
Diploma Thesis
April 25, 2007

Visualizing Dynamic Social
Network Structures

An Evaluation of an Open Source Software
Development Community

Barbara Schwarz
of Winterthur, Switzerland (02-714-541)

supervised by

Prof. Harald Gall
Dr. Martin Pinzger

Department of Informatics software evolution & architecture lab

Diploma Thesis

Visualizing Dynamic Social
Network Structures

An Evaluation of an Open Source Software
Development Community

Barbara Schwarz

Department of Informatics software evolution & architecture lab

Diploma Thesis
Author: Barbara Schwarz, barbara schwarz@access.unizh.ch
URL: ifi.unizh.ch/seal
Project period: 25 October 2006 - 25 April 2007

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank Prof. H. Gall for giving me the opportunity of writing my diploma thesis
at the S.E.A.L. group. Special thanks go to my supervisor Dr. Martin Pinzger who supported me
during the last six months.

I would like to thank all my friends, my team-mates and training companions for making my
mind off things and for the interesting discussion. Special thanks go to my proofreaders.

A special thank goes to Dr. Peter A. Gloor, who allowed me to use his iQuest tool.
Last but not least, I would like to thank my parents, especially my father who always sup-

ported me in achieving my objectives.

Abstract

Since large and complex software projects consist of people playing different roles, the commu-
nication and collaboration among the team members are key success factors. This interaction is
reflected in the organization and has an influence on the project and its outcome. High-quality
Open Source Software (OSS) relies on having a large and sustainable community. This implies
that community members must understand the projects environment.

We aim at providing a visualization prototype tool that allows the project members to in-
teractively explore the project dynamics. This visualization extends social network graphs by
work packages representing software contribution. The visualisation approach is evaluated on
the Eclipse OSS community. It is shown that different scenarios and roles can be discovered,
providing deeper insight into the project.

Zusammenfassung

Die Mitarbeiter von grossen und komplexen Software Projekten nehmen unterschiedliche Rollen
ein. Deren Kommunikation und Zusammenarbeit spielen eine entscheidende Rolle fuer den Er-
folg von Open Source Software (OSS) Projekten. Diese Interaktionen spiegeln sich nicht nur in
der Organisation wieder, sondern beeinflussen auch die Strukturen der Software. Dabei bedingt
qualitativ gute Software eine stabile und nachhaltige Community. Dies erfordert, dass die Mit-
glieder die Kultur und das Umfeld des Projektes genau kennen.

Wir fuehren ein Visualisierungstool ein, welches den Projektmitgliedern erlaubt, die Entwick-
lung des Projektes interaktiv zu erforschen. Dazu werden Soziale Netzwerke um Aenderungs-
beitrge erweitert. Der Ansatz wird am Beispiel der Eclipse OSS Community evaluiert, wobei
verschiedene Szenarien und Rollen beobachtet werden knnen. Dies verbessert das Verstaendnis
fr das Projekt aus unterschiedlichen Perspektiven.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 2
1.3 Objectives . 2
1.4 Outline . 2

2 Related Work 3
2.1 Social Networks Analysis . 3

2.1.1 Communication Analysis . 3
2.1.2 Topological Analysis . 4

2.2 Socio-Technical Networks Analysis . 4
2.3 Software Development Teams . 5

2.3.1 Software Evolution . 5
2.3.2 Open Source Software . 5

2.4 Visualization . 5

3 Interaction in Software Projects 7
3.1 Perspectives . 7

3.1.1 Perspective: Project Manager . 8
3.1.2 Perspective: Newcomer . 8

3.2 Social Network Analysis Cockpit . 8
3.3 Understanding Project Collaboration . 10

3.3.1 Software Development . 10
3.3.2 Communication Channels . 10

3.4 Interaction Target Model . 11
3.4.1 Software Evolution Model . 12
3.4.2 Communication Model . 15

3.5 Summary . 18

4 Data Preparation 19
4.1 Data Processing . 19
4.2 Data Extraction Tools . 20

4.2.1 Evolizer CVS Importer . 20
4.2.2 iQuest Mailing List Parser . 23
4.2.3 Bugzilla Parser . 25

4.3 Data Integration . 27
4.3.1 Person Allocation . 28

viii CONTENTS

4.3.2 Delimitation & Timeframe Alignment . 31
4.4 Summary . 31

5 Visualization 33
5.1 Visualization Styles . 33

5.1.1 Visualizing Time-Dependency . 33
5.1.2 Visualizing Collaboration Patterns . 34
5.1.3 Visualizing Social Networks . 35
5.1.4 Motivation . 36

5.2 Dimensions & Abstraction . 36
5.2.1 Time . 36
5.2.2 Configuration . 36

5.3 Concepts . 37
5.3.1 Social Network Graph . 37
5.3.2 Collaboration Network Graph . 38
5.3.3 Dynamics - Time Window Selection . 38

5.4 Social Network Analysis Cockpit . 38
5.4.1 Graphs . 38
5.4.2 The User Interface . 43

5.5 Summary . 44

6 Case Study & Evaluation 45
6.1 Project Selection . 45

6.1.1 Requirements . 45
6.1.2 Project Assessment . 46
6.1.3 The Eclipse Project . 46

6.2 Project Setup . 48
6.2.1 Community . 48

6.3 The Eclipse Platform Core Development Team . 49
6.3.1 Patterns . 50
6.3.2 Perspective: Project Manager . 56
6.3.3 Perspective: Newcomer . 59

6.4 Summary . 60

7 Summary & Conclusion 63
7.1 Summary & Conclusion . 63
7.2 Contribution . 63
7.3 Limitations . 64
7.4 Future Work . 64

A Source Code Ownership 65
A.1 Revision Characteristics . 65

A.1.1 Overall Contribution of the Revision’s Author 65
A.1.2 Person Owning the Relating File . 66
A.1.3 Overall Contribution of the Owning Person 66

B Data Preparation 67
B.1 Problem Reports . 67

B.1.1 Bugzilla Importer . 67
B.2 The Integrated Data Model . 67
B.3 Data Source Consolidation . 70

CONTENTS ix

C Social Network Analysis Cockpit Implementation 75
C.1 Implementation . 75

C.1.1 Problem Report Classification . 75
C.1.2 org.seal.snanalyzer.evaluation . 76
C.1.3 Test Cases . 76
C.1.4 Program Start . 77

D The Eclipse Project 79

E Content of CD-ROM 83

x CONTENTS

List of Figures
3.1 Interaction Network . 9
3.2 High Level Integration Concept . 11
3.3 High Level Interaction Model . 12
3.4 Correlation between the File Size and the Frequency of Modification 15
3.5 A Mail Thread of an Online Archive . 16
3.6 The Adjusted Mail Thread with the Corresponding Communication Paths 16
3.7 Communication within Problem Reports of Bugzilla 17

4.1 Data Source Integration Process . 20
4.2 Evolizer CVS Importer: Versioning Model . 21
4.3 iQuest Mail Communication Schema . 24
4.4 Communication Model . 26

5.1 Distribution of Collaboration Actions . 34
5.2 Source Code File Modification over Time . 34
5.3 iQuest Social Network Graph . 35
5.4 Social Network Graph . 39
5.5 SNA Cockpit Analysis Panel . 42
5.6 SNA Cockpit Control . 43
5.7 The Modification Reports’ Detail Display . 44

6.1 Eclipse Platform Core Community . 49
6.2 Connectors of the Eclipse Platform Core Team as of 2003-11-03 50
6.3 Communication from May 2004 to February 2006 51
6.4 Conway’s Law: Governance Structure Impacts’ View as of 2006-04-13 52
6.5 Snippets of Figure 6.4 . 53
6.6 More Swiss Contribution Snippets . 53
6.7 Clean Up Revisions at 2005-02-21 . 54
6.8 Clean Up Revisions at 2006-05-08 . 55
6.9 A Project Manager’s View as of 2006-04-10 . 56
6.10 Snippets of Figure 6.9 . 57
6.11 Rafael Leaving the Core Development Team . 58
6.12 Collaboration Network as of October 2005 . 59
6.13 Socialization of Kevin . 60

B.1 Detailed Data Model . 69

C.1 Starting the Eclipse Plug-in View . 77
C.2 Social Network Analysis Cockpit . 78

D.1 Contribution to Source Code Development over Time 81

List of Tables
3.1 Comparison with Girba’s Approach . 14

4.1 Project Data Consolidation . 31

CONTENTS xi

6.1 Eclipse Platform Core Plugins . 47
6.2 Bugzilla Report Classification . 48

B.1 Data Source Consolidation . 70
B.1 Data Source Consolidation . 71
B.1 Data Source Consolidation . 72
B.1 Data Source Consolidation . 73

D.1 Eclipse Platform Organization . 80

List of Listings
3.1 CVS Log Example of a Later Revision . 13
3.2 CVS Log of the First Revision . 14
4.1 Processing Steps to Integrate Multiple Projects into the Target Schema 22
4.2 Footer of a Mail Belonging to a Thread . 25
4.3 Processing Steps of the Communication Path Transformation 27
4.4 Implementation of the getAssoziation Method within BugModelBuilder.java . . . 28
4.5 Implementation of the getMailPrefix Method within BugModelBuilder.java 30
A.1 Function to get the Overall Contribution of the Revision’s Author 65
A.2 Function to get the Name of the Person Owning the Relating File 66
A.3 Function to get the Overall Contribution of the Owner 66
C.1 Test Queries . 76

xii CONTENTS

Chapter 1

Introduction

1.1 Motivation

Since large and complex software projects consist of people playing different roles, the commu-
nication and collaboration among the team members are key success factors. This includes the
discussion about user requirements or architecture and design issues, the communication with
the users, and the contribution to the development. In a fast-moving world, the understanding
of the system is crucial to the team members, especially during the realization phase, where the
project faces high time pressure, and there is little time to obtain knowledge about unknown areas
of the project.

In order to better understand the factors that influence the quality of software, Aberdour
[Abe07] investigated Open Source Software (OSS) communities. He showed that the most im-
portant prerequisite for high-quality software is the understanding of the key areas of the com-
munities. He introduced guidelines to achieve high-quality OSS, relying on code modularity,
project management, and test process management. Furthermore, the team’s culture and the en-
vironment are found to play an important role.

These findings motivate us to develop means and techniques that provide deeper insight into
the project and its environment. As OSS communities are globally distributed, coordination is of
high importance. Yet, being a virtual and informal community, no official structure exist. There-
fore, the organizational structure can only be derived from the community members’ behaviour.
Since software changes over time, the history of a project provides valuable information on this
behaviour. Such historic data is contained in different sources, such as diverse communication
channels (mailing lists, developer forums, newsgroups, chats) and change management systems
(code modification repositories, bug tracking databases, requirement tools). Combining different
sources provides an integrated view on the project’s development.

Having this integrated data does not yet provide insights, as it is too complex to interpret raw
data. The human brain is more capable of processing visual information. This leads to the need
for visual representation of the data in an intuitive manner, enabling the user’s visual intelligence
find the patterns of interest.

As one of the main goals is to observe the evolution of the project, the time dimension has to
be taken into consideration, requiring dynamic visualizations, such as evolving networks.

2 Chapter 1. Introduction

1.2 Scope
In order to analyze the structures of OSS projects, communication and collaboration interactions
are the main interest. Combining the two enables to build an interaction model, allowing for
understanding the informal structures and dynamics within an OSS project. The data is not ana-
lyzed from a qualitative perspective, but the main goal is to provide a proper representation of the
original data. This is achieved by integrating the different sources and modeling it with regard to
the time dimension.

1.3 Objectives
This thesis aims at providing a representation to derive new valuable information about software
development communities. Understanding the evolution of a project delivers new perspectives
to analyze the situation.

The contribution of this thesis is to build an integrated data base containing cleaned data from
modification reports, problem reports, and mail communication. Existing methods to extract,
clean and integrate the data need to be evaluated and, if required, extended, or new methods
need to be implemented. The data is obtained from the Eclipse Platform project.

A tool is implemented that visualizes the interactions within the project, considering the time-
dimension. The social network graph is extended by adding quality features describing the dif-
ferent objects in the network (such as work packages). So far, no similar tool exists that allows
discovering a project with such granularity and based on the multiple sources.

1.4 Outline
This thesis is structured as follows: Chapter 2 gives an overview of the research fields of social
network analysis (including socio-technical oriented reports), software development and visual-
ization techniques.

Chapter 3 presents two perspectives of different project members and outlines the motivation.
We presents means and techniques to analyze the interactions of a software project team. In order
to model this interaction, we will combine communication with collaboration information.

Chapter 4 outlines the data extraction and processing steps to obtain the integrated database.
We first give an overview with a view to the integrated database. The detailed process steps are
outlined and if necessary, the extensions, algorithms or implementations are described.

Chapter 5 presents the implementation of the Social Network Analysis Cockpit. First, we
discuss the time and abstraction issue in order to approach the implementation concepts. The
final section explains how to interpret the represented graphs.

The evaluation of the visualization and the case study of the Eclipse Platform Core project is
outlined in 6. We describe the requirements for the project selection and give a brief overview of
the core team. The aim of the following evaluation is to find patterns that allow to answer the
questions outlined. This includes general patterns and roles we are interested in, such as ’Who
are the key developers? ’, as well as scenarios that we try to spot.

Chapter 7 summarizes the thesis and draws the final conclusions. And we outline potential
suggestions for future work.

The Appendices A - D contain detail information about used algorithms and describe parts of
the implementation. Large overview pictures are placed in the Appendices.

Chapter 2

Related Work

This chapter gives a brief overview of the state-of-the-art in the research fields with respect to this
thesis and outlines the delineations. The areas cover the social network analysis, the contribution
to software development and this paper’s main focus on the alliance of these two structures. The
last section outlines current visualization techniques applicable to social networks.

2.1 Social Networks Analysis
The social network analysis has emerged in the sociology and exists in various forms and in many
scientific disciplines. To gain information about the structure of Open Source Software (OSS)
development systems, bug reports, mailing list archives, news groups or forums are extracted to
model the actors’ interactions. In general, all of the following quantitative studies faced the time
consuming and exhausting effort of collecting and cleaning the data.

2.1.1 Communication Analysis
Crowston et al. [CWL+05] analyzed the coordination mechanisms in terms of work in OSS com-
munities with a large number of developers and compared them to the corresponding rulings in
proprietary development projects. The analysis is based on the Coordination Theory Approach
framework, described in [Cro97] and [CO03], that models a group action in terms of actors per-
forming interdependent tasks that require or create resources. The main problem they faced was
to identify dependencies from only the messages of the three projects inquired, therefore the fo-
cus shifted on the observation of task assignments and shows that self-assignment was the most
common one. The data explored were interactions between main developers extracted from the
developer mailing list, and an online forum. The data had been mostly coded manually over
several months. We will follow their notation of interaction for the rest of this thesis.

Howison et al. [HIC06] took a closer look at the dynamics of the social structure by undertak-
ing social network analysis over time. They wanted to better understand how social structure in
projects are changing over time. They inquired the average centralization over time, the change at
the center and the stability of participation in project communications by modeling the network
as presented by White [WBB76]. The study shows that the centralization scores are negatively
correlated with the number of participants in the bug report discussions and that most of the
participants are involved for only a small number of periods and according to the power law
distribution a small number is involved for long periods. The examined data was extracted from

4 Chapter 2. Related Work

the SourceForge bug tracking system and the interaction coded between the sender and the im-
mediately previous poster. This coding approach will later be evaluated in order to verify its
significance. According to the conclusion they will extend these analyses with code repository
contribution information for future research.

As outlined in the introduction, communication analysis covers only a part of the scope of this
thesis whose aim is to consider all interactions occurring within a project team.

2.1.2 Topological Analysis

In [XGCM05] and [XCM05] Xu et al. examinedmultiple projects of different types, but on a higher
level and in a static manner. They performed a quantitative analysis of Open Source Software de-
velopers by studying the development community at SourceFourge.net and classifying the actors
in groups of project leaders, core developers, co-developers and active users. They showed that
the development community is a self-organizing system besides the existence of the small-world
phenomenon, the small average distance and the high clustering coefficient. The data extracted
contains information about the roles of developers and the members’ activities, such as bug re-
ports, code submissions or forum discussions. The derived social network model is constructed
by relating the developers to the project they contribute to or participate in. This again leads to
relationships between projects where the resulting clusters corresponds to the projects properties.
Wewill model the contribution information on amore detailed level and only for the visualization
refer to their approach of abstraction.

2.2 Socio-Technical Networks Analysis
Ducheneaut [Duc05] analyzed the socialization of newcomers to the OSS community of Phyton,
showing that the integration of a new member is not only depending on his technical skills but
also on his ability to learn how to participate and to build an identity for that his ideas will get
accepted and integrated. He combines the social network built from the mailing list archive with
the material structure based on CVS log data to look at the trajectories of participants from joining
to contributing. To visualize the project’s evolution he implemented the OSS Browser, which
provides a dynamic view of the social network, built on the Conversation Map of Sack [Sac01],
extended by the material view of source code entities that are connected to the corresponding
committing developers. We will extend these entities by adding features like the ownership.

Sack et al. [SDD+06] continued this research fieldwith an analysis across the three information
spaces which build the socio-technical network; discussion, implementation and documentation.
They tried to answer the questions how power is distributed, how links evolve between people
and how the cognitive activity of discussions is influenced by the social and governance structures
of the project. Mails, CVS logs and PEP documents of the Phyton project served as data basis.
Their current work is on analyzing the influence of the technical structure on the social structure
of the discussion by correlating the structure of the implementation space (as it is incorporated in
CVS logs and code dependencies) with the structure of the discussion space (as it manifests itself
in the threads and quotations of the newsgroups andmailing lists of the project). The purpose is to
show that the perspective that the ’ownership architecture’ [BH98], containing information about
who makes changes and extensions to which module of the system, and implying the ’Conway’s
Law’ (developed and revealed in [Con68] and [HG99]) which says that the governance structure
of the project has a direct influence on the structure of the software itself, can be inverted.

2.3 Software Development Teams 5

2.3 Software Development Teams
Software as being developed by people implies a dependency between the resulting system and
the authors of the source code. This section introduces reports that examined software engineer-
ing and software evolution with focus on the participants or their roles.

2.3.1 Software Evolution
Version control systems like CVS [PtFSF98] contain information about the systems’ history. Fis-
cher et al. [FPG03] introduced an approach for populating a release history database that com-
bined version data with bug tracking data. To obtain the release information that enable analysis
on historic software sources, the EVOLIZERBASE is used and extended.

Girba et al [GKSD05] wanted to understand the interaction between different developers and
the system. They proposed an approach to measure and define the ownership of a file to deter-
mine characteristics of developer behaviors. They process CVS log information to analyse the
changes over time. The analysis are based on the ownership map visualization and shows dif-
ferent behavioral patterns. We will analyze the shortcoming of Girba’s approach and propose a
possible improvement.

2.3.2 Open Source Software
Aberdour [Abe07] addressed the question on how to achieve OSS quality by comparing best
practices of OSS development with closed-source software development. He reported that high-
quality OSS relies on having a large and sustainable community that has to be fully understood by
the community members. The final guidelines to high-quality OSS imply high code modularity,
rapid release cycles and many bug finders. His findings on quality justify our aim at providing
means for a better understanding of the project environment.

