
Mining Software
Repositories — A Semantic

Web Approach

Jonas Tappolet
of Zurich ZH, Switzerland

Student-ID: 02-720-241
jonas@tappolet.ch

Diploma Thesis March 13, 2007

University of Zurich
Department of Informatics

Advisor: Christoph Kiefer

Prof. Abraham Bernstein, PhD
Department of Informatics
University of Zurich
http://www.ifi.unizh.ch/ddis

Acknowledgements

I would like to thank Christoph Kiefer and Prof. Abraham Bernstein for giving me the oppor-
tunity to write this thesis and for their valuable inputs and supervision. Special thanks to Julia
Schmoker for her moral support and proofreading, and, last but not least my parents, Alfred and
Bernadette Tappolet for their support and making it possible that I actually could write this thesis.
The logo displayed on the titlepage is inspired by the official RDF, Java, CVS and Bugzilla logos.

Abstract

Modern software development has become a complex task. Software systems grow larger and
are densely interconnected to other systems making excessive use of large communication frame-
works. To cope with this complexity, software developers and project managers need the assis-
tance of tools which extract information about flaws in code as well as general information about
the state of a project. In this thesis, we first introduce a data exchange format based on OWL/RDF,
the Semantic Web’s format of choice today, able to store data and meta data from the source code,
versioning system (i.e. CVS) and bug tracking system (i.e. Bugzilla). In a next step, we present a
tool to retrieve the data from the online software repositories and to store it in OWL/RDF. This
tool is implemented as a plug-in for the Eclipse IDE and is able to harvest data from projects man-
aged by Eclipse. Finally, we evaluated our data format and tools by applying a set of software
metric calculations, pattern detections and similarity measures by using iSPARQL and SimPack.
The results of the conducted experiments are promising, and gave a first proof of our approach.

Zusammenfassung

Softwareentwicklung wurde über die Zeit immer komplexer. Die Softwaresysteme werden grösser
und sind dichter miteinander verwoben, wobei eine vielzahl von Kommunikationsframeworks
und Schnittstellen zum Einsatz kommen. Damit Softwareentwickler und Projektverantwortliche
den Überblick in diesen komplexen Systemen behalten können, brauchen sie die Hilfe von Werkzeu-
gen, welche Informationen über Schwächen im Code sowie den Zustand eines Softwareprojekts
im Allgemeinen liefern können. In der vorliegenden Arbeit stellen wir zuerst ein Datenaus-
tauschformat vor welches auf der OWL/RDF Syntax des Semantic Web’s basiert. Dieses Format
kann Daten speichern, welche aus dem Quellcode, Versionierungssystem (CVS) und Bugtrack-
ingsystem (Bugzilla) extrahiert wurden. In einem weiteren Schritt haben wir ein Tool implemen-
tiert, welches Daten aus den erwähnten Systemen extrahiert, und diese im OWL/RDF Format
speichert. Bei diesem Tool handelt es sich um ein Eclipse Plug-in welches auf die Daten der Pro-
jekte zugreifen kann, die von Eclipse verwaltet werden. In einem letzten Schritt evaluieren wir
unser Datenformat und usere Tools indem wir einige Software-Metrik Berechnungen, Design-
Muster Erkennungen und Ähnlichkeitsberechnungen mithilfe von iSPARQL und SimPack durch-
führen. Die Resultate dieser Experimente sind vielversprechend und bestätigen unseren Ansatz.

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals of this Work . 1
1.3 Area of Application . 2
1.4 Related Work . 2
1.5 Technology . 3

1.5.1 OWL . 3
1.5.2 Java . 4
1.5.3 Jena . 4
1.5.4 ARQ / SPARQL . 4

2 The Ontology Models 5
2.1 Namespaces . 5
2.2 An Ontology Model to Represent Object-Oriented Software Source Code 6

2.2.1 The FAMIX Meta Model . 6
2.2.2 The Source Code Ontology . 7

2.3 An Ontology Model to Represent Software Defects 12
2.4 An Ontology Model to Represent Software Versions 16
2.5 Interconnection of the Ontology Models . 17

2.5.1 Different Concepts of Filesystem Entities . 18

3 The Plug-in 19
3.1 Decision of Data Depth . 19

3.1.1 Implicit Version . 19
3.1.2 Explicit Version . 20

3.2 Implementation . 20
3.2.1 User Interaction . 20
3.2.2 CVS Parser . 22
3.2.3 Bugzilla Parser . 22
3.2.4 Source Code Parser . 23
3.2.5 Persistent Storage . 23

4 Evaluation 25
4.1 Pre-processing Steps . 25

4.1.1 Evaluation Framework . 25
4.1.2 The Order of Releases . 26
4.1.3 An Extension to ARQ for Counting . 28

x TABLE OF CONTENTS

4.2 Metrics . 29
4.2.1 HIT — Height of Inheritance Tree . 30
4.2.2 NOPA — Number of Public Attributes . 31
4.2.3 CM — Changing Methods . 33
4.2.4 NOP — Number of Parameters . 34
4.2.5 NOR — Number of Revisions . 34
4.2.6 NOB — Number of Bugs . 35
4.2.7 Bug and Evolution Densities . 36

4.3 Patterns . 40
4.3.1 Software Patterns . 40
4.3.2 Anti-Patterns . 42
4.3.3 Code Smells . 43

4.4 Similarities . 44
4.4.1 iSPARQL . 45
4.4.2 SimPack . 46
4.4.3 Evaluation of Compare Algorithms . 46
4.4.4 Similarity Strategy . 46
4.4.5 Selection of Algorithms . 49
4.4.6 Criticism on the used Algorithms . 49
4.4.7 Engineered Compare Algorithm . 49
4.4.8 Querying the Models for Similarity . 51

5 Conclusions 59
5.1 Limitations . 59

5.1.1 Technical Limitations . 59
5.1.2 Conceptual Limitations . 60

5.2 Future Work . 60

A Code Listings 61
A.1 A Generic Function for Counting with ARQ . 61

B UI Elements of the Plug-in 65

C DVD 69

Bibliography 72

TABLE OF CONTENTS xi

List of Listings

1.1 Query to retrieve the persons whose birthday is the 14th of May 4
4.1 Usage of the class DataModel . 25
4.2 Query to retrieve a list of revisions and its releases 27
4.3 Query that won’t retrieve the number of elements due to limitations of the impl-

mentation . 29
4.4 Working query to retrieve the number of elements 29
4.5 Query to list all superclasses of all classes in a project 30
4.6 Query to count all the superclasses of a class . 31
4.7 Query to find all public attributes and its declaring class 32
4.8 Query to find all public non-static and non-final attributes and its declaring class . 32
4.9 Query to retrieve the number of invokers (changing methods) 33
4.10 Query to retrieve the length of the parameter list (NOP) 34
4.11 Query to retrieve number of revisions per file (NOR) 35
4.12 Query to retrieve number of bugs per file (NOB) . 36
4.13 Query to detect the proxy pattern . 41
4.14 Query to detect the Alien Spider anti-pattern . 42
4.15 Query to detect a Shotgun Surgery . 43
4.16 Query to find attribute accesses from outside the declaring class 44
4.17 iSPARQL configuration example . 46
4.18 Query for similarity measures between two releases 51
4.19 Query for similarity measures between the same classes of two releases 55
A.1 countChilds.java . 61
A.2 changingClasses.java . 62
A.3 changingMethods.java . 63

xii TABLE OF CONTENTS

List of Tables

2.1 Classes of the source ontology model . 8
2.2 Datatype properties of the source ontology model; FP = Functional Property 10
2.3 Classes of the bug ontology model (bom) . 12
2.4 Datatype properties of the bug ontology model. 14
2.5 Classes of the version ontology model . 16
2.6 Datatype properties of the version ontology model. 16

3.1 The different export formats . 22

4.1 Parts from the result set of Query 4.2 . 27
4.2 Counting example output . 28
4.3 Counting entities in a SPARQL query . 28
4.4 Parts from the result set of Query 4.5 . 31
4.5 Parts from the result set of Query 4.6 . 31
4.6 Parts from the result set of Query 4.7 . 32
4.7 Parts from the result set of Query 4.9 . 33
4.8 Parts from the result set of Query 4.10 . 34
4.9 Parts from the result set of Query 4.11 . 35
4.10 Parts from the result set of Query 4.12 . 36
4.11 The bug density of the org.eclipse.compare plug-in 37
4.12 Result set of Query 4.14 . 42
4.13 Parts from the result set of Query 4.15 . 43
4.14 Parts from the result set of Query 4.16 . 44

C.1 An overview over the files and folder on the DVD and their contents 69

TABLE OF CONTENTS xiii

List of Figures

2.1 The FAMIX exchange model. 6
2.2 The FAMIX model for object-oriented code representation. 7
2.3 The abstract core components of the ontology . 8
2.4 The software ontology model . 11
2.5 The bug ontology model . 15
2.6 The version ontology model . 17
2.7 The connection between the three meta models . 17
2.8 The need of the hasRelease association . 18

3.1 The components of the implemented plug-in . 21
3.2 Typical steps when creating individuals . 22
3.3 The structure of the in-memory model . 24

4.1 Overview over the evaluation framework . 26
4.2 The bug density of the org.eclipse.compare files . 38
4.3 The spreading of the ERD metric . 39
4.4 The structure of the proxy pattern . 41
4.5 Component overview for similarity measures . 45
4.6 Example trees . 50
4.7 Similarity between release 3.1 and 3.2 using a TreeEditDistance algorithm 53
4.8 Similarity between release 3.1 and 3.2 using a TreeEditDistance algorithm and a

Levenshtein node comparator . 53
4.9 Similarity between release 3.1 and 3.2 using a SubgraphIsomorphism algorithm

and a Levenshtein node comparator . 54
4.10 Similarity between release 3.1 and 3.2 using a custom algorithm and a Levenshtein

node comparator . 54
4.11 Change history of class org.eclipse.compare.internal.Utilities 56
4.12 Change history of class org.eclipse.compare.CompareUI 56
4.13 Change history of class org.eclipse.compare.internal.CompareAction 57

B.1 Entry point where exporters can be activated . 65
B.2 Location of the OWL-Exporter in the list of exporters 66
B.3 Selection of the project to export . 66
B.4 Selection of the software releases to export . 67
B.5 Providing an export folder and Bugzilla URL. Start of the parsing action 67

1
Introduction

1.1 Motivation

In the past years, software development has become a more and more complex task. Software
systems grow larger and have a myriad of interfaces to other systems and make excessive use
of large frameworks. An effect of this increased complexity is a raising number of members in
a developer team to cope with the larger effort of software engineering. This makes software
projects more cost intensive and can be of vital importance for a company. The more significant
software development becomes, the more people are interested in a successful end of the project.
These people can either be the software developers themselves, the project leaders or even the
company’s management. It is not feasible for a management member to look into the source code
to receive an overview of the status of a project. Different stakeholders need different information
about a software project. Where a developer needs detailed information about the location of code
flaws, a project leader may wants to know about the upcoming workload and a manager needs
to know the general state of a project. To answer all these questions, the underlying information
first needs to be fetched from the different repositories used for software development, to later
extract the needed data to receive meaningful information about a software project.

1.2 Goals of this Work

To achieve the above mentioned needs, data from the three major repositories of software devel-
opment, source code, versioning system and bug tracking system, shall be extracted. This data should
be stored in the Semantic Web’s [Berners-Lee et al., 2001] preferred format OWL/RDF. To extract
the data from the repositories, a tool is needed to automate the retrieval of information from the
mentioned repositories. In a last step, the tools and models are evaluated to show the abilities as
well as the limitations of the presented approach. This thesis is structured as follows: Chapter 2
is about the ontologies, defining the general structure of our data. Chapter 3 gives a brief intro-
duction to our plug-in, which accesses the online software repositories and feeds our knowledge
base. Finally, in Chapter 4 we conduct several experiments to demonstrate the abilities of our
approach.

2 Chapter 1. Introduction

1.3 Area of Application

The intended approach can be a valuable component in software development. A first area of ap-
plication can be the usage as a standalone tool. This tool could run within the daily development
work to extract data and run a bunch of measures to annotate a project by generating a report.
Another application could simply be the generation of the model data to annotate a project se-
mantically. A rising number of open source applications and frameworks are available in the
Internet on platforms like sourceforge1. These project are often well documented using Javadoc as
a documentation format crafted for human readability. It would be an advantage if a develop-
ment tool could access a foreign component’s structure and functionality. This would enable an
IDE2 to automate integration checks, determine dependencies etc. Due to the use of a Semantic
Web data format (OWL/RDF), the location where the information resides is secondary. As today,
many software projects host the human readable software documentation on its project website,
the machine-readable models could be hosted there as well to be accessed from a remote CASE3

tool.

