, every time that Matching Criterion 3 does not hold, i.e., whenever matching

3.5 Customizing the Algorithm for Source Code Changes 39

more than one counterpart of a node from the left tree with a node from the right tree is possible
(or vice versa).

To overcome this severe insufficiency—at least severe in terms of source code—we have to
review the whole matching process. This will happen in the next section.

Rating the Similarities to Determine the Best Match

During the last few sections, we have presented some tweaks to the original matching algorithm
as presented by Chawathe et al.. The enhancements were rather easy to apply and involved a
new string similarity measure for comparisons of node values as well as a finer gradation on
thresholds for inner node similarities. In this section, our endeavors will go a step further. We
fundamentally change the way how tree matching—in particular leaf matching—works. By doing
so, we expect to cut down the numbers of those mismatches significantly that are related to the
fact, that Matching Criterion 3 does not apply to source code in many cases.

Let us quickly review the problem, before we are going to talk about solutions: Chawathe et
al.’s Matching Criterion 3 states (informally) that the compare function is a good discriminator of leaves
[CRGMW96]. In Section 3.4.3, we have disproved this statement for source code. Figure 3.15
shows another example for a configuration of statements, where the algorithm will fail. If not

L: IF

L: THEN

L: MI L: MI

T1

L: MI L: IF

L: THEN

L: MI

L: MI
3

5

T2

L: THEN L: THEN

1.0

0.8

L: MI
2

L: ELSE

L: MI
4

L: ELSE
1.0

1.0

L: IFL: IF

1

Figure 3.15: Another matching example: The trees are isomorphic except that node 5 has been inserted between T1

and T2. The labels of the dashed lines represent the similarity between the values of the interconnected leaves.

stated otherwise, we refer to this example during this section to illustrate our improved approach.
Node 1 and 3 should match, but instead, the algorithm assigns Node 5 to Node 1 as the partner
in the matching set. Remember, this is due to the way the algorithm proceeds from bottom to the
top and from left to right: While comparing node 1 with each other leaf in T2, we will visit node
5 before we can reach the best matching node, which is in this case Node 3. Since the similarity
calculated by compare(v(node1), v(node5)) lies above the threshold (we still assume that f > 0.5),
the node pair is added to the matching set, both nodes are marked as matched and therefore they
will not even be considered in further comparisons.

Chawathe et al. propose the following post-processing step:

40 Chapter 3. Improving ChangeDistiller

Proceeding top-down, we consider each tree node x in turn. Let y be the partner
of x according to the current matching. For each child c of x that is matched to a node
c′ such that parent(c′) 6= y, we check if we can match c to a child c′′ of y , such that
compare(c, c′′) ≤ f , where f is the parameter used in Matching Criterion 1. If so, we
change the current matching to make c match c′′. [CRGMW96]

Whenever the acyclic label condition (introduced in Section 3.2.3) holds, the suggested post-
processing step will be able to correct most of the sub-optimal matchings. Nevertheless, regarding
our example, post-processing improves matching indeed: The post-processing step proceeds top-
down in T1 and eventually reaches the parent of node 1, let us call it node x. Node x’s counterpart
y in T2 is the parent of Node 3. The algorithm detects that the counterpart of Node 1 in the
matching set has not y as parent. Therefore, it checks each of the children of y, whether they are
also matchable with Node 1. This is the true for Node 3 and thus, matching can be corrected.

Figure 3.16, however, shows the limitations of post-processing: Node 1 has moved between
T1 and T2 to a new position: It has moved one level up (which is per definition not possible
whenever the acyclic label condition is present) and is now represented by node 2. Post-processing
is not possible under these circumstances; The parent of node 1 has not even a partner in T2.

L: IF

L: THEN

L: MI L: MI

T1

L: MI

L: IF

L: THEN

L: MI

L: MI

3

T2

L: THEN L: THEN

1.0

0.6

2

L: ELSE

L: IFL: IF

1

L: ELSE

Figure 3.16: A trivial example of two trees, where the post-processing step will not be able to improve matching.

Although the mismatch in the last example is negligible—either way, a single statement par-
ent change and a single statement insert will be classified—other more sophisticated examples
involving a lot of unnecessary operations are thinkable. Thus, we are going to present an algo-
rithm that covers both special cases; The one resolved by Chawathe et al.’s post-processing phase
and the one that we have discussed now. We have seen a lot of examples during the last few
sections, where failing of Matching Criterion 3 to hold, leads to a non-minimal edit-script in the
bottom-line. Now, we are able to break down the insufficiencies to a single condition:

Let x be a leaf in T1 and y be his partner in T2. Furthermore, let z be another leaf in
T2, so that

compare(v(x), v(y)) ≥ f

3.5 Customizing the Algorithm for Source Code Changes 41

and

compare(v(x), v(z)) ≥ f

but

compare(v(x), v(y)) > compare(v(x), v(z))

Whenever z will be visited before y during post-order traversal, a sub-optimal match-
ing will be calculated.

Above, we state that the first match might not always be the best match, which usually results to
sub-optimalities. According to this, we can now derive a solution for our problem:

Again, let x be a leaf in T1. Furthermore, let pi be its i-th possible partner in T2,
such that i ∈ N and

compare(v(x), v(pi)) ≥ f

We mark (x, pi) as best match until we find another possible partner pi+n, such that
n ∈ N and

compare(v(x), v(pi+n)) > compare(v(x), v(pi))

In this case, we mark (x, pi+n) as best match. We will proceed by doing so, until we
have tried to match all possible partners in T2 to x.

The solution involves finding the leaf-partner y ∈ T2 that matches x ∈ T1 best. There are
configurations of statements thinkable, so that there is more than one possible partner for x in T2,
e.g., when one and the same statement can be found over and over again in a block of code (for
example System.out.println()’s for debugging). In this case, we apply the heuristic, that
unchanged statements stay in situ between subsequent versions of a source code entity: The first
’best’ match, i.e., the matching pair with the highest similarity score that has been visited during
post-order traversal first, will make it into the final matching set; No matter if there are other
matching pairs that have the same similarity.

We have now developed an approach for finding the best partner y ∈ T2 for leaf x ∈ T1. We
did not yet discuss the fact, that this relationship is not always a two-way optimum, i.e., whether
x is also the best partner for y. Consider the example in Figure 3.17: The leaf in T2 that matches
best with Node 1 is Node 4. It is, in fact, the only possible partner for node 1, although Node 2
and 4 should make it into the final matching set instead.

We can overcome this issue: We simply calculate the similarity of each leaf pair (xi, yj) ∈
T1 × T2 and consider those ones to be added to the final matching set first, that show highest
similarity.

Finally, we present our improved matching algorithm in Algorithm 3.2. We call it BestMatch.
Before we conclude this chapter, we point out noteworthy things on the algorithm. Mfinal is a

set-like data-structure. It does not matter whether an order is preserved between the node pairs
in the final matching set. Mtemp must be a list-like data-structure that accounts for the order of its
elements, because we perform sorting on them. Lines 4 to 17 perform leaf matching. This task is
divided into three parts:

1. Lines 4 to 11 calculate a similarity for each leaf pair (x, y) in T1×T2. Very important: This is
performed in a bottom-up and left-to-right manner (post-order traversal) and only pairs of
leaves whose similarity lies above threshold f , can make it into the matching set. Otherwise,
we miss real insert and deletes, since they will far more often be classified as updates.

42 Chapter 3. Improving ChangeDistiller

Data: Trees: T1, T2

Result: The set containing the final matchings: Mfinal

Mfinal ← φ;1

Mtemp ← φ;2

Mark all nodes of T1 and T2 ”unmatched”;3

foreach leaf x ∈ T1 do4

foreach leaf y ∈ T2 do5

sim(x, y)← compare(v(x), v(y));6

if sim(x, y) ≥ f then7

Add (x, y, sim(x, y)) to Mtemp;8

end9

end10

end11

Sort Mtemp into descending order, according to the leaf-pair-similarity;12

foreach leaf-pair (x, y, sim(x, y)) ∈Mtemp do13

Add (x, y, sim(x, y)) to Mfinal;14

Remove all leaf-pairs from Mtemp that contain either leaf x or y;15

Mark x and y ”matched”;16

end17

foreach unmatched node x ∈ T1, if there is an unmatched node y ∈ T2, such that equal(x, y) do18

Add (x, y) to Mfinal;19

Mark x and y ”matched”;20

end21

Algorithm 3.2: Our improved algorithm called BestMatch.