2.4 Visualization
Network visualization is a well-researched field and there exists a lot of implementations and
frameworks. Some applications provide the processing of external data, but few overcome the
difficulties of visualizing evolving networks.

Many Eyes [IBM] is an online site, provided by IBM’s Collaborative User Experience research
group, to get insights into existing visualizations. To explore them, one can upload and illustrate
the own data set. The published types of visualization vary from tree maps to bubble charts and
support simple table data representations. For the visualization of multi dimensional data sets
there exists no implementations.

Ogawa et al. [MO07] addressed the visualization techniques to enable the analysis of the evo-
lution of the communication and collaboration activities. They extracted data from CVS repos-
itories and mailing list archives. The visualization implementation is based on combining the
repository view and the mailing list view. The repository is represented using the Windows Ex-
plorer tree visualization an the mailing lists are displayed as clusters within Sankey diagrams.
The objective is to visualize large and evolving networks and to provide an insight into their de-
tails. The differentiation to this thesis is related to the use of a different approaches regarding the
visualization of evolving networks.

Chapter 3

Interaction in Software Projects

This chapter outlines the motivation and presents the means and techniques to analyze the in-
teractions of a software project team. The main focus is on the question about the inner life of
the project, that consists of people playing different significant roles and of the products they
develop. The collaborative interaction among the project members is reflected in the organiza-
tion and has an influence on the project’s outcome and its environment. The social structure of a
community, based on communication, is combined with collaboration information representing
working teams. This integration enables to further investigate the activities going on inside the
project. The developed means and techniques are based on analyses of Open Source Software
Communities, but they can be adapted to commercial projects as well.

The first section presents possible roles somebody can play within a project and outlines their
perspectives. This is followed by a brief introduction in this thesis’ main outcome. In order to
understand interaction in software projects, the subsequent section explains how team members
collaborate and communicate, and the final section presents techniques to model these interac-
tions.

3.1 Perspectives

We concentrate on two perspectives, each based on a role within a project. Both perspectives are
interested in similar questions, but from a different point of view. The first one is from the project
leader’s point of view, who wants to get information about the current status of the project. The
second is the perspective of a newcomer, who needs to understand the organization and learn
about the project’s facts. In general, both are interested in who the community members are and
what roles they hold.

Imagine you are a project manager, leading a software development project with parts of the
implementation being outsourced. As the delivery deadline is coming closer and the quality
testing discovers a higher number of defects than expected, you are presumably interested in the
collaboration and coordination patterns between the different teams. To make another example,
consider the leading developer is on leave for a longer period. Despite the deputy arrangement,
it seems that the team does not harmonize and the deputy does not assume the leadership. A
detailed view of the project’s set-up would allow somebody to assess these situations.

8 Chapter 3. Interaction in Software Projects

3.1.1 Perspective: Project Manager
Important tasks of a project manager are the communication with the customer as well as with
the team, and the planning and scheduling of the the team’s activities. Knowing the current state
of the project is a crucial factor. Maybe the team is grouped into several sub-groups or some are
members of more than one group. The following questions are addressed to get an overview of
the current situation and to identify the key and leading persons of a team.

• Do sub-groups exist within the project team?

• Who is the key personality in respect of communication?

• Who is the leading person regarding code contribution?

• How are the working teams organized in terms of software development?

Regarding the social structure of the community, a member communicating a lot more than
others probably plays a decisive role in the project.

3.1.2 Perspective: Newcomer
Newcomers face the challenge to adapt themselves to the new environment before being able
to contribute. The community with its members and their roles needs to be understood. The
project’s official set-up often differs from the informal organization structure. Whereas official
responsibilities, competences and the project organization are usually accessible, the informal
and situational structure are not. Yet they represent the actual network and therefore are of higher
interest than the formal set-up. This situation based context can have an important meaning in a
community.

Regarding the project organization, a newcomer is mainly interested in who are the key people
in terms of technical tasks. To be able to answer questions like the following, allows a newcomer
to contact the right colleagues. Besides the ownership of work packages, the knowledge of the
different roles of the community members helps to get situated quickly.

• Who is a leading developer with the best general overview?

• Who is a key personality in terms of software development contribution?

• Who is working on which components?

3.2 Social Network Analysis Cockpit
In order to explore the interactions occurring within a software project, we integrate data from
mailing lists, Bugzilla databases and CVS repositories in a social network graph, and present a
visualization tool.

Figure 3.1 shows a sample view of an interaction network. The nodes represent project mem-
bers and work packages and the edges illustrate the communication between people or the con-
tribution of a developer to a work package. In order to represent the aspects introduced in the
previous section, we make use of various graphical designs such as different shapes for nodes or
different colors for edges. The size of a node represents a project member, for example denotes
his communication activity.

3.2 Social Network Analysis Cockpit 9

Daniel Megert

John Arthorne

Rafael Chaves

Dj Houghton

Debbie Wilson

Darin Swanson

Dirk Baeumer

Sonia Dimitrov

Jared Burns

Jeff Mcaffer

Pascal Rapicault

Darin Wright

Erich Gamma

Luc Bourlier

Martin Aeschlimann org.eclipse.core.resources

org.eclipse.core.variables

org.eclipse.core.runtime

org.eclipse.core.resources.compatibility

org.eclipse.core.resources.win32

Figure 3.1: Interaction Network

Consider the following example: The two leading persons John Arthone and DJ Houghton
can be identified at first sight. Gladwell explains in The Tipping Point [Gla02] behavioral phe-
nomenons and patterns (in terms of psychology, sociology and epidemiology) like the Law of
the Few. It says that in order for something to become heard, the right information needs to get
channeled through the right people. J.A and D.H. are such type of Connectors who link different
networks, while being the central communication person within each of the sub-networks. The
chance of getting the right answer requires addressing the right people - like one of these con-
nectors. What happens to the networks’ structure when one of these two persons is absent or
permanently leaving the project?

The aim of this visualization is to enable an understandable perception of the project’s set-up
and to illustrate its dynamics to explore the evolution interactively. In order to examine specific
periods of the project’s history, we take the time into consideration. This time shifting enables
to move forward and backward within the history and to survey and analyze the evolution of
the social network, which is displayed by animating the change of the graph. Details of the
visualization and the interpretation of our social network graphs are outlined in Chapter 5.

10 Chapter 3. Interaction in Software Projects

3.3 Understanding Project Collaboration
To understand the collaboration within a project, the used instruments are of interest. How do
project members work together, share information and knowledge? What are the communica-
tion channels they use and for what purpose? This section concentrates on common instruments
within open source software projects.

3.3.1 Software Development
Since software is changing over time, modifications on source components are tracked. The infor-
mation provided by CVS [PtFSF98] is evaluated to learn something about the collaboration of a
development team. Within this thesis the features of the CVS are sufficient to extract the required
information. The content of the source code files is not included.

Concurrent Version System

In order to get insights into the project’s collaboration, we are interested in the composition of
the working groups and in questions like who is working on the same source code modules.
Therefore we need to know which developer made a modification to what file, to which extent
and at what point in time. The log contains the number of lines added or deleted within one CVS
operation. This provides the basis to derive the amount of modifications a developer has made,
to calculate the contribution made to that file so far, and to determine who is the owner of the file
at that respective time. Consequently we know if the committing person is also the owner of the
file and if not, if he possibly takes over ownership. Furthermore the commit message contains
information on the intention of a modification. In case of a bug fix revision, the commit message
(additional to the described purpose of the modification) may also contain the bug number.

3.3.2 Communication Channels
Knowing the communication pattern helps to understand the organization of a community. In
a virtual world, where the members of an open source software development team are globally
distributed, the information is exchanged across different channels. This requires systems and
tools that help to organize the software change process and management tasks.

Mailing Lists

A project team needs tools to get and stay organized and to communicate with each other. To
exchange information in open source software communities, where people have separated work
places, mailing lists are a common instrument. Chat tools or newsgroups are other communi-
cation channels, but relevant information regarding software development issues should not be
exchanged over these channels, mainly because the information is not stored and therefore not
accessible to other team members afterwards. At eclipse.org [Inc01] for example mailing lists are
intended for use by developers and users to discuss design and implementation issues.

Problem Reporting Tools

Communication concerning software development tasks happens not only in mail traffic, but also
in other tools used within the software development process. For example problem reporting
tools, where tasks can be reported, assigned, commented and traced. We assume that tools like

3.4 Interaction Target Model 11

Bugzilla [Fou98] are the most frequent used communication platforms regarding software devel-
opment and that discussions among the developers take place there. Discussions about general
questions or communication with outsiders (for example users) are covered by mailing lists.

3.4 Interaction Target Model

The interaction target model combines the three data sources; the revision information, the mail-
ing lists, and the problem reports. This permits an integrated view on the project’s set-up.

Figure 3.2: High Level Integration Concept

Figure 3.2 shows the high level integration scheme that includes all three sources. Applying
Crowston’s [Cro97] process mapping concept, where a process is described as ‘a sequence of
activities performed by organizational actors that produce and consume resources’, an actor is a
real person in the role of a community member, an activity either a source code modification, the
posting of a mail or a contribution to problem reports at a given point in time and a resource a
file or a task arising from discussions.

CVS repositories have knowledge about the history of a file, but file specific information like
the actual file size is not kept. Hence, the raw CVS log data is extended by deriving features char-
acterizing the behaviour of developers working on the same piece of code. Figure 3.3 shows the
unified overview of the data required to answer the questions introduced in the first section of
this chapter. The bordered areas indicate the two parts underlying the networks. The yellow sec-
tion includes the subjects required to model the author-source component network of the system,
the blue one implies the communication subjects underlying the social network.

12 Chapter 3. Interaction in Software Projects

Figure 3.3: High Level Interaction Model

3.4.1 Software Evolution Model
To model the structure of a work team, we need to know who is or was working on which com-
ponent of the system. The CVS log provides details about code revisions that enable to derive
these allocations. The minimal information required is the author of the modification (includ-
ing creation or deletion) and the affected file (including path and file name). For each revision
the time stamp of the CVS commit, the corresponding commit message and the extent of the file
modification (number of lines added and deleted) are needed and provided by the same log. In
order to explore different roles and patterns, we are interested in the ownership of a file. This
enables to analyze the interaction between the developer and the owner of a file and in particular,
how the communication between the two proceeds. Furthermore, the ownership incorporates a
special role within the project team. By distinguishing the roles of the teammembers, this enables
to state the project more precisely.

Source Code Ownership

Besides the author of the modification, we are interested in who is the owner of a source file. In
order to determine this ownership, the approach of Girba et al. [GKSD05] is analyzed. Girba
proposes a measurement for the notion of code ownership by evaluating the CVS log. His aim
was to provide a solution that gives fast results and needs no deeper analysis of the code content.
He defins the owner of a piece of code as being the developer that owns the most lines of it. The
total file size is defined as the sum of the deltas that result from the calculation of the number of
lines added, minus the number of lines deleted. The contribution of a developer corresponds to

3.4 Interaction Target Model 13

the sum of the deltas of the revisions that are committed by this developer accordingly.
To make an example, consider Listing 3.1. The delta of the number of changed lines for this

revision is 5 (11 - 6 = 5). The author is johna who is also the author of the revisions number 1.3
and 1.4 of this file. His contribution up to revision 1.6 is six lines. The total file size at that point
in time is 207 lines of which six are owned by johna.

Revision 1.6 - (view) (download) (annotate) - [select for diffs]
Fri May 17 19:38:00 2002 UTC (4 years, 10 months ago) by johna
Branch: MAIN
CVS Tags: R2_0, Root_Bug_21029, Root_JA_AliasSupport_20021128,

Root_JA_Mounting_20020924, Root_dj_20020718, r201_v20020801,
v20020521, v20020521a, v20020528, v20020528a, v20020529, v20020530,
v20020531, v20020601

Branch point for: Bug_21029, JA_AliasSupport_20021128,
JA_Mounting_20020924, R2_0_1, ResourceMapping_20020712, dj_20020718

Changes since 1.5: +11 -6 lines
Diff to previous 1.5
Added NLS tags and updated copyright notices

Listing 3.1: CVS Log Example of a Later Revision

The CVS log does not provide any information about the file size of the first revision. Listing
3.2 shows that the log of a first revision does not contain the line ’Diff to previous x.x’. Girba does
not take any initial file size into consideration because the CVS log does not provide it. The aim
of this thesis is to analyze the communication between the committing developer and the owner
of the modified file. There is the risk that due to the missing consideration of the initial file size,
Girba’s approach is not sufficient to determine the file owner or does result in misleading changes
of owner.

To make an example, consider a file with three revisions. The initial file size is 123 and the
delta (resulting from the difference between lines added and deleted) is zero for revision 1.1 and
five and seven for the following revisions. With Girba’s approach, the author of the third revision
takes over the ownership. If the author of the first revision does not equal the third one and the
initial file size of 123 had been considered, the commit of the third revision would not lead to a
change of ownership.

We assume that the initial file size ought to be considered. Therefore the approach including
the initial file size is tested against Girba’s approach. In order to get the initial file size, the lines
of each initial revision 1.1 are counted and processed as number of lines added. The detailed
calculations and the processing are described in Appendix A.

For comparing our approach with the approach of Girba we perform an experiment with
plugins of the Eclipse project. We compare the occurrence of CVS commits over a period of
nearly five years. The results are listed in the following Table 3.1. Both approaches score over 50%
regarding the alien commits.1 This means that approximately every second commit is done by
somebody who is not the owner of the modified file. The frequency of a CVS commit performed
by a person not owning the file is comparable between the two approaches, whereas a striking
difference arises in the extent of changes of owner. Regarding the changes of owner, Girba’s
approach leads to 425 changes of owner whereas with our approach only 51 of the 8583 revisions

1A commit done by an author not being the owner of the relating file is called an alien commit.

14 Chapter 3. Interaction in Software Projects

Revision 1.1 - (view) (download) (annotate) - [select for diffs]
Wed May 2 17:14:00 2001 UTC (5 years, 11 months ago) by dj
Branch: MAIN
CVS Tags: v102, v103, v104, v105, v106, v107, v108, v108a, v110, v112
0.102

Listing 3.2: CVS Log of the First Revision

result in a change of ownership. Without considering the file size of the first revision, a change of
owner happens seven times more often. This frequency seems to be substantial, but by surveying
the dates with numerous commits, where the two approaches result in different values, a closer
look at the commit messages of these revisions shows an interesting pattern.

Approach Girba % Own Approach %
Amount of Alien1 Commits 4355 51% 4634 54%
Amount of Changes of Owner 425 5% 51 0.06%
Number of Revisions 8583 - 8583 -

Table 3.1: Comparison with Girba’s Approach

Analyzing the commit messages of revisions which result in a change of owner using Girba’s
calculation, the modification does not seem to rely on changing the semantics of the file, but on
just reengineering the content. The following examples list the six most frequent messages, but
represent a quarter of all revisions resulting in a change of owner with Girba’s approach.

• Added NLS tags and updated copyright notices
• Code format.
• update javadoc with obsolete and new disclaimers
• Reformat Equinox code according to the Core formatter settings
• Add copyright notice
• *** empty log message ***

Due to the missing initial file size, smaller delta of changed lines enforces a change of owner,
compared to the approach including the amount of lines of the first revision. The following Fig-
ure 3.4 shows that the more often a file is changed, the less the calculated file size depends on
the underlying approach. This meets the expectation, that the initial file size only influences the
ownership question in case of files being modified rarely over time.

The dark blue thick line indicates the distribution of the modification frequency of all files.
The file that has been changed most frequently counts 284 revisions, whereas for 88 of the 826
files the actual revision is still the first committed ever. The white color illustrates the variation of
the file size of the two file ownership approaches with the thick line representing its polynomial
trend line. The two lighter blue lines show the polynomial trend line of the average file size of
each approach (with the lighter line indicating Girba’s concept). In addition, this graph shows
that the more often a file is changed, the larger its size gets.

According to the findings discussed in this section, we will follow our approach that considers
the initial file size to determine the code ownership.

3.4 Interaction Target Model 15

-

50

100

150

200

250

300

350

400

450

500

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481 513 545 577 609 641 673 705 737 769 801
Source Code Files

Nu
m

be
r o

f M
od

ifi
ca

tio
ns

! Ø File Size
Polynomial: Average Weighted File Size Girba
Polynominal: Average Weighted File Size
Source Code Modifications
Polynominal: ! Ø File Size

Figure 3.4: Correlation between the File Size and the Frequency of Modification

3.4.2 Communication Model
Communication within a project community takes place across different channels. A special char-
acteristic of an open source software community is the distribution in terms of location. Com-
pared to a commercial team, the members of an open source software project are distributed all
over the world, forming a virtual team. They need organizational instruments to share and ex-
change information. Regarding the control and assignment of tasks, they use appropriate tools.
Internet mailing lists are instruments to address information to a dynamically changing commu-
nity. A mailing list has a list of subscribers receiving the messages processed by the reflector
address. Another common tool is Bugzilla, used to manage problem reports. We assume, that
most of the core developers of the community interact using such designated tools. This sec-
tion shows how to model the communication path between sender and receiver of a message,
referring to mailing lists and Bugzilla reports.

Deriving Communication Paths from Mail Traffic

Communication happens between a sender and at least one receiver at a certain point in time
with a given content. To specify the social structure of an open source software community, we
derive communication paths of mail traffic and problem reports.

Discussions arising from an initial mail can be grouped as threads. Mails referring to the same
subject are kept together. Within mailing list threads, the messages can grow in a dendritic way.
The following sample explains how communication paths can be modeled from threads.

Figure 3.5 shows a thread from an online mailing list archive. A mail addressed to a mailing
list is processed by the reflector and sent to all subscribers. This means that the To: address is
always the mailing list address. The identification of the sender is given by the From: field, but

16 Chapter 3. Interaction in Software Projects

Figure 3.5: A Mail Thread of an Online Archive

knowing the sender of a message is not sufficient to model a communication path between two
persons. Information about the receiver needs to be acquired from subsequent answering mails.

Figure 3.6: The Adjusted Mail Thread with the Corresponding Communication Paths

We consider the From: address as the sender of a message and the To:’s and Cc:’s as the
receivers. Figure 3.6 illustrates the tree of the example thread. The derived communication path
are indicated by the arrows. A blue arrow represents a To: path, the green a Cc:’s. The To: receiver
implies the sender of the mail somebody answers. So we treat the sender of the first message as
the receiver of the second and answering message, although all subscribers to the mailing list get
the mail. To derive Cc: receivers we consider the person answering a mail as an intended receiver
of the previous mail, but only Cc:. In case this person is already the To: receiver (as it applies with
the mails number 3 to 5 between Bob Foster and Pascal Rapicault) no additional path is derived,
because we assume that a mail is not sent to a person twice. The examined sample thread consists
of 15 mails, all sent to the mailing list address, which results in 25 communication paths.

Deriving Communication Paths from Problem Reports

The second source outlined for modeling communication paths is a problem reporting tool such
as Bugzilla, where members can create reports and comments and give answers to former editors
or commentators. Within a Bugzilla problem report, a person can occupy the role of the reporter
that opens and describes the report, of a person registered as Cc:, of the assignee that overtakes the

3.4 Interaction Target Model 17

ownership or current responsibility, or of a commentator that writes an explanation or annotates
the report.