1.4 Related Work

There are two different kinds of related work. First, there are approaches of methods mining
software repositories. These approaches do not necessarily need to use Semantic Web techniques.
Second, there are Semantic Web enabled works, of mining software repositories and supporting
software development. A first approach to mention is Coogle (Code Google) [Sager et al., 2006]
which is a predecessor of this thesis. Coogle does not use Semantic Web techniques but directly
does its calculations within the Eclipse framework. It can calculate the similarity between two
releases of a project applying tree compare algorithms. As Coolge operates on the in-memory
abstract syntax tree of Eclipse, it has a limited extendability for future measuring methods. Most
related to the here presented approach is probably the work of Hyland-Wood. They introduce
an ontology model for software based on Java [Hyland-Wood et al., 2006]. However, they do not
include bug data and versioning data.

D’Ambros & Lanza [D’Ambros and Lanza, 2006] present a visualization technique to uncover
the relationships between data from a versioning and bug tracking system of a software project.
To achieve this goal, they are also using a version of the Release History Database (RHDB) in-
troduced by Fischer in [Fischer et al., 2003]. Both, Mäntylä [Mäntylä et al., 2003] and Shatnawi &
and Li [Shatnawi and Li, 2006] carry out an investigation of bad code smells in object-oriented
software source code. While the first study additionally presents a taxonomy (in our sense an
ontology) of smells and examines its correlations, both studies provide empirical evidence that
some code smells can be linked with errors in software design.

Happel [Happel et al., 2006] present their KOntoR approach that aims at storing and querying
meta-data about software artifacts to foster software reuse. The software components are stored in
a repository and they present various ontologies for providing background knowledge about the
components, such as the programming language and licensing models. It is certainly reasonable
to integrate their models with ours in the future to result in an even larger fact base used to
analyze large software systems.

Finally, Dietrich & Elgar [Dietrich and Elgar, 2005] present an approach to automatically de-
tect design patterns in Java programs based on an OWL design patterns ontology. Again, we

1http://www.sourceforge.net/
2Integrated Development Environment
3Computer Aided Software Engineering

1.5 Technology 3

think it would make sense to use their approach and ontology model to collect even more infor-
mation about software projects. This would allow us to conduct further evaluations to measure
the quality of software.

1.5 Technology

To be able to realize the above mentioned goals, different tools are used in this thesis.

1.5.1 OWL

OWL stands for Web Ontology Language. The swapped O and W in the acronym might be in
imitation of the OWL in Alan Alexander Milnes Winnie Puh4. In OWL, the format of the data is
plain XML. As XML has not the ability to express semantics, owl bridges this gap by defining
XML tags allowing to express semantic linkage of data. The owl language offers three different
flavors [W3C, 2004a]:

• OWL Full The full specification of the language

• OWL DL A subset of OWL Full, making some restrictions to allow automated reasoning

• OWL Lite A subset of OWL DL as a simple-to-use, simple-to-implement version of OWL.

For this thesis, OWL DL will be used, due to the ability of automated reasoning.

A Brief Description of the OWL Concepts

The OWL format has four major concepts to store information and its associations.

• Classes are abstract definitions of a single concept. Classes define possible associations and
properties they can have. A class itself does not store concrete data, it only acts as a container
concept.

• Individuals (also called instances) are the concrete realization of a class. They only can have
associations and store data in the defined manner of their respective class.

• Object properties define the associations between two classes (abstract) or two individuals
(concrete). Object properties are directed associations and always belong to a specific do-
main (i.e. the starting point of an association) and a range (i.e. the endpoint). Domain and
range can both be a list of multiple Classes

• Datatype properties can be, likewise object properties, considered as associations. Unlike
object properties, the range is not a list of classes but rather a predefined data type. Typically
the data types of XML Schema [W3C, 2004b] are used.

4see http://en.wikipedia.org/wiki/Web_Ontology_Language/ for more speculation about this acronym

4 Chapter 1. Introduction

1.5.2 Java

During this thesis, different steps require the implementation of different programs. The evalua-
tion framework will be needed to implement specific functionality to collect, process and store the
queried data. Eclipse 5 is used as framework for the harvesting tools to generate the data needed
to create the models. The latter, Eclipse, itself is implemented in Java 6 causing interacting tools to
be implemented in this language too. Another Java based framework used in this thesis is Jena.
The availability of these tools and frameworks let us select Java as implementation language for
our here presented programs.

1.5.3 Jena

Whenever coping with semantic web, and especially OWL/RDF data, most likely the Jena7 frame-
work is involved somehow. Initially developed by the HP Labs8, it has become a virtual standard
for processing OWL/RDF data. Jena features a complete interface to create, manipulate and query
semantic web data i.e. OWL/RDF files.

1.5.4 ARQ / SPARQL

SPARQL [Prudh́ommeaux and Seaborne, 2006] is the W3C9 standard query language for seman-
tic web OWL/RDF data. To retrieve data using SPARQL, a triple template is defined in the
query. The core idea is to leave the subject or object of a triple blank (variable), and the query
engine will try to find all the triples matching this template. Query 1.1 shows a example of a
query retrieving all persons from a foaf10 ontology whose birthday is the 14th of May. The triple
?someone foaf:birthday <05−14> consists of only two fixed elements, the predicate and the ob-
ject. The subject of the triple (?someone) is a variable and the query engine will match every triple
in the ontology fitting this template.

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ?name
WHERE {

?someone f o a f : bir thday <05−14> .
?someone f o a f : name ?name .

}

Listing 1.1: Query to retrieve the persons whose birthday is the 14th of May

Where SPARQL is only a definition for the grammar of the query language, ARQ is a concrete
implementation of a query engine by Jena. ARQ implements SPARQL, but also offers extensions
to access special functions from within a query.

5http://www.eclipse.org/
6http://java.sun.com/
7http://jena.sourceforge.net/
8http://hpl.hp.com/
9http://www.w3c.org/

10foaf — Friend of a Friend, http://www.foaf-project.org/

2
The Ontology Models

Our goal – extract information from software repositories – needs the definition of a structure this
data can be stored in. We already introduced OWL/RDF, however, this is only the data format,
and does not define or make restrictions on the data’s structure. When we extract the elements
of a software project, we create an instance file of this project. In this file, the concrete entities
such as methods with their names and signatures or classes are stored. To define the possible
set of entities and associations in an instance file, we need to define these in an ontology model.
This model is necessary for the semantics of an instance file and to check its consistency. From
the description logic’s point of view, the instance file would refer to the ABox and the ontology
model to the TBox [Baader et al., 2003]. In this chapter, three such ontology models are presented
for each repository, source code, bug tracking system and version control system.

2.1 Namespaces

Every OWL/RDF ontology needs to define its own namespace. When defining a distinct names-
pace, it can be uniquely referred to by any other ontology in the world. This mechanism is a main
pillar of the Semantic Web. However, Semantic Web has no central registry for such namespaces
that would guarantee unambiguity. The idea of namespaces is to rely on the existing naming
system of the Internet, i.e. DNS (Domain Name System). A creator of a OWL/RDF ontology
should use an Internet domain name he is in charge of for the ontologies. This guarantees that no
other ontology uses the same namespace. To have multiple ontologies defined in the same domain
name, a whole URL can be used to finer define a namespace. Although a URL usually hosts a web
page, this is not necessary for a namespace. It is even not needed for the URL to exist, however, a
creator of an ontology is advised to host the source of the ontology on the namespace’s URL. For
the three ontologies presented in the remaining part of this chapter, the following namespaces are
used.

• Software Ontology Model — http://www.ifi.unizh.ch/ddis/evoont/2007/02/
som#

• Bug Ontology Model — http://www.ifi.unizh.ch/ddis/evoont/2007/02/bom#

• Version Ontology Model — http://www.ifi.unizh.ch/ddis/evoont/2007/02/vom#

6 Chapter 2. The Ontology Models

2.2 An Ontology Model to Represent Object-Oriented Soft-

ware Source Code

There are two different approaches of creating a model of object oriented code. The first is a
detailed model covering all operations, and every execution path can be traced back in the model.
This kind of model stores most of the information but, therefore, is time and memory consuming
even for the simplest tasks. This depth of information is needed, if the model is used for extensive
testing like control flow tests. The second model nature only defines the structure of the code
and the linkage between the structural entities. This results in smaller models (small filesize)
allowing straightforward handling. The downside of this incomplexity is a loss of information
and, hence, a reduced set of measuring and reasoning methods available. The model developed
in this thesis uses the second approach due to the simplified handling and, as a major advantage
of the OWL/RDF format, the door is still left open for further extensions to the model where
needed.

2.2.1 The FAMIX Meta Model

The FAMIX meta model [Demeyer et al., 1999] was initially developed as an information ex-
change format for the FAMOOS (Framework-based Approach for Mastering Object-Oriented
Software Evolution) project at the University of Berne. It describes the core structure of object
oriented (OO) software without being fixed to one language (i.e. Java, C++ etc.). This general
nature of the model makes it extensible for future languages.

Figure 2.1: The FAMIX exchange model. Figure adapted from [Demeyer et al., 1999]

Figure 2.1 shows the original FAMIX meta model, designed to integrate different object ori-
ented languages into one model, to be able to apply tools and measures in one manner. The
FAMIX meta model also defines an interchange format to transport generated models through
plain ASCII1 streams. This characteristic is omitted completely in this work as it is done by the
OWL format which has an implicit exchangeabilty due to its XML nature. The components of the
FAMIX model are shown in Figure 2.2.

The model defines the entities, a typical OO language offers. The most essential ones are
Classes, Methods and Attributes. FAMIX uses CDIF as interchange format which stands for CASE
Data Interchange Format and, as the name states, it is primarily thought to be used by CASE2

tools. The format itself is a plain text format, and both sides of a communication channel need to
know the exact FAMIX specification to properly encode and decode the data. This makes FAMIX

1American Standard Code for Information Interchange
2Computer Aided Software Engineering

2.2 An Ontology Model to Represent Object-Oriented Software Source Code 7

Figure 2.2: The FAMIX model for object-oriented code representation. Figure adapted from [Demeyer et al., 1999]

fragile to changes on the meta model specification itself, as a tool might no more understand or
falsely decodes data streams. Another disadvantage of FAMIX and CDIF is their small domain of
application and, therefore, not very wide spreading.

2.2.2 The Source Code Ontology

The approach of this thesis is to adopt the model part from FAMIX, extending it where reasonable,
but using OWL as representation and exchange format. This has different advantages:

• Interchangeability OWL is a W3C standard based on XML and RDF. There is a myriad
of tools available capable of manipulating, visualizing or reasoning with the data with
OWL/RDF.

• Non-ambiguity A characteristic inherited from XML. With the ability to use worldwide
unique namespaces (URI - Uniform Resource Identifier) a resource can be identified and
linked to, from any other file or place without the risk of naming conflicts.

• Machine-readability OWL masters the balancing act between a human-readable and machine-
processable format. An OWL file can be read and edited by a human without using any
other tool than a simple text editor, but still be processed and understood3 by a computer
system.

• Extendibility An OWL ontology can simply be extended by attaching new ontologies. These
ontologies can use the existing ontology and define new, more specific entities. Instances
files, using the initial ontology are not affected by this extension and still will process prop-
erly.

These all are desirable attributes for a representation and exchange format of software meta data.
Therefore, the FAMIX model was transformed to an OWL ontology.

3In the sense of being able to extract and categorize a piece of information

8 Chapter 2. The Ontology Models

Ontology Hierarchy

The model consists of four core components. These are Entity, Context, BehaviouralEntity an Struc-
turalEntity. As show in Figure 2.3 Entity is the superclass of all model elements.

Figure 2.3: The abstract core components of the ontology

BehaviouralEntity is a superclass for all elements that describe an activity in the software. This
is typically an encapsulated block of code solving a specific problem. In Java this is performed by
a method, other languages know the concept of functions which is slightly different to methods.

StructuralEntity is a superclass for elements storing information. Typically these are all types
of variables but also constants.

Context is the superclass for container entities. These entities are typically not involved to any
information storage or activity but act as assortative concepts with their own name and names-
pace. A characteristic example for a context entity is a (OO-)class. It generally does not perform
any actions or store information but acts as a container for methods and attributes which do the
mentioned actions.

OWL Classes

Table 2.1 shows the OWL classes representing entities in the source code.

Name Description

Class a source class. This is a generic entity for either classes, abstract
classes and interfaces

Directory A filesystem directory.
File A filesystem file. A file is a container for classes.
Package A package serves the grouping and structural organisation of

classes and defines an own namespace.
Attribute An attribute is a variable with class scope.
FormalParameter A formal parameter is a special kind of a local variable. It is the

parameter passed to a method.
GlobalVariable A global variable is a variable with global, system wide visibility

(This concept does not exist in Java)
ImplicitVariable An implicit variable does not have a name. It is accessed by

special keywords whose value changes according to the context
where they are called. Examples are super and this

LocalVariable A variable whose lifetime (scope) is restricted to a method call.
Function A function is an operation with a system wide scope. This con-

cept does not exist in Java.
Method A container for the execution of code. A methods needs to be

defined inside a class and, therefore, can have no global scope.
Table 2.1: Classes of the source ontology model

2.2 An Ontology Model to Represent Object-Oriented Software Source Code 9

In Table 2.2 the datatype properties of the source code ontology model are listed. Some of the
listed properties are functional, expressing that there can be at most one value per individual for
this property. The domain classes are the classes this property is applicable for.