3.5 Customizing the Algorithm for Source Code Changes 43

L: IF

L: THEN

L: MI

T1

L: MI

T2

1

1.0

0.6

L: IF

L: THEN

L: MI
2 4

Figure 3.17: To determine the best match overall, we cannot simply focus on finding the most similar partner y ∈ T2

for x ∈ T2. We have to ensure that this relation is symmetric.

2. Line 12 sorts the leaf pairs into an ascending order, according to their similarities, i.e., pairs
that where more similar are moved to the beginning of the list of matches. We use a modified
mergesort algorithm that offers n log n performance. Furthermore, the sorting algorithm is
stable, i.e., it preserves the order amongst equal elements. This is rather important for our
concerns: Review Figure 3.15, where Nodes 1 and 3, as well as Nodes 1 and 4 match, both
pairs with a similarity score of 1.0. A stable sorting algorithm accounts for the heuristic
mentioned above, that unchanged statements stay in situ between subsequent versions of a
source code entity.

3. Lines 13 to 17 decide whether a leaf pair will make it into the final matching set. In the end,
a leaf l can be matched at most once (or not at all), so we have to remove all pairs containing
l from Mtemp, after a pair containing l was added to Mfinal.

The last step, Lines 18 to 21, was adopted from Chawathe et al. as it stands. The step performs
the matching of the inner nodes based on Matching Criterion 2 or the modified criterions, respec-
tively. This happens again bottom-up. What is left over, is to define the equal(x, y) for the inner
nodes more explicitly.5 We provide two definitions, which will be evaluated against each other
during the next chapter:

equal(x, y) =

{
true, if l(x) = l(y) and |common(x,y)|

max(|x|,|y|) > t

false, otherwise

The parameter t is lowered or raised dynamically, depending on the number of descendants
of x and y, as discussed above. The other possible definition follows:

equal(x, y) =

{
true, if l(x) = l(y) and 2∗common(x,y)

2∗common(x,y)+dx+dy
> t

false, otherwise

5In fact, the function does not evaluate equality, but rather similarity of two inner nodes. Nevertheless, we decide to
keep the identifier that Chawathe et al. have chosen, for the reason that we do not want to claim that this part of the
algorithm is different in contrast to their approach.

44 Chapter 3. Improving ChangeDistiller

In the latter case, we chose not to set threshold t dynamically, since the tree similarity measure
already does a good job for small tree structures. Instead, we fix t at 0.5.

We have now applied all the improvements to our algorithm as promised. It will now yield
optimal results in most cases in terms of matching and consequently, in terms of a minimum
conforming edit script. There are still some minor shortcomings, that we will discuss in the next
section.

3.6 Conclusions and Shortcomings 45

3.6 Conclusions and Shortcomings
In the beginning of this chapter, we have introduced AST-based source code change detection.
Later, we have seen that there are often significant differences between other structured docu-
ments and source code in terms of change detection. During our research, it became evident that
a good string similarity measure is crucial to reach good and intuitively comprehensible match-
ings. Levenshtein’s String Edit Distance was not able to fully convince us. The Dice Coefficient
using 2-grams seems to apply better to our requirements in most cases. Nevertheless, no matter
how good a string similarity can be calculated, there are some limitations which we cannot over-
come. Under circumstances where syntactical similarity is not present, our algorithms fail, no
matter if a human’s understanding of context and semantics is able to resolve the same difficul-
ties. For example, we doubt, that it ever will be possible to match the two identifiers draw and
paint reliably when using a purely syntactic approach.

Another limitation of the original matching algorithm by Chawathe et al. is its susceptibility to
propagation of mismatches in small subtree structures and sub-optimalities whenever Matching
Criterion 3 does not hold, i.e., when there is more than one potential matching partner for a node
present. Our improvements cover both aspects by computing the best rather than the first match
for leaves. Unfortunately, it is still possible that our approach will fail under rare circumstances,
which we describe informally as follows: Imagine, that there are two quite similar source code
statements—statement a and statement b—and that a is updated between two subsequent revi-
sions to a′. Otherwise, no changes were applied. Assume further, that a′ is now more similar to
b than to a. If this conditions are met, then our approach will possibly fail to match a with a′ and
instead considers b as the partner of a′, depending on the tree structure.

However, under these rare circumstances, it is usually even for a human developer hard to
classify the change relations correctly. Remember, the algorithm will always yield correct re-
sults—even under the occasions outlined above—but it might not be able to find a minimum con-
forming edit script. In most other cases, our algorithm performs well, as we will prove next, in
particular in Chapter 4.

Chapter 4

Establishing a Benchmark

In Chapter 3, we have proposed several improvements for the change detection algorithm for
hierarchically structured information presented by Chawathe et al.. The desired outcome was
an algorithm that is customized for source code. Besides some artificial examples, we did not yet
prove that our efforts are superior to the originally implemented solutions in CHANGEDISTILLER.
We establish an elaborate benchmark in this chapter, before we will draw some final conclusions
and give some perspectives on future work in Chapter 5.

Our benchmark for assessing the quality of our proposals is founded on two important issues:
On the one hand, we use artificial test cases, that pin down tricky set-ups of statements. Although
this approach comes very handy while prototyping, we realize that only real world data will put
our improved algorithm to its paces. Hence, we integrated test data from the ARGOUML1 project
repository.

4.1 Requirements
The main requirement for designing an adequate benchmark that compares the original imple-
mentation of the change detection algorithm with our sophisticated solution, can be summarized
as follows: While prototyping, we are in need of quick feedback on the success of our attempts
to overcome the issues that arise, when we apply Chawathe et al.’s change detection algorithm
to source code, instead of LATEX documents. Our desired outcome, was a benchmark, that runs
through fast and puts out a limited number of metrics, that allow us to compare the performance
of the original algorithm with that of the modified one. Furthermore, we want to gain an idea how
good the overall performance of our algorithm is, i.e., we are curios about the distance between a
theoretical minimum conforming edit-script and the outcome that we experience in practice.

Our benchmark does not have to test CHANGEDISTILLER for correctness—correctness is guar-
anteed by an extensive JUnit-testsuite—but, in order to be expressive, it is a necessary precondi-
tion that the test-cases run through without any errors or failures. We concentrate therefore on
testing accuracy, as we will outline in Section 4.1.2.

Since CHANGEDISTILLER was implemented as a plug-in, it relies heavily on the infrastructure
provided by ECLIPSE. It is not executable as a standalone program. Thus, the general framework
for building our benchmark is restricted a priori to the ECLIPSE platform. Furthermore, we choose
to exploit the JUNIT4-framework2 for our concerns: JUNIT4 is the latest release of the well-known
regression testing framework by Gamma and Beck and it is already integrated into the latest

1http://argouml.tigris.org/
2http://www.junit.org/

48 Chapter 4. Establishing a Benchmark

public void testPerformBenchmarkPart1(){

a.b();

}

Listing 4.1: The identifier of test methods in JUnit 3.8 or earlier had to begin with test

@Test

public void performBenchmarkPart1(){

a.b();

}

Listing 4.2: In JUnit 4, test methods are simply annotated by @Test

version of ECLIPSE. The following points illustrate the advantages, that made us choose this
solution:

• Hit and Run: ECLIPSE provides a very useful test-runner for JUNIT, which is integrated
into the development environment. The plug-in development environment, also known as the
PDE-tools, take care that this even works for plug-ins. Hence, after the benchmark has been
implemented, a single click will load the so called run-time workbench and the necessary
plug-ins—including CHANGEDISTILLER and its dependencies, for instance EVOLIZERBASE
and the classes from org.eclipse.jdt—before it finally executes the benchmark. No
further user interactions are necessary. This fast and uncomplicated way of benchmarking is
very useful, since we want to evaluate quickly several options, e.g., different string and tree
similarity measures, various settings for the parameters f and t from Matching Criterion 2
or 3, respectively.