Figure 3.7: Communication within Problem Reports of Bugzilla

Regarding the comments on a report, we assume that a person dealing with a problem report,
has complete knowledge about the previous written comments or activities. This approach dif-
fers to the one used within mail threads where no integrated view over the actual mail thread
exists and a mail is directly addressed to someone. Within a problem report the communication
paths are derived using other mechanisms. Figure 3.7 illustrates the approach by a precise report
example.

Again communication consists of a sender, at least one receiver, a time stamp and the subject
and/or the content of the message. The transition of problem reports to communication objects
and targets is more complex than the conversion of mails.

The list below specifies the actions within problem reports where communication occurs and
indicates their resulting communication paths (whereas an→means ’communicates with’).

Creation of a Problem Report (at a given point in time)
• Reporter→ Assignee
• Reporter→ ∀ Cc:
• Content: Description

Adding a Comment (at a given point in time)
• Commentator→ Assignee
• Commentator→ Reporter
• Commentator→ ∀ previous Commentator
• Content: Comment

18 Chapter 3. Interaction in Software Projects

There are two different actions: creating a report and writing a comment. The communication
emerging from report creation is the assignment of the task to the assignee by the reporter and
the notification of the persons registered as Cc:. As long as the report is in an unresolved state,
the following comments result in further communication. Each commentator addresses their
comment to the reporter, the assignee and all former commentators. This approach differs to the
one of Howison et al. [HIC06], where only a communication to the immediate previous poster
was assumed. Content analysis of problem reports show, that the comment often refers not only
to the precedent comment. Regarding communication with Cc: addressees we assume, that if
somebody is concerned he or she will get involved as a commentator (see comment # 11 from
DJ Houghton). Therefore we do not map the communication to Cc: after the report creation. To
simplify matters and because we assume that historical reports are in a stable state we do not
consider the bug activities.

The illustrated example consists of 15 comments (including the first one) and results in 36
communication paths, including three Cc:’s. Compared to the mailings it is expected that data
from problem reports result in more communication information.

3.5 Summary
In this chapter we have presented the essential concept of this thesis. Section 3.1 outlines the
research questions and gives an idea on the aspects by viewing at two roles that a member of
a project team can play. The following Section 3.2 introduces the implemented Social Network
Analysis Cockpit that enables to explore the history of a project interactively. Section 3.3 describes
what is considered to be project collaboration within this thesis. The idea is to combine mailing
lists and Buzilla data with collaboration information gained from CVS repositories. This enables
an integrated view on the projects’ set-up with the aim at better understanding the project. Sec-
tion 3.4 outlines the modeling and integration of the data sources. The software evolution model
has been extended by ownership information. The underlying approach, introduced by Girba
et al. has been discussed and improved. Section 3.4.2 models the communication paths that are
derived from mailing lists and from problem reports.

The following Chapter 4 describes the data processing steps that are required to gain the inte-
grated database, containing mails, Bugzilla reports and CVS revision information. This includes
the extraction, cleaning, formatting and integration of the three data sources. These process steps
are needed to enable the design and evaluation of the visualization implementation following in
Chapter 5.

Chapter 4

Data Preparation

This chapter outlines the data extraction and processing steps to gather the integrated database.
We describe the methods and tools of existing implementations and we discuss possible improve-
ments. As we make similar experiences like Crowston and Howison [JH04], details and hints
regarding the implementation of data extraction applications can be found in their publication.
The focus of this chapter is to present the handling of the challenges focused while integrating
different data sources.

First, we give an overview of the data processing with a view to the integrated database. For
each of the data sources, the detailed process steps are outlined, and if necessary, the extensions,
algorithms or implementations are described. The chapter is finalized by addressing the integra-
tion.

4.1 Data Processing
The data preparation process can be separated into several stages each finalized by a cleaning and
quality control task. It includes the extraction and the integration of the different data sources.
In a first step, the selected data is parsed and stored, for example in a database. In an additional
step, the data is extended and processed, followed by the integration of the varying sources.

Figure 4.1 shows the overall process model. The source data is either stored within a running
system as it applies to CVS repositories and bugzilla databases or archived as it applies to mailing
lists. Since the original data is not accessible directly from its stored location and not provided by
the hosting authority, the data needs to be extracted from an online view. These online represen-
tations are generated by tools. The applications running on the source system are illustrated by
the three larger grey boxes at the bottom of Figure 4.1.

The simplicity of parsing the data from these online views depends on the representation,
namely on its underlying tool, the information coding, and the format. The most frequent pro-
vided format is HTML, as it is common for internet sites. Depending on the tool, XML is sup-
ported as well. The three boxes right above the data source illustrate the data extraction layer,
while the grey color marks external tools.1 The superordinate layers include extension and in-
tegration tasks. The next layer addresses the mapping of person information. This is one of the
main issues regarding the integration of the three different data sources, as it applies to data sets
containing overlapping information. The superordinate derivation of the interaction paths fol-
lows the person mapping. Both of the last mentioned layers span all data tracks. Finally, there are
extension components like the file size or ownership calculator.

1The white boxes depict components implemented within this thesis.

20 Chapter 4. Data Preparation

Mails CVSBugs

MHonArc
html

iQuest

Possible Follow-Ups

Follow-Ups

ViewVC
html

Evolizer

File Size Calculator

Importer

Interaction Paths

Bugzilla
xml/html

Project Consolidation

Person Finder
! Allocation

Person MatchingPerson Matching

Ownership Calculator

Figure 4.1: Data Source Integration Process

Figure 4.1 illustrates only the process components which include extraction and extension
algorithms. Underlying data meta models are not shown in Figure 4.1, but can be found in Ap-
pendix B.1. The following section outlines the processing for each of the three data sources in
more detail.

4.2 Data Extraction Tools
Since there is no existing data source available that covers the requirements of integrating all
data contained in the interaction model, the data has to be extracted from its source system. The
following sections outline the applications and qualify their capabilities and limitations.

4.2.1 Evolizer CVS Importer
The Evolizer is an integrated tool platform for software architecture and evolution analysis de-
veloped by the Software Evolution and Architecture Lab of the Department of Informatics of the
University of Zurich [SEA04]. It is built on top of the Eclipse IDE and provides a set of meta
models and corresponding data model extraction tools. The Evolizer CVS Importer is dedicated
to importing CVS log information from a CVS repository, building the object model and storing
it into a SQL database using Hibernate [Inc]. The Evolizer Plug-in is used to import the CVS

4.2 Data Extraction Tools 21

log information required for our analyses.2 As the meta model covers a broader scope than re-
quired, the following list shows the processed classes and tables. Figure 4.2 shows the original
data schema of the Evolizer. The CVS log extraction track is indicated by the third column in
Figure 4.1.

• Author
• Revision
• Source Unit

Figure 4.2: Evolizer CVS Importer: Versioning Model

Restrictions

The Evolizer provides a parser algorithm for CVS logs, as well as a meta model to store the
extracted data in a database. The Evolizer CVS Importer Eclipse Plug-in gains access to the CVS
repository of a project configured within the Eclipse workspace. The current implementation
builds an object model for each project for which the Evolizer Importer task is executed. The
execution task supports the processing of only one project at once. This implies that the scope of
the created objects is one specific project and that an object contained in more than one project is
created n-times and without any relating connections in between. Therefore the intended use of
the tool is restricted to a scope, where an object cannot be contained in more than one project or
the impact of this restriction can be disregarded.

The extraction of consistent data for a large software project being developed using the Eclipse
Platform is a supported action. Today a lot of projects are organized in a modular way, namely
that a set of Eclipse projects build a system. The Evolizer’s meta model needs to be extended to
enable the extraction of several projects and to create a consistent object model spanning these
multiple projects. For the revision and source unit information, there is no issue. The partitioning
of the source units and their revisions is given by the modularization. While a file or source unit
is assumed to exist only once, an author of a piece of code can work within different projects.
Importing several projects developed by the same team, leads to the creation of each author for
several times. The used Evolizer implementation does not distinguish between projects. In order
to prevent the data source from unnecessary redundancy and missing object relationships, the

2Revision 230 as of 2006-06-23.

22 Chapter 4. Data Preparation

project information has to be added. The simplest way to do this, is to extend all objects with the
project information.

In case of multiple projects and the need of reading the data from the database after the im-
port, another problem arises. The object keys set by the import are increasing integers. They are
generated automatically, starting from 1 within each project and object type. Including the project
information as an object attribute is an additional advantage to resolve this issue.

Project Consolidation

Each project is processed as a single Evolizer Importer task and stored as separate schema within
a MySQL database.3 The schemata include the complete Evolizer CVS data model. In order to
enable the import of multiple projects, a table containing the project’s name and id is created
(util.plugin). The target schema is called cvs src and includes the required tables of the Evolizer
CVS model (see Listing 4.2.1 above). While copying the source tables to the target scheme, each
table is extended by the project’s id. Appendix 4.1 shows the detailed processing.

1 INSERT INTO util.plugin(name, product_id, domain_id) VALUES (’org.eclipse.core.
variables’, 1, 1);

2 SELECT id FROM util.plugin WHERE name = ’org.eclipse.core.variables’;
3

4 INSERT INTO cvs_src.author SELECT *, 17 FROM cvs_core_variables.author;
5 INSERT INTO cvs_src.releases SELECT *, 17 FROM cvs_core_variables.releases;
6 INSERT INTO cvs_src.releases_revisions SELECT *, 17 FROM cvs_core_variables.

releases_revisions;
7 INSERT INTO cvs_src.revisions SELECT *, 17 FROM cvs_core_variables.revisions;
8 INSERT INTO cvs_src.source_units SELECT *, 17 FROM cvs_core_variables.

source_units;
9 INSERT INTO cvs_src.transactions SELECT *, 17 FROM cvs_core_variables.

transactions;

Listing 4.1: Processing Steps to Integrate Multiple Projects into the Target Schema

Before the tables from the different import schemes can be copied to the target schema, the
cvs src schema and its designated tables have to be created. First the project is registered in the
util.plugin table to obtain a unique key for the project (indicated by the operations of line one and
two of the Listing 4.1). The following transactions copy the original data extended by the project
key to the target schema. Note that there are two ways of creating the tables of the target schema.
Either the tables are copied within the first project’s processing and the subsequent projects are
added or the tables are created using the CREATE TABLE tbl_name LIKE old_tbl_name
command. The second option keeps possible structural characteristics like primary keys and
indices.

Data Enrichment

The original Evolizer org.evolizer.base implementation has been modified and extended.
The modification affects the CVS log information parsing. As shown in Section 3.4.1, the initial
file size has to be considered. While parsing the CVS log of a file’s first revision, a file parser
component reads the file and counts the number of lines. According to this, the attribute linesAdd
of every 1.1 revision indicates the total number of lines for this file.

3The raw data can be found on the enclosed CD.

4.2 Data Extraction Tools 23

To get the number of lines of the first revision, the package org.evolizer.base.versioning.
cvs.parser has been modified.4

• CVSParser.java
– Added method getLinesOfFile(String revNr) to get the file size (of the first revision)

• SourceCodeFileParser.java
– New implemented class to read the number of lines of a file’s revision

In an additional step, the ownership information is derived. This follows after parsing the
complete data, because the history of a file underlies this derivation. The consolidated schema
cvs src does not yet contain this information. The attributes indicating the owner of a file and the
boolean ownership flag are included in the final report schema (see Section A for the algorithms).
Another derived information is the bug number contained in some of the commit messages that
indicates the revision as being modified to fix a bug. This information is extracted and stored in
a separate attribute. It contains the bug number and relates this revision to the corresponding
problem report.

4.2.2 iQuest Mailing List Parser
Compared to CVS repositories and Bugzilla where the data is stored in databases, mailing lists do
not support saving the exchangedmails. Onlymailing list archives provides access to those mails.
They are a collection of past messages and often include searching and indexing functionality. At
eclipse.org the mailing lists are archived using MHonArc, a free software program to convert
mails to HTML views [MHo94]. The first track in Figure 4.1 shows the extraction processing for
mailing list archives.

iQuest [Glo] is the commercial version of TeCFlow, a set of tools to visualize the temporal
evolution of communication patterns among groups of people. It contains a component to parse
mailing lists and import them into aMySQL database. In order to parse themailing list archives at
eclipse.org, the iQuest’s OnLine.jar component is used.5 The details about the underlying schema
and the iQuest processing follow in the next section.

Data Processing

The following enumeration 4.2.2 lists the process steps of the mailing list archive import with
the iQuest component OnLine.jar. Mailing list archives consist of several .html pages listing the
mails in form of threads. The OnLine.jar application parses all mails whose link is contained in
the specified page. Each page is processed separately and results in an own dataset. Step number
four is required because the import creates an own dataset for each parsed .html page. To merge
several datasets iQuest provides an according functionality. Step number ten is only required if
the data is processed within iQuest.

1. Execute OnLine.jar: Parse mailing list online pages
2. Stop MySQL Service
3. Copy the MySQL schema test and rename it (to for example mails)
4. Merge the datasets with iQuest
5. DELETE FROM mails.comm_target WHERE tag = ’Cc’;
6. CREATE TABLE logging;
7. SELECT mails.extract_followups();6

4The modified source code can be found on the enclosed CD.
5The iQuest components including the OnLine.jar to parse mailing lists can be found on the enclosed CD.
6The implemented MySQL functions can be found on the enclosed CD.

24 Chapter 4. Data Preparation

8. SELECT mails.extract_possibleFollowups();6

9. SELECT mails.clean_content();
10. Reference and follow-up authors mapping with iQuest→ fill the table name change

iQuest Schema

Figure 4.3: iQuest Mail Communication Schema

Figure 4.3 shows the iQuest schema to store the mails. The table chars contains the person
information, with the mailAddress being either a person’s mail address (in case of the person
being the sender of the mail) or the name of a person (in case of the person being the addressee of
the mail). Since the dissolving of themails’ addressees does not result in the entry of the receiver’s
mail address, the To and From persons have to be mapped, as they can be in both positions. This
mapping is contained in the table name change. The mapping is created during the visualization
processing within the iQuest tool. Within the data preparation for this thesis, the table chars is
replaced by the integrated table person and the table name change is dropped completely. To
process the social network with the iQuest, these tables remain required.

Extensions

Importing mailing list archives with the ordinary iQuest processing does not result in many com-
munication paths. The addressee of a mail sent to a mailing list is always themailing list’s address
and the subscribers to the mailing list are not known. Since the mailing list parser algorithm of
iQuest sets the mailing list’s address as the receiver of a mail, the resulting communication path
(tagged with Cc:) relates the sender to the mailing list. Due to this thesis’ focus on the relation-
ships between people, all iQuest Cc: entries containing the mailing list address are deleted. It
is assumed, that threads contain additional information to derive communication paths with a
higher entropy.

Since the mails are not extracted from the source directly, there is no indicated reference be-
tween mails within a thread. As described in Section 3.4.2, a mail thread contains information
about subsequent mails. The iQuest import algorithm does not consider this information. To gain
these additional communication paths, the amount of the parsed mail content is extended to in-
clude the (possible) Follow-ups (see Figure 3.5 and Figure 3.6). The process steps are outlined in
Appendix 4.2.2.

4.2 Data Extraction Tools 25

The mail representation provided by the MHonArc needs to be considered to extract the
Follow-ups.7 The imported content of a mail starts with the message body and in addition con-
tains the .html page footer. The References are set by the importer algorithm of iQuest. The
MySQL functions number seven and eight of Listing 4.2.2 derive more communication paths by
examining the page footer.

Follow-Ups:
Re: [platform-core-dev] Bundles which do not require org.eclipse.osgi
From: Bob Foster
References:
[platform-core-dev] Bundles which do not require org.eclipse.osgi
From: Thomas Watson

Listing 4.2: Footer of a Mail Belonging to a Thread

Listing 4.2 shows an example of a message footer. If the footer contains the text Follow-Ups:,
the function 7 creates a communication path between this mail’s composer and the person fol-
lowing the From: tag. Function 8 extracts possible Follow-ups by analyzing mails with the same
subject and not yet considered.

4.2.3 Bugzilla Parser
The Evolizer provides a meta data model and an importing algorithm for problem reports. The
importer requires a revision’s commit message containing a bug number. It is assumed, that the
communication of the core development team covers a broader scope of problem reports than
based on bugs whose number is contained in commit message. According to the colored section
in Table D.1, the corresponding bugs are based on their classification in terms of Product and
Component. By querying the Bugzilla database the according bug list is extracted.8

The org.seal.snanalyzer Eclipse Plug-in provides an importer functionality to parse
a list of bugs.9 The underlying meta model is the org.evolizer.model.issuetracking
model.10

Problem Report Data Model

The Evolizer org.evolizer.model.issuetracking data model is modified to match the re-
quirements. The modifications are listed below and affect mainly the entity classes11.

• EvolizerIssueTrackingModelProvider.java
– Added annotated class MailAddress.class

• Comment.java
– Changed the persistence property of the comment attribute to @Lob

• Issue.java
– Extended Resolution with REMIND and LATER

7See Section 4.2.2 for more details about MHonArc.
8The imported bug list (buglist eclipse platform core.csv) can be found on the enclosed CD.
9It has been implemented within this thesis. The source code can be found on the enclosed CD.
10Revision 336 as of 2007-01-10.
11The modified source code can be found on the enclosed CD.

26 Chapter 4. Data Preparation

– Changed the persistence property of the description attribute to @Lob

– Added Product attribute with @ManyToOne@JoinColumn(name=’product id’) rela-
tion

• MailAddress.java
– New class with attributes String address and Person owner with a @ManyToOne rela-
tion

• Person.java
– Removed attribute email

– Added attribute Set≺MailAddress$mailAddresses with a @JoinTable(name = ’mailad-
dress’, joinColumns = @JoinColumn(name = ’id’) , inverseJoinColumns = @JoinCol-
umn(name = ’owner id’)) relation definition

– Added attributes String cvsUserName and String mailAddress as @Transient

Communication Path Transformation

Problem reports consist of a set of properties such as the classification, the priority, or the date
when the report has been opened. In order to discuss an issue, comments can be added to the
problem report until it gets closed. We assume these discussions as communication between
the commentators. The problem report object model does not consider any communication ob-
jects and their corresponding paths. The raw problem report data is transformed to match the
communication model as illustrated in Figure 4.4. The approach of the algorithm is specified in
Section 3.4.2 and the transformation process described below.

-name[1] : string

Person

-from[1] : Person
-time[1] : Date
-subject[1] : String
-content[1] : String

Communication

1

*

-to[1..*] : Person
-tag[1] : String

CommunicationTarget

1 1..*

1

*

-bug_id : Bug

BugCommunication MailCommunication

Figure 4.4: Communication Model

4.3 Data Integration 27

The data schema bugs contains the raw data of the imported problem reports. The follwing
Listing 4.3 lists the process steps to derive the communication paths from the problem reports.