Name Type FP Domain Description

comments string Entity The comment written by a de-
veloper or tool providing fur-
ther information about the func-
tionality of this entity

accessControlQualifier string X Class, Method,
Attribute, Glob-
alVariable, Lo-
calVariable,
Function

The visibility of this entity. This
would refer to Java’s private,
public, package and protected key-
words.

sourceAnchor string X Entity Identifies the location in the
source where the information is
extracted. The exact format of
the qualifier is dependent on the
source of the information. Cur-
rently this property is not being
used.

isInterface boolean X Class true if this class is an interface.
isAbstract boolean X Class, Method true if this entity is declared

abstract and has to be imple-
mented by a inheritance entity.

isStatic boolean X Entity true if the entity is declared
static and can be accessed with-
out being bound to an object.

isFinal boolean X Entity true if the entity is immutable. A
final variable is also known as a
constant.

isInit boolean X BehaviouralEntity true if the entity symbols a
global starting point for the
software. Every language
implements this concept in a
slightly different way (Java:
main method).

isConstructor boolean X Method true if the method has the spe-
cial functionality to be called
during object generation. A
Function entity cannot have this
property because a function is
not bound to an object.

name string X Entity The name property stores the
entity’s name. This name may
not be unique in the model.

10 Chapter 2. The Ontology Models

uniqueName string X Entity The uniqueName property
stores the full name of an entity
and must be unique within the
model’s namespace. This is
typically the full package name
followed by the name of the
entity.

position int X FormalParameter The position property identifies
the order of FormalParameters.
Every FormalParameter has a
position in its declaring Be-
haviouralEntity signature. This
position is necessary because a
method or function can be de-
clared muliple times (overload-
ing) by only changing the order
of its parameters.

Table 2.2: Datatype properties of the source ontology model; FP = Functional Property

Figure 2.4 shows a graphical representation (including classes and object properties) of the
software ontology model.

2.2 An Ontology Model to Represent Object-Oriented Software Source Code 11

Fi
g

u
re

2
.4

:
Th

e
so

ft
w

ar
e

on
to

lo
gy

m
od

el

12 Chapter 2. The Ontology Models

2.3 An Ontology Model to Represent Software Defects

Our next ontology model is to represent the entities of a defect tracking system, also called bug
tracking system. In contrast to the source code ontology, there is no generic model of a bug track-
ing system. There may be some common entities such as the bug (or issue) itself and descriptions
etc. Due to the lack of a common concept, we had to decide to use a specific implementation as
archetype for the meta model. We chose the Bugzilla4 system for several reasons.

• Bugzilla is a very wide spread bug tracking system. Most larger open source software uses
it.

• It has a reasonable long history (about 10 years) of development making the software as
well as the concept mature.

• Due to the early beginning of development, many other, commercial and non-commercial,
defect tracking systems have adapted Bugzilla’s concept of bug tracking. This will reduce
the effort to port the meta model to other systems.

• Bugzilla offers a XML interface, easing the automated access.

A very central element of Bugzilla, as well as our meta model is an Issue. Whenever a user
reports a bug or request a feature, an Issue element is created. Many other elements such as the
reporter’s name, the affected computer system or the severity are linked to an Issue. Table 2.3
shows an overview over all elements (classes) in the bug ontology model.

Name Description

Activity Describes an activity in the bug tracking system such as an as-
signment of an Issue to a Person or changes to the state of an
Issue.

Attachment To every bug report, several attachments can be added. This
could be screenshots or error logs. This class is only intended
to store meta data, not the attached file itself.

Comment A comment describes a discussion concerning a bug. Developers
or reporters can provide additional information about a bug by
adding a comment.

Component A component always belongs to a product. It corresponds to a
certain, functional part of a software system.

ComputerSystem This indicates the computing environment where the bug was
found.

Issue The Issue is the bug report itself. It is a central entity, linked to
several other components like ComputerSystem or Component.

Milestone A future version by which the bug is to be fixed. This is also
known under the name Target or Target Milestone.

Person A person is a generic entity for every human interacting with
the bug tracking system. A person can hold different roles like
developer, reporter, administrator etc.

Product A product is a complete software product. It consists of differ-
ent components and is usually the form a software product is
released.
Table 2.3: Classes of the bug ontology model (bom)

4http://www.bugzilla.org

2.3 An Ontology Model to Represent Software Defects 13

In Table 2.4 we present the datatype properties of the classes from Table 2.3.

Name Type FP Domain Description

keyword string Issue An issue can be tagged with different
keywords to ease the search for a spe-
cific bug.

status string X Issue The state of an issue. Possible val-
ues are: ASSIGNED, CLOSED, NEW,
REOPENED, RESOLVED, UNCON-
FIRMED and VERIFIED.

priority string X Issue The priority of the issues’ fixing. Val-
ues can be P1, P2, P3, P4 and P5. This
is not a global priority but a help for an
assignee to priorise his or her bugs.

lastModified dateTime X Issue The date of the last change made to this
bug.

fileName string X Attachment The filename of the attachment.
platform string X ComputerSystem A computer system’s platform. For ex-

ample: Macintosh or PC.
email string Person The email address used to inform a

person.
text string X Comment The text part of a comment element.
what string X Activity Describes the element affected by this

activity.
date dateTime X Comment The date when this comment was com-

posed.
os string X ComputerSystem The operating system represented by

this ComputerSystem. For example:
Windows Vista or Mac OS X.

name string X Product, Compo-
nent, Milestone,
Person, Attach-
ment

The name of several components.
Pretty self explaining.

name string X Product, Compo-
nent, Milestone,
Person, Attach-
ment

The name of several components.
Pretty self explaining.

dateOpened dateTime X Issue The reporting date of this Issue.
description string X Issue A description of the Issue, how it can

be reproduced or under which condi-
tions it usually occurs.

bugURL string X Issue A track-back to the Bugzilla system
where this Issue can be found.

number int X Issue, Comment The number of an Issue describes its
unique identifier. The number of a
comment can be used to reconstruct
the discussion by ordering the com-
ments.

14 Chapter 2. The Ontology Models

type string X Attachment The filetype of this attachment. For ex-
ample: gif, txt.

performed string X Activity The date and time when this activity
took place.

version string X Product, Version Describes a specific version of this
product or version.

target dateTime X Milestone The due date of this milestone.
resolution string X Issue There can be different reasons why

a bug is closed and therefore inac-
tive. Possible values: DUPLICATE,
FIXED, INVALID, MOVED, WONT-
FIX, WORKSFORME, LATER and RE-
MIND

removed string X Activity The part that was removed during this
activity.

added string X Activity The part that was added during this ac-
tivity.

Table 2.4: Datatype properties of the bug ontology model; FP = Functional Property

Figure 2.5 shows the connection between the classes of the bug ontology model (object prop-
erties).

2.3 An Ontology Model to Represent Software Defects 15

Fi
g

u
re

2
.5

:
Th

e
bu

g
on

to
lo

gy
m

od
el

16 Chapter 2. The Ontology Models

2.4 An Ontology Model to Represent Software Versions

Different versions of a software are maintained by a Version Control System (VCS). One of the
most common concepts are Files, Releases and Revisions. A file is checked into such a VCS where
it will be stored and given a revision number. On every change to this file, the revision number
is increased to mark this new version. The older revision of this file is still available and can be
rolled back to. The revisions mark the very own history of a file. The history and versions of the
whole software project, i.e. a number of files, can be expressed by creating releases. A release
combines a couple of file revisions to a version with a specific name. This name usually denotes
the external version number of the software, but can also be a date string denoting the point of
the reach of a milestone. We reduced the ontology model to the core of such a VCS. We use only
the three classes Revision, Release and File. There are some more facets such as branches or
transactions which are omitted in the actual ontology model because the used CVS parser does
not provide this information, but might be part of a future extension. For this thesis, this reduced
model contains all the information needed. Table 2.5 describes the classes of the version ontology
model.

Name Description

File A file from the filesystem.
Revision A revision denotes a version of a file.
Release A release is a tag, multiple elements can be annotated with.

Table 2.5: Classes of the version ontology model

Table 2.6 describes the datatype properties in the version ontology model.

Name Type FP Domain Description

name string X Release, File The name of a Release or File.
state string X Revision The state describes the number of lines

added or removed. An example is

Exp; lines: +1 -0

.
creationTime dateTime X Revision The date and time this revision was

created.
fullPath string X File The full path of this file. It contains

all the folder names including the root
folder.

author string X Revision The name of the user who created this
revision.

number string X Revision The number of this revision.
commitMessage string X Revision The message entered during the cre-

ation of this revision.
Table 2.6: Datatype properties of the version ontology model; FP = Functional Property

Figure 2.6 shows the connection between the classes of the version ontology model (object
properties).

2.5 Interconnection of the Ontology Models 17

Figure 2.6: The version ontology model

2.5 Interconnection of the Ontology Models

Every of the three presented meta models contains the entities of its respective repository, source
code, versioning system and bug tracking system. These repositories, are usually interconnected
to each other. The source code is checked into the versioning system and thereby may be refer-
enced by a bug number. To unleash the full power of these three meta models, they should also
be interconnected to each other to have the semantics between the repositories in the ontology
models. Figure 2.7 shows the connection between each of the three models.

Figure 2.7: The connection between the three meta models

The hasRelease and isReleaseOf associations are specific to our approach. There is no such asso-
ciation between a file and a release in the versioning system or the source code. This connection
was included, to later separate two releases of the software. Figure 2.8 shows an example with
three individual files. The first contains the versioning data, the second and the third the source
code data each for one release. In the case shown in the figure, there were no changes in the
source file. So the two source files are linked to the same revision. If we want to list all files from a
specific revision, we would first select the revisions of a release to next list the file for this revision.
The problem with the case shown in Figure 2.8 is, that we would receive two files for this revision.
This is not desired and would tamper the results. Therefore, we needed a way to uniquely assign

18 Chapter 2. The Ontology Models

a file from the source code to a release. With the hasRelease association we can determine to which
release a file belongs, even if they are linked to the same revision.

Figure 2.8: The need of the hasRelease association

2.5.1 Different Concepts of Filesystem Entities

There are two classes named File, once in the software ontology model and once in the version
ontology model. Although these classes have the same name, they describe different concepts. A
File in the version ontology model is only a virtual name that can have lots of versions (revisions).
If a file is requested from the verisoning system, a user has to provide the file name and a revision
number of the file. The versioning system will then query its internal database to retrieve a file
denoting the state of the given revision number. Such a revision describes the File entity of the
software ontology model. In other words, every version (revision) a versioning system File has,
leads to a source code File.

3
The Plug-in

To collect the data about the evolution of a software project in its three characteristics – source
code, defects and version control – these three repositories have to be transformed to OWL on-
tologies. As mentioned in Section 1.5, Eclipse is used as execution environment for these tools.
Eclipse, as a integrated development environment, has direct access to two of the three reposito-
ries namely the source code and the versioning system.

3.1 Decision of Data Depth

If a change to the source code is checked into a version control system (VCS), a completely new
version of the software is generated implicitly; meaning only one file changed, but as a nature
of source code, this file is linked to numerous other files (to specify: classes) whose functionality
might have also changed because they are now linked to the changed file. Subversion1, as a repre-
sentative of a VCS, exposes this fact by incrementing the revision numbers of all files even though
only one file changed. These implicit versions of a software may not reflect a real change to the
functionality, however, an outsider would assume that an increased version number bases on a
changed functionality. To mark a specific version of a software project, a VCS usually features the
possibility of creating releases. A release can be seen as a human annotation to an implicit, given
by the revisions, version of the software. For example these annotations could base on the reach
of a milestone. However, for the generation of OWL data we have to decide whether to create
models from the implicit or explicit versions.

3.1.1 Implicit Version

Generating a new software instances file whenever a change2 occurs is the most precise way to
write down the history of a software project. By using this approach, no information about a
change will be omitted. The downside of this method is the huge amount of data that is possi-
bly generated without having much new information in it. As OWL, and XML in general, is a
relatively disk space intensive format this would result in cumbersome and slowly processable
models.