• Annotations: Since Release 4, annotation-support has been added to JUNIT. This means
that the test-runner no longer uses reflection to look for methods whose identifier starts
with test but rather for methods that are annotated by @Test. The difference is shown
in Listing 4.1 and Listing 4.2. Although this is not a must-have feature for our benchmark,
it still opens possibilities: We use several classes of test data; If we, for example, choose to
suppress all other parts of the benchmark than those that apply to small tree structures, we
can turn off everything else in a clean and comfortable way, by just removing the according
annotations or adding @Ignore-tags.

• One-time set up and tear down: The methods setUp() and tearDown() are past. They
have been replaced by the annotations @Before and @After. Additionally, the annotations
@BeforeClass and @AfterClass were added. Methods annotated by these tags run
exactly once before benchmarking/testing starts, or once after it ends respectively. This is
useful, especially when having several benchmark-methods annotated by @Test. Using
the old setUp()/tearDown()-facility, set-up and tear-down code is executed each time a
test method is invoked. Using the new mechanism, we are able to speed up our benchmark
significantly.

• Miscellaneous: There are other new features, that make the use of JUNIT more convenient.
Examples are static imports or timeouts for tests. We use neither one extensively, so we are
not going to discuss this features more deeply.

4.1 Requirements 49

4.1.1 Matchings, Change Operations or Classified Changes?
We described, what outcome we anticipate and what tools we use to build our benchmark. We
did not yet propose what exactly we will benchmark. Since no other tools similar to CHANGEDIS-
TILLER exist yet, that we can use as a reference, we have to decide between three options:

• The Matching Set

• Source Code Change Operations

• Classified Changes

Investigating the quality of the matching set is the most obvious approach, since we focussed
on improving the matching algorithm, whose direct output is the matching set. For that, we
have to manually investigate each statement in each revision n of a source code file and find this
partners in revisions n − 1 and n + 1. If we are able to complete this task—which is virtually
impossible for a significant number of files—we have to compare the expected matching set with
the one that the algorithm puts out and decide how we shall rate the mismatches relative to the
matches. We discard this option and turn to the next one.

After the matching set has been calculated, the algorithm extracts the raw source code change
operations, e.g., whether statement x has moved from parent y to parent z. Thus, the source code
changes provide the next possible hook for our efforts to develop a benchmark. Again, we have to
check each revision by hand to find the modifications compared to its predecessor. Furthermore,
let us assume that the statement System.out.println() moves from an if-statement with
the condition a>b to the top-level of the method body. To test the change operation that we expect
against the change operation that our algorithm finds, we have to specify exactly the tree-node
of the statement, including the type and value of the statement (method invocation with value
’System.out.println()’), the original parent-node, including type and value (if-statement
with the value a>b) and its new parent (root of the method body). Again, if done manually, this
does not scale for larger numbers of files containing source code over several revisions.

What is left over, are the classified changes: The source code changes from the step before
are analyzed, consolidated and classified by change types [FG06]. A move-operation for example,
can be classified as a statement ordering change or as a statement parent change, depending on the
character of the move. We still have to go through each revision of the test data and mark changes
by hand, but the change types are much easier to find and to implement manually, than matchings
or source code changes. This is due to the fact, that change types represent more or less the kind
of changes, that a human will intuitively find, when he compares two subsequent versions of a
file.

We can therefore make a decision: Usually, we will classify the change types manually, by
looking through each revision of each source code file that we choose to be in the pool of test
data. Regarding our few small classes used in the artificial test cases, we can be more precise and
check whether the correct source code change operations are found.

Before we can conclude this section and proceed by defining the metrics that state whether the
algorithm scores well or not, we have to prove that change types are an adequate instrument for
benchmarking the algorithm:

There is one shortcoming in terms of change types: We cannot evaluate exactly, where the
change occurred, since we do not store its exact location, but rather in which version and method
or class it was found. This means that we can tell that e.g., two statement inserts were found in
method foo() between revision 1.11 and 1.12, but not whether the statements were for example
inserted into a particular if-block or somewhere else. Nevertheless, we claim that comparing
expected changes with changes found is sufficient for testing the accuracy of the algorithm, due
to the following reasons:

50 Chapter 4. Establishing a Benchmark

We assume that classification of change types will always yield correct results—under any
circumstances. We can be sure about this, since there is not much margin left and our test cases
cover this issue in particular. Furthermore, an optimal matching will lead to an optimal amount
of source code changes. This is also guaranteed by our test cases. Thus, we can state that if our
matching algorithm works as intended, the complete change detection algorithm will produce the
outcome, that we have defined by manual inspection. The opposite case is also derivable: Sub-
optimal matchings will impact change type classification and produce an increased amount of
detected changes. There is one exception: When pairs of inserts and deletes are mistakenly classi-
fied as updates, the number of detected changes will decrease unintentionally (since one update
eliminates two operations: an insert and a delete). We can trace these situations by comparing
the number of detected inserts/deletes and the number of detected updates with the number of
expected changes of each type.

4.1.2 Accuracy - Precision and Recall
Precision and Recall are common for measuring the overall accuracy of information retrieval sys-
tems. Both measures were first proposed in [Cle67].

• Precision is the ratio of the number of relevant records retrieved to the total number of irrelevant
and relevant records retrieved. It is usually expressed as a percentage. [LC06]

We adapt the definition to our domain as follows:

Precision =
of changes found that were also classified manually

Total # of changes found

• Recall is the ratio of the number of relevant records retrieved to the total number of relevant records
in the database. It is usually expressed as a percentage. [LC06]

In terms of our work, we use:

Recall =
of changes found that were also classified manually

Total # of changes that were classified manually

The fact that our algorithm cannot ’retrieve’ incorrect but only non-minimal results introduces
some issues in terms of recall: Our approach is guaranteed to find all changes, leading to a recall of
100 percent—or even above 100 percent if we claim that also the operations that are not contained
in the minimum conforming edit script are relevant. Recall does not seem to apply to our domain,
since we can neither state that a higher recall is better nor that the opposite is true. Therefore we
measure accuracy only by calculating precision.

4.1.3 Performance
We give an overall idea on the runtime performance of the change detection algorithm by mea-
suring the effective time that it takes to calculate and classify all changes for our test data.

Change calculation is performed under MacOSX on a MacBook Pro, 2GHz Intel Core Duo
with 2048M physical memory. The memory available to the Java Virtual Machine was restricted to
1024M. Test data for the benchmark is stored locally and results are written to a MySQL5 database
via local loop back. The plug-in itself needs access to the CVS-repository of ARGUUML. We use a
copy of the repository that is stored on a Linux server (Intel Pentium 4 CPU, 2.8 GHZ with 2048M
physical memory) which resides in the local area network.

4.2 Choosing the Test Data 51

4.2 Choosing the Test Data
As stated in the introduction, we chose to use a combination of artificial test cases and real-world
data from the ARGOUML-project. We will discuss how we have chosen the data and what prepa-
ration steps it has undergone. Furthermore, we present how both parts—the artificial test cases
as well as the classes from ARGOUML—contribute to our benchmark.

4.2.1 Artificial Test Cases
We do not measure accuracy and performance for the test cases: They have to run through with-
out errors or failures in order to be successful, since we used them for test-driven development
of our improvements. The test cases represent simple issues that were objectionable in the origi-
nally implemented algorithm based solely on the work of Chawathe et al.. If the tested algorithm
cannot accomplish them, we can claim that it does not meet our fundamental requirements. Each
test case can be classified as addressing one of the following issues:

• Matching of values based on string similarities

• Matching of small tree structures

• Other ’special’ concerns

We substantiate these classes next by giving some examples for test cases that belong to them.

Test Case for String Similarities

We have proposed the Dice Coefficient using 2-grams for achieving a more intuitive matching of
node values. Review Section 3.5.2 for details.

We use classes similar to the ones in Listing 4.3 to test measurement on typical renaming
refactorings. In this particular example, we check whether the following source code change
operations were classified correctly:

• Update of the field declaration from:

treeDifferencersAlgorithmName

To:

nameOfTreeDifferencingAlgorithm

• Update of the method declaration from:

verticalBarPrint

To:

printVerticalBar

• Update of the variable declaration statement from:

DrawVerticalAction dva = new DrawVerticalAction(actionName);

To:

VerticalDrawAction vdAction = new VerticalDrawAction(actionName);.