1 CREATE TABLE bugs.comm LIKE mails.comm;
2 CREATE TABLE bugs.comm_target LIKE mails.comm_target;
3 CREATE TABLE bugs.logging LIKE mails.logging;
4 SELECT bugs.extract_bugs_and_ccs();
5 SELECT bugs.extract_comment_comm();
6 CREATE TABLE bugs.comm_target_tmp LIKE bugs.comm_target;
7 INSERT INTO mails.comm_target_tmp
8 SELECT datasetid, comm_id, comm_to,tag
9 FROM mails.comm_target_bkp
10 GROUP BY datasetid, comm_id, comm_to, tag;
11 DROP TABLE bugs.comm_target;
12 RENAME TABLE bugs.comm_target_tmp TO bugs.comm_target;

Listing 4.3: Processing Steps of the Communication Path Transformation

4.3 Data Integration
The person is the subject connecting the three models, as it is illustrated in the interaction target
model (see Figure 3.3). The underlying data extractions have different approaches regarding the
identification and characterization of a person. The personal information appearing within CVS
logs, problem reports or mails, are the name of the person, the mail address and the CVS user
name. In order to avoid falsification of the social network representations, the integrated data
object model ideally holds only one object per person in the database. The person object model is
defined as consisting of at least a unique name, null or several mail addresses and null or several
CVS user names. The details are outlined in Section 4.3.1.

The mail address contains an additional information about the person. In case of a business
mail address, the prefix of the address determines the company somebody works for. For that the
domain details can be extracted, they may not be hidden.

Challenges

In the virtual world of the Internet it is easy to create an email account, or even several ones.
To identify a person working with different email addresses requires to know the person’s real
name. Imagine the email address tevion48x@yahoo.com appearing in the Cc: list of a problem
report and the owner of this address reports a problem as Agent Smith using the email address
haefeleuser@yahoo.com. It is not trivial to identify this person as John Smith. To make another
example for a more active user, Chris McGee uses cbmcgee@ca.ibm.com, jeffl@informaldata.com
and sirnewton 01@yahoo.ca as his email addresses.

Regarding the grouping of teams using the domain segment, we face another problem. The
mailing list archive MHonArc provides a spam mode configuration that deters spam address
harvesters by hiding the address domains. This results in displaying an email addresses like
www.jsports.org@xxxxxxxxx.

28 Chapter 4. Data Preparation

4.3.1 Person Allocation
Since the circle of Bugzilla editors is the biggest of the three person sub-groups, this is taken as
base for themapping. Besides the bug parser and importer functionality, org.seal.snanalyzer
contains an extended implementation of a person finder and an allocation algorithm. Its aim is to
set the correct relations to a problem report and to have every person stored only once within the
database.

Person Object Model

The algorithm is processed every time a person attribute is set, for example for an assignee of
a problem report or a commentator. It checks each person by analyzing the name and email
address and comparing them to the existing person objects contained in the object model that
will be stored later.

First the email address is looked up in the object model. If it is found, this person already
exist and no further actions are required. In every other case, the mail address is analyzed. The
real name of the person is tried to be extracted from the prefix of the email address, because a
person’s name is often contained therein. In some cases the real name can not be derived from
the prefix, because it contains bugzilla or eclipse or consists of only an alias or a nick name as
fanyuz@cn.ibm.com. It is assumed that a name consists of at least two words and that they are
separated by a dot or underscore within an email address prefix. Then the implemented helper
class tries to find this persons’s real name by searching the Bugzilla database for an entry re-
ported using this email address. If the query succeeds, the according bug page in HTML format
is parsed, in order to read the name that is indicated previous to the email address. If a person
object with this name is found in the object model, the new email address is added to the list of
email addresses of this person. In every other case the person is assumed to be unknown and a
new object is created. The two main methods are listed in Listing 4.4 and 4.5.

/**

* Organizes the person’s roles:

* Reporter, Assignee, CCs, Commentators.

* For every person, the getAssoziation(Person p) is called,

* to set the corrent relation.

*/

private Person getAssoziation(Person toCheck) {
String mailAddress = toCheck.getMailAddress();
Person returnPerson = null;

MailAddress mail = mEmails.get(mailAddress);
if (mail != null) { // existing Mail --> known Person

returnPerson = mail.getOwner();
}
else { // new Mail

String prefix = getMailPrefix(mailAddress);
String realName = Person.convertToFLUCase(prefix);
Person found = mPersons.get(realName);

if (found != null) { // existing Person - new Mail

4.3 Data Integration 29

MailAddress newMail = new MailAddress();
newMail.setAddress(mailAddress);
newMail.setOwner(found);
mEmails.put(newMail.getAddress(), newMail);
returnPerson = found;

}
else { // new Person - new Mail

// try to get real name via html bug page

if (prefix.contains("bugzilla") || prefix.contains("eclipse") || !
prefix.contains(" ")) {
try {

PersonFinder finder = new PersonFinder();
finder.search(mailAddress);
realName = Person.convertToFLUCase(finder.getRealName());

} catch (Exception e) {
e.printStackTrace();

}
finally {

if (realName.length() == 0) {
realName = mailAddress;

}
}

}
found = mPersons.get(realName);
if (found == null) { // still new person

found = new Person();
found.setName(realName);
mPersons.put(found.getName(), found);

}

MailAddress newMail = new MailAddress();
newMail.setAddress(mailAddress);
newMail.setOwner(found);
mEmails.put(newMail.getAddress(), newMail);
returnPerson = found;

}
}
return returnPerson;

}

Listing 4.4: Implementation of the getAssoziation Method within BugModelBuilder.java

30 Chapter 4. Data Preparation

/**

* Derives the name of the mail address’s owner

* by removing special characters.

* @param email - email address in String format

* @return the modified prefix (e.g. john arthone)

*/

private static String getMailPrefix(String email) {
String name = email.substring(0, email.indexOf("@"));
name = name.replace(".", " ");
name = name.replace("_", " ");
name = name.toLowerCase();
name = name.trim();
return name;

}

Listing 4.5: Implementation of the getMailPrefix Method within BugModelBuilder.java

CVS User Mapping

The Evolizer’s CVS importer stores the person information in an object called author. The name
indicates the CVS user name, but not the real name of the person. In order to connect the persons
that add and edit problem reports to the ones contributing to the code development, the author
object is extended by a person id. Since CVS user names do not contain special characters to in-
dicate separate words, the mapping has to be done manually. Due to the relative small amount
of CVS users, implementing a similarity algorithm would have been too expensive. Simply com-
paring the author’s CVS user name with the names in the Bugzilla person source helps to find the
according entry. In case no adequate name is found the new person has to be manually added to
the database.

Mailing List Users

As illustrated in the iQuest schema in Appendix 4.3, the iQuets data model does not consider any
key that is independent of the person’s name or email address. The relation between the persons
and to the communication objects is done using these strings. To map the mail communication to
the person model, the comm from and comm to have to be replaced by the id of the according
person’s id, contained in the person source that is previously built during the Bugzilla import,
and extended while extracting mailing lists. The simplest way is to process the bug communi-
cation within the iQuest tool and to create a Communication View combining the mail and bug
communication. Then the functionality of the mail address redefinition allows to simply map for
example ’john arthorne@xxxxxxxxxx’ to ’john arthone’. The algorithm compares the name with
the prefix of a mail address and makes proposals based on similarity measures. The validation is
made manually. In a following step this mapping (stored in a table called name change) is joined
with the existing person model. The person’s id is set to the mail object attribute comm from and
the mail target object attribute comm to respectively. If there are mailing list users left, for whom
there exist no accurate person, a new object has to be created and mapped manually.

4.4 Summary 31

4.3.2 Delimitation & Timeframe Alignment
The integrated database registers 2’615 persons. In order to evaluate the visualization, the groups
of people have to be limited. The development team that consists of 27 people, is selected to be
surveyed. The following 4.1 lists the available data and outlines the delimitation impacts. The
modification reports are not affected while there is an extensive reduction of data regarding the
community members and the communication objects.

In order to compare equivalent data sets, the available timeframes have to be aligned. The
period over which all data sets contain data, lasts from 2002-01-28 to 2006-11-13. The processing
of cleaning and aligning the data can be found in B.3.

report all report core
Person Related Data
person 2’615 27
mailaddress 2’681 28
author 94 93
Collaboration Data
plugin 17 17
source unit 997 997
revisions 7’479 7’479
component 3 3
Communication Data
bug comm 28’131 7’907
bug target 58’927 22’429
mail comm 891 102
mail target 786 117

Table 4.1: Project Data Consolidation

Table 4.1 does not yet show the total number of interactions. If the sender does equal the
receiver, which can be a result of dissolving the mail thread or when somebody writes many com-
ments within the same problem report, this is not considered as interaction. The total number of
interactions is listed the the below.

Mails Communication: 101
Bugzilla Communication: 11’081

Modification Reports: 7’479

4.4 Summary
This chapter describes the required steps to integrate mailing lists, Bugzilla reports and CVS logs
into a integrated database. Section 4.2 outlines the processed actions and the data meta model in
detail for each data source. To extract CVS logs, Section 4.2.1 presents the Evolizer CVS Importer
and discusses its restrictions. Possible improvements and the implemented extensions to obtain
the data as desired are described in Appendix B.3 and Section 4.2.1. Mailing lists have been ex-
tracted using iQuest. 4.2.2 lists the handling of the tool and the extensions. To gain the Bugzilla
reports, an importer algorithm was implemented which is described in Section 4.2.3. This sec-
tion includes the communication transformation, since they are not modeled explicitly within the

32 Chapter 4. Data Preparation

problem report data meta model. Section 4.3 outlines the final integration of all extracted data
sources. We discuss the challenges and provide algorithms to overcome them the best feasible.

The following Chapter 5 presents the implemented visualization by first discussing different
visualization styles. The subsequent sections outline the dimensions of the underlying data and
describes the concepts of the visualization elements. This includes the design of the graphs that
will be displayed by the tool. Finally, the visualization tool is explained by making examples. The
implementation of the Cockpit will be evaluated in Chapter 6.3.

Chapter 5

Visualization

Analyzing large data sets demands for coherent and comprehensible representations. The human
brain is more capable of processing visual information than interpreting data in its raw format
or therefrom derived figures like statistical analysis. In order to draw conclusions and examine
complex or abstract data sets, the selection of an adequate visualization instrument is crucial,
especially when dealing with time-dependent data.

This chapter first outlines different approaches of information visualization with focus on rep-
resenting interaction networks. Based on the findings, the motivation for the implementation of
the Social Network Analysis Cockpit are stated. The subsequent section addresses the dimension
and abstraction issues to find an approach of visualizing interaction networks without disregard-
ing the dynamics. The next section then presents the concepts underlying the visualization. The
aim of the implementation is to help people make sense of the project and its environment. There-
fore, the last section finally explains the implemented information coding and how to interpret
the visualization.

5.1 Visualization Styles
The range of visualization types and alternatives is wide. The optimal style depends on the com-
plexity of the underlying data set and on the intended objective. Furthermore, large data sets
can not be represented completely and in every detail. Visualizing data demands for a certain
level of abstraction. In order to approach the issue of representing interaction networks in an un-
derstandable way, this section analyses the practices and alternatives. All of the three following
evaluations represent data that has been extracted within the processing described in Chapter 4.

5.1.1 Visualizing Time-Dependency
A significant requirement regarding dynamic data sets is the visualization of the evolution, such
as that the observer is able to identify the transformations. One possibility to visualize time-
dependent data is to span the time over one dimension. While assuming a two dimensional
space, only the second dimension is left to represent the data. This is a very limiting alternative
as the following sample sustains.

The first sample, Figure 5.1, illustrates the distribution of the interactions occurring within a
project. It illustrates a diagram that is based on the time series of the occurrence of mails, problem
and modification reports.1 All three lines show the moving average of the distribution. The

1Details regarding the data and project selection can be found in Chapter 6.3.

34 Chapter 5. Visualization

0

10

20

30

40

50

60

70

20
01

-0
1-

01

20
01

-0
3-

15

20
01

-0
5-

27

20
01

-0
8-

08

20
01

-1
0-

20

20
02

-0
1-

01

20
02

-0
3-

15

20
02

-0
5-

27

20
02

-0
8-

08

20
02

-1
0-

20

20
03

-0
1-

01

20
03

-0
3-

15

20
03

-0
5-

27

20
03

-0
8-

08

20
03

-1
0-

20

20
04

-0
1-

01

20
04

-0
3-

14

20
04

-0
5-

26

20
04

-0
8-

07

20
04

-1
0-

19

20
04

-1
2-

31

20
05

-0
3-

14

20
05

-0
5-

26

20
05

-0
8-

07

20
05

-1
0-

19

20
05

-1
2-

31

20
06

-0
3-

14

20
06

-0
5-

26

20
06

-0
8-

07

20
06

-1
0-

19

20
06

-1
2-

31

Timeline

#A
ct
iv
iti
es

0

1

2

3

4

5

6

7

Moving Average (14x) (mail_comm) Moving Average (14x) (bug_comm) Moving Average (14x) (cvs_commits)

Figure 5.1: Distribution of Collaboration Actions

yellow line represents the distribution of the modification reports for the selected data set. The
light blue line represents the communication activity arising from problem report discussions and
the dark blue line indicates the mail communication. The distribution of the mail communication
is scaled by factor ten compared to the other two distributions. It seems as this does confirm the
initial hypothesis, that the communication about development tasks takes places within problem
report tools and therefore is more frequent than mail communication. Furthermore, the curves
do not correlate, neither do they indicate any significance. Consequently, this representation does
not fulfill the requirements of visualizing dynamic interaction networks.

5.1.2 Visualizing Collaboration Patterns
In order to use the second dimension to illustrate the states of a project, the data source requires
to be stable. For software development, this could be files that are lined up spanning the time
dimension. The following sample illustrates this alternative. In addition to the first sample, by
coloring the different states, further information can be coded.

Figure 5.2: Source Code File Modification over Time

Figure 5.2 tries to show patterns regarding the source code modifications. It represents a sam-
ple of the overview graphics of all analyzed Eclipse Plug-ins and was generated by our prototype

5.1 Visualization Styles 35

visualization tool.2 The different roles of the developer are colored in order to easier find behav-
ioral patterns. The horizontal axis indicates the timeline (increasing from left to right). Each file
represent a horizontal lines. The files are grouped by projects.3 Within the project, the files are
ordered according to the organization inside the project’s file tree. The files that are contained
in the same source package are displayed close to each other.4 A colored pixel denotes an action
or the status of a file at the corresponding point in time. A black pixel indicates a file that ex-
ists, but which is not affected by any action. A blank pixel implies the file being inexistent. The
modification report actions are represented by the colors red, green and cyan. A green action is
an ordinary source code modification, done by the owner of the file. A cyan actions indicate a
code modifications performed by somebody not being the owner. Based on this condition, a red
colored pixel (highlighted by a circle) points at a change of ownership. In order to perceive the
project, the use of the second dimension to illustrate each file’s evolution and the developer’s
role helps. But the collaboration information or further qualities of the project are still missing.
The overview2 finally assists to find interesting spots that show a higher activity. However, the
significance is still inadequate to represent interaction network information.

5.1.3 Visualizing Social Networks
Social networks are represented by graphs. Compared to the previous two samples, the illustra-
tion of static graphs does not support to take the time dimension into consideration. Otherwise,
the scope of potential information being coded within a representation is much bigger. However,
the evolution can not be depicted with static graph representations.

Figure 5.3: iQuest Social Network Graph

Figure 5.3 shows the conventional representation of a social network. The sample illustrates
the social network based on only the mail communication. For this sampling purpose, the ex-

2The complete graphics can be found in Appendix ??. The source code of the java implementation can be found on the
enclosed CD.

3Project in this context means a working project configured within the Eclipse workspace.
4Note that modifications within the project’s directory structure are not considered. The organization represents the

standing at the time of the data extraction.

36 Chapter 5. Visualization

tracted data set was processed by the iQuest analyzer tool.5 The nodes represent community
members and the edges indicate mail communication. Although the figure allows a person to be
identifiedwithin the community, the graph does not contain any further information (for example
about the development contribution). Since the focus of this thesis is to combine the social net-
work with the project’s contribution configuration, this representation is not sufficient for further
analysis.

5.1.4 Motivation
The analyzed tools and approaches do not fulfill the demanded requirements without loosing too
many information or having no alternatives than to process the data as designed. For example,
the social network can be processed with the iQuest tool, but not without pre-processing the data.
The purpose of iQuest does not completely correspond to the schema of this thesis. To conclude,
the implementation of our Social Network Analysis Cockpit intends to enable the analysis of the
extracted data set.

5.2 Dimensions & Abstraction
Visualizing large or complex data sets and including all its aspects is not feasible, but requires
a certain level of abstraction. The gained collaboration data set spans the time and constellation
dimension. In order to represent the data in an understandable way, the difficulty is to identify the
optimal level of abstraction. This section briefly outlines the significance regarding the extracted
data set.

5.2.1 Time
In order to visualize dynamics, the underlying data requires to contain date specific informa-
tion. Each time-dependent data object needs to have a date attribute. Regarding the interaction
model, this time-dependency affects the mail communication and the contribution to problem-
and modification reports - thus, all interaction objects that have been introduced in Section 3.4.
This implies the communication and revision date to be memorized, since these interactions all
take place at a particular time.

5.2.2 Configuration
The configuration is determined by the state of the interaction network at a given point in time.
This includes the communication paths that represent the interactions between the project mem-
bers and the modification actions that relate a source code file to the performing developer. The
resulting interactions are defined by their type indicating mail communication or problem- and
modification report actions. Within the scope of the visualization, the content of the communi-
cation is not considered. Therefore, mails with the same subject and of the same thread are not
illustrated as such. The same applies to problem reports and their comments. Regarding modifi-
cation reports, the abstraction is set to the project level because the Eclipse Plug-ins are organized
in a modular way. The modularization is listed in Appendix D. and also applies to other software

5The formatted and processable data is contained on the enclosed CD.

5.3 Concepts 37

development projects. Details about the Plug-ins can be found in Chapter 6.3. To preserve ad-
ditional characteristics that represent the project’s situation, like revision specific features as the
alien commit, are added to the social network.6

5.3 Concepts
The aim of this section is to present an approach to combine the dimensions outlined before and
to find a suitable representation form for interaction networks. This interaction network graph
contains both the social (communication) and the collaboration structure of the network.

5.3.1 Social Network Graph
A social network graph is defined by a number of interconnected actors. Each actor is repre-
sented by a node within the graph. The connections between the actors are based on the their
communication within mail traffic or problem reports. The approach of the transformation into
communication paths is outlined in Section 3.4.2. Therefore, whenever two actors communicate,
they get related to each other. These relations determine the edges of the communication graph.

Graph Quantities

A graph consists of nodes and edges that determine its structure. In order to visualize a social net-
work graph, characteristics of the graph need to be measured to define the shape for the graphical
representation. This includes the length of a path between two actors or the position of a node
on the drawing. Finally, the arrangement of the graph elements is depending on the dimension
of the illustration. The following measures quantify the nodes and edges and determine how a
social network graph looks like.

• Betweenness Centrality: Determines the extent of direct connections to actors that are not
connected to each other. An actor occurring on many shortest paths between the other
actors has a higher betweenness compared to others. To use again the notation of Gladwell
an actor with a high betweenness (compared to the others) is more likely to be a Connector.7
This states the strategic importance of an actor related to the information paths.