1http://subversion.tigris.org
2Change is used as generic term. Tools may name this a commit or check-in action

20 Chapter 3. The Plug-in

3.1.2 Explicit Version

As an alternative, the explicit versions can be considered solely. Compared to the foregoing ap-
proach this results in smaller sized models but also in a coarse-grained depth of information.
Considering only the explicit versions of a software project does not omit the single changes
made within the implicit versions, in fact it bundles them as one change made between two ex-
plicit versions. As such a version is explicitly created by a human, we can infer that a noticeable
change has happened to sway someone to create this version. In this thesis the explicit version
approach will be used. The advantage of the gained manageability of the models outweighs the
loss of information. However, this is an implementation decision and can, if the need of finer
grained data arises, be extended to satisfy the first suggestion.

3.2 Implementation

As a core goal of this thesis, a way of creating a source code model shall be implemented. This
task should be done automatically, as an average software project has tenthousands of entities and
associations, a manual creation of such a model would take an unreasonable long time. There-
fore, we created a plug-in for the Eclipse platform to automate the data retrieval from the three
examined repositories. Figure 3.1 shows the structure and of the components of this plug-in and
its interaction. In the remaining part of this chapter, a brief description of the components and its
functionality will be given.

3.2.1 User Interaction

At a first stage, the plug-in needs to interact with the user to collect necessary data for the parser.
The Eclipse platform provides a well defined programming interface to create dialogs featuring
the same look and feel of the rest of the development environment. There are different ways, a
plug-in can extend the user interface. Eclipse already has the ability to export projects or part of
project to different formats like .jar or .zip. These export functionalities are located in a central
place of the IDE and is accessible through the context menu of the resource tree. This central
exporter registry can be extended by a custom implemented exporter. A user will then have the
ability to select this exporter from the list of all exporters. Our exporter is registered in the section
OWL under the name OWL Files. If the plug-in is activated, so a user wants to export a project
to OWL/RDF, a first dialog page shows up to ask the user for the project to export. After the
selection of the project, a request to the Eclipse framework is sent to retrieve a complete list of
the releases of the project. This list is presented to the user for the selection of the releases for
which the instances files should be generated. A last dialog page asks the user for the location
of the Bugzilla system of the project. The plug-in will need this to retrieve bug information if a
referenced issue number is found within a commit message of a CVS revision. This URL can also
be left blank, if the creation of the bug instances file is not desired. The last information needed
by the plug-in is the location where the generated models (files) should be stored to. This location
must be a folder somewhere in the filesystem. Optionally, the output format can be selected. Table
3.1 shows the available formats and their description.

The above described steps is the complete information needed to generate the models. The
user can, as a final step, start the export activity.

3.2 Implementation 21

Figure 3.1: The components of the implemented plug-in

22 Chapter 3. The Plug-in

Name Purpose
RDF/XML-ABBREV Optimized for human readability. Default format for our plug-in.
RDF/XML Optimized for automated processing. Not very well readable for

humans.
N-Triples Format tailored specially for OWL/RDF. Very compact and expres-

sive, but no XML syntax.

Table 3.1: The different export formats

3.2.2 CVS Parser

To create a CVS in-memory model we use the CVS parser[Fischer et al., 2003] plug-in imple-
mented by the S.E.A.L.3 group at the University of Zurich. The CVS parser does not generate
an in-memory model but directly stores the elements in a RDBMS4. This storage is maintained by
Hibernate5, a object-relational mapper. To prevent the plug-in from needing such a database sys-
tem from the host system, we use HSQLDB6, a small database management system featuring the
generation of in-memory databases. The CVS parser writes its data into this in-memory database,
our exporter queries this database to retrieve the entities. To create the OWL/RDF models, we
first read the version meta model into memory by Jena. This is needed to be used as stencil to
create the individuals stored in the model. Figure 3.2 shows the process of creating an individual
for the model.

Figure 3.2: Typical steps when creating individuals

During the parsing activity of the plug-in, whenever a revision is encountered this revision’s
commit message is analyzed for a reference to a bug number. The next section will describe how
bugs are identified, retrieved, parsed and exported.

3.2.3 Bugzilla Parser

In the section above, the process of parsing CVS data was described. The extraction of bug num-
bers from the commit messages of a revision is done by applying a regular expression. The regular
expression checks for three types of bug references. The three reference patterns are:

3Software Evolution and Architecture Lab
4Relational DataBase Management System
5http://www.hibernate.org
6http://www.hsqldb.org

3.2 Implementation 23

• # character followed by a series of numbers

• bug followed by a series of numbers

• issue followed by a series of numbers

These three patterns are combined in one regular expression presented below.

(?:bug|issue|\#)+\D*(\d+)

If the pattern matches a bug, the number is passed to the Bugzilla parser. Again we used a parser
created by the S.E.A.L. group which parses the XML output of an issue from Bugzilla. The parser
takes a bug number as argument, and creates a Java object representation of the bug (issue). The
parser implementation features a Model component to have all the elements in one container.
Everytime an issue is retrieved, all elements in the Model are checked for associations between
the existing and the new issues. Associations can be the blocks / depends on property of an issue.
When the Bugzilla and CVS parsing has finished, the creation of the source code models will be
done.

3.2.4 Source Code Parser

To parse the source code and generate a first model of the software project, another parser de-
veloped by the S.E.A.L. group is used [Fischer et al., 2003]. This FAMIX parser also runs within
the eclipse environment and makes excessive use of the provided functionality of eclipse. The
core element used is the Abstract Syntax Tree (AST) eclipse uses as its own, internal model for the
source code. This tree is traversed by the FAMIX parser creating a in-memory model based on
Java objects. Figure 3.3 shows the UML notation of this model. This parser can only handle Java
source code.

Figure 3.3 shows already some canges made to the original FAMIX meta model. For example
the new concept Context is already implemented. The task of the plug-in is to export this in-
memory model to RDF/OWL.

The SEAL FAMIX plug-in features a Model component, where all entities and associations
are stored in. After the parser has finished its work, our exporter first iterates over the entities in
the Model. Entities are the aforementioned components like Class, Method or Attribute. In
a next step the associations are handled. Associations are constructs like inheritance definitions
or interface implementations. The entities have to be defined first in the generated OWL model
because an association can be only added if the from and the to entities are already defined. To
keep the coupling low between the FAMIX model and the Software Ontology Model elements, we
created a mapping file holding the associations between the RDF/OWL ontology model entities
and the in-memory FAMIX model elements. With this mapping file, the meta model’s entity
names could be changed without the need of adapting the plug-in’s code. When the export of a
source code release has finished, the Eclipse framework is instructed to checkout the next release
the user had selected. After this release is checked out, the exporter will be started again to create
a model from the newly checked out version until all releases in the list are exported.

3.2.5 Persistent Storage

To persistently store the models to the filesystem the provided output folder and output format is
used. As the models were generated only in-memory, and need to be stored to the filesystem. Jena
provides writers to execute these steps. The filenames are generated using the patterns presented
below.

24 Chapter 3. The Plug-in

Figure 3.3: The structure of the in-memory model

• <projectname> vcs.{owl|n3} for the version model of a project

• <projectname> bug.{owl|n3} for the bug model of a project

• <projectname> <releasename>.{owl|n3} for a release of a project

According to every file, a separate namespace is used to separate the different versions and
projects from each other. Below, the pattern by which the namespaces are generated is shown.

• http://www.ifi.unizh.ch/ddis/evoont/2007/02/som/parsed/<projectname> <releasename>#
Every software ontology model can be uniquely identified by this namespace. <projectname>

is the name of the project in Eclipse. <releasename> is the name of the exported release.

• http://www.ifi.unizh.ch/ddis/evoont/2007/02/vom/parsed/<projectname># <projectname>

is the name of the project in Eclipse.

• http://www.ifi.unizh.ch/ddis/evoont/2007/02/bom/parsed/<projectname># <projectname>

is the name of the project in Eclipse.

To be able to handle the files by just knowing their namespace, we created a mapping file
to link a namespace to a filename. This mapping file uses the standard Java property file XML
syntax. It is named nsmapping.xml and also stored in the output folder.

4
Evaluation

The effort made to create the application described in Chapter 3 serves as a base to query and
reason about the evolution of a software project. In this section an evaluation framework will be
presented as well as different facettes of mining data in the format shown in Chapter 2.

4.1 Pre-processing Steps

To mine data from the generated models, no further steps are required. However, for convenience
we created a framework to automatize recurring tasks and some solutions for common problems.

4.1.1 Evaluation Framework

Whenever querying a model, more or less the same steps need to be performed. At first, the
data files have to be read back into the Jena framework. Jena holds these loaded models in-
memory, where they can be accessed through the Jena OntModel API. Multiple input files can be
merged into one in-memory OntModel. With this ability, the meta model and the model can be
merged, enabling a reasoner to know about the implicit associations and types. After the model
is combined, a query can be formulated and executed on this knowledge base. The results can
be programmatically consumed by iterating over the set of returned entries. The steps described
are recurring, differing only in the query itself and maybe the set of merged models. To do these
tasks, the framework should take the variable part of such a query execution as arguments. As a
central component in this framework we created the class DataModel. This class offers a simple
way of merging the created models by only specifying the folder where the respective files reside.
The class abstracts the filesystem completely by taking only namespaces as arguments, but not
filenames. A simple creation of a models could look as shown in Listing 4.1

DataModel dm = new DataModel("path/to/datafolder");
OntModel model = dm.getOntology(

Namespace.SOM,
Namespace.OO_DATA_NS_PREFIX+"<project_name>#"
);

Listing 4.1: Usage of the class DataModel

26 Chapter 4. Evaluation

To keep the functions encapsulated, a single query resides in its own class. This Query class
holds the query itself, a description, the referenced namespaces and the level of language features
needed to execute. This prevents an implementing class from being rewritten when a change
to a query occurs. The query and its execution environment can be changed by swapping the
Query object; The API stays the same. The mentioned namespaces are only the ones directly
referenced by a query. With increasing complexity of a problem a single query is not powerful
enough anymore. Therefore, a combination of multiple queries and computations is needed. We
considered this fact with the framework component named Measure. A measure is a solution
for a specific problem, can use multiple queries, does the effective processing of the results and
provides a method of outputting or persistently storing the computed results. Figure 4.1 shows
an overview over the components of the evaluation framework.

Figure 4.1: Overview over the evaluation framework

As shown above, our framework provides a best practice structure for the execution of queries
and measures. Another task that should be computed by this framework are solutions for com-
mon problems. Therefore we implemented certain queries and measures being available as sup-
port for a framework client. In the succeeding part, some of these common problems and their
solution are presented.

4.1.2 The Order of Releases

The releases in CVS are tags, annotating a revision. These tags only contain their name but no fur-
ther information. To determine the date a release was created the name of the tag could be exam-
ined to extract a date. Often a release is named with a timestamp component like I200605251200
what would refer to a release created on the 25th May, 2006 at 12 o’clock. However, this might
work well, and as an advantage the effective date of a release can be determined. The downside

4.1 Pre-processing Steps 27

of this method is the risk of losing the date information of releases not properly named with a
date. The naming of releases is subject to the user creating it and, at the utmost, there may be only
a convention forcing a developer to include a date in the release name. This can never be a guar-
antee for a release being traceable to a date. The entity in CVS having date information available
is a revision. Every time a revision is created, the actual date and time is stored as a timestamp
value. With the date information of the revisions, the release’s date can be determined. The date
of a release can be defined as the date of the latest change made to the software project before
the release tag was set. This would refer to the latest date of a revision belonging to a release.
This approach allows a reliable determination of the release date but might not be the exact date
when the release was generated. Assuming no change has happened to a project for two weeks
and a release is generated, the described method of determining the release date would return the
date of last change, say two weeks before the effective release date. This is a bearable limitation
because the two dates refer to the same state of a project but may mislead a user by receiving a
date and a contradicting name. To compute the date, a Measure was created. At first a simple
SPARQL query was written to retrieve a list of revisions and corresponding releases. The query
is shown in listing 4.2.

PREFIX vom: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/vom#>
SELECT ?releaseName ?revisionDate
WHERE {

?release a vom:Release .
?release vom:name ?releaseName .
?revision vom:hasRelease ?release .
?revision vom:creationTime ?revisionDate .

}

Listing 4.2: Query to retrieve a list of revisions and its releases

The query is a join of releases and their respective revisions. The retrieved results are shown
in table 4.1.

releaseName revisionDate
.
v20030825 2003-03-10T20:25:35Z
v20030825 2003-03-10T20:25:35Z
v20030825 2001-05-17T12:21:39Z
v20030825 2003-03-10T20:25:35Z
v0 119 2001-05-17T12:21:39Z
v0 119 2001-05-28T16:47:56Z
v0 119 2001-05-28T16:47:56Z
v0 119 2001-05-30T08:38:55Z
v0 119 2001-05-28T16:47:56Z
.