52 Chapter 4. Establishing a Benchmark

//Left

public class Test {

private String treeDifferencersAlgorithmName = "algo";

public void verticalBarPrint() {

System.out.println("------");

}

public void aMethod(String actionName) {

DrawVerticalAction dva = new DrawVerticalAction(actionName);

}

}

//Right

public class Test {

private String nameOfTreeDifferencingAlgorithm = "algo";

public void printVerticalBar() {

System.out.println("------");

}

public void aMethod(String actionName) {

VerticalDrawAction vdAction = new VerticalDrawAction(actionName);

}

}

Listing 4.3: Data for the first test case. The class denoted by ’Left’ is the original version, while ’Right’ denotes the
modified one.

4.2 Choosing the Test Data 53

//Left

public class Test {

public void aMethod() {

if (aString.equals("test_string")) {

System.out.println("test_string");

} else {

Math.abs(-10);

}

}

}

//Right

public class Test {

public void aMethod() {

if (aString.equals("test_string")) {

System.out.println(

"test_string_new_string_which_is_to_long_

to_match_even_for_DiceCoefficient"

);

} else {

Math.abs(-10);

}

}

}

Listing 4.4: Data for the second test case.

Test Case for Small Trees

Small tree structures are often a problem when the approach by Chawathe et al. is applied to
source code. We have discussed this issue in Section 3.4.

Test cases which use data such as listed in Listing 4.4 decide whether the benchmarked al-
gorithm handles them correctly at least in trivial cases. The following two source code change
operations must be found:

• Delete of the method invocation representing:

System.out.println("test_string");

• Insert of the method invocation representing:

System.out.println(

"test_string_new_string_which_is_to_long_

to_match_even_for_DiceCoefficient");}

54 Chapter 4. Establishing a Benchmark

//Left

public class Test {

public void aMethod(MAssociationEnd from, MAssociation to) {

System.out.print("Placeholder");

System.out.print("Placeholder");

System.out.print("Placeholder");

System.out.print("Placeholder");

System.out.print("Placeholder");

}

}

//Right

public class Test {

public void aMethod(Object from, MAssociation to) {

System.out.print("Placeholder");

System.out.print("Placeholder");

System.out.print("Placeholder");

System.out.print("Placeholder");

System.out.print("Placeholder");

}

}

Listing 4.5: Data for the third test case.

Test Case for a Special Concern — Parameter Ordering Change

During our research, mainly while using data from ARGOUML, we have encountered some inter-
esting situations where the algorithm by Chawathe et al. fails terribly. One example is an unfor-
tunate parameter ordering change such as shown in Listing 4.4. This configuration of source code
statements is interesting: The type of the parameter from changes from MAssociationEnd to
Object. This causes a mismatch, since the strings have nothing in common. The crux in this case,
is the type of the second parameter; It is very similar to the first one. In other words, Matching Cri-
terion 3, discussed first in Section 3.3, does not hold. We illustrate the situation in Figure 4.1 and
discuss the implications below, when we apply the finished benchmark to the different versions
of the algorithm.

The System.out.print("Placeholder")-statements were inserted to ensure that the plu-
gin org.eclipse.compare is able to match the methods,3 but they show also a side-effect that
is very welcome: Since the five statements are identical, there are theoretically 52 possibilities to
match them. The test case checks therefore whether the similarity-rating algorithm is stable i.e., if
it changes the ordering of leaves that have the same similarity.

3In case that the method declaration changes, we use the whole method body, represented as string, to identify the
same method in subsequent revisions of a source code file.

4.2 Choosing the Test Data 55

L: MDT1

L: T

L: PAR

L: N L: T

L: PAR

L: N L: MI

L: B

L: MIL: MI L: MI

V: "MAssociation"V: "MAssociationEnd" V: "from" V: "to"

* V: "System.out.println"

L: MD

L: T

L: PAR

L: N L: T

L: PAR

L: N L: MI

L: B

L: MIL: MI L: MI

V: "MAssociation"V: "Object" V: "from" V: "to" ****

T2Update and Move

Delete

Insert

Figure 4.1: Tree representation of the classes from Listing 4.5. MD denotes a method declaration, PAR denotes
a parameter declaration. T denotes type, N denotes name, B denotes the method body, and MI denotes a method
invocation.

4.2.2 Real Life Data from ArgoUML
Artificial test cases are well-suited to investigate specific or theoretical issues. They are insufficient
for claiming whether an approach applies to real world problems or not. Therefore, we decided to
integrate data form a real mid-sized project. Further criteria are that the software is open source,
that it has undergone some evolution, and that the development team uses CVS in a disciplined
manner, i.e., that there are enough changes, distributed over a significant amount of revisions.
The ARGOUML-projects fits well into this schema, because a small team of people has developed
it further actively during several years. Since then, the tool has reached a size of several ten
thousand lines of code.

Choosing representative test data among the about 1400 classes is challenging. We applied
several heuristics and tools to find appropriate classes:

• A lot of changes over time, few changes between revisions: We have used the CVS Repos-
itory Exploring perspective in ECLIPSE to locate classes that have about 100 to 200 revisions.
Furthermore, we looked through the corresponding CVS-logs and investigated the classes
manually. The compare with...-functionality in ECLIPSE has proved itself helpful for this task.
We preferred classes which contain methods that show about ten to twenty changes per
revision.

• Medium sized methods: The larger a method, the more likely it is, that it contains interest-
ing structures and that it has undergone an evolution. Small examples are already covered
by our artificial test cases. Methods that are to big are difficult to classify by hand. We have
looked therefore for sizes in-between.

• Hierarchies: Methods that have a big nested statement depth are most interesting in terms
of the small-subtree-problem.

56 Chapter 4. Establishing a Benchmark

• Diversity of changes: We used the original implementation of CHANGEDISTILLER to re-
strict the number of candidates further. The class- and method statistics views as well as the
class change history gave us a general impression where the hotspots in terms of changes are
located within ARGOUML. We preferred classes with different types of changes, since we
want to benchmark a broad variety of structures. We had to inspect the candidates again by
hand; By doing this, we were able to locate files where the edit script was far from minimal.
These classes are particularly interesting: If our work leads to a significant decrease in the
number of detected changes, we can claim that we have reached an improvement.

• Significance levels: Changes that have a high significance level are critical. If to many—or
to few—of them are found, the quality and the expressiveness of the approach will suffer.
Classes, where high significance levels occur, are therefore candidates for our benchmark
data.

According to the heuristics above, we were able to locate four interesting methods—each one
in another class—that we have integrated into our benchmark. We performed a checkout of every
revision in which the selected methods experienced changes. Preparation of the classes was done
by deleting all fields and methods except the chosen ones. During manual inspection, we have
finally classified 447 changes in a total of 111 revisions. We introduce the methods briefly:

• org.argouml.uml.ui.ActionOpenProject.actionPerformed (ActionEvent) (37 revisions):
The class is responsible for loading projects. The method is involved into event-handling
and covers most of the functionality of the class. The example shows a typical sequence of
evolutionary steps: The method grows incrementally, experiences several smaller bug-fixes,
and becomes less maintainable until revision 1.18 where, eventually, major refactoring steps
were applied. It has an impressive nesting depth with a lot of if-statements and exception-
handling.

• org.argouml.uml.diagram.static structure.ui.FigClass.getPopUpActions(MouseEvent)
(32 revisions): With a total of about 200 revisions, the class is one of the most changing ones
in the whole project. It is responsible for displaying graphics for a UML Class in a diagram.
The method builds a collection of menu items relevant for a right-click popup menu on a
package. It contains several small structures for challenging our algorithm.

• org.argouml.uml.reveng.java.Modeller.addOperation(short, String, String, Vector, String)
(36 Revisions): The class is responsible for building the UML model from data received
by a source code parser. The method is invoked whenever the parser detects an oper-
ation that has to be added to the model. The structure is similar to the one described
for FigClass.getPopUpActions: There are for-loops, if-statements and try/catch-
blocks.

• org.argouml.persistence.ZargoFilePersister.loadProject(URL) (6 Revisions): The class is
responsible for file storage. The method loads the project into memory that resides under a
given url. We classify only declaration changes of the method. The body has therefore been
deleted and was replaced by dummy statements.