• Degree Centrality: Defines the number of ties between an actor and its direct neighbors.
Since the indirect connected actors are not considered, this does not declare an actor being
more or less important. The algorithms to compute the degree centrality differ in terms of
consideration of the edges. We weight incoming and outgoing edges the same.

• Closeness Centrality: States how close an actor is to the others in the network, by measuring
the length of all shortest paths from this actor to all others. This measure indicates where
information is processed through.

• Path Length: Determines the distance between two connected actors and refers to the rela-
tive average path length.

The nodes and edges are arranged on the drawing according to the calculated features. With
an increasing number of nodes and edges in the graph, the complexity arises likewise. The more
complex the graph gets, the longer the calculation algorithm that computes the position of each

6See Section 3.4.1 for the definition and Section 4.2.1 for the implementation.
7His book The Tipping Point is mentioned in Chapter 3.1.

38 Chapter 5. Visualization

node based on its qualitymeasures lasts. Furthermore, the particular quality sets compete because
every node is qualified regarding different aspects and the length of edges is defined as well.

5.3.2 Collaboration Network Graph
The collaboration network graph is built using the same methods applied to social network
graphs. Additional to the actors of the social network, the collaboration network contains nodes
that represent work packages. The edges of a collaboration network graph are determined by the
contribution of a developer to a source code file that is contained in that specific work package.
The second reason for an edge relating an actor node with a work package node, is the illustration
of source code ownership. If an actor of the network owns a part of a work package that is being
modified, this is represented by a connection in between.

5.3.3 Dynamics - Time Window Selection
An interaction network graph always structures a particular state. Since the communication be-
tween people and the collaboration contribution are distributed over time, the graph ideally con-
tains network information covering more than two hours. Furthermore, the time window size
can differ between the communication and the collaboration graph. The challenge is to find an
appropriate size of the time window that supports the intended representation without blurring
the significance. Besides the window size, the shifting position needs to be defined. The possible
time shiftings range from the smallest time unit to the total size of the window.

Animation

In order to show the evolution of the networks, an animated visualization enables the project
environment to get explored.

5.4 Social Network Analysis Cockpit
The aim of this section is to describe the implementation of the visualization tool, called the So-
cial Network Analysis Cockpit (SNA Cockpit). The tools is implemented as Eclipse Plug-in and
launched by selecting the Dynamic View of the Social Network Analysis view.8 The graph vi-
sualization is implemented using yFiles [yG].9 The SNA Cockpit consists of four areas that are
described in the following sub sections.

5.4.1 Graphs
The main component of the SNA Cockpit is the graph panel containing the network representa-
tion. The visualization of the interaction graph is based on the methods outlined previously in
this chapter. The values of the calculations described in Section 5.3.1 are not illustrated as the
graph implicates these qualities within its representation.

This sub-section describes the different elements of the interaction network graph, by making
examples and explaining themeanings. It examines the nodes representing actors that play differ-
ent roles and the work packages. Furthermore, the different type of actions and the depiction of

8See Appendix C.1.4 for the description of how to start the tool.
9Version: yFiles Complete for Java 2.5.

5.4 Social Network Analysis Cockpit 39

John Arthorne

org.eclipse.core.resources
org.eclipse.core.resources.compatibility

org.eclipse.core.resources.win32

Dj Houghton

Daniel Megert

Rafael Chaves

Darin Wright

Dirk Baeumer

Darin Swanson

org.eclipse.core.runtime

Pascal Rapicault

Erich Gamma

Jeff Mcaffer

Martin Aeschlimann

Jared Burns

Debbie Wilson

org.eclipse.core.runtime.compatibility

Luc Bourlier

Figure 5.4: Social Network Graph

project specific status information is outlined. On the left a little extract of the explanation graph
is pictured, annotated by the text on the right.

The following list outlines the meaning of the nodes and edges contained in the graph. Fur-
thermore, for each type of node or edge, the applying rules are explained.

Nodes represent objects that are valid within the defined time frame. The design of the node
implies the characteristics of the represented object.

• Communicating Person: A person who is communicating via mail or active within
problem reporting. Mail communication encloses two different roles: Composer or
receiver of the mail. Within problem reporting, a person can play the following roles
that are considered: Reporter, assignee, ’CC’ or commentator.

• Working Person: A person who is committing source code modifications.
• Work Package: A work package represents an Eclipse workbench project. A work
package is displayed, when either some of its source files are modified or a Bugzilla
report to a component this work package belongs to, is opened.

Edges either represent an interaction, an action or a property that occurs or is valid within the
defined time frame.

• Mail Communication connects the sender to the receiver. The embodiment of some-
body being both the sender and the receiver of a mail is not represented. This applies
to all types of communication.

40 Chapter 5. Visualization

• Opening a Bugzilla Report links the reporter to the assignee of the issue. Furthermore,
every person recorded as ’CC’ is connected to the reporting person.

• Commenting a Bugzilla Reports connects the commentator to the assignee, to the re-
porter and to all preceding commentators.

• Committing Source Code Modifications links the developer to the work package the
modified file belongs to.

• Owning Source Code connects the owning person of a source code file that is being
modified, to the work package the file belongs to.

Actors

An actor can play different roles within the project. A project member is
illustrated by a grey actor node and labelled with the name. The default shape is
a hexagon and the border color is always black. Whether an author is involved

in communication or not is not implied by the node representation.
The size of an actor depends on the degree centrality that is determined by the

number of incoming and outgoing edges. The bigger the node is, the more this
actor communicates. The size only depends on the communication frequency.

The shadow of a node illustrates the sub-group to which the
actor belongs. Sub-groups are formed by extracting the domain
string from the email address. The color of the shadow is defined
by a derivation of the hash code of the domain string. There-
fore, the shadows of all actors of the same domain are colored
uniformly.

Regarding the code contribution, a developer can play two dif-
ferent roles. Either he is the owner of themodified source file or he
performs an alien commit, that is defined as a source code modifi-
cation, performed by somebody not being the owner. The owner
of a file is illustrated by shaping the node as diamond and drawing a black line relating the owner
to the work package the file belongs to. These owner edges are the only ones not representing an
interaction.

If the contribution of a developer within a modification report
results in an change of owner, this is illustrated by framing the
developer’s node label. With respect to the path length between
actors, the extent of exchanged messages defines the length of the
edge. The more frequent two actors communicate, the closer they

are arranged. John and DJ communicated more often with each other than John and Dirk.
An alien commit is illustrated by setting the font style of the

involved nodes to bold. This applies to the developer node and
the work package likewise.

5.4 Social Network Analysis Cockpit 41

Work Packages

A work package is illustrated by a dark grey rectangle. The
default line color is yellow and the default color of the shadow is
light grey. A bold labelled work package indicates that a file has

been modified by somebody not being its owner.

The border color represents a risk measurement regarding the
modification reports. Whenever a commit message of a modifica-
tion report contains a bug number, the fix is asserted to implying
a lower risk of resulting in a defect compared to a revision without containing a bug number,
which is seen as a modification with no declared intension. The more red the line is, the higher is
the number of revisions not related to a problem report.

The shadow indicates the extent of reported problem reports to the component this work
package belongs to. Only the problem reports whose resolution type is classified with either
FIXED, REMIND, WONTFIX or WORKSFORME are considered.10 The more red the shadow
gets, the more bugs are reported. The Bugzilla-project mapping can be found in Appendix D.
Whenever a work package is depicted but not connected to any developer, this indicates that the
work package is being used.

Actions

A software development contribution action is indicated by a
green line and represents the extent of modification reports per-
formed by a developer. The edge is put between the developer
and the work package the modified file belongs to. The thick-
ness of the line indicates the number of modification reports. The

thicker the line is, the more modifications are performed. In case of an alien commit, the node
label font style of the developer is changed to bold.

All other edges indicate communication. The communication
arising fromproblem report discussions are colored steel bluewhile
mail communication is colored royal blue. The thickness depends
on the extent of communication between the relating actors.

A change of ownership is indicated by framing the developer
and new owner’s node label. The sample shows John Arthorne as
the new owner of a file he has modified. Since a change of owner
implies an alien commit, the text style of the developer’s node
label is changed to bold as well.

10It does not seem to be obvious to take the resolution type instead of the severity classification. The reason for this is
related to the handling of the problem report features and it is outlined in Appendix C.1.1.

42 Chapter 5. Visualization

The Analysis Panel

Figure 5.5: SNA Cockpit Analysis Panel

In order to learn something about the project, the collaboration network is extended by prob-
lem report classifications. A high number of reported problems for example indicate an active
usage of the component. Valuable features of problem reports that state the project’s situation,
are either incorporated into the representation or are displayed as figures on the Analysis Panel.
It reports a lot of project status details referring to the actual representation of the interaction net-
work within the SNA Cockpit. The panel is part of the cockpit and illustrated in Figure 5.5. The
panel consists of seven section whose objectives are described in the following list.

time frames: Displays the active and the surrounding time frame that is set on the control panel.
The active time frame indicates the timewindow size for the collaboration network, whereas
the surrounding time frame defines the time window size for the communication network.
Depending on the user selection, these two time frames can completely overlap.

Number of Interactions: Indicates the total number of occurring actions within the defined time

5.4 Social Network Analysis Cockpit 43

frame for each interaction type.

Contribution Types: Shows the total number of alien commits that occur within the collabora-
tion network during the active time frame and the therein contained number of changes of
ownership. The figure in brackets indicates the ratio to the total number of revisions.

Risk Degree: Lists the work packages that contain a source code file that has beenmodified with-
out indicating a bug number in the commit message. The number in parentheses indicate
the ratio (in proportion to the total number of modification reports within the corresponding
work package).

Problem Reporting: Indicates the time frame over which the reported problems are taken into
account. The start of the time frame equals the start of the modification reporting time
frame, while the end corresponds to the end of the communication time frame. Besides the
period, the total number of reported problems that are considered are indicated.

Bugzilla Components: The reported problems are grouped by components that are listed in case
of occurring reports. The number indicates the quantity.

Domains: Based on the actor’s email address, the domain is derived and defines the color of the
shadow of an actor’s node. The listing shows the name of the domain and the according
color.

5.4.2 The User Interface
In order to enable an accessible handling of the visualization, the graphical user interface (GUI)
provides features to define the represented data. As outlined in Section 5.3.3 the selection of the
time window is crucial to get a feasible representation that enables analysis. Due to the dynamics
of the project and its evolution, the optimal window size varies. Furthermore, the window size of
the communication and the collaboration network are desired to be overlapping. Development
tasks relating communication are assumed to happen also before the modification is done to the
source file. In order to cope with this dynamics, the control panel features the selection of the
window size supposed to be displayed. Figure 5.6 shows the control panel and the following list
describes the provided features.

Figure 5.6: SNA Cockpit Control

Graph Window Zoom: The first two buttons allow the user to zoom in or out the graph panel.
To zoom a chosen area of the graph window, the third button enables to select the desired
area with the mouse pointer. The fourth button is intended to reset the graph on window
size.

Moving Forward and Backward: The arrow buttons enable to move along the time dimension,
based on the selected window size. By using the forward option the required data is fetched
and the graph is recalculated.

44 Chapter 5. Visualization

Calendar: With the pop-up calendar the desired date can be selected. By scrolling through the
time window slices, the calendar always displays the start time of the active time frame.

Rearrange: The flash button rearranges the graph. Since the calculation algorithm to compute
the optimal layout of the graph takes some time, the flash button enables to recall it.

Margin: The margin drop down menu enables the selection of the active time frame for the col-
laboration data, whose time window size can either set to daily, weekly or monthly. The
default value is weekly.

Surrounding Factor: The surrounding factor determines the factor of which the active time frame
is extended. This is the time frame that is decisive for the communication network. To
make an example, consider the second week of this year as selected as active time frame. A
surrounding factor of one will extend the active time frame by the week prior and posterior.
The default value is one.

CVS Flag: This flag defines if the active time frame is adjusted to the overall time frame. If
checked, the collaboration network span only the active time frame. If inactivated, the col-
laboration network span the same time frame as the communication network.

Reset: The reset button enables to restore the graph to the initial selected date.

The Modification Reports’ Detail Display

Figure 5.7: The Modification Reports’ Detail Display

Since the representation of the modification reports are abstracted to the work package level,
details that are not included in the graph are not visible. In order to display additional details
about the modification, the cockpit contains a scrollable pane. Figure 5.7 shows the panel that
lists in case of an alien commit or a change of ownership, the details of the transaction. Each lists
the date of the revision, the type of the modification, the affected plugin and class, and the names
of the modifier and the owner of the file.

5.5 Summary
This chapter outlines the implemented visualization. First, we have analyzed and discussed pos-
sible visualization styles in order to select an appropriate approach to implement the evolving
networks. The second section addresses the dimensions and abstraction issue. The subsequent
section outlines the dimensions of the underlying data and describes the concepts of the visual-
ization elements. This includes the design of the graphs that will be displayed by the tool. Finally,
the Social Network Analysis Cockpit is explained by making examples.

The implementation of the Cockpit will be evaluated on the data of Eclipse in the following
Chapter 6.3.

Chapter 6

Case Study & Evaluation

This chapter analyzes the Eclipse Platform Core community and evaluates the Social Network
Analysis Cockpit. The first section outlines the requirements and the assessment regarding the
project selection. Next, we present the case study by analyzing features of the different data
sources and we give an overview of the community. This section aims at gaining insights into its
structure of the community and a better understanding of the project.

The evaluation of the Social Network Analysis Cockpit is performed with the core develop-
ment team. The implementation is tested by addressing the questions introduced in Section 3.1.
The objective of the evaluation is to find answers to the given questions. First, we introduce
and explain several patterns. Within the following sections the perspectives described in 3.1 are
addressed and interpreted.

6.1 Project Selection
This section outlines the requirements of the project selection with the objective to point at the
crucial factors and to give hints for further extensions of the data set.

6.1.1 Requirements
Applying the approach described in Chapter 3 requires access to the data, and the fulfilling of
the conditions outlined in this section. Considering the availability of all three data sources with
respect to a similar time period, avoids the risk of clashing data. A source being moved to an-
other storage or the reorganization of a system and its processes can cause missing or misleading
reports. A stable and complete historic and current data set is crucial for the subsequent process-
ing. Besides the availability of the data sources and their history over the same period, the data
needs to have all required features available, in order to derive the model previously introduced
in Chapter 3. The data extraction and integration steps are covered by Chapter 4.

Characteristics qualifying the project, extend these technical requirements. Potential projects
are tested for their number of developers, their present lifetime and the amount of existing source
code. Available developer lists with information about the code contributors and details about
the community would be helpful, but either do not exist, are not available or are restricted due to
legal regulations.

46 Chapter 6. Case Study & Evaluation

6.1.2 Project Assessment
There exist a vast number of open source software projects whose data is accessible via the Inter-
net. FLOSSmole [FLO04] is a platform that provides high-level summary reports and raw data
about open source projects, mainly from SourceForge.net [OST04]. The aim is to establish a collab-
orative research data base, providing free/libre/open source project data collections for analysis
purpose. Many of the resultant research papers discuss projects on a higher level than within this
thesis. Besides SorceForge.net, there exist more large open source platforms such as mozilla.org
and eclipse.org. Projects hosted on such platforms are based on the open source applications
running on these systems. The mailing lists at SorceForge.net are managed by GNU Mailman,
whose online data representation is user friendly with a lot of features, but complicated to parse.
At mozilla.org newsgroups are used, but there exist no mailing lists for development teams. Fi-
nally the Eclipse Project is the only platform fulfilling the qualifications and its advantage is the
modular concept, so that the data sample is scalable and extendible.

6.1.3 The Eclipse Project
eclipse.org [Inc01] is an open source community whose projects are focused on building an in-
tegrated and extensible development platform and has over 60 projects. The Eclipse Project is
the top level and development project dedicated to providing a robust, full-featured, commercial-
quality, and freely available industry platform for the development of integrated tools. The data
available online at eclipse.org, fulfill all requirements outlined in Section 6.1.1 and has the advan-
tage of being a giant source to extend the analysis with more and different data. Within this thesis
we focus on a component of the Platform subproject, besides Equinox (an OSGi framework), JDT
(Java development tools) and PDE (plugin development environment) one of the four subprojects
of the Eclipse Project. A subproject can again be divided into components. The Platform subpro-
ject consists of 13 components. The selected sample data source is the Core component, assuming
that it is a central component and therefore the availability and quality of the data is good and the
component is in a stable state, thus not being reorganized within the overall project.

Domain Mapping

The mailing lists, bugzilla categories and plugins at eclipse.org have different granularities. The
Eclipse Platform subproject includes 18 mailing lists, 34 different classified bugzilla components
and more than 350 plugins. To know which part of the system is affected by a discussion within a
mail or problem report discussion is crucial to this analysis. The system with its data sources has
to be mapped to cover all sections and classifications. Appendix D shows a complete mapping of
the organizational domains coloring the components this thesis is based on.

Source Code

The source code of eclipse.org is organized modularly. 1 Each plugin contains some functionality
and can depend on others. The source code of the Eclipse Platform Core consists of 17 plugins
which are qualified in the following Table 6.1. The columns denote the name, the total number
of revisions and files, and the timeframe over which modification reports are contributed. The
source code is available from the beginning of the development, thus for every file there exists a
first revision. The first revision was checked in in May 2001.

1Details about eclipse.org and the project’s organisation and platform can be found in [Cor06]

6.1 Project Selection 47

Plugin # Revisions # Files Min tstamp Max tstamp
org.eclipse.core.contenttype 100 49 21.11.2005 03.08.2006
org.eclipse.core.expressions 483 65 19.02.2004 09.01.2007
org.eclipse.core.filesystem 304 60 22.09.2005 19.12.2006
org.eclipse.core.filesystem.hpux.ia64 32 14 7 05.10.2005 03.06.2006
org.eclipse.core.filesystem.hpux.PA RISC 12 7 05.10.2005 03.06.2006
org.eclipse.core.filesystem.linux.x86 12 6 26.09.2005 03.06.2006
org.eclipse.core.filesystem.linux.x86 64 13 7 26.09.2005 03.06.2006
org.eclipse.core.filesystem.macosx.ppc 7 4 04.10.2005 02.05.2006
org.eclipse.core.filesystem.qnx.x86 10 6 05.10.2005 03.06.2006
org.eclipse.core.filesystem.win32.x86 21 9 26.09.2005 03.06.2006
org.eclipse.core.jobs 160 48 21.11.2005 05.01.2007
org.eclipse.core.resources 3’602 223 02.05.2001 11.01.2007
org.eclipse.core.resources.compatibility 217 65 02.02.2005 03.11.2006
org.eclipse.core.resources.win32 153 30 30.04.2002 08.01.2007
org.eclipse.core.runtime 2’717 149 02.05.2001 29.11.2006
org.eclipse.core.runtime.compatibility 562 60 25.11.2003 15.11.2006
org.eclipse.core.variables 196 32 02.10.2003 26.09.2006

8’583 827 02.05.2001 11.01.2007

Table 6.1: Eclipse Platform Core Plugins

Mailing List

Themailing list at Eclipse Platform for the Core team is PLATFORM-CORE-DEV@ECLIPSE.ORG. The
following quote outlines the official remark on the mailing list homepage for platform-core-dev
as of April 2007.2

’This is a mailing list where developers of the Platform Core component gather to talk
about design issues, code changes or additions, bugs, etc. All Core committers must
subscribe to this list. Subscribers to this list also get notices for code changes, build
results, testing notices, et cetera. While this list is open to the public, it is intended for
discussions related to the implementation of the relevant component. General ques-
tions about using Eclipse should be directed to the appropriate Eclipse newsgroup.’