Table 4.1: Parts from the result set of Query 4.2

The results are read one-by-one into a simple Java HashMap whose key the release name, and
the value the revision date is. Before a release / date pair is inserted, we check if this release is
already stored in the map. If not, it will be inserted immediately else, we check if the existing
date is before the new date. If so, the new value will replace the old value. At last the map
needs to be sorted by its values. For this task, we created a simple sorter class to allow ascending

28 Chapter 4. Evaluation

and descending sorting. After we evaluated this method by using the release data from Eclipse’s
compare plug-in, a flaw showed up if a release does not contain any files at all. This may lead to
a random order within these empty releases.

4.1.3 An Extension to ARQ for Counting

SPARQL does not support aggregate functions. The Jena framework provides a language called
ARQ1, a superset of the SPARQL language. The ARQ language allows the definition of ex-
tensions implemented in Java. Such an extension is a Java class that will be, after register-
ing, called every time the class name appears in a query. ARQ provides a special namespace
to access this functionality. If a query wants to use a custom extension, a special prefix for
ARQ, similar to PREFIX agg: <java:[name.of.package].> is needed to give the query engine a
hint where to find the extensions. Extensions can be written in triple form, and, therefore, are
also called magic properties, to better suit the syntax of a SPARQL query. A line in a query like
?number agg:count ?input . will instantiate the class named count in the package defined by the
agg prefix. This class receives the elements of ?input as argument and has access to the variable
?number to store the result in. The effective counting is done by rather a grouping than a count-
ing algorithm. Because ARQ will provide all possible solutions of a query, the count class has to
group all the same elements in the ?input variable and, later count the group members and store
the result in the ?number variable. Tables 4.2 and 4.3 visualize the counting process.

Class Method
java.lang.Object clone()
java.lang.Object equals(Object obj)
java.lang.Object finalize()
java.lang.Object getClass()
java.lang.String charAt(int index)
java.lang.String codePointAt(int index)
java.lang.String codePointBefore(int index)

Table 4.2: Counting example output

Table 4.2 shows a first stage of the counting algorithm. It will take the result set and will group
same elements (i.e. java.lang.String and java.lang.Object) and count the number of
occurrences. The next step is to take the number of members of a group and the first member of
this group into the final result set. The entries for the rest of the group members are eliminated.
Table 4.3 shows the final result set.

Class Method Count
java.lang.Object clone() 4
java.lang.String charAt(int index) 3

Table 4.3: Counting entities in a SPARQL query

This is a generic method of implementing a count function. It works for every query and every
kind of data. But there are some limitations: An element cannot be counted solely, in fact, only
the associations are considered not the elements itself. This is different to the aggregate functions
known from other query languages like SQL. The SQL counterpart of Query 4.3 would return

1http://jena.sourceforge.net/ARQ

4.2 Metrics 29

the number of elements. The here implemented count extension will not, unless an association is
included as shown in Query 4.4.

PREFIX agg: <[name.of.package].>
PREFIX vcs: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/vom#>
SELECT ?elementCount
WHERE {

?element a vcs:Release .
?elementCount agg:count ?element .

}

Listing 4.3: Query that won’t retrieve the number of elements due to limitations of the implmentation

PREFIX agg: <[name.of.package].>
PREFIX vcs: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/vom#>
SELECT ?elementCount
WHERE {

?element vcs:hasRelease ?release .
?elementCount agg:count ?element .

}

Listing 4.4: Working query to retrieve the number of elements

Queries 4.3 and 4.4 show the limit of the implementation. In fact only the associations can
be counted. This has the effect that the topmost entity cannot be counted because there is no
association to it.

4.2 Metrics

Metrics describe a way of making software source code measurable and therefore comparable.
On this base, best practice as well as design flaws can be defined and searched for. The latter,
design flaws, can be considered as harmful to software because they possibly lead to defects and
endanger the success of the whole project. The name metrics inheres the fact, a lot of counting
will be necessary. Due to the open world assumption (OWA) of OWL, SPARQL does not offer
the ability of aggregate functions. An expression saying “there are 100 birds” might be correct,
if we query an ontology containing 100 individuals of the RDF type Bird, but, as a matter of
fact, it exists a lot more birds than just 100. Due to the common nature of OWL this may be a
comprehensible reason for not being able to count entities. In our specific area of application we
can be more expressive by closing down the open world. There are two preconditions allowing
to perform this step.

• As described in Chapter 3 we know, the complete source code of a release will be trans-
formed to an OWL/RDF model stored in exactly one file. By reading in this file and query-
ing it, we can imply that if an entity or relation is not present, it also is not present in the
source code.

• Our scope of examination is a single software project or release of it. This scope has to be
kept in mind. For example if we want to express the number of invokers of a method, we can
count the invokes relation to this method. As public methods are exposed to the outworld,
we don’t know the exact number of invokers because many other software projects can ref-
erence and invoke the examined method. In this case the counted number of invokers may

30 Chapter 4. Evaluation

be incorrect and the effective number is unknown. But at least we can calculate the exact
number in our scope. Saying “The method toString() is invoked 100 times” may be incorrect
but if we extend it to “The method toString() is invoked 100 times in the org.eclipse.compare
plug-in” the expression is correct again. In the remainder of this thesis, the scope won’t be
mentioned every time but is assumed implicitly.

Below, some selected metrics defined by [Lanza and Marinescu, 2006] will be presented. The
same abbreviations will be used like proposed by [Lanza and Marinescu, 2006]. It is not the goal
of these metrics to fix a border between good code and bad code. The level when a metric value
becomes harmful can vary from case to case. Therefore a metric can only indicate entities in code
which may need to be redesigned. The effective decision of the need of such a redesign has still
to be made by a human.

4.2.1 HIT — Height of Inheritance Tree

Years ago, the use of inheritance was proclaimed as one of the core advantages of object oriented
programming. Indisputable inheritance enables a programmer to encapsulate functionality and
derive similar or more specialized versions of it as subclasses. But, inheritance can also cause
confusion because a class can use functionality not implemented by itself, but using it from su-
perclasses. This may be manageable if operations from a super- or a supersuperclass is used.
Whenever the inheritance tree grows larger, it may be no longer clear which class is responsi-
ble for which kind of functionality (for a developer creating a subclass at the lowermost end of
the tree). So, the number of nodes on the way to the uppermost superclass of a class can be an
indicator for confusing, and therefore error-prone code. To retrieve the inheritance tree in the
code ontlogy, the object property hasSublcass or its inverse isSubclassOf has to be found. Like de-
scribed in Chapter 2 these properties are modeled as transitive properties. A general definition of
transitivity is shown in the definition below.

P ⊆ O × O (4.1)

∀x, y, z ∈ O : xPy ∧ yPz ⇒ xPz (4.2)

Query 4.5 is a first stage for the HIT metric. It retrieves the classes and all of its superclasses.
Table 4.4 shows parts of the results of Query 4.5. The more superclasses a class has, the higher the
inheritance tree is. To better express this fact we counted the number of superclasses instead of
listing them. Query 4.6 makes use of the implemented functions to count associations.

PREFIX agg: <[name.of.package].>
PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
SELECT ?subclass ?superclass
WHERE {

?subclass som:hasSuperclass ?superclass .
}

Listing 4.5: Query to list all superclasses of all classes in a project

4.2 Metrics 31

subclass superclass
.
AddFromHistoryAction BaseCompareAction
AddFromHistoryAction Object
AddFromHistoryAction$1 WorkspaceModifyOperation
AddFromHistoryDialog Dialog
AddFromHistoryDialog ResizableDialog
.

Table 4.4: Parts from the result set of Query 4.5

PREFIX agg: <ddis.evoont.evaluation.extensions.>
PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
SELECT ?subclass ?HIT
WHERE {

?subclass som:hasSuperclass ?superclass .
?HIT agg:countChilds ?subclass .

}
ORDER BY desc(?HIT) .

Listing 4.6: Query to count all the superclasses of a class

Table 4.5 shows the height of the org.eclipse.compare plug-in inheritance trees with 4 as the
highest tree for class class name. This seems to be a quite fair height of the tree. One has to
consider the topmost element of the tree is the generic java.lang.Object class. As this class and
its functionality is best-known to a Java developer, the tree has even to be considered as the
queried value minus one. So an inheritance path of three classes can viewed as straightforward
for understanding as well as development.

subclass HIT
.
ResourceCompareInputFilteredBufferedResourceNode 4
ResourceCompareInputMyDiffNode 4
AddFromHistoryDialog$4 3
CompareEditorInput$2 3
CompareEditorInput$3 3
CompareEditorInput$4 3
.

Table 4.5: Parts from the result set of Query 4.6

4.2.2 NOPA — Number of Public Attributes

A class can define different types of attributes. As a private attribute serves internal purposes, a
public attribute can be considered as part of the API of this class. There exist two different kinds
of an access to such a public attribute. First, there is an attribute intended for read access. An
object may exposes internal states to an outside entity. The other kind is an object that is config-
urable through its public attributes. Both ways are straightforward but are prone to defects due to
changes on the API. To be able to identify these classes we need to find their public attributes. We

32 Chapter 4. Evaluation

can hypothesize, that the most vulnerable class is the one with the most of such public attributes.
Therefore the list of classes with public attributes can be ordered by the occurrence of these at-
tributes. Query 4.7 lists the classes name and its NOPA. The result set is ordered by the number
of public attributes.

PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
PREFIX agg: <java:ddis.evoont.evaluation.extension.>
SELECT ?class ?NOPA
WHERE {

?class som:hasAttribute ?attribute .
?attribute som:accessControlQualifier ?acc .
FILTER(?acc = "public") .
?NOPA agg:countChilds ?class .

}
ORDER BY DESC(?NOPA)

Listing 4.7: Query to find all public attributes and its declaring class

The returned result set is shown in table 4.6.

class NOPA
PatchMessages 62
CompareMessages 26
ICompareContextIds 19
Differencer 10
ComparePreferencePage 10
.

Table 4.6: Parts from the result set of Query 4.7

When inspecting the resulting classes, it arises that most of the public attributes are final.
Final fields are often used as enumeration types to identify a symbolic name, whose value is
unimportant. Therefore, classes often define a list of public, final and often static attributes with
an int type and a value with only internal relevance to distinguish between the attributes.

PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
PREFIX agg: <java:ddis.evoont.evaluation.extensions.>
SELECT ?class ?NOPA
WHERE {

?class som:hasAttribute ?attribute .
?attribute som:accessControlQualifier ?acc .
?attribute som:isFinal ?final .
?attribute som:isStatic ?static .
FILTER(?acc = "public") .
FILTER(?final = false) .
FILTER(?static = false) .
?NOPA agg:countChilds ?class .

}
ORDER BY DESC(?NOPA)

Listing 4.8: Query to find all public non-static and non-final attributes and its declaring class

4.2 Metrics 33

This usage of public attributes cannot be considered harmful because their value is irrelevant (and
immutable) and has no effect to the internals of the class. To hide these attributes from the NOPA
metric, Query 4.7 can be modified to Query 4.8. The result set of Query 4.8 is empty, meaning the
org.eclipse.compare plug-in does not contain any public, non-final and non-static attributes. The
code can, therefore, be considered as well encapsulated regarding to public attributes.

4.2.3 CM — Changing Methods

When changing the functionality of a public method, in most cases this will have an impact to
the invoker of this method. For instance a sorting method that takes a list of strings as input and
returns a sorted list. If a change to that method occurs, a caller might not be able to process the
returned results. A change can be internal only, say there is no change to the API (the methods
signature) but only to the semantics of the arguments or returned data. The mentioned method’s
sorting algorithm may be changed to optimize the sorting speed. As a side effect, the sorted list
is no more sorted ascending but descending. Such a change can lead to defects of the invoking
methods and classes because they expect the result to be sorted ascending. A method that is
invoked by many other methods has a higher risk of causing a defect because a developer might
not remember every invoking method. Query 4.9 retrieves a list of method and the number of
invocations.

PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
PREFIX agg: <java:ddis.evoont.evaluation.extensions.>
SELECT ?class ?method ?CM
WHERE {

?method som:isInvokedBy ?invoker .
?class som:hasMethod ?method .
?CM agg:countChilds ?method .
FILTER regex(?className, "compare", "i") .

}
ORDER BY DESC(?numberOfInvokers)

Listing 4.9: Query to retrieve the number of invokers (changing methods)

The line FILTER regex(?className, ”compare”, ”i”) in Query 4.9 ensures, that only methods
are considered from inside the project. Without this line, methods of the Java API would also be
listed in the result set. Table 4.7 shows the topmost results of Query 4.9.

class method CM
CompareUIPlugin getDefault() 30
Utilities getString(Ljava.util.ResourceBundle,Ljava.lang.String) 26
Utilities getString(Ljava.lang.String) 24
ICompareInput getLeft() 16
ICompareInput data:getRight() 15
.