The artificial test cases as well as the benchmark based on real data are realized as common
JUNIT test cases.

4.3 Results 57

4.3 Results
We are able to prove the claims that we have made during Chapter 3: We stated that calculat-
ing string similarities using the Dice Coefficient with 2-grams allows more intuitive matching of
leaves than Levenshtein does. We claimed furthermore, that the original change detection algo-
rithm by Chawathe et al. does not apply well to the characteristics of source code. We proposed
an alternative—the so called BestMatch-Algorithm. We speculated further, which tree similarity
measure, the one used by Chawathe et al. or the Dice-based one suggested by Baxter et al., yields
better results in terms of inner node matching.

We present and discuss selected comparisons between different configurations of algorithms,
i.e., we show how the different approaches perform against each other: We benchmark different
combinations of:

• The original matching algorithm for leaves by Chawathe et al. or our BestMatch respectively.

• Either the tree similarity measure suggested by Chawathe et al., or the one using Dice are
used for inner node comparisons.

• The ’Dynamic thresholds’-approach, as long as we do not use Dice to calculate the inner
node similarity. We lower the threshold t to 0.5 whenever the left and the right tree roots
have four or less descendants.

• We combine the ’base’ algorithms with either Levenshtein- or the Dice-based string similar-
ity measure for matchings leaf-values.

We fix the thresholds at f = 0.7 and t = 0.6 if not stated otherwhise. Further benchmark
results can be found in Appendix A.

4.3.1 Running the Artificial Test Cases
Remember, in Section 4.2.1 we have defined three different classes of problems that are covered by
particular test cases: String matching issues, small subtrees and a particular special concern. They
are the first barrier that our test candidates have to overcome. We can state generally that config-
urations using Levenshtein do not pass the first test, i.e., the one that involves renaming of iden-
tifiers. The approach by Chawathe et al. fails on the small tree structures, unless it uses the Dice
Coefficient to calculate inner node similarity or unless it is enhanced with dynamic thresholds.
Very interesting is our special concern: The parameter type change (see Figure 4.5), where the
type of the first parameter has changed from MAssociationEnd to Object. Each configuration,
except the ones that use our BestMatch-approach, fails terribly on this challenge. They match the
first parameter of the original version with the second parameter of the modified version, which
is not an intuitive matching and leads consequently to an exchange of MAssociationEnd from
with MAssociation to, i.e., to unnecessary update and move operations. The right parameter
in the original version is deleted completely, whereas the first parameter in the modified version
is inserted again. As indicated, BestMatch passes this challenge with flying colors by detecting
that there is a better match for MAssociationEnd than MAssociation.

4.3.2 Declaration Changes
None of the algorithm configurations has experienced problems while classifying declaration
changes. All of them were able to detect each change type correctly. Nevertheless, in order to
be able to generalize this result, we have to find test data with a lot of tricky declaration changes.
This will be subject to future work.

58 Chapter 4. Establishing a Benchmark

4.3.3 Body Changes
In this section, we confront the different approaches with various changes taken from the classes
out of the real life project ARGOUML. We start benchmarking by investigating the unmodified al-
gorithm by Chawathe et al. as it was originally implemented in CHANGEDISTILLER. Its accuracy
is shown in Table 4.1.

Operation Expected Found Precision
Condition Expression Change 33 24 1.0∗

Alternative Part Insert 2 13 0.15
Alternative Part Delete 0 14 0
Statement Update 181 133 1.0∗

Statement Insert 96 205 0.47
Statement Delete 94 196 0.48
Statement Ordering Change 3 44 0.07
Statement Parent Change 31 55 0.56
Total 440 684 0.64

Table 4.1: Original algorithm by Chawathe et. al., using Levenshtein. f = 0.7. Distilling took 8053 ms.

Values annotated by ’*’ illustrate the limitations that arise when focussing solely on precision
as a measure for accuracy. The value of 1.0 suggests that the performance is very good, although
we have missed a lot of changes of some particular types. To be exact, we did not miss any
changes, but we did not find the minimal amount of operations to apply them. Calculating recall
would be helpful to qualify precision in this case. But remember, we are not as much interested in
the precision in terms of a particular change types, as we are in the total amount of changes, since
we use precision to measure minimality. This limitations are taken into account by discussing the
situation in detail whenever precisions reaches 1.0.

For example: Instead of applying the missing condition expression changes, i.e., updates on the
conditions of if-statements, we have deleted whole if-blocks. Then we have re-inserted very
similar ones instead, as we can infer when we look at the huge amount of statement inserts and
deletes. The same accounts for alternative part inserts/deletes. Furthermore, we missed a lot of
updates. Again, manual inspection shows, that the algorithm classified pairs of statement inserts
and statement deletes instead. A lot of unintended Statement Ordering and Parent Changes are an
evidence for second-best matches, or for problems while handling small subtree structure respec-
tively.

We conclude: The original algorithm by Chawathe et al. is not able to match nodes accurately.
Total precision is only 0.64 and we have found about 250 redundant changes.

4.3 Results 59

In Table 4.2, we have exchanged Levenshtein through the Dice Coefficient using 2-grams :

Operation Expected Found Precision
Condition Expression Change 33 25 1.0
Alternative Part Insert 2 8 0.25
Alternative Part Delete 0 9 0
Statement Update 181 166 1.0
Statement Insert 96 163 0.58
Statement Delete 94 154 0.61
Statement Ordering Change 3 29 0.10
Statement Parent Change 31 55 0.56
Total 440 609 0.72

Table 4.2: Original algorithm by Chawathe et. al., using Dice with 2-grams for string similarities. f = 0.7. Distilling
took 4815 ms.

We can recognize a significant improvement: Overall precision has been increased by eight
percent in contrast to the first configuration. It has reached 0.72. The number of statement inserts
and statement deletes in sum has decreased in about the same degree that the number of statement
updates was increased. Remember, each update eliminates one delete and one insert. Besides this
improvement, the classified changes remained about the same. Minor fluctuations can be traced
back to the instance that better leaf matching (which we have reached due to the customized string
similarity measure) reduces propagation of mismatches to higher levels. Note that, the time that
distilling takes, was reduced from about 8000 ms to only 4000 ms when using Dice instead of
Levenshtein—thus runtime was reduced by 50%.

Improving string matching was not the only proposal for customizing change detection for
source code; We also suggested that, the Dice-based tree similarity measure used by Baxter et al.
is theoretically better suited for source code. Table 4.3 shows whether this assumption holds.

Operation Expected Found Precision
Condition Expression Change 33 40 0.83
Alternative Part Insert 2 8 0.25
Alternative Part Delete 0 9 0
Statement Update 181 140 1.0
Statement Insert 96 187 0.51
Statement Delete 94 178 0.52
Statement Ordering Change 3 35 0.09
Statement Parent Change 31 48 0.65
Total 440 645 0.68

Table 4.3: Base algorithm by Chawathe et. al., using Dice for inner nodes and Levenshtein. f = 0.7. Distilling took
7924 ms.

The first impression is promising: The precision increased by 4% in contrast to the first con-
figuration. But take a closer look at the particular changes: Dice seems to be a mixed blessing for
the calculation of the inner node similarity. On the one hand, it is able to improve some numbers,

60 Chapter 4. Establishing a Benchmark

such as that statement ordering and parent changes are reduced. On the other hand, it shows too
much tolerance in terms of condition expression changes: Although we were only able to find 33
condition expression changes during manual inspection, the algorithm detects as much as 40. We as-
sume that it matches pairs of if-blocks that are not intended to match, which results in updated
conditions. We were not yet able to fully dissolve these issues. This will be subject to further
investigations. Nevertheless, we can claim that the approach—or at least our implementation—is
not perfectly suited for our concerns.

For investigating the performance of our BestMatch-approach, we discuss three more configu-
rations: The results for the first one can be found in Table 4.4. It uses the Levenshtein Distance for
matching leafs, or the tree similarity measure by Chawathe et al. for inner nodes respectively. In
Table 4.5, the second-to-last configuration additionally involves dynamic thresholds. Eventually,
Table 4.6 shows the results of the last configuration. Its setup is identical to the former one, except,
that it uses Dice using 2-grams instead of Levenshtein and that threshold f has been lowered to
0.6. We recommend to use this configuration in CHANGEDISTILLER.