Although the developers are to obliged to subscribe to the list, this is no indication for an
active participation as we will see in Section 6.2.1.

Bugzilla

Reporting a problem concerning an Eclipse Platform plugin supports the allocation of the prob-
lem to a component.3 The two components belonging to the Platform and corresponding to the
Core, are Resources and Runtime. The average number of bugs, reported per week and compo-
nent is 11.6441. This results in an overall number of problem reports of 5331 over the period from
October 2001 until January 2007.

The following Section 6.2 shows the classification details of the reported problems for the
Platform Resources and Runtime. The first column indicates the classification and the second the
occurrence. By looking at the classification of the problem report two aspects arise. First, a lot of

2This has been introduced during the realization of this thesis.
3The organisation and the mapping of the Eclipse Platform can be found in Table D.1.

48 Chapter 6. Case Study & Evaluation

reports are later marked as duplicate or invalid. This results in a high number of rejected problem
reports. Second, from a point of view interested in the communication between the people, these
problem reports are useful because they contain interaction information.

RESOLUTION # PRIO. # SEVERITY # STATUS #
null 321 P1 119 BLOCKER 209 ASSIGNED 137
DUPLICATE 1’278 P2 208 CRITICAL 356 CLOSED 99
FIXED 1’810 P3 4’907 MAJOR 580 NEW 167
INVALID 964 P4 79 MINOR 104 REOPENED 17
MOVED - P5 18 TRIVIAL 37 RESOLVED 4’862
WONTFIX 406 ENHANCEMENT 659 UNCONFIRMED -
WORKSFORME 448 NORMAL 3’386 VERIFIED 49
REMIND 38
LATER 66

5’331 5’331 5’331 5’331

Table 6.2: Bugzilla Report Classification

6.2 Project Setup
The integrated database registers 2’615 persons. In order to evaluate the visualization, the circle
of people has to be limited. For the following evaluation, we selected the development team
that consists of 27 people. The delimitation steps and the time frame alignment are described in
Section 4.3.2.

6.2.1 Community
The Eclipse Platform Core community compounds of totally 2’615 members within the time pe-
riod from February 2002 to November 2006. Figure 6.1 shows this composition. The areas rep-
resent the team size proportionally. The steel blue colored sector indicates the Bugzilla users,
the royal blue the active mailing list subscribers, and the green one the development team. The
Bugzilla users form the largest group within the community, with over 2’500 members. The mail-
ing list counts 132 active users and the development team consists of 27 people. While all devel-
oper participate in Bugzilla reporting, only the half of the team writes mails to the mailing list.
The mail and Bugzilla groups each contain a sub-group composed of members only participating
in this group. 100 members contribute actively to more than one group.

6.3 The Eclipse Platform Core Development Team 49

Figure 6.1: Eclipse Platform Core Community

6.3 The Eclipse Platform Core Development Team
In order to evaluate the visualization and to analyze the behavioral patterns of the project team,
we focus on the core team of the Eclipse Platform Core community. It is illustrated in Figure 6.1.
We attempt to answer the questions introduced in Section 3.1 and analyze the core team using the
Social Network Analysis Cockpit. We present the results of the scenarios by making snapshots of
the graphs. The scenarios are structured as follows: first we address the question that is consid-
ered to be answered. Then if patterns are found, a graph depicts the structural overview and the
following snippets point them out. The subsequent interpretation of the snippet graphics then
explain the findings.

Regarding the time window size, the default values are set to weekly margin, surrounding
factor of one and the CVS option activated. This is the standard setup and, if not mentioned,
applies to all following evaluations. This means, that the date indicated in the calendar, sets the
starting date for the collaboration network period, which lasts one week. The surrounding factor
defines the period of the communication network which starts one week earlier and lasts one
week longer than the collaboration time frame. Unchecking the CVS check box enables to align
the collaboration time frame with the communication time frame.

The following notation is used to describe the analyzed period. The starting date of the col-
laboration time frame is indicated in the caption of the overview picture. The following snippet
pictures are labelled referring to the representation. Details about how to interpret the graphical
design is presented in Section 5.4.

50 Chapter 6. Case Study & Evaluation

6.3.1 Patterns
We first want to introduce patterns that are explored while analyzing the core development team.
They will be helpful to address the questions of the next Sections 6.3.2 and 6.3.3.

Role: Connector

One of the key roles within a project team is the connector. He knows a lot of teammembers and is
connected to a wide circle of them. The connector is able to bring the right people together either
by introducing or interconnecting them. Because he interconnects different groups, he enables
the communication or information processing between not directly linked team members. This
implies a certain degree of responsibility and leading skills. Such a team member is of value to
the project, but incorporates a certain risk. What happens, if a connector leaves the project?

Depending on the team size, it is not reasonable or feasible that everybody is linked to each
other. If a team reaches a certain size, there is a need for members who interconnect the groups.
The number of connectors within a project team depends on its size and the distribution rate.

Rafael Chaves

John Arthorne

Dirk Baeumer

Dj Houghton

Daniel Megert

Pascal Rapicault

Thomas Watson
Jeff Mcaffer

Debbie Wilson

Rodrigo Peretti

Jared Burns

Darin Swanson

Luc Bourlier

Darin Wright

Grant Gayed

Martin Aeschlimann

org.eclipse.core.resources.win32

org.eclipse.core.runtime

org.eclipse.core.resources

org.eclipse.core.variables

org.eclipse.core.resources.compatibility

org.eclipse.core.runtime.compatibility

Figure 6.2: Connectors of the Eclipse Platform Core Team as of 2003-11-03

Figure 6.2 shows the social network graph of the core development team of Eclipse Platform
Core. John and Rafael are such connectors who link groups and team members that otherwise
would not be connected. Knowing John can be very helpful for a teammember in order to address
a question or for the project management that is interested in the status of the project and wants
to talk to somebody who is involved in many discussions.

6.3 The Eclipse Platform Core Development Team 51

Role: Communicator

Another key role within a project team is the communicator. This is not necessarily the same
person as the connector. A communicator is somebody who knows where the information ideally
gets processed through. Hence a communicator can know a connector, but does not need to be
one.

John Arthorne

Dj Houghton
Rafael Chaves

Dirk Baeumer

Kevin Barnes

Darin Swanson

Pascal Rapicault

Sonia Dimitrov

Thomas Watson

Markus Keller

Daniel Megert

Jeff Mcaffer

Erich Gamma

Oleg Besedin

Jared Burns

Dean Roberts

Rodrigo Peretti

BJ Hargrave

Luc Bourlier

Darin Wright

Martin Aeschlimann

Jennifer Fogell

Tobias Widmer

Sumit Sarkar

Vlad Klicnik

Debbie Wilson

Grant Gayed

org.eclipse.core.expressions

org.eclipse.core.resources

org.eclipse.core.resources.compatibility

org.eclipse.core.resources.win32

org.eclipse.core.runtime

org.eclipse.core.variables

org.eclipse.core.runtime.compatibility

Figure 6.3: Communication from May 2004 to February 2006

Figure 6.3 illustrates the communication over 21 months (including only one month of collab-
oration information). The communication extent is illustrated by the width of the communication
path which implies the number of communication paths between these two edges. The more and
wider the edges of a person’s node are, the more this person communicates.

Figure 6.3 shows an interesting aspect that is depicted in the arrangement of the team mem-
bers. The turquoise colored Swiss members (@ch.ibm.ch) are all aligned on the right side of the
network, while the lavender colored group (@us.ibm.com) is located in the left part of the graph.
The members discovered at the center of the network all belong to the group @ca.ibm.com. They
keep the network together and play an important role within the project such as connector or
communicator. They represent the core team of the development team. This is a helpful view for
a project manager in order to get an overview of the project’s structure. The second insightful
finding is the occurrence of mail communication which is illustrated as royal blue interactions.
They can solely be found at the center of the network and between the project members located in
the very center of the graph. This indicates that the communication with users outside the project
team circle, takes place via mailing lists and is performed by only the core project team members.

52 Chapter 6. Case Study & Evaluation

Conway’s Law

Conway’s Law [Con68] states that the governance structure of the project has a direct influence on
the structure of the software itself. If this is true, we will discover this pattern in the visualization
of the core development team. Given that the team consists of developers either working for IBM
United States or IBM Switzerland (except one working for HP). The grouping is based on the
email address domain and is outlined in more detail in Section 4.3.1 and Section 5.4.

Rafael Chaves

Dj Houghton

Oleg Besedin
Jeff Mcaffer

John Arthorne

Darin Wright

Pascal Rapicault
Daniel Megert

Thomas Watson

Darin Swanson

Tobias Widmer

Sonia Dimitrov

Martin Aeschlimann

Markus Keller

org.eclipse.core.contenttype

org.eclipse.core.jobs

org.eclipse.core.runtime

org.eclipse.core.variables

org.eclipse.core.expressions

org.eclipse.core.resources
org.eclipse.core.resources.compatibility

org.eclipse.core.resources.win32

org.eclipse.core.runtime.compatibility

Dirk Baeumer

Kevin Barnes

Rodrigo Peretti

Luc Bourlier

Debbie Wilson

Figure 6.4: Conway’s Law: Governance Structure Impacts’ View as of 2006-04-13

6.3 The Eclipse Platform Core Development Team 53

(a) (b)

Darin Wright

org.eclipse.core.variables

Kevin Barnes

Luc Bourlier

Daniel Megert

Tobias Widmer

Markus Keller

org.eclipse.core.expressions

Dirk Baeumer

Sub-Group @us.ibm.com Sub-Group @ch.imb.com

Figure 6.5: Snippets of Figure 6.4

Figure 6.5 shows that the organization is reflected in the collaboration structure. Figure 6.5.a
illustrates Darin modifying files (indicated by the green line) which he does not own. Sustaining
Conway’s Law, the owner of the modified files (indicated by the black line) are of the same group,
assuming that there is no correlation between @ca.ibm.com and @us.ibm.com, and the location of
the team members. Therefore all @ca.ibm.com and @us.ibm.com team members are considered
to be IBM United States members. The same pattern applies to the Swiss team. Figure 6.5.b
represents the modification reporting of Markus and Tobias. The corresponding file owner of
the modified source code are Dirk and Daniel that belong to the same group (indicated by the
turquoise node shadow).

This pattern shows that the closer the people are organized, the more likely they work on the
same components. Figure 6.6 shows two more views that illustrate and sustain this pattern.

Dirk Baeumer

Markus Keller

org.eclipse.core.expressions

Dirk Baeumer

org.eclipse.core.expressions

Tobias Widmer

Figure 6.6: More Swiss Contribution Snippets

54 Chapter 6. Case Study & Evaluation

Hot Spots

The visualization of the Figure 5.2 introduced in Section 5.1.2 enables to find interesting and active
spots in the history of the project regarding source code contribution.4 We wanted to take a closer
look at the interaction network, at a point in time where manymodification reports are submitted.
Figure 6.7 represents a day at which John updated legal text in the ’about.html’ file. The vertical
lines in Figure D.1, spanning multiple plugins, indicate clean up operations that affect files of
many plugins. A comparison with a larger communication time frame showed that these clean up
actions do not correspond to any communication. Therefore, there are only few communication
activities occurring within this day. The difference between Figure 6.7 and the Figure 6.8 is the
type of the modification report. The first picture shows John modifying files which he does not
own whereas in the second picture, the affected files are mainly files he owns.

Rafael Chaves

John Arthorne

Dj Houghton

Daniel Megert

Jeff Mcaffer

Thomas Watson

org.eclipse.core.resources

org.eclipse.core.runtime

org.eclipse.core.runtime.compatibility

org.eclipse.core.resources.compatibility

org.eclipse.core.resources.win32

Pascal Rapicault

Dean Roberts

Debbie Wilson

Rodrigo Peretti

Figure 6.7: Clean Up Revisions at 2005-02-21

4The entire overview is illustrated in Appendix D.1.

6.3 The Eclipse Platform Core Development Team 55

John Arthorne

Pascal Rapicault

Jeff Mcaffer

Rafael Chaves
Oleg Besedin

Thomas Watson

org.eclipse.core.filesystem.hpux.ia64_32

org.eclipse.core.filesystem.hpux.PA_RISC

org.eclipse.core.filesystem.linux.x86org.eclipse.core.filesystem.linux.x86_64

org.eclipse.core.filesystem.qnx.x86

org.eclipse.core.filesystem.win32.x86

org.eclipse.core.jobs

org.eclipse.core.contenttype

org.eclipse.core.expressions
org.eclipse.core.filesystem

org.eclipse.core.resources

org.eclipse.core.resources.compatibility

org.eclipse.core.resources.win32

Dj Houghton

org.eclipse.core.runtime

org.eclipse.core.runtime.compatibility

Sonia Dimitrov

Rodrigo Peretti

Dirk Baeumer

Figure 6.8: Clean Up Revisions at 2006-05-08

56 Chapter 6. Case Study & Evaluation

6.3.2 Perspective: Project Manager
In order to remind the initial questions introduced in Section 3.1, we list them below and outline
which of the subsequent scenarios addresses the question or which of the described patterns help
to find the answer.

1. Who is the key personality in respect of communication?

2. Who is the leading person regarding code contribution?

3. Do sub-groups exist within the project team?

4. How are the working teams organized in terms of software development?
The first two questions can be answered by looking at the graph in Figure 6.9. It shows that

John for example is involved in many discussions and DJ is the most contributing source code
modification person within the given time frame. The questions number three and four are ad-
dressed by the outsourcing scenario. The following sections present two possible scenarios in
order to outline the use of the Social Network Analysis Cockpit.

Dj Houghton

Jeff Mcaffer

John Arthorne

Oleg Besedin

Darin Wright

Dirk Baeumer

Pascal Rapicault

Daniel Megert

Thomas Watson

Rafael Chaves

Tobias Widmer

Sonia Dimitrov

Martin Aeschlimann

Markus Keller

org.eclipse.core.contenttype

org.eclipse.core.jobs

org.eclipse.core.resources

org.eclipse.core.runtime

org.eclipse.core.runtime.compatibility

org.eclipse.core.variables

org.eclipse.core.expressions

org.eclipse.core.resources.compatibility

org.eclipse.core.resources.win32

Kevin Barnes

Rodrigo Peretti

Debbie Wilson

Luc Bourlier

Figure 6.9: A Project Manager’s View as of 2006-04-10

6.3 The Eclipse Platform Core Development Team 57

Scenario 1: Outsourcing

(a) (b)

Dj Houghton

Jeff Mcaffer

John Arthorne

Oleg Besedin

Pascal Rapicault

Thomas Watson

Rafael Chaves

tenttype
org.eclipse.core.resources

.runtime

org.eclipse.co

John Arthorne

Dirk Baeumer

Daniel Megert

Tobias Widmer

Martin Aeschlimann

Markus Keller

org.eclipse.core.contenttype
org.eclipse.core.resources

org.eclipse.core.runtime.compatibility

org.eclipse.core.expressions

urces.win32

Sub-Group @us.ibm.com Sub-Group @ch.imb.com

Figure 6.10: Snippets of Figure 6.9

We reconsider the outsourcing example of Section 3.1.1 with the objective of understanding
the collaboration of two geographically distributed teams. Figure 6.9 shows the project setup as
of 2006-04-10. During the represented three weeks, there was communication and source code
contribution taking place. While looking at the network graph, the two distributed teams can
easily be identified. The zoomed snippets are depicted in Figure 6.10. Figure 6.10.a shows the
American team and 6.10.b the Swiss team. In addition to the geographical distribution of the
teams, the collaboration structure depends on the organisation structure. This phenomenon of
’Conway’s Law’ was introduced in Section 6.3.1.

We first take a closer look at the connection point between the teams, in order to understand
the collaboration and coordination patterns between the different teams. While looking at the
paths between the American and the Swiss members, we see that John is involved in all the
communication occurring between the teams. Within the community, this is only a temporal state
and does not correspond long-term. If this would be the case in a commercial project, such a SNA
Cockpit view would help the project manager to recognize the situation early enough to be able
to take action. Otherwise, in case of John being not available, he risks a destabilization of the team
structure. This single point of contact constellation can constitute a risk for a project in case this
person is not available.

Another interesting aspect is on analyzing the communication behaviour of each of the teams.
By looking at the Figure 6.10 the difference is distinctive. While the American members com-
municate all with each other, the Swiss group depicts only one communication interaction. The
reasons can be varying: If members of a team are not located all at the same place, this in an
indicator for more tool based communication. Sitting next to each other and talking to each other,
as it seem to apply for the Swiss team, this cannot be represented in the graph.

58 Chapter 6. Case Study & Evaluation

Scenario 2: Key Person is Leaving the Project

The second scenario presents a key person that is leaving the core development team. The aim
is to illustrate the pattern, in order to assist a project manager to recognize the situation early
enough to be able to take an action or to assist him with analyzing the new situation and the
integration of the potential successor.

Figure 6.11.a depicts a situation in April, where the project setup does not show any irregular-
ities. In July, which is illustrated by Figure 6.11.b, Rafael’s contribution to discussions is decreas-
ing until he finishes in contributing his last modification report in July, which is illustrated by
Figure 6.11.c. After his final source code contribution, Rafael leaves the core development team.
Later he still appears as the owner of source code, but he does not belong to the core development
team any more. Although he continues to report problems, which circle he does not leave. As
illustrated by Figure 6.11.d, John and Jeff countervail Rafael’s departure.

(a) (b)

Rafael Chaves

Pascal Rapicault

Jeff Mcaffer

Dj Houghton

John Arthorne

Thomas Watson

Daniel Megert

Tobias Widmer

Dirk Baeumer

o

org.eclipse.core.runtime

org eclipse core r

John Arthorne

Rafael Chaves
Pascal Rapicault

org.eclipse.core.resources

April 2005 July 2005
(c) (d)

John Arthorne

Thomas Watson

Rafael Chaves

Dj Houghton
Daniel Mege

Pascal Rapicault

Jeff Mcaffer

Darin Wright

Dirk Baeumer

eclipse.core.runtime

John Arthorne

Rafael Chaves

Dj Houghtong.eclipse.core.resources

org.eclipse.core.runtime

patibility

tem

Jeff Mcaffer

DanieOleg Besedin

org.eclipse.core.cont

org.eclipse.core.jobs

July 2005 November 2005

Figure 6.11: Rafael Leaving the Core Development Team

6.3 The Eclipse Platform Core Development Team 59

6.3.3 Perspective: Newcomer
Again, the following list repeats the questions introduced in Section 3.1. This is followed by an
illustration that allows the newcomer to answer all these questions. To give further insights into
the community, we present a scenario describing the socialization of a core developer.