Table 4.7: Parts from the result set of Query 4.9

This result states that the method getDefault() in the class CompareUIPlugin is accessed
from 30 different places in the project. A change to the method getDefault() may have effects
on those 30 locations in code. With this information a developer knows to be extra cautious if the
functionality of this method is modified.

34 Chapter 4. Evaluation

4.2.4 NOP — Number of Parameters

To influence the way a method executes its code, parameters can be passed. This is a core func-
tionality of almost every programming language. To keep a method comprehensive it should
not be responsible for too much of functionality. It is a better style to spread the programs func-
tionality to a number of methods than just a few large methods. There are different approaches to
determine a methods functional weight. Query 4.10 retrieves the number of parameters a method
takes. This can also be an indicator for a complex functionality, if a method needs a lot of param-
eters. Table 4.8 shows the five topmost results of Query 4.10.

PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
PREFIX agg: <java:ddis.evoont.evaluation.extensions.>
SELECT ?class ?method ?CM
WHERE {

?method oomodel:isInvokedBy ?invoker .
?class oomodel:hasMethod ?method .
?method oomodel:hasParameter ?parameter .
?NOP agg:countChilds ?method .

}
ORDER BY DESC(?NOP)

Listing 4.10: Query to retrieve the length of the parameter list (NOP)

class method NOP
TextMergeViewerDiff init(. . .) 14
TextStreamMerger merge(. . .) 9
IStreamMerger merge(. . .) 9
TextMergeViewer simpleTokenDiff(. . .) 7
RangeDifference init(. . .) 7
.

Table 4.8: Parts from the result set of Query 4.10

4.2.5 NOR — Number of Revisions

The metrics above were queried from the code ontology model only. The version and bug ontol-
ogy model contain some interesting metrics as well. For instance we can determine the activity a
file underlies. The activity is reflected by the number of revisions a file has. A revision is created
every time a developer made a change to the code and checked it in to the version control system,
so a file with a lot of revisions is either old, or underlies an ongoing evolution. The evolution it-
self can be reactive or proactive. A reactive evolution is an activity due to a reported defect (bug),
proactive describes a real evolution in the sense of extending the functionality or adapting the
software to new requirements. Our first step is Query 4.11, retrieving the number of revisions per
class.

4.2 Metrics 35

PREFIX vom: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/vom#>
PREFIX agg: <java:ddis.evoont.evaluation.extensions.>
SELECT ?file ?NOR
WHERE {

?file vom:hasRevision ?revision .
?NOR agg:countChilds ?file.

}
ORDER BY DESC(?NOR)

Listing 4.11: Query to retrieve number of revisions per file (NOR)

The result retrieved from Query 4.11 are shown in table 4.9. The results have been filtered to
show only source code files (no images, licenses etc.).

file NOR
TextMergeViewer.java 213
CompareEditorInput.java 88
CompareUIPlugin.java 70
ContentMergeViewer.java 69
EditionSelectionDialog.java 66
Utilities.java 64
CompareEditor.java 57
Patcher.java 51
ComparePreferencePage.java 50
DiffTreeViewer.java 47
StructureDiffViewer.java 45
PatchWizard.java 44
CompareConfiguration.java 41
.

Table 4.9: Parts from the result set of Query 4.11

Table 4.8 shows the ten most active classes (files) in the org.eclipse.compare project. An obvi-
ous reason for the differences between the number of revisions could be the different age of the
files. To eliminate this possibility the date of the first revision can be examined. Most of the file’s
first revision is dated to the 2nd of May 2001. Due to the same age of the files the difference in the
number of revisions must therefore be caused by a higher development activity. Our next step to
determine the reason for the activity is to detect if it is caused by bug fixes or ”real” development.

4.2.6 NOB — Number of Bugs

The next metric we can extract from the version and bug ontology model is the number of bugs
a file is linked to. This information can help to detect vulnerable files. There might be different
reasons why a file is linked to a large number of bugs.

• The file takes a central role in the software project. Because of its importance, bugs are
detected sooner than in less important files.

• The file is responsible for a very complex functionality that is error-prone by nature

36 Chapter 4. Evaluation

• The code in the file is confusing, causing a developer to modify things he does not under-
stand

In all of the three mentioned causes, a refactoring could be advisable, to break down the complex-
ity and distribute it onto multiple, and therefor less complex structures. Query 4.12 retrieves the
number of bugs, the base of the above mentioned thoughts.

PREFIX vom: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/vom#>
PREFIX bom: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/bom#>
PREFIX agg: <java:extensions.>
SELECT ?file ?NOB
WHERE {

?bug bom:hasResolution ?revision .
?file vom:hasRevision ?revision .
?NOB agg:countChilds ?file .

}
ORDER BY DESC(?NOB)

Listing 4.12: Query to retrieve number of bugs per file (NOB)

In Table 4.10 parts from the result set of Query 4.12 is presented.

file NOB
TextMergeViewer.java 36
CompareEditor.java 16
Patcher.java 15
PreviewPatchPage.java 13
ResourceCompareInput.java 12
DiffTreeViewer.java 10
Utilities.java 10
CompareUIPlugin.java 9
StructureDiffViewer.java 9
CompareViewerPane.java 6
.

Table 4.10: Parts from the result set of Query 4.12

4.2.7 Bug and Evolution Densities

To determine if a class’ evolution is based on functional extension or reactive bug fixing, we set
the number of bugs and the number of revisions in relation. Therefore, we extracted the ratio of
the bug fixing activity over all activities. This ratio describes the error density (ERD) of a file and
can be defined as in Equation 4.3.

ERDfile =
NOB

NOR
(4.3)

The inverse of the above error density is the ratio of functional extension. It is the evolution
density (EVD) representing the performed changes that were no bug fixes.

EV Dfile = 1 −
NOBfile

NORfile

or EV Dfile = 1 − ERDfile (4.4)

4.2 Metrics 37

When combining the results sets 4.9 and 4.10 the ERD and EVD metric can be determined.
Table 4.11 shows this combination. With the calculation of the NOB metric we identified the
files TextMergeViewer.java (36), CompareEditor.java (16) and Patcher.java (15) as
the ones with the most bugs reported. When analyzing the results in Table 4.11 the mentioned
files are no more in the upper ranks. Now the file StatusLineContributionItem.java has
to be considered as the most bug intensive file although there are only three bugs, but there are
also only three revisions. In the former ERD metric, the three files TextMergeViewer.java,
CompareEditor.java and Patcher.java had the highest ERD value but now, are only the
24th, 12th and 11th most bug-prone files in the project.

file NOR NOB EVD ERD
1 StatusLineContributionItem.java 3 3 0.000 1.000
2 CompareNavigator.java 3 2 0.333 0.667
3 IResourceProvider.java 4 2 0.500 0.500
4 DifferencesIterator.java 10 5 0.500 0.500
5 PatchProjectDiffNode.java 2 1 0.500 0.500
6 IStructureCreator.java 11 4 0.636 0.364
7 PreviewPatchPage.java 37 13 0.649 0.351
8 UnmatchedHunkTypedElement.java 3 1 0.667 0.333
9 WorkerJob.java 3 1 0.667 0.333
10 ResourceCompareInput.java 38 12 0.684 0.316
11 Patcher.java 51 15 0.706 0.294
12 CompareEditor.java 57 16 0.719 0.281
13 RangeDifference.java 11 3 0.727 0.273
14 ResizableDialog.java 11 3 0.727 0.273
15 WorkspacePatcher.java 11 3 0.727 0.273
16 CompareViewerPane.java 23 6 0.739 0.261
17 CheckboxDiffTreeViewer.java 4 1 0.750 0.250
18 IRangeComparator.java 8 2 0.750 0.250
19 DiffNode.java 23 5 0.783 0.217
20 DiffTreeViewer.java 47 10 0.787 0.213
21 ColorEditor.java 5 1 0.800 0.200
22 StructureDiffViewer.java 45 9 0.800 0.200
23 MergeSourceViewer.java 31 6 0.806 0.194
24 TextMergeViewer.java 213 36 0.831 0.169
.

Table 4.11: The bug density of the org.eclipse.compare plug-in

To visualize the data from table 4.11 Mathlab was used. Figure 4.2 shows some interresting
facts. First, only about 25% of the source files contain bugs at all. Nearly 75% of the code is
(measured by the reported and mentioned bugs) free of defects. Next, the concentration of the
errors is exponential decreasing thus only a very few files have a high concentration of bugs.

The histogram of the number of bugs is shown in figure 4.3. The ERD metric is visualized by
creating ten classes (x axis) and the number of files having an ERD value in these categories (y
axis).

To calculate the ratio of bugfixes over all activity in the project (TEVD — Total EVD, TERD —
Total ERD), the single values of the ERD and EVD can be summarized as in Equation 4.5 and 4.6.

38 Chapter 4. Evaluation

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

R
D

 −
 E

rr
or

 D
en

si
ty

Files (Numbered from 1 to 207)

Figure 4.2: The bug density of the org.eclipse.compare files

TEV D =

n∑

i=1

EV Di

n
(4.5)

TERD =

n∑

i=1

ERDi

n
or TERD = 1 − TEV D (4.6)

For the results from table 4.11 the value for TERD is 0.054. This value expresses that 5.4%
of all activity in the project is due to bug fixing activity, and 94.6% for functional extension.
[Boehm, 1981] made extensive research on the percental spreading of software engineering task.
As result of this research the tasks are weighted as follows.

• 16% Specification and architecture design

• 8% Detailed design and coding

• 16% Testing

• 12% Adaption

• 36% Extension, improvement

• 12% Bugfixing

This results were collected by investigating developers as well as the analysis of cost reports.
The results from this thesis seem to contradict the conclusions made by Boehm, as they differ

4.2 Metrics 39

0.0 −0.1 0.1 − 0.2 0.2 − 0.3 0.3 − 0.4 0.4 − 0.5 0.5 − 0.6 0.6 − 0.7 0.7 − 0.8 0.8 − 0.9 0.9 − 1.0
0

20

40

60

80

100

120

140

160

180

ERD classes

N
um

be
r

of
 o

cc
ur

re
nc

e

Figure 4.3: The spreading of the ERD metric

by 50% (5.4% vs. 12%). In the subsequent section some facts will be mentioned to illustrate this
divergence of the two values.

Life cycle [Boehm, 1981] examines a software project over its whole life cycle. The 12% bug
fixing are meant from the beginning of a project until the very end (death) of the software. The
org.eclipse.compare plug-in as well as the whole eclipse project is in the mid of its life cycle. Most
likely, the share of bug fixing will grow, because after implementing the required features, the
focus will be set on finding bugs and improving existing features.

Effort of time The underlying data for the TERD metric is the check-in activity on the version
control system. There is no information about how much time a developer spent before he could
commit the change. It is well possible that there is more time necessary to fix a bug than to create
a functional extension (in average).

Bug reporting discipline The queried data can only consider the reported bugs. These bugs
may be only a part of all the defects in a software system. Bugs detected by the developer itself
may be fixed without reporting it in a bug tracking system.

Bug linking discipline A bugfix has to be marked by the developer during the check-in action.
If this linkage is omitted, the results will be distorted with a leverage effect. The created revision
is not recognized as bugfix and therefore, it is considered as functional extension. So not only the
ERD is smaller than it really is but also the EVD is falsely raised.

Project characteristics A last reason, why a software project may have a smaller share of bug
fixing activity could be a special nature of the project. Maybe some special development tech-
niques prevent the raising of bugs. An example could be ’pair programming’ where two devel-
opers create the code together controlling each other. This technique can lower the number of
bugs in code, but will extend the development time.

Commit message summarizing Software development has often a chaotic touch. A developer
with the intention to fix a bug may, while browsing through the code, find a way to extend the
functionality of a certain piece of code. He will do the extension and also fix the bug. When

40 Chapter 4. Evaluation

committing the made changes the message is often summarized and all changes are checked-in at
once. A message could look like this: ”fixed bug 123456 and improved gui responsivity” Both, the file
with the bug fix and the file(s) with the gui improvement are now linked to the bug with number
123456. This fact has the opposite effect than the above mentioned bug linking discipline.

Most of the above reasons could explain the gap betwenn Boehms 12% and the queried 5.4%.

4.3 Patterns

Software engineering has to cope with returning sets of problems to solve. A high-level problem
can be most effectively solved by using an existing solution for that specific problem. Such a prob-
lem could be the implementation of a communication protocol or a set of user interface controls.
On a lower level, there are also recurring problems but they cannot be solved by common-of-
the-shelf code because the domain of application is too specific. Solutions for these problems can
only be a best-practice advice but never a complete working piece of code. These advices are
known as patterns and were summarized by [Gamma et al., 1995]. On the other hand, there are
also patterns describing bad design. These anti-patterns may increase the error-proneness of the
code or generally decrease the manageability of the code. The last form of patterns are the code
smells[Fowler, 1999]. These are mostly on a very low level and describe in general some bad style
of software engineering.