Operation Expected Found Precision
Condition Expression Change 33 23 1.0
Alternative Part Insert 2 13 0.15
Alternative Part Delete 0 14 0
Statement Update 181 126 1.0
Statement Insert 96 205 0.47
Statement Delete 94 196 0.48
Statement Ordering Change 3 46 0.07
Statement Parent Change 31 53 0.58
Total 440 676 0.65

Table 4.4: Base algorithm: BestMatch, using tree similarity by Chawathe et. al. and Levenshtein. f = 0.7. Distilling
took 27964 ms.

In Table 4.4 and Table 4.5 some changes were classified more precisely but the improvement
in contrast to the first configuration is not significant. Furthermore, the runtime-performance
decreased by a factor of four, which bears no proportion to the gains in precision.

Operation Expected Found Precision
Condition Expression Change 33 23 1
Alternative Part Insert 2 13 0.15
Alternative Part Delete 0 14 0
Statement Update 181 127 1.0
Statement Insert 96 202 0.48
Statement Delete 94 193 0.49
Statement Ordering Change 3 43 0.07
Statement Parent Change 31 53 0.58
Total 440 668 0.66

Table 4.5: Base algorithm: BestMatch, using dynamic thresholds, tree similarity by Chawathe et. al., and Levenshtein.
f = 0.7. Distilling took 28587 ms.

4.4 Conclusions and Limitations 61

Operation Expected Found Precision
Condition Expression Change 33 28 1.0
Alternative Part Insert 2 8 0.25
Alternative Part Delete 0 9 0
Statement Update 181 177 1.0
Statement Insert 96 131 0.73
Statement Delete 94 122 0.8
Statement Ordering Change 3 26 0.12
Statement Parent Change 31 58 0.53
Total 440 559 0.79

Table 4.6: Base algorithm: BestMatch, using dynamic thresholds, tree similarity by Chawathe et. al., and Dice with
2-grams for string similarities. f = 0.6. Distilling took 6106 ms.

Table 4.6 summarizes all the improvements that we are able to achieve. Precision increased by
as much as 15%. Furthermore, by getting rid of the Levenshtein Distance, we were able to reduce
runtime by a factor of five. The most interesting fact is that our improvements showed synergetic
behaviour: When we used the Dice Coefficient with 2-grams for calculating string similarities in
combination with the original approach by Chawathe et al., we were able to improve precision by
eight percent. BestMatch on its own yields an improvement of one percent. Eventually, dynamic
thresholds raised precision by two percent. Applying all three of them together and lowering the
threshold slightly4 does not bring an improvement of about eleven percent, as one might think,
but rather increases precision by 15 percent, which is impressive.

4.4 Conclusions and Limitations
We have achieved significant improvements for almost all change types: The most impressive
success concerns statement updates, where we were able to detect 177 out of 181 using our last
configuration. As a consequence, the number of statement inserts/deletes decreased by magnitudes.
We can trace this back to the intuitive string similarity scoring that the Dice Coefficient with
2-grams provides.

The Dice Coefficient integrates well into BestMatch, our similarity ranking algorithm for leaves,
which addresses mainly situations where Matching Criterion 3 does not hold. We also enhanced
BestMatch with dynamic thresholds. By doing so, we can handle small subtrees more accurate
than before.

On the other side, the shortcomings of our work can be described as follows:

• The Dice-based tree similarity measure used by Baxter et al. produces many false negatives
in terms of inner node matching.

• Our benchmark itself yields some insufficiencies too: Its results need a lot of interpretation
and time-consuming manual verification in order to be expressive. Finding better metrics
for measuring accuracy improves this situation.

Nevertheless, future work can rely on the test data, i.e., on the artificial test cases as well as on
the classes taken from ARGOUML, since the data covers most structures that our algorithm will
encounter ’in the wild’.

4See Appendix Chapter A for more test data where f = 0.6 was also applied to the other configurations. For exam-
ple, lowering the threshold for the original algorithm by Chawathe et al. in combination with the Dice Coefficient for
calculating string similarities, increased precision by one percent.

Chapter 5

Conclusions

5.1 Summary of Contribution
In this thesis, we have investigated whether the approach for change detection in hierarchically struc-
tured information by Chawathe et al. is an adequate way to track changes in source code. First, we
have pointed out the differences according to source code change detection between source code
and structured documents in general. The implications can be summarized as follows:

• We need a two-staged algorithm that ignores order on the class-level, but takes into account
that statements are ordered on a method-level.

• Labels of tree nodes representing source code do not satisfy the acyclic label condition under
most circumstances. Therefore we cannot exploit them to improve the results of source code
change detection algorithms.

• The Matching Criterion 3, defined by Chawathe et al., holds infrequently for source code
statements. In most of the encountered examples, it could not be satisfied.

• We claimed also that the Levenshtein Distance does not allow intuitive similarity scoring on
statements, leading to unintended mismatches.

• In conjunction with the Matching-Criterion-3-problem, we can notice inordinate propaga-
tion of mismatches to higher levels in the tree, especially when the algorithm has to deal
with small subtree structures.

We were able to prove that these insufficiencies lead to sub-optimalities in the matching set
and therefore to a non-minimal conforming edit script of source code change operations. To
overcome this issue, we have evaluated different options for string and tree similarity measures,
as well as customized matching algorithms and eventually, we propose the following improve-
ments:

• More intuitive leaf matching: The Dice Coefficient using 2-grams scores string similarities
more intuitively than the Levenshtein Distance does.

• Dynamic thresholds: Setting the thresholds for inner node matching according to the num-
ber of descendants, reduces the number of mismatches on small trees significantly.

• BestMatch: We have introduced an extended version of the algorithm by Chawathe et al.
for establishing similarity-ranking of leaves. This allows us to overcome most of the issues
that are related to Matching Criterion 3.

64 Chapter 5. Conclusions

Last but not least, we have developed an extensive benchmark to evaluate our approach. The
benchmark combines artificial test cases, as well as data taken from a real medium-sized project.

We were able to improve matching significantly for all types of changes. We have raised
overall accuracy by 15 percent, i.e., from 0.64 to 0.79. For example, using our approach, we classify
about 98 percent of all updates in our test data correctly. CHANGEDISTILLER still finds too many
unintended statement ordering changes and we are currently investigating how we can improve the
change detection algorithm further.

5.2 Lessons Learned
In developing improvements for CHANGEDISTILLER, we have learned that a good string similar-
ity measure is crucial in order to achieve a good matching between leaves in subsequent revisions
of a source code file. We noticed that a lot of refactorings, such as renaming identifiers, lead to
a change in the order of words or characters. Metrics, that are based on the longest common
subsequence approach, such as the Levenshtein Distance, fail to handle this adequately. While
using the Dice Coefficient with 2-grams , we do not overrate character ordering but rather focus
on common character pairs of two strings.

In contrast, tree similarity measures are not that important, since changes to the structure of
the program seem to occur less frequently than changes to single statements. In return, when-
ever the tree similarity unintentionally fails to match inner nodes, it is very likely that a lot of
unnecessary operations will be found, because whole subtrees have to be replaced in these cases.

5.3 Future Work
Future work includes a closer investigation of the impact of the string similarity threshold f , and
the inner node threshold t respectively, on the quality of the matching set. An interesting point
of research can be found by introducing similarity-ranking to inner nodes. This is not straight-
forward and will possibly involve a fundamental change on how the algorithm works. Further-
more, we will extend our source code change detection to find changes in documentation that
belong to a source code unit. We will investigate whether changes to e.g., a method body usually
trigger changes in documentation.

By investigating the similarity of the targets of e.g., a method invocation statement, we will be
able to improve matching. For this, we have to resolve bindings. This implies that source code
has to compile in order to allow more sophisticated change analysis.

Future work on the benchmark will involve better metrics for measuring accuracy and addi-
tional test data from real projects other than ARGOUML. We will extend the artificial test cases,
whenever we encounter challenging examples.