1. Who is a leading developer with the best general overview?

2. Who is a key personality in terms of software development contribution?

3. Who is working on which components?

John Arthorne

Daniel Megert

Rafael Chaves

Tobias Widmer
Dirk Baeumer

Dj Houghton

Oleg Besedin

Jeff Mcaffer

Thomas Watson

Pascal Rapicault

Darin Wright

Markus Keller Martin Aeschlimann

Darin Swanson

Sonia Dimitrov

Erich Gamma

Sumit Sarkar

Grant Gayed

Kevin Barnes

org.eclipse.core.contenttype

org.eclipse.core.expressions

org.eclipse.core.filesystem

org.eclipse.core.filesystem.hpux.ia64_32

org.eclipse.core.filesystem.hpux.PA_RISC

org.eclipse.core.filesystem.linux.x86

org.eclipse.core.filesystem.linux.x86_64

org.eclipse.core.filesystem.qnx.x86

org.eclipse.core.filesystem.win32.x86

org.eclipse.core.jobs

org.eclipse.core.resources

org.eclipse.core.runtime

org.eclipse.core.resources.win32

org.eclipse.core.runtime.compatibility

org.eclipse.core.variables

org.eclipse.core.resources.compatibility

Dean Roberts

Debbie Wilson

Luc Bourlier

Rodrigo Peretti

Figure 6.12: Collaboration Network as of October 2005

Figure 6.12 shows a five month view on the interaction network. In order to depict the al-
location of the developers to the work packages, the time frame of the collaboration network
corresponds to the period of the communication network. This results in a representation that
gives insight into the development structures and to answer the questions listed above.

Figure 6.12 shows John and Jeff as the most important developers, with John being the leading
developer having the broadest overview. The responsible developer or the working team can be
discovered for each of the work packages by following the green edges, leading from the work

60 Chapter 6. Case Study & Evaluation

package to the contributing developer. This helps a newcomer to contact the right people and to
get an overview of the project’s collaboration.

Scenario 3: Socialization

(a) (b)

Rafael ChavesKevin Barnes John Arthorne

Kevin Barnes

April 2004 April 2004
(c) (d)

Rafael Chaves

Darin Wright

Kevin Barnes

Darin Swanson

Darin Wright

Darin Swanson

Kevin Barnes

org.eclipse.core.variables
Luc Bourlier

June 2004 June 2004

Figure 6.13: Socialization of Kevin

Figure 6.13 depicts the steps of a successful socialization. The first action of Kevin is to get
in touch with Rafael (Figure 6.13.a) and John (Figure 6.13.b). Two months later, communication
between Kevin, Rafael, Darin S. and Darin W. ((Figure 6.13.c)) can be observed. As Figure 6.13.d
illustrates, DarinW. is a developer and Darin S. the owner of the files that are going to bemodified
by Kevin. Rafael plays the role of the connector who introduces the new developer Kevin to the
responsible persons for the work scope, Darin W. and Darin S.

This emphasizes the importance of addressing the right people before being allowed to con-
tribute to the software development and being accepted as member of the community.

6.4 Summary
Section 6.1 is about the right project selection. The underlying data it is crucial to the outcome of
an evaluation. Therefore, it is worth the effort of analyzing different data sources. The following
6.2 describes the selected data set of the Eclipse project. The evaluation Section 6.3 focuses on

6.4 Summary 61

answering the questions that arise within projects, by using the Social Network Analysis Cock-
pit. The first section aims at finding patterns that illustrate different roles or other interesting
structures. It demonstrates that the visualization can be used to illustrate various aspects. The
following two Sections 6.3.2 and 6.3.3 remind the perspectives that have been introduces in 3.1.
Besides answering the questions, scenarios are described in order to discover them in the data set.

Finally, the evaluation shows that the Social Network Analysis Cockpit allows to discover
interesting patterns such as the subgrouping of the team. Furthermore, the various aspects that
are incorporated within the graphs enables a wide range of different analysis.

Chapter 7

Summary & Conclusion

7.1 Summary & Conclusion
This thesis provides a visualization prototype tool, called the Social Network Analysis Cockpit,
that allows the project members to interactively explore the project dynamics and shows that dif-
ferent scenarios and roles can be discovered, providing deeper insight into the project. We showed
that the history of projects using common software change management tools, such as CVS repos-
itories or Bugzilla databases, contain sufficient information to gain a better understanding of the
project.

The evaluation of the Eclipse Platform Core development team sustained that the governance
structure of the project has a direct influence on the structure of the software itself and that the
visualization enables to identify these structures. Furthermore, we evaluated different roles, such
as connectors and communicators and described how to identify them.

By looking at the project from different perspectives, this allows us to state that the model-
ing of the interaction networks, combining the communication and collaboration networks, is
reasonable.

7.2 Contribution
We combined communication information, derived from mailing lists and Bugzilla reports, with
collaboration information extracted from CVS repositories and built an integrated database. The
Social NetworkAnalysis Cockpit is running on this integrated database. The following list presents
the contributions this thesis provides.

• A meta model for deriving communication from mail threads and Bugzilla reports.

• Improvements to an existing approach that defines the ownership of a source code file,
based on CVS logs.

• Algorithms to obtain an integrated data source combining communication and collabora-
tion information.

• An integrated database containing mail communication, problem report communication,
problem reports and modification reports.

• The Social Network Analysis Cockpit for interactive project exploration purposes.

64 Chapter 7. Summary & Conclusion

7.3 Limitations
Due to the fact that the available data of Open Source Software Projects is hosted on different
systems, the extraction and integration in a very time-consuming task. Furthermore, parsing the
data from an online view is error-prone in terms of building the object model. Consider a mail
thread, where the communication between composers is not modeled explicitly, these missing
relations between objects can lead to a high rate of loss during the data extraction.

The wide range of proprietary implementations of social network visualizations does neither
allow to process extracted data with existing tools, nor allow to compare the results yet.

7.4 Future Work
An integrated system, maintaining communication and collaboration information would facili-
tate the deployment of such visualization tools and enable to deploy them for example to OSS
projects to allow a newcomer to learn something about the project and adapt to the environment
and its instruments. It would be interesting to analyze the usage and the user acceptance of such
a tool.

The semantic annotation of collaboration information would simplify the data extraction, and
due to the additional layer make the implementations more exchangeable.

Visualizing multi dimension data is very challenging, especially when dealing with time-
dependent data. A differentiation or the dynamic setting of the abstraction levels would allow
to further survey the data. Since the abstraction level of the Social Network Analysis Cockpit is
predefined regarding the organization, communication and source code contribution, the visual-
ization only displays a subset of the available data. The integrated database would allow further
investigations in this area.

This thesis does not consider any quality measures, such as determination features for the
quality of the source code. Including such measurements would allow to make qualified state-
ments about the underlying configuration and direct to the research field of data mining. This
would further allow to perform semantic analysis on the data, like for example the survey of the
communication content.

Appendix A

Source Code Ownership

The source code ownership is calculated for every revision of a file. The following section de-
scribes the processing and the underlying calculations.

A.1 Revision Characteristics
Defining ownership requires additional information about a file at a given point in time. The
considered features are listed below while the given point in time equals the time stamp of the
committing revision. All features are dependent on that time stamp and calculated over the his-
tory of the relating file.

• Overall contribution of the committing author
• Owner of the relating file
• Overall contribution of the owning person

A.1.1 Overall Contribution of the Revision’s Author

CREATE DEFINER=‘root‘@‘localhost‘ FUNCTION
‘getContributionOfAuthor‘(p_plugin INT, p_file INT, p_asof TIMESTAMP,

p_author INT) RETURNS INT
BEGIN

DECLARE v_contr INT;
SELECT SUM(linesAdd) - SUM(linesDel) ’contribution’ FROM cvs_src.

revisions r
WHERE r.file_id = p_file
AND r.plugin_id = p_plugin
AND r.author = p_author
AND r.mr_creation_time <= p_asof
GROUP BY r.author INTO v_contr;

RETURN v_contr;

Listing A.1: Function to get the Overall Contribution of the Revision’s Author

66 Chapter A. Source Code Ownership

A.1.2 Person Owning the Relating File

CREATE DEFINER=‘root‘@‘localhost‘ FUNCTION
‘getOwner‘(p_plugin INT, p_file INT, p_asof TIMESTAMP) RETURNS VARCHAR

(255)
BEGIN

DECLARE v_owner VARCHAR(255);
DECLARE v_contr INT;
SELECT dev.name, max(dev.contribution) FROM (

SELECT p.name, sum(linesAdd) - sum(linesDel) ’contribution’,
count(*) FROM cvs_src.revisions r

JOIN cvs_src.author a ON r.author = a.id AND r.plugin_id = a.
plugin_id

JOIN bugs.person p ON a.person_id = p.id
WHERE r.file_id = p_file
AND r.plugin_id = p_plugin
AND r.mr_creation_time < p_asof
GROUP BY p.name) dev

GROUP BY dev.name
ORDER BY 2 desc
LIMIT 1
INTO v_owner, v_contr;

RETURN v_owner;

Listing A.2: Function to get the Name of the Person Owning the Relating File

A.1.3 Overall Contribution of the Owning Person

CREATE DEFINER=‘root‘@‘localhost‘ FUNCTION
‘getMaxContribution‘(p_plugin INT, p_file INT, p_asof TIMESTAMP)

RETURNS INT
BEGIN

DECLARE v_contr INT;
SELECT SUM(linesAdd) - SUM(linesDel) ’contribution’ FROM cvs_src.

revisions r
WHERE r.file_id = p_file
AND r.plugin_id = p_plugin
AND r.mr_creation_time < p_asof
GROUP BY r.author
ORDER BY 1 DESC
LIMIT 1
INTO v_contr;

RETURN v_contr;

Listing A.3: Function to get the Overall Contribution of the Owner

Appendix B

Data Preparation

B.1 Problem Reports

B.1.1 Bugzilla Importer
The org.seal.snanalyzer Eclipse Plug-in contains a bug importer functionality that parses
bugs as specified in a list of bugzilla numbers. The underlying java classes are listed below.

• org.seal.snanalyzer.Activator.java: Class for the Plug-in,

• org.seal.snanalyzer.bug.importer.BugParser: Bugzilla parser to read an eclipse bug in xml
format.

• org.seal.snanalyzer.bug.importer.PersonFinder: Helper class to find the real name of a per-
son.

• org.seal.snanalyzer.bug.importer.Util: Helper class for static conversion implementations
for example.

• org.seal.snanalyzer.bug.importer.mapper.BugModelBuilder: Builds the object model for the
bug report import to store it into the database

• org.seal.snanalyzer.bug.importer.wizard.BugzillaWizard:

B.2 The Integrated Data Model
Figure B.1 shows the integrated data model that contains all classes that are required for the
visualization. Both of the integrated database scheme report all and report core contain the tables
listed below. The are grouped according to the underlyingmetamodels org.evolizer.model.
versioning, org.evolizer.model.issuetracking and org.seal.snanlyzer.
evaluation.model.

• org.evolizer.model.versioning

– author
– revisions
– source units

68 Chapter B. Data Preparation

• org.evolizer.model.issuetracking

– comment
– component
– issue
– issue bugactivity
– issue cc
– mailaddress
– person
– plugin

• org.seal.snanlyzer.evaluation.model

– bug comm
– bug target
– mail comm
– mail target

B.2 The Integrated Data Model 69

Fi
gu

re
B.

1:
De

ta
ile

d
Da

ta
M

od
el

70 Chapter B. Data Preparation
B.

3
D

at
a

So
ur

ce
Co

ns
ol

id
at

io
n

Th
e
in
te
gr
at
ed
da
ta
so
ur
ce
co
nt
ai
ns
th
e
da
ta
of
ov
er
2’
50
0
di
ffe
re
nt
pe
op
le
w
hi
le
th
e
co
re
de
ve
lo
pm
en
tt
ea
m
co
ns
is
ts
of
27
pe
rs
on
s.
Si
nc
e

w
ew

an
tt
o
fo
cu
so
n
th
ec
or
et
ea
m
,t
he
in
te
gr
at
ed
da
ta
sc
he
m
a
is
st
re
am
lin
ed
.T
he
pr
oc
es
si
ng
st
ep
sa
re
lis
te
d
in
th
ef
ol
lo
w
in
g
Ta
bl
eB
.1
.T
he

in
te
gr
at
ed
sc
he
m
a
is
na
m
ed
re
po
rt
al
la
nd
th
e
co
ns
ol
id
at
ed
re
po
rt
co
re
.T
he
ta
bl
e
an
al
ys
is
.p
er
so
n
ro
le
ke
y
is
an
an
al
ys
is
of
th
e
di
ffe
re
nt

ro
le
so
ft
he
co
m
m
un
ity
m
em
be
rs
.T
he
en
tir
e
sc
he
m
a
an
al
ys
is
ca
n
be
fo
un
d
on
th
e
en
cl
os
ed
C
D
.

Ta
bl
e
B.
1:
D
at
a
So
ur
ce
C
on
so
lid
at
io
n

re
po
rt
al
l

re
po
rt
co
re

1.
M
od
ifi
ca
tio
n
Re
po
rt
s(
or
de
ri
rr
el
ev
an
t)

pl
ug
in

=
17

=
17

so
ur
ce
un
it

=
99
7

=
99
7

re
vi
si
on
s

=
7’
47
9

=
7’
47
9

co
m
po
ne
nt

=
3

=
3

2.
Pe
rs
on
Re
la
te
d
D
at
a
Ex
tr
ac
tio
n

pe
rs
on

=
2’
61
5

C
R
E
A
T
E
T
A
B
L
E

p
e
r
s
o
n
A
S

S
E
L
E
C
T
*

F
R
O
M
r
e
p
o
r
t
_
a
l
l
.
p
e
r
s
o
n
p

W
H
E
R
E
E
X
I
S
T
S
(

S
E
L
E
C
T

*
F
R
O
M
a
n
a
l
y
s
i
s
.
p
e
r
s
o
n
_
r
o
l
e
_
k
e
y
r

W
H
E
R
E
r
.
c
o
m
m
i
t
s
I
S
N
O
T
N
U
L
L

A
N
D
p
.
i
d
=

r
.
i
d
)
;

27

m
ai
la
dd
re
ss

=
2’
68
1

C
R
E
A
T
E
T
A
B
L
E

m
a
i
l
a
d
d
r
e
s
s
A
S

S
E
L
E
C
T
*

F
R
O
M
r
e
p
o
r
t
_
a
l
l
.
m
a
i
l
a
d
d
r
e
s
s
m

W
H
E
R
E
E
X
I
S
T
S
(

S
E
L
E
C
T

*
F
R
O
M
p
e
r
s
o
n
p

W
H
E
R
E
p
.
i
d
=
m
.
o
w
n
e
r
_
i
d
)
;

28

au
th
or

=
94

C
R
E
A
T
E
T
A
B
L
E

a
u
t
h
o
r
A
S

S
E
L
E
C
T
*

F
R
O
M
r
e
p
o
r
t
_
a
l
l
.
a
u
t
h
o
r
a

W
H
E
R
E
E
X
I
S
T
S
(

S
E
L
E
C
T

*
F
R
O
M
p
e
r
s
o
n
p

W
H
E
R
E
p
.
i
d
=
a
.
p
e
r
s
o
n
_
i
d
)
;

93

3.
C
om
m
un
ic
at
io
n
D
at
a
Tr
an
sf
or
m
at
io
n

bu
g
ta
rg
et

=
58
’9
27

B.3 Data Source Consolidation 71

Ta
bl
e
B.
1:
D
at
a
So
ur
ce
C
on
so
lid
at
io
n

re
po
rt
al
l

re
po
rt
co
re

C
R
E
A
T
E
T
A
B
L
E

b
u
g
_
t
a
r
g
e
t
_
t
m
p
A
S

S
E
L
E
C
T
t
.
c
o
m
m
_
i
d
,
t
.
c
o
m
m
_
t
o
,
t
a
g

F
R
O
M
b
u
g
_
t
a
r
g
e
t
t

G
R
O
U
P
B
Y

t
.
c
o
m
m
_
i
d
,
t
.
c
o
m
m
_
t
o
,
t
a
g
;

D
E
L
E
T
E
F
R
O
M

b
u
g
_
t
a
r
g
e
t
;

A
L
T
E
R
T
A
B
L
E

b
u
g
_
t
a
r
g
e
t

M
O
D
I
F
Y
C
O
L
U
M
N
c
o
m
m
_
t
o

B
I
G
I
N
T
(
2
0
)
N
O
T
N
U
L
L
D
E
F
A
U
L
T
0
,

A
D
D
P
R
I
M
A
R
Y
K
E
Y
(
c
o
m
m
_
i
d
,
c
o
m
m
_
t
o
)
;

58
’8
63

I
N
S
E
R
T
I
N
T
O

b
u
g
_
t
a
r
g
e
t

S
E
L
E
C
T
c
o
m
m
_
i
d
,
c
o
m
m
_
t
o
,
t
a
g

F
R
O
M
b
u
g
_
t
a
r
g
e
t
_
t
m
p
t

W
H
E
R
E
t
a
g
=

’
T
o
’
;

I
N
S
E
R
T
I
N
T
O

b
u
g
_
t
a
r
g
e
t

S
E
L
E
C
T
c
o
m
m
_
i
d
,
c
o
m
m
_
t
o
,
t
a
g

F
R
O
M
b
u
g
_
t
a
r
g
e
t
_
t
m
p
t

W
H
E
R
E
N
O
T
E
X
I
S
T
S

(
S
E
L
E
C
T
*

F
R
O
M
b
u
g
_
t
a
r
g
e
t
f

W
H
E
R
E
f
.
c
o
m
m
_
i
d
=

t
.
c
o
m
m
_
i
d

A
N
D
f
.
c
o
m
m
_
t
o
=
t
.
c
o
m
m
_
t
o
)
;

D
R
O
P
T
A
B
L
E
b
u
g
_
t
a
r
g
e
t
_
t
m
p
;

58
’6
82

C
R
E
A
T
E
T
A
B
L
E
b
u
g
_
t
a
r
g
e
t
A
S

S
E
L
E
C
T

*
F
R
O
M
r
e
p
o
r
t
_
a
l
l
.
b
u
g
_
t
a
r
g
e
t
t

W
H
E
R
E
E
X
I
S
T
S
(

S
E
L
E
C
T

*
F
R
O
M
p
e
r
s
o
n
p

W
H
E
R
E
p
.
i
d
=
t
.
c
o
m
m
_
t
o
)
;

22
’4
29

72 Chapter B. Data Preparation
Ta
bl
e
B.
1:
D
at
a
So
ur
ce
C
on
so
lid
at
io
n

re
po
rt
al
l

re
po
rt
co
re

bu
g
co
m
m

=
28
’1
31

C
R
E
A
T
E
T
A
B
L
E

b
u
g
_
c
o
m
m
A
S

S
E
L
E
C
T
*

F
R
O
M
r
e
p
o
r
t
_
a
l
l
.
b
u
g
_
c
o
m
m
c

W
H
E
R
E
E
X
I
S
T
S
(

S
E
L
E
C
T

*
F
R
O
M
b
u
g
_
t
a
r
g
e
t
t

W
H
E
R
E
t
.
c
o
m
m
_
i
d
=
c
.
c
o
m
m
_
i
d
)
;

D
E
L
E
T
E
F
R
O
M

b
u
g
_
c
o
m
m

W
H
E
R
E
N
O
T
E
X
I
S
T
S
(

S
E
L
E
C
T

*
F
R
O
M
p
e
r
s
o
n
p

W
H
E
R
E
p
.
i
d
=
c
o
m
m
_
f
r
o
m
)
;