4.3.1 Software Patterns

Software patterns can be divided into two categories: Structural and behavioral patterns. Struc-
tural patterns describe the way objects are arranged and linked to each other where behavioral
patterns express how objects interact with each other. Often a developer tags a class if it is part of
a design pattern by giving it some conventional name or by adding a comment with a reference
to the used pattern. But patterns are also used intuitionally. Being able to detect patterns could
help to document the code and to make it better understandable.

Behavioral Patterns

The given source code ontology model reaches its limits when trying to detect behavioral pat-
terns. There is a lot of external context and knowledge necessary to identify such a pattern. The
observer pattern is a representative of the behavioral patterns. It mainly consists of two classes,
the observer and the observable. The observable maintains a list of the registered observers and
informs them if a certain event has happened. Therefore the observable needs to have some op-
erations to add, remove and inform observers. To figure out if a class belongs to the Observer
pattern, we would need to analyze this class if it really maintains a list of Observers and informs
them when an event happens. To do this analysis, we would need to follow certain execution
paths which is impossible with the current ontology models.

Structural Patterns

In contrast to the behavioral patterns, the structural patterns do not describe an action, but a
structural arrangement of elements and their interconnection. This focus on the structure instead
of the execution suits better the approach made in the ontology models. Therefore, the instance
files can be queried to detect structural patterns.

4.3 Patterns 41

Proxy Pattern

The proxy pattern is a representative of a structural pattern. Proxies are used to delegate calls to
another object. A caller has no reference to the object providing the functionality. It communicates
with the proxy object that will do the method call as proxy on the target object. Figure 4.4 shows
a UML2 class diagram of the proxy pattern [Gamma et al., 1995].

Figure 4.4: The structure of the proxy pattern

When trying to detect a proxy pattern using a SPARQL query, different steps are required.
Two classes implementing the same interface are strong candidates for the proxy pattern. If one
of the two implementations (proxy) of this interface has a reference to the other one (subject) we
consider these classes as a proxy pattern. Query 4.13 shows the SPARQL query to detect the proxy
pattern.

PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
SELECT ?client ?interface ?subject ?proxy
WHERE {

?proxy som:isSubtypeOf ?interface .
?proxy som:hasAttribute ?proxyreference .
?subject som:isSubtypeOf ?interface .
?interface som:isDeclaredClassOf ?clientreference .
?client som:hasAttribute ?clientreference .
?proxyreference som:hasDeclaredClass ?subject .

}

Listing 4.13: Query to detect the proxy pattern

Query 4.13 can be proofed when using a engineered example (sample implementation of the
proxy pattern). When querying the data of the org.eclipse.compare plug-in, no results are re-
turned. This is because the org.eclipse.compare does not use the proxy pattern.

2Unified Modeling Language

42 Chapter 4. Evaluation

4.3.2 Anti-Patterns

Anti-Patterns [Fowler, 1999], in contrast to design patterns, generally describe bad design ap-
proaches. The danger of these patterns is that they look attractive for a developer to solve a
problem. They might seem to be the best way to reach a goal, but, in a longer term they cause
many problems and endanger software stability and manageability. To test our ontology models,
we tried to detect two Anti-Patterns.

Alien Spider Anti-Pattern

The first is the AlienSpider pattern, describing a group of classes where every class has a reference
to every other class of this group. This will lead to n∗(n−1) references between these classes. The
major problem underlying this pattern is the tight coupling of the pattern members. When two
classes use the functionality of each other, every change to class A will most likely lead to a change
of class B. Query 4.14 is used to retrieve an alien spider pattern with two members (classes).

PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
SELECT ?class1 ?class2
WHERE {

?class1 som:hasAttribute ?var1 .
?class2 som:hasAttribute ?var2 .
?var2 som:hasDeclaredClass ?class1 .
?var1 som:hasDeclaredClass ?class2 .
FILTER(?class1 != ?class2)

}

Listing 4.14: Query to detect the Alien Spider anti-pattern

Query 4.14 for classes belonging to the alien spider pattern. If a variable of type class1 shows
up in class2 and a variable of type2 shows up in class1, we can infer that class1 and class2 are part
of the alien spider pattern. Table 4.12 shows the results of Query 4.14. The result shows, that the
org.eclipse.compare plug-in has one pair of classes holding references of each other. However,
there are two occurrences in the query. This is due to the fact, that the query will match every
pair twice, once with the first class as class1 and once with the second class as class1. A custom
property function could be written for SPARQL to check these double results and eliminate them.

class1 class2
PatchWizard InputPatchPage
InputPatchPage PatchWizard

Table 4.12: Result set of Query 4.14

Shotgun Surgery

Our next Anti-Pattern is the Shotgun Surgery. This pattern describes a method in a software system
that is intimately connected with many other classes and methods. If a change is made to this
method, all the connected classes and methods are affected of this modification. The danger of
this pattern is the human memory. When a change is made, a developer most likely does not
know every point in the software any more, that uses the functionality of this method. So this
change will lead to defects in the software. Shotgun Surgery is a crossover of a pattern and a

4.3 Patterns 43

metric calculation. There are two metrics includes in the detection of the pattern: CC (changing
classes) and CM (changing methods, see 4.2.3). CC is a modification of CM that retrieves the
number of classes having methods accessing a class. We can extract those two metrics to decide
if a class is a shotgun surgery pattern. Query 4.15 extracts the two metrics CC and CM.

PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
PREFIX agg: <java:ddis.evoont.evaluation.extensions.>
SELECT ?class ?method ?CC ?CM
WHERE {

?class som:hasMethod ?method .
?class som:uniqueName ?className .
FILTER regex(?className, "compare", "i") .
?CC agg:changingClasses ?method .
?CM agg:changingMethods ?method .

}
ORDER BY DESC(?CM)

Listing 4.15: Query to detect a Shotgun Surgery

Query 4.15 uses two custom implemented property functions because determining two dif-
ferent metrics in one query lead our generic counting function to its limits. The code of these
property functions can be found in Appendix A. Table 4.13 shows the strongest candidates for a
Shotgun Surgery pattern in the org.eclipse.compare plug-in.

Class Method CC CM
CompareUIPlugin getDefault() 10 30
Utilities getString(Ljava.util.ResourceBundle,Ljava.lang.String) 14 26
Utilities getString(Ljava.lang.String) 12 24
ICompareInput getLeft() 9 16
ICompareInput getRight() 8 15
ITypedElement getName() 10 13
CompareUIPlugin getShell() 6 11

Table 4.13: Parts from the result set of Query 4.15

In Table 4.13 we can see that the method getDefault() in class CompareUIPlugin is used
by 30 methods spread over 10 different classes. In other words, a change to the getDefault()
method could need a adaption of 30 methods in 10 different locations (classes). The danger to
forget one of these 10 locations is high, and, therefore, this class could be considered harmful for
the software.

4.3.3 Code Smells

Code Smells [Fowler, 1999] are, in contrast to Anti-Patterns, on a lower level. They could be gen-
erally described as a bad style of coding. Where a pattern affects the architecture of a software
system, a smell is limited to the implementation of a software system. Such a smell is not neces-
sarily an error, but the readability and usability of the source code suffers significantly.

44 Chapter 4. Evaluation

Weak Encapsulation

We tested the ability of our ontology models to detect Code Smells by trying to find weak encap-
sulated attributes of a class. Such attributes are accessible (and manipulable) from outside their
defining classes. In Java, this would refer to public attributes. Query 4.16 lists such attributes, ac-
cessed from outside their classes. This can be problematic, as an attribute is part of the inner state
of a class and should not be exposed to the outside, except by using an accessor (getter, setter)
method.

PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
SELECT DISTINCT ?WeakEncapsulationClass ?Field ?AccessorClass
WHERE {

?WeakEncapsulationClass oomodel:hasAttribute ?Field .
?Field oomodel:accessControlQualifier ?accessControlQualifier .
?Field oomodel:isFinal ?final .
FILTER(?final = false) .
FILTER(?accessControlQualifier = "public") .
?BadMethod oomodel:accesses ?Field .
?AccessorClass oomodel:hasMethod ?BadMethod .
OPTIONAL {

?subclass oomodel:isSubclassOf ?WeakEncapsulationClass .
FILTER(?AccessorClass != ?subclass) .

}
FILTER(?AccessorClass != ?WeakEncapsulationClass) .

}

Listing 4.16: Query to find attribute accesses from outside the declaring class

In Query 4.16 the OPTIONAL block is worth mentioning. It is used to exclude accesses to
attributes from super classes. An access from a subclass to a superclass’ attribute cannot be seen
as an external access because the attributes of the superclass are made internal to the subclass
through inheritance. Table 4.14 shows the result set of Query 4.16.

Class Field Accessor Class
PatchMessages InputPatchPageNothingSelectedmessage PatchTargetPage
PatchMessages PreviewPatchPageFuzzFactortooltip PreviewPatchPage
PatchMessages InputPatchPageSelectInput PatchTargetPage
PatchMessages PreviewPatchPageIgnoreWhitespacetext PreviewPatchPage
.

Table 4.14: Parts from the result set of Query 4.16

After further investigation of the results from Query 4.16, it arose that all of the matched
attributes in Table 4.14 are static. Static attributes do not express a inner state of an object,
therefore, this cannot be considered harmful for a software system. Ultimately, we can say that
the org.eclipse.compare plug-in is free of the weak encapsulation code smell.

4.4 Similarities

To calculate similarities within the models, different frameworks are used in combination. Figure
4.5 gives a brief overview of how these components are linked together. The remaining sections

4.4 Similarities 45

describe the components in detail. The Jena components are not explained in detail any more.

Figure 4.5: Component overview for similarity measures

4.4.1 iSPARQL

This section succinctly introduces the relevant features of the iSPARQL[Stocker, 2006] framework
that serves as the technical foundation to all following experiments. iSPARQL is an extension of

SPARQL[Prudh́ommeaux and Seaborne, 2006]. iSPARQL extends the traditional SPARQL gram-
mar but does not make use of additional keywords. Instead, iSPARQL introduces the idea of
virtual triples. Virtual triples are not matched against the underlying ontology graph, but used
to configure similarity joins: they specify which pair of variables (that are bound by SPARQL
to resources) should be joined and compared using what type of similarity measure. Thus, they
establish a virtual relationship between the resources bound to the variables describing their simi-
larity. A similarity ontology defines the admissible virtual triples and links the different measures
to their actual implementation in the library of similarity measures called SimPack. The similarity
ontology also allows the specification of more complicated combinations of similarity measures,
which we call similarity strategies (or simply strategies) in the remainder of this thesis. An iS-
PARQL query always needs at least three steps: First, the desired similarity strategy has to be
selected. Sencond, the input arguments have to be passed to iSPARQL and third, a variable has
to be passed to iSPARQL where the results of the similarity calculations are stored to. Listing 4.17
shows an example configuration of an iSPARQL query. The name of a similarity strategy needs
to be a registered iSPARQL similarity strategy.

46 Chapter 4. Evaluation

PREFIX isparql: <java:ch.unizh.ifi.isparql.query.property.>
...
?strategy isparql:name "SimilarityStrategy" .
?strategy isparql:arguments (?input1 ?input2)
?strategy isparql:similarity ?sim.

Listing 4.17: iSPARQL configuration example

4.4.2 SimPack

SimPack3 is a generic set of similarity algorithms. First, the data has to be transformed to a struc-
ture supported by SimPack. Two of these structures are trees and graphs. Then, the algorithms
can be applied to these data structures to calculate similarities in various ways.

4.4.3 Evaluation of Compare Algorithms

4.4.4 Similarity Strategy

Whenever using a query with the iSPARQL extension, a similarity strategy is needed. Every triple
passed to iSPARQL will be forwarded to the similarity strategy. While there are some generic
strategies in the iSPARQL package, these cannot consider the specific features of our software
ontology. Thus, some particular adapted strategies were created to respect the special nature of
the ontology models. For every pair of arguments the strategy is called once, where an argument
is a graph node from the underlying RDF graph maintained by Jena. This RDF graph is accessible
from within the strategy and is needed to regain the OntModel from Jena for further data retrieval.
In other words, the strategy’s input are two resources and the expected output is a double value
describing the similarity between these two resources. In the strategy itself the decision has to be
made which compare algorithm is used, and how many connected nodes to the passed resources
are considered for the similarity calculation. To apply a compare algorithm, the data needs to be
brought into the expected format for the algorithm. In a first place we considered two classes of
algorithms, namely tree and graph algorithms. Due to the hierarchical structure of source code
entities (i.e. classes, methods etc.), our first chosen data structure and compare algorithms were
trees. The technique to build up this tree is described in the following section.