Using insights from machine learning yields interesting perspectives: If we assume that more
or less the same persons are involved into development on a particular project over time, we can
expect that we will encounter specific nomenclature, idioms, and patterns. We can take them
into account by using adaptive similarity measures. The measures will possibly improve the
outcome of our algorithm, once they are trained. Another approach related to this subject, aims at
integrating the functionality of CHANGEDISTILLER directly into a versioning system. Whenever
a developer commits a source code unit, changes are calculated and—optionally—presented for
verification. Possible corrections, applied by the developer, are used to detect and classify future
changes more accurately.

Last but not least, we suggest further research on a topic that is not directly related to our
work, but on the EVOLIZER-platform as a whole: During prototyping and evaluation, it is crucial

5.3 Future Work 65

to locate quickly data that is stored in the release history database. Since the RHDB covers most
of the information that is relevant to a project’s life cycle, unexperienced users and developers are
faced with an enormous amount of entries and therefore, they will possibly find it hard to locate
the information that they are interested in. Using semantic web features, e.g., such as the quasi
natural language querying presented in [BKKK06] can guide them through the huge amount of
data.

Appendix A

Additional Benchmark Data

Operation Expected Found Precision
Condition Expression Change 33 25 1.0
Alternative Part Insert 2 9 0.22
Alternative Part Delete 0 10 0
Statement Update 181 161 1.0∗

Statement Insert 96 171 0.56
Statement Delete 94 162 0.58
Statement Ordering Change 3 33 0.09
Statement Parent Change 31 56 0.55
Total 440 627 0.64

Table A.1: Original algorithm by Chawathe et. al., using Levenshtein. f = 0.6. Distilling took 7673 ms.

Operation Expected Found Precision
Condition Expression Change 33 25 1.0
Alternative Part Insert 2 9 0.25
Alternative Part Delete 0 10 0
Statement Update 181 196 1.0
Statement Insert 96 140 0.58
Statement Delete 94 131 0.61
Statement Ordering Change 3 23 0.10
Statement Parent Change 31 67 0.56
Total 440 601 0.73

Table A.2: Original algorithm by Chawathe et. al., using Dice with 2-grams for string similarities. f = 0.6. Distilling
took 4779 ms.

68 Chapter A. Additional Benchmark Data

Operation Expected Found Precision
Condition Expression Change 33 24 1.0
Alternative Part Insert 2 13 0.15
Alternative Part Delete 0 14 0
Statement Update 181 134 1.0
Statement Insert 96 203 0.47
Statement Delete 94 194 0.48
Statement Ordering Change 3 41 0.07
Statement Parent Change 31 55 0.56
Total 440 678 0.65

Table A.3: Original algorithm by Chawathe et. al., using dynamic thresholds, Levenshtein. f = 0.7. Distilling took
8735 ms.

Operation Expected Found Precision
Condition Expression Change 33 27 1.0
Alternative Part Insert 2 9 0.15
Alternative Part Delete 0 10 0
Statement Update 181 161 1.0
Statement Insert 96 168 0.47
Statement Delete 94 159 0.48
Statement Ordering Change 3 31 0.07
Statement Parent Change 31 55 0.56
Total 440 620 0.71

Table A.4: Original algorithm by Chawathe et. al., using dynamic thresholds, Levenshtein. f = 0.6. Distilling took
7336 ms.

Operation Expected Found Precision
Condition Expression Change 33 25 1.0
Alternative Part Insert 2 8 0.25
Alternative Part Delete 0 9 0
Statement Update 181 166 1.0
Statement Insert 96 162 0.59
Statement Delete 94 153 0.61
Statement Ordering Change 3 27 0.11
Statement Parent Change 31 55 0.56
Total 440 605 0.73

Table A.5: Original algorithm by Chawathe et. al., using dynamic thresholds, Dice with 2-grams for string similarities.
f = 0.7. Distilling took 4456 ms.

69

Operation Expected Found Precision
Condition Expression Change 33 26 1.0
Alternative Part Insert 2 9 0.22
Alternative Part Delete 0 10 0
Statement Update 181 196 0.9
Statement Insert 96 137 0.70
Statement Delete 94 128 0.73
Statement Ordering Change 3 22 0.14
Statement Parent Change 31 68 0.46
Total 440 596 0.74

Table A.6: Original algorithm by Chawathe et. al., using dynamic thresholds, Dice with 2-grams for string similarities.
f = 0.6. Distilling took 4615 ms.

Operation Expected Found Precision
Condition Expression Change 33 43 0.76
Alternative Part Insert 2 5 0.4
Alternative Part Delete 0 6 0
Statement Update 181 166 1.0
Statement Insert 96 154 0.62
Statement Delete 94 145 0.64
Statement Ordering Change 3 34 0.09
Statement Parent Change 31 47 0.66
Total 440 600 0.73

Table A.7: Base algorithm by Chawathe et. al., using Dice for inner node similarity and Levenshtein. f = 0.6.
Distilling took 7257 ms.

70 Chapter A. Additional Benchmark Data

Operation Expected Found Precision
Condition Expression Change 33 43 0.76
Alternative Part Insert 2 4 0.5
Alternative Part Delete 0 5 0
Statement Update 181 171 1
Statement Insert 96 146 0.66
Statement Delete 94 137 0.69
Statement Ordering Change 3 30 0.1
Statement Parent Change 31 46 0.67
Total 440 582 0.76

Table A.8: Base algorithm by Chawathe et. al., using Dice for inner node and string similarities. f = 0.7. Distilling
took 4408 ms.

Operation Expected Found Precision
Condition Expression Change 33 44 0.75
Alternative Part Insert 2 2 1.0
Alternative Part Delete 0 3 0
Statement Update 181 201 0.9
Statement Insert 96 120 0.8
Statement Delete 94 111 0.85
Statement Ordering Change 3 30 0.1
Statement Parent Change 31 58 0.53
Total 440 569 0.78

Table A.9: Base algorithm by Chawathe et. al., using Dice for inner node and string similarities. f = 0.6. Distilling
took 4324 ms.

Operation Expected Found Precision
Condition Expression Change 33 26 1.0
Alternative Part Insert 2 9 0.22
Alternative Part Delete 0 10 0
Statement Update 181 150 1.0
Statement Insert 96 169 0.57
Statement Delete 94 160 0.59
Statement Ordering Change 3 35 0.086
Statement Parent Change 31 53 0.58
Total 440 612 0.72

Table A.10: Base algorithm: BestMatch, tree similarity by Chawathe et. al. and Levenshtein. f = 0.6. Distilling
took 28286 ms.

71

Operation Expected Found Precision
Condition Expression Change 33 23 1.0
Alternative Part Insert 2 10 0.2
Alternative Part Delete 0 11 0
Statement Update 181 155 1.0
Statement Insert 96 164 0.59
Statement Delete 94 155 0.60
Statement Ordering Change 3 31 0.1
Statement Parent Change 31 58 0.53
Total 440 607 0.72

Table A.11: Base algorithm: BestMatch, tree similarity by Chawathe et. al. and Dice with 2-grams for string
similarities. f = 0.7. Distilling took 6001 ms.

Operation Expected Found Precision
Condition Expression Change 33 28 1.0
Alternative Part Insert 2 8 0.25
Alternative Part Delete 0 9 0
Statement Update 181 176 1.0
Statement Insert 96 133 0.72
Statement Delete 94 124 0.75
Statement Ordering Change 3 28 0.11
Statement Parent Change 31 58 0.53
Total 440 564 0.78

Table A.12: Base algorithm: BestMatch, tree similarity by Chawathe et. al. and Dice with 2-grams for string
similarities. f = 0.6. Distilling took 6084 ms.

Operation Expected Found Precision
Condition Expression Change 33 26 1.0
Alternative Part Insert 2 9 0.22
Alternative Part Delete 0 10 0
Statement Update 181 151 1.0
Statement Insert 96 167 0.57
Statement Delete 94 158 0.59
Statement Ordering Change 3 33 0.09
Statement Parent Change 31 53 0.58
Total 440 607 0.72

Table A.13: Base algorithm: BestMatch, using dynamic thresholds, tree similarity by Chawathe et. al. and Leven-
shtein. f = 0.6. Distilling took 27414 ms.