7’
90
7

m
ai
lt
ar
ge
t

=
78
6

C
R
E
A
T
E
T
A
B
L
E

m
a
i
l
_
t
a
r
g
e
t
_
t
m
p
A
S

S
E
L
E
C
T
t
.
c
o
m
m
_
i
d
,
t
.
c
o
m
m
_
t
o
,
t
a
g

F
R
O
M
m
a
i
l
_
t
a
r
g
e
t
t

G
R
O
U
P
B
Y

t
.
c
o
m
m
_
i
d
,
t
.
c
o
m
m
_
t
o
,
t
a
g
;

D
E
L
E
T
E
F
R
O
M

m
a
i
l
_
t
a
r
g
e
t
;

A
L
T
E
R
T
A
B
L
E

m
a
i
l
_
t
a
r
g
e
t

M
O
D
I
F
Y
C
O
L
U
M
N
c
o
m
m
_
t
o
B
I
G
I
N
T
(
2
0
)

N
O
T
N
U
L
L
D
E
F
A
U
L
T
0
,

A
D
D
P
R
I
M
A
R
Y
K
E
Y
(
c
o
m
m
_
i
d
,
c
o
m
m
_
t
o
)
;

75
7

B.3 Data Source Consolidation 73

Ta
bl
e
B.
1:
D
at
a
So
ur
ce
C
on
so
lid
at
io
n

re
po
rt
al
l

re
po
rt
co
re

I
N
S
E
R
T
I
N
T
O

m
a
i
l
_
t
a
r
g
e
t

S
E
L
E
C
T
c
o
m
m
_
i
d
,
c
o
m
m
_
t
o
,
t
a
g

F
R
O
M
m
a
i
l
_
t
a
r
g
e
t
_
t
m
p
t

W
H
E
R
E
t
a
g
=

’
T
o
’
;

I
N
S
E
R
T
I
N
T
O

m
a
i
l
_
t
a
r
g
e
t

S
E
L
E
C
T
c
o
m
m
_
i
d
,
c
o
m
m
_
t
o
,
t
a
g

F
R
O
M
m
a
i
l
_
t
a
r
g
e
t
_
t
m
p
t

W
H
E
R
E
N
O
T
E
X
I
S
T
S

(
S
E
L
E
C
T
*

F
R
O
M
m
a
i
l
_
t
a
r
g
e
t
f

W
H
E
R
E
f
.
c
o
m
m
_
i
d
=

t
.
c
o
m
m
_
i
d

A
N
D
f
.
c
o
m
m
_
t
o
=
t
.
c
o
m
m
_
t
o
)
;

D
R
O
P
T
A
B
L
E
m
a
i
l
_
t
a
r
g
e
t
_
t
m
p
;

65
4

C
R
E
A
T
E
T
A
B
L
E
m
a
i
l
_
t
a
r
g
e
t
A
S

S
E
L
E
C
T

*
F
R
O
M
r
e
p
o
r
t
_
a
l
l
.
m
a
i
l
_
t
a
r
g
e
t
t

W
H
E
R
E
E
X
I
S
T
S
(

S
E
L
E
C
T

*
F
R
O
M
p
e
r
s
o
n
p

W
H
E
R
E
p
.
i
d
=
t
.
c
o
m
m
_
t
o
)
;

11
7

m
ai
lc
om
m

=
89
1

C
R
E
A
T
E
T
A
B
L
E
m
a
i
l
_
c
o
m
m
A
S

S
E
L
E
C
T

*
F
R
O
M
r
e
p
o
r
t
_
a
l
l
.
m
a
i
l
_
c
o
m
m
c

W
H
E
R
E
E
X
I
S
T
S
(

S
E
L
E
C
T

*
F
R
O
M
m
a
i
l
_
t
a
r
g
e
t
t

W
H
E
R
E
t
.
c
o
m
m
_
i
d
=
c
.
c
o
m
m
_
i
d
)
;

D
E
L
E
T
E
F
R
O
M
m
a
i
l
_
c
o
m
m

W
H
E
R
E
N
O
T
E
X
I
S
T
S
(

S
E
L
E
C
T

*
F
R
O
M
p
e
r
s
o
n
p

W
H
E
R
E
p
.
i
d
=
c
o
m
m
_
f
r
o
m
)
;

10
2

Appendix C

Social Network Analysis
Cockpit Implementation

C.1 Implementation

C.1.1 Problem Report Classification
In order to include states of the project into the visualization, we analyze the classification of the
reports. The analysis of the classification enables to selected the most significant reports. Table 6.2
shows the classification of the extracted Eclipse Platform Core Bugzilla entries. The priority does
not yield any additional information. The severity and the status appear to be promising. A
closer look at the resolution shows, that the differentiation of the resolution contains the most
informative details about the reports and accordingly to the system.

• NULL→ nok (NEW, REOPENED or ASSIGNED reports)
• DUPLICATE
• FIXED→ ok
• INVALID
• MOVED
• WONTFIX → ok (sample: https://bugs.eclipse.org/bugs/show_bug.cgi?id=
14764)

• WORKSFORME→ ok (sample: https://bugs.eclipse.org/bugs/show_bug.cgi?
id=32351)

• REMIND→ ok (sample: https://bugs.eclipse.org/bugs/show_bug.cgi?id=99942)
• LATER→ ok

Duplicate, invalid or moved reports are not of any interest while reports classified as fixed or
later state serious reports. The remaining classifications are investigated in order to evaluate their
potential consideration. The reports with no resolution classification (NULL) have either status
NEW, REOPENED or ASSIGNED. We do not consider these, because it is not yet determined if
they are probably a duplicate or an invalid report. The resolution types WONTFIX, WORKS-
FORME and REMIND have been evaluated by viewing at samples. The discussions within the
report do not except any malfunctions. Therefore, these three types are taken into consideration.

76 Chapter C. Social Network Analysis Cockpit Implementation

C.1.2 org.seal.snanalyzer.evaluation
The org.seal.snanalyzer Eclipse Plug-in contains the Social Network Analysis Cockpit. The
underlying java classes are listed below.

• org.seal.snanalyzer.evaluation.CommunicationModelProvider: Activates the communica-
tion classes.

• org.seal.snanalyzer.evaluation.DataBaseHandler: Loads the required database tables.

• org.seal.snanalyzer.evaluation.ModelContainer: Stores the objects.

• org.seal.snanalyzer.evaluation.model.BugComm: Entity class for bug communication.

• org.seal.snanalyzer.evaluation.model.MailComm: Entity class for mail communication.

• org.seal.snanalyzer.evaluation.views.CollaborationColor: Color class to define colors for the
SocialNetworkGraph.

• org.seal.snanalyzer.evaluation.views.DynamicView: Loader class for the Social Network
Analyzer.

• org.seal.snanalyzer.evaluation.views.Evolution: Interface for a (time)scrollable graph.

• org.seal.snanalyzer.evaluation.views.GraphPanel: Prototype Application to aligns file revi-
sion information.

• org.seal.snanalyzer.evaluation.views.SampleView: Plugin starter class that lauches the SNA
Cockpit.

• org.seal.snanalyzer.evaluation.views.SNACockpit: Social Network Analysis Cockpit.

• org.seal.snanalyzer.evaluation.views.ViewBase: Superclass of the SNA Cockpit.

• org.seal.snanalyzer.evaluation.views.graph.PlatformCoreGraph: The PlatformCoreGraph is
a special implementation of the SocialNetworkGraph.

• org.seal.snanalyzer.evaluation.views.graph.SampleGraph: Sample Graph.

• org.seal.snanalyzer.evaluation.views.graph.SocialNetworkGraph: The SocialNetworkGraph
contains a representable yfiles graph structure.

C.1.3 Test Cases
Test queries for the data fetching.

SELECT * FROM report_core.bug_comm m
JOIN bug_target t ON m.comm_id = t.comm_id
WHERE comm_time > ’2006-10-29’
AND comm_time < ’2006-11-20’
AND m.comm_from != t.comm_to;

SELECT * FROM report_core.mail_comm m
JOIN mail_target t ON m.comm_id = t.comm_id
WHERE comm_time > ’2006-10-29’

C.1 Implementation 77

AND comm_time < ’2006-11-20’
AND m.comm_from != t.comm_to;

SELECT * FROM report_core.revisions
where mr_creation_time > ’2006-11-05’
and mr_creation_time < ’2006-11-13’;

SELECT * FROM report_core.issue
where dateopened > ’2006-11-05’
and dateopened < ’2006-11-20’
and (resolution is null or resolution in (1, 4, 5, 6));

Listing C.1: Test Queries

C.1.4 Program Start
The following components are required to run the Social Network Analysis Cockpit.

• Modified Revision 336 of org.evolizer.model.issuetracking

• Modified Revision 336 of org.evolizer.model.versioning

• org.seal.snalayzer

The program is launched by clicking Window/Show View in the workspace of the Eclipse
IDE, and selecting the feature indicated in Figure C.1

Figure C.1: Starting the Eclipse Plug-in View

78 Chapter C. Social Network Analysis Cockpit Implementation

Fi
gu

re
C.

2:
So

cia
lN

et
w

or
k

An
al

ys
is

Co
ck

pi
t

Appendix D

The Eclipse Project

80 Chapter D. The Eclipse Project

Name Plug-ins Mailing List Bugzilla
Platform.Ant org.eclipse.ant.* platform-ant-dev Platform.Ant

org.eclipse.ui.externaltools
Platform.Core org.eclipse.core.contenttype platform-core-dev Platform.Runtime

org.eclipse.core.expressions Platform.Resources
org.eclipse.core.filesystem.*
org.eclipse.core.jobs
org.eclipse.core.resources.*
org.eclipse.core.runtime.*
org.eclipse.core.variables

Platform.CSV org.eclipse.team.cvs.* platform-cvs-dev Platform.CVS
Platform.Debug org.eclipse.debug.* platform-debug-dev Platform.Debug
Platform.Releng org.eclipse.releng.* platform-releng-dev Platform.Releng
Platform.Search org.eclipse.search platform-search-dev Platform.Search
Platform.SWT org.eclipse.team.swt platform-swt-dev Platform.SWT
Platform.Team/Compare org.eclipse.team.* platform-team-dev Platform.Team

org.eclipse.compare.* platform-compare-dev Platform.Compare
Platform.Text org.eclipse.text platform-text-dev Platform.Text

org.eclipse.core.filebuffers
org.eclipse.jface.text
org.eclipse.workbench.texteditor
org.eclipse.ui.editors

Platform.UserAssistance org.eclipse.help.* platform-ua-dev Platform.UserAssistance
org.eclipse.ui.intro.*
org.apache.lucene
org.eclipse.tomcat
org.eclipse.ui.cheatsheets
org.eclipse.ui.browser

Platform.UI org.eclipse.ui.* platform-ui-dev Platform.UI
org.eclipse.jface

Platform.Update org.eclipse.update.* platform-update-dev Platform.Update
Platform.WebDAV org.eclipse.webdav platform-webdav-dev Platform.WebDAV
Equinox org.eclipse.equinox.* equinox-dev Equinox.Budles

org.eclipse.osgi.* Equinox.Framework
JDT.APT org.eclipse.jdt.apt.* jdt-apt-dev JDT.APT
JDT.Core org.eclipse.jdt.core jdt-core-dev JDT.Core
JDT.Debug org.eclipse.jdt.debug.* jdt-debug-dev JDT.Debug

org.eclipse.jdt.launching
JDT.UI org.eclipse.jdt.ui.* jdt-ui-dev JDT.UI

org.eclipse.ltk.core.manipulation
org.eclipse.ltk.core.refactoring
org.eclipse.jdt.junit.*
org.eclipse.jdt.doc.user

PDE.Build org.eclipse.pde.build pde-build-dev PDE.Build
PDE.UI org.eclipse.pde.ui.* pde-ui-dev PDE.UI

Table D.1: Eclipse Platform Organization

81

Fi
gu

re
D.

1:
Co

nt
rib

ut
io

n
to

So
ur

ce
Co

de
De

ve
lo

pm
en

to
ve

rT
im

e

Appendix E

Content of CD-ROM

• 01 Data Retrieval

– Database (bugs, cvs core*, mail threads)
– org.evolizer.base (CVSParser, modified)
– org.evolizer.model.issuetracking (modified)

• 02 Data Cleaning

– Database (bugs, cvs src, mails)
– SQL Functions

• 03 Analysis

– Database (report all, report core, analysis, util)
– org.evolizer.model.issuetracking (modified)
– org.evolizer.model.versioning (modified)
– org.seal.snanalyzer

84 Chapter E. Content of CD-ROM

References

[Abe07] Mark Aberdour. Achieving quality in open source software. IEEE Software, pages
59–65, 2007.

[BH98] Ivan T. Bowman and Richard C. Holt. Software Architecture Recovery Using Con-
way’s Law. In Proceedings of the 1998 Conference of the Centre for Advanced Studies on
Collaborative research, page 6. CASCON, IBM Press, 1998.

[CO03] Kevin Crowston and Charles S. Osborn. A Coordination Theory Approach to Process
Description and Redesign. Working papers WP 4029-98. CCSTR ; 204., Massachusetts
Institute of Technology (MIT), Sloan School of Management, April 2003.

[Con68] Mel Conway. How Do Committees Invent? Datamation Magazine, April 1968.

[Cor06] International Business Machines Corp. Eclipse platform technical
overview. http://www.eclipse.org/articles/Whitepaper-Platform-3.1/
eclipse-platform-whitepaper.pdf. Last visited in March 2007, 2006.

[Cro97] Kevin Crowston. ACoordination TheoryApproach toOrganizational Process Design.
Organization Science, 8(2):157 – 175, March 1997.

[CWL+05] Kevin Crowston, KangningWei, Qing Li, U. Yeliz Eseryel, and James Howison. Coor-
dination of Free/Libre Open Source Software Development. In Proceeding of the 26th
International Conference on Information Systems (ICIS), Las Vegas, USA, December 2005.
International Conference on Information Systems (ICIS).

[Duc05] Nicolas Ducheneaut. Socialization in an Open Source Software Community: A Socio-
Technical Analysis. Computer Supported Cooperative Work (CSCW), 14(4):323 – 368,
August 2005.

[FLO04] FLOSSmole. Collaborative Collection and Analysis of Free/Libre/Open Source
Project Data. http://ossmole.sourceforge.net/index.html. Last visited in April
2007, since 2004.

[Fou98] Mozilla Foundation. Mozilla - Preserve Choice and Innovation on the Internet. http:
//www.mozilla.org/. Last visited in April 2007, since 1998.

[FPG03] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a Release History
Database from Version Control and Bug Tracking Systems. In Proceedings of the 19th
International Conference on Software Maintenance (ICSM), pages 23 – 32, Amsterdam,
The Netherlands, September 2003. IEEE, IEEE Computer Society.

86 REFERENCES

[GKSD05] Tudor Grba, Adrian Kuhn, Mauricio Seeberger, and Stphane Ducasse, editors. How
Developers Drive Software Evolution. Eighth International Workshop on Principles of
Software Evolution (IWPSE), 2005.

[Gla02] Malcolm Gladwell. The Tipping Point: How Little Things CanMake a Big Difference. Back
Bay Books, January 2002.

[Glo] Peter A. Gloor. Temporal Communication Flow Visualizer. http://www.
swarmcreativity.net, http://www.soberit.hut.fi/T-76.5651/, http://www.
ickn.org/. Last visited in April 2007.

[HG99] James D. Herbsleb and Rebecca E. Grinter. Splitting the Organization and Integrating
the Code: Conway’s Law Revisited. In Proceedings of the 21st international conference on
Software engineering (ICSE), pages 85 – 95, Los Alamitos, CA, USA, 1999. IEEE Com-
puter Society Press.

[HIC06] James Howison, Keisuke Inoue, and Kevin Crowston. Social Dynamics of Free and
Open Source Team Communication. In Proceedings of the IFIP 2nd International Confer-
ence on Open Source Software (IFIP), Lake Como, Italy, June 2006. International Federa-
tion for Information Processing (IFIP).

[IBM] IBM. Many eyes. http://services.alphaworks.ibm.com/manyeyes/home.

[Inc] Red Hat Inc. Hibernate - Relational Persistence for Java and .NET. http://www.
hibernate.org/. Last visited in April 2007.

[Inc01] Eclipse Foundation Inc. Eclipse - an Open Development Platform. http://www.
eclipse.org/. Last visited in March 2007, since 2001.

[JH04] Kevin Crowston James Howison. The Perils and Pitfalls of Mining SourceForge. In
Workshop onMining Software Repositories. International Conference on Software Engin-
neering ICSE, 2004.

[MHo94] MHonArc. A Mail-to-HTML Converter. http://www.mhonarc.org. Last visited in
April 2007, since 1994.

[MO07] Christian Bird Premkumar Devanbu Alex Gourley Michael Ogawa, Kwan-Liu Ma.
Visualizing social interaction in open source software projects. In APVIS ’07. 2007 6th
International Asia-Pacific Symposium on Visualization, pages 25–32, Feb. 2007.

[OST04] Inc. (Open Source Technology Group) OSTG. SourceForge R© Collaborative Devel-
opment Environment. http://sourceforge.net/. Last visited in April 2007, since
2004.

[PtFSF98] GNU Project and the Free Software Foundation. CVS - Concurrent Versions System.
http://www.nongnu.org/cvs/. Last visited in April 2007, since 1998.

[Sac01] Warren Sack. Conversation Map: An Interface for Very Large-Scale Conversations.
Journal of Management Information Systems, 17(3):73 – 92, 2001.

[SDD+06] Warren Sack, Franoise Dtienne, Nicolas Ducheneaut, Jean-Marie Burkhardt, Dilan
Mahendran, and Flore Barcellini. A Methodological Framework for Socio-Cognitive
Analysis of Collaborative Design of Open Source Software. Computer Supported Coop-
erative Work (CSCW), 15(2):229 – 250, June 2006.

REFERENCES 87

[SEA04] SEAL. Software Evolution and Archtecture Lab. http://seal.ifi.unizh.ch/. Last
visited in April 2007, since 2004.

[WBB76] Harrison C. White, Scott A. Boorman, and Ronald L. Breiger. Social Structure from
Multiple Networks. i. Blockmodels of Roles and Positions. The American Journal of
Sociology, 81(4):730 – 780, jan 1976.

[XCM05] Jin Xu, Scott Christley, and Gregory Madey. The Open Source Software Community
Structure. In Proceeding of the Annual North American Association for Computational So-
cial and Organizational Science (NAACSOS), Notre Dame, IN, USA, June 2005. North
American Association for Computational Social and Organizational Science (NAAC-
SOS).

[XGCM05] Jin Xu, Yongqin Gao, Scott Christley, and Gregory Madey. A Topological Analysis of
the Open Souce Software Development Community. In Proceedings of the Proceedings
of the 38th Annual Hawaii International Conference on System Sciences (HICSS), page 198,
Washington, DC, USA, January 2005. IEEE Computer Society.

[yG] yWorks GmbH. yfiles - Extensive Java Library Providing Algorithms and Enabling
the Visualization of Graphs. http://www.yworks.com. Last visited in April 2007.