72 Chapter A. Additional Benchmark Data

Operation Expected Found Precision
Condition Expression Change 33 40 0.83
Alternative Part Insert 2 8 0.25
Alternative Part Delete 0 9 0
Statement Update 181 134 1.0
Statement Insert 96 188 0.51
Statement Delete 94 179 0.53
Statement Ordering Change 3 39 0.08
Statement Parent Change 31 53 0.58
Total 440 650 0.68

Table A.14: Base algorithm: BestMatch, Dice for inner node similarity and Levenshtein. f = 0.7. Distilling took
27304 ms.

Operation Expected Found Precision
Condition Expression Change 33 42 0.79
Alternative Part Insert 2 5 0.4
Alternative Part Delete 0 6 0
Statement Update 181 158 1.0
Statement Insert 96 155 0.62
Statement Delete 94 146 0.64
Statement Ordering Change 3 39 0.08
Statement Parent Change 31 53 0.58
Total 440 604 0.73

Table A.15: Base algorithm: BestMatch, Dice for inner node similarity and Levenshtein. f = 0.6. Distilling took
27595 ms.

Operation Expected Found Precision
Condition Expression Change 33 42 0.79
Alternative Part Insert 2 4 0.5
Alternative Part Delete 0 5 0
Statement Update 181 165 1.0
Statement Insert 96 146 0.66
Statement Delete 94 137 0.69
Statement Ordering Change 3 34 0.09
Statement Parent Change 31 54 0.57
Total 440 587 0.75

Table A.16: Base algorithm: BestMatch, Dice for inner node and string similarities. f = 0.7. Distilling took 6002
ms.

73

Operation Expected Found Precision
Condition Expression Change 33 43 0.77
Alternative Part Insert 2 2 1.0
Alternative Part Delete 0 3 0
Statement Update 181 186 0.97
Statement Insert 96 121 0.79
Statement Delete 94 112 0.84
Statement Ordering Change 3 34 0.09
Statement Parent Change 31 58 0.53
Total 440 559 0.79

Table A.17: Base algorithm: BestMatch, Dice for inner node and string similarities. f = 0.6. Distilling took 5999
ms.

Appendix B

Contents of CD-ROM

We provide a CD-ROM with each copy of this thesis. The contents are:

• Thesis.pdf: Copy of the written elaboration of this thesis.

• Abstract.pdf: Abstract of the thesis in English.

• Zusfsg.pdf: Abstract of the thesis in German.

• org.evolizer.astdiff.zip: Improved version of CHANGEDISTILLER.

• org.evolizer.astdiff.test.zip: Test cases for CHANGEDISTILLER.

• org.evolizer.astdiff.benchmark.zip: Benchmark for CHANGEDISTILLER.

76 Chapter B. Contents of CD-ROM

References

[AB74] George W. Adamson and Jillian Boreham. The use of an association measure based
on character structure to identify semantically related pairs of words and document
titles. Information Storage and Retrieval, 10(7-8):253–260, 1974.

[AOH04] Taweesup Apiwattanapong, Alessandro Oros, and Mary Jean Harrold. A differenc-
ing algorithm for object-oriented programs. In Proceedings of the 19th International
Conference on Automated Software Engineering (ASE’04), 2004.

[BKKB05] Abraham Bernstein, Esther Kaufmann, Christoph Kiefer, and Christoph Bürki. Sim-
Pack: A Generic Java Library for Similiarity Measures in Ontologies. Technical
report, Department of Informatics, University of Zurich, 2005.

[BKKK06] Abraham Bernstein, Esther Kaufmann, Christian Kaiser, and Christoph Kiefer. Gin-
seng: A guided input natural language search engine for querying ontologies. In
2006 Jena User Conference, May 2006.

[BYM+98] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees, 1998.

[Cle67] C. Cleverdon. The cranfield tests on english language devices. In Aslib Proceedings,
volume 19, pages 173–194. Aslib, 6 1967.

[CRF03] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance metrics
for name-matching tasks, 2003.

[CRGMW96] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change detection in hierarchically structured information. In SIGMOD
’96: Proceedings of the 1996 ACM SIGMOD international conference on Management of
data, pages 493–504, New York, NY, USA, 1996. ACM Press.

[Dic45] Lee R. Dice. Measures of the amount of ecologic association between species. ESA
Ecology, (26):297–302, 1945.

[DTS99] S. Demeyer, S. Tichelaar, and P. Steyaert. Famix – the famoos information exchange
model, 1999.

[FG06] Beat Fluri and Harald C. Gall. Classifying change types for qualifying change cou-
plings. In Proceedings of the 14th International Conference on Program Comprehension
(ICPC), pages 35–45, Athen, Greece, June 2006. IEEE Computer Society Press.

78 REFERENCES

[FPG03] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In Proceedings of the Inter-
national Conference on Software Maintenance, pages 23–32, Amsterdam, Netherlands,
September 2003. IEEE Computer Society Press.

[Jac12] Paul Jaccard. The distribution of the flora in the alpine zone. New Phytologist,
11(2):37–50, February 1912.

[Jar89] M. A. Jaro. Advances in record linking methodology as applied to the 1985 census
of tampa florida. Journal of the American Statistical Society, 64:1183–1210, 1989.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code. IEEE Trans.
Softw. Eng., 28(7):654–670, 2002.

[LC06] Creighton University Health Sciences Library and Learning Resources Center. Mea-
suring search effectiveness. http://www.hsl.creighton.edu/hsl/Searching/Recall-
Precision.html, October 2006.

[Leh80] Meir M. Lehman. Programs, life cycles, and laws of software evolution. In Proceed-
ings of the IEEE, volume 68, pages 1060–1076, September 1980.

[ME96] Alvaro E. Monge and Charles Elkan. The field matching problem: Algorithms and
applications. In Knowledge Discovery and Data Mining, pages 267–270, 1996.

[SBPK06] Tobias Sager, Abraham Bernstein, Martin Pinzger, and Christoph Kiefer. Detecting
similar java classes using tree algorithms. In MSR ’06: Proceedings of the 2006 Inter-
national Workshop on Mining Software Repositories, New York, NY, USA, May 2006.
ACM Press.

[Val02] G. Valiente. Algorithms on trees and graphs. Springer-Verlag, Berlin, 2002.

[WG98] Johannes Weidl and Harald C. Gall. Binding object models to source code: An ap-
proach to object-oriented re-architecting. In Proc. Computer Software and Applications
Conf., pages 26–31, Vienna, Austria, August 1998. IEEE Computer Society Press.

[XS05] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented de-
sign differencing. In ASE ’05: Proceedings of the 20th IEEE/ACM international Con-
ference on Automated software engineering, pages 54–65, New York, NY, USA, 2005.
ACM Press.

[ZWDZ04] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Min-
ing version histories to guide software changes. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering, pages 563–572, Washington, DC,
USA, 2004. IEEE Computer Society.

	Introduction
	Motivation
	Envisioned Outcome of the Thesis
	Structure of Thesis

	Related Work
	Change Detection Based on Lexical Differencing
	Change Detection Based on Syntactic Differencing
	Change Detection Based on Semantic Differencing
	Code Clone Detection

	Improving ChangeDistiller
	ChangeDistiller - A Tool for Classifying Change Types
	Background Information
	Tree-like Data-structures in General
	Abstract Syntax Trees (AST)
	Source Code Characteristics

	Outline on the Change Detection Algorithm by Chawathe et al.
	Calculating an Edit Script
	The Matching Procedure in Detail

	When Does Matching Fail?
	Node Values
	Small Subtrees
	When Matching Criterion 3 Fails...

	Customizing the Algorithm for Source Code Changes
	Desired Improvements
	Evaluated String Similarity Measures
	Evaluated Tree Similarity Measures
	A Better Matching Algorithm

	Conclusions and Shortcomings

	Establishing a Benchmark
	Requirements
	Matchings, Change Operations or Classified Changes?
	Accuracy - Precision and Recall
	Performance

	Choosing the Test Data
	Artificial Test Cases
	Real Life Data from ArgoUML

	Results
	Running the Artificial Test Cases
	Declaration Changes
	Body Changes

	Conclusions and Limitations

	Conclusions
	Summary of Contribution
	Lessons Learned
	Future Work

	Additional Benchmark Data
	Contents of CD-ROM