Building a Tree from the Ontology

Like described above, the only information to build up a tree is the root node. This root node
is passed as parameter from the similarity strategy. Before we can use a compare algorithm, we
need to build up the tree for the later comparison of these two trees. To receive expressive results,
it is absolutely necessary that both trees are built up by the same methods and rules. To achieve
this, we created a generic tree builder class taking the the RDF node as starting point. The idea
was for the builder to decide whether to go deeper into some entities or not. As an example, a
passed parameter could be the RDF node of a class. This would be a tree with only one (the root)
node. When comparing the two tree nodes, the algorithm would always result in a structural
similarity of 1.0 because no further elements of the class are considered. The builder should also
attach the methods, attributes etc. to the tree. To keep this builder as flexible as possible, we

3http://www.ifi.unizh.ch/ddis/research/semweb/simpack/

4.4 Similarities 47

extracted a builder strategy to be able to configure the builder to create trees with custom depths.
The configurable parameters are:

• GoIntoAnonymousClasses This property is considered when creating a subtree of a method.
Whenever a method declares an anonymous class and this property is true, the tree builder
will be called recursively and the anonymous class is attached under the declaring method
node.

• GoIntoAttributeAccesses A method can access attributes of a class. Whenever such an
access is encountered, and this property is true, the attribute node will be added to the tree.

• GoIntoAttributes This property is slightly different to the above described GoIntoAttributeAc-
cesses. When the above property will attach the attribute subtree to a method node when-
ever an access happens, this property will add the attribute node under a class node when
this class declares this attribute. This node will also be added if an attribute is never ac-
cessed.

• GoIntoClasses The builder will attach a class node if this property is set to true. This is
needed at the very beginning of a build action (when setting the root node) and when a
declared class or an anonymous class is found. In the latter case, the anonymous class node
is attached to the method and the builder will go on to add methods and attributes of the
anonymous class (if demanded).

• GoIntoDeclaredClasses This property controls the depth of a class serving as a type of a
variable. When a class node is attached by the GoIntoDeclaredTypes property, this property
controls wheter to go into the whole class definition of the variable type or not.

• GoIntoDeclaredTypes A declared class is the type of an attribute or variable. When en-
abling this property, the builder will attach only the class node under the attribute or vari-
able node (no recursion).

• GoIntoLocalVariables Local variables are defined inside a method. If this property is true,
the local variable will be attached to its parent method.

• GoIntoMethodInvocations A method can invoke other methods. The invoked method will
be added under the invoking methods node if this property is true.

• GoIntoMethodReturnTypes A method can have a return value. This value is typed with a
class. Whenever a return type is found and this property is true, the class node of the return
type is added as a leaf of the returning method’s node.

• GoIntoMethods If this property is true, a method node is added under its declaring class
node.

• GoIntoParameters Parameters are the variables passed to a method. Whenever a method
takes parameters and this property is true, the parameter node is added under its method
node.

• AnonymousClassDepht A method can declare anonymous classes and inside these classes
methods can again declared other anonymous classes. To control the depth of these declara-
tions, this property takes an integer value describing the number of levels the builder goes
into these class declarations before stopping.

48 Chapter 4. Evaluation

• TypeDeclarationDepht Similar to the anonymous class depth, this property tells the builder
how many levels it should go into type declarations. This will also prevent the builder from
running into an endless loop. When a method’s return type is from the same class than it
is declared by (for instance the singleton pattern), the builder would go into this declared
class, and find the initial method, go into the declared class and so on.

Following, the visualized output of the tree builder algorithm is presented. The input was
the RDF node representing the org.eclipse.compare.CompareViewerPane class of release 3.2.1 of
the org.eclipse.compare plug-in. The builder ran with the configuration: GoIntoAnonymous-
Classes=false, GoIntoAttributeAccesses=false, GoIntoAttributes=true,GoIntoClasses=true, GoIn-
toDeclaredClasses=false, GoIntoDeclaredTypes=false, GoIntoLocalVariables=false, GoIntoMethod-
Invocations=true, GoIntoMethodReturnTypes=false, setGoIntoMethods=true, setGoIntoParame-
ters=false, AnonymousClassDepht=0 and TypeDeclarationDepht=0. For better readability, the
output has compressed package names and parameter lists.

Class: CompareViewerPane
|- Method: CompareViewerPane.getToolBarManager(...)
| +- Method invocation: CompareViewerPane.getToolBarManager()
|- Method: clearToolBar(...)
| |- Method invocation: ToolBarManager.update(...)
| |- Method invocation: CompareViewerPane.getToolBarManager(...)
| +- Method invocation: ContributionManager.removeAll()
|- Method: CompareViewerPane.setImage(...)
| |- Method invocation: CLabel.setImage(...)
| +- Method invocation: ViewForm.getTopLeft()
|- Method: CompareViewerPane.setText(...)
| |- Method invocation: CLabel.setText(...)
| +- Method invocation: ViewForm.getTopLeft()
|- Method: CompareViewerPane.<init>(...)
| |- Method invocation: ViewForm.setTopLeft(...)
| |- Method invocation: Widget.addDisposeListener(...)
| |- Method invocation: CompareViewerPane$3.<init>()
| |- Method invocation: CompareViewerPane$2.<init>()
| |- Method invocation: CompareViewerPane$1.<init>(...)
| |- Method invocation: ViewForm.<init>(...)
| +- Method invocation:Control.addMouseListener(...)
|- Method: CompareViewerPane.getToolBarManager()
| |- Method invocation: ViewForm.setTopCenter(...)
| |- Method invocation: ToolBarManager.<init>(...)
| +- Method invocation: ToolBar.<init>(...)
+- Attribute: CompareViewerPane.fToolBarManager

Building a Graph from the Ontology

The other class of compare algorithms, graph algorithms, need a graph as input. As a class or
software in general has a hierarchical structure, the graph of a class looks almost identical to the
above presented tree. Therefore we adapted to tree builder and all of its functionality to now
build a graph instead of a tree. This new graph builder uses the same configuration properties as
the tree builder but is feasible as input for SimPack’s graph algorithms.

4.4 Similarities 49

4.4.5 Selection of Algorithms

To receive a similarity between two trees or graphs, we need to select proper compare algorithms
[Valiente, 2002]. For the tree comparison we chose TreeEditDistance[Valiente, 2002]. This algo-
rithm compares two trees by determining the number of steps needed to merge one tree into the
other one. These steps can be insertions, deletions or replacements. If a large number of steps
is necessary to transform one tree into the other, this will result in a lower similarity. The algo-
rithm used for graph comparison was SubgraphIsomorphism[Baggenstos, 2006]. This algorithm
tries to find the maximum common subgraph of two graphs. Depending on the size of the com-
mon subgraph and the input graphs the similarity is calculated. Both of the above mentioned
algorithms can compare the structure and the nodes of two graphs or trees. If only the structure
would be cons idered, the algorithms would return a similarity of 1.0 whenever the number of
nodes and their hierarchical structure is the same. A class with ten methods and five attributes
will be considered identical to a class with fifteen methods (the number of nodes is identical and
they are all on the same level of hierarchy). To have a finer granulation of the similarity mea-
sures, another algorithm can be provided and will be used to calculate the node similarity. In
SimPack, a node can contain a user object, a Java object that is wrapped inside the node object.
The node compare algorithm can access this object to base the calculations onto the similarity
between two such user objects. For our experiments, we used a simple String object as user object
containing the uniqueName property of the entities. The used node comparison algorithm was
a Levenshtein[Levenshtein, 1966] string similarity. This algorithm uses a similar technique to the
TreeEditDistance. Levenshtein counts the number of steps needed to transform one String into
the other one. By setting the number of transformations in relation to a worst case distance, the
similarity can be calculated.

4.4.6 Criticism on the used Algorithms

The used TreeEditDistance algorithm considers the order of the siblings in a tree. Whenever two
elements in the tree are swapped, the algorithm will detect this as a change and therefore the
similarity will be decreased. Although, in our case this has no effect on the software itself, if
a method is declared before an attribute or afterward, this behavior of the algorithm will lead
to blurred results. Figure 4.6 shows another problem when using TreeEditDistance. The figure
shows two identical trees except Tree 2 is missing node C. When applying the TreeEditDistance
algorithm to the trees 1 & 2, the algorithm will compare the nodes one-by-one. So it will compare
A with A, B with B, C with D and so on. By comparing node C from Tree 1 with node D from Tree
2, the calculated similarity of the two trees is smaller than it actually is. A more realistic result
would be achieved if a node would be compared to every of its siblings and the one value would
be taken with the highest similarity.

The Subgraph Isomorphism[Baggenstos, 2006] algorithm has a very high complexity. To keep
the number of calculations small, the algorithm provides a grouping functionality to summarize
nodes and treat them as one. However this functionality seems to fail for unknown reasons. For
the above mentioned flaws of the used algorithms we decided to implement a specialized, yet
simple algorithm to calculate the similarities by ourselves.

4.4.7 Engineered Compare Algorithm

We created our own compare algorithm to respect the nature of source code in the calculation of
the similarity. The basic idea of the above presented algorithms were adapted. In the remaining
part of this thesis this algorithm will be called custom algorithm. At a first stage we needed to create

50 Chapter 4. Evaluation

Figure 4.6: Example trees

a data structure to store the to compare entities. We decided to create a object called FamixOn-
tologyObject containing the entity’s uniqueName property and its type. The type is as well a
simple string containing the kind of entity such as Class, Method, or Attribute. This information
is needed later on to calculate the structural similarity. All the FamixOntologyObjects are stored
inside a simple Java set (unordered). The first step our algorithm takes is to group the nodes by
their types. This will result in a set of entities for each type (i.e. Classes, Methods etc.). Then, the
structural similarity is calculated for every type in the set. As single type similarity is defined as
in Equation 4.7.

Simtype =
min(TCtypetree1

, TCtypetree2
)

max(TCtypetree1
, TCtypetree2

)
(4.7)

In Equation 4.7, TC is the number of a type occurring in the trees. Next, the type similarity is
cumulated for all types resulting in the structural similarity.

StructSim =

numTypes∑

type=0

Simtype

EC
(4.8)

In Equation 4.8, EC is the total number of elements in the trees. To illuminate the calculation of the
structural similarity, we can apply it to an example class. Lets assume Class1 has 10 methods and
5 attributes. Class2 has 8 methods and 7 attributes. Applying Equation 4.7 to those two classes
would lead to a structural similarity shown in Equation 4.9

StructSim = 0.7571 =
8

10
+ 5

7

2
(4.9)

After the structural similarity is calculated we extract the node similarity. Because we know
about the data’s context, we can omit the comparison of nodes, that are not of the same type. If
we would compare a method and an attribute, both with the same name, this would lead to a
node similarity of 1.0, but from the context we know that between these two entities can never be
a similarity because the type does not fit. With this fact in mind we calculate the node similarity
type by type. Again, a Levenshtein string compare algorithm was used. The node comparison

4.4 Similarities 51

has an optimistic assumption to find the most similar entities. An entity is compared to every
sibling entity of the same type. The highest similarity value is the one to be selected. In a last step
the similarity value of all the nodes is summarized and divided by the number of nodes. This
will result in the overall node similarity. To retrieve the overall similarity, the structural and node
similarity have to be added. The addition can be weighted if one similarity should be considered
more or less in the result. In our experiments we weighted them equally.

sim = 0.5 ∗ structSim + 0.5 ∗ nodeSim (4.10)

4.4.8 Querying the Models for Similarity

In this section, different queries are presented that we used to do our similarity calculations. The
queries use the SPARQL syntax with the iSPARQL extension to use SimPack’s functionality.

Release Similarity

First, we calculated the difference between two releases. We wanted to have the similarity be-
tween all classes of one release and all classes of another release. At first the query joins all the
classes in the two releases to pairs. So, the 127 classes of the org.eclipse.compare plug-in will
result in 127*127=155’829 pairs between each other the similarity is calculated.

PREFIX isparql: <java:ch.unizh.ifi.isparql.query.property.>
PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
PREFIX vom: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/vom#>
SELECT ?uniqueName1 ?uniqueName2 ?sim
WHERE {

?release1 a vom:Release .
?release2 a vom:Release .
?release1 vom:name "R3_2" .
?release2 vom:name "R3_1" .
?revision1 vom:hasRelease ?release1 .
?revision2 vom:hasRelease ?release2 .
?file1 som:hasRelease ?release1 .
?file2 som:hasRelease ?release2 .
?file1 som:hasClass ?class1 .
?file2 som:hasClass ?class2 .
?class1 som:uniqueName ?uniqueName1 .
?class2 som:uniqueName ?uniqueName2 .
?strategy isparql:name "TreeEditDistance" .
?strategy isparql:arguments (?class1 ?class2) .
?strategy isparql:similarity ?sim .

}

Listing 4.18: Query for similarity measures between two releases

To visualize the results, we exported the returned data into a CSV4 format to be able to pro-
cess it using Matlab. The CSV files for the queries can be found on the accompanying DVD (see
appendix C). We used Matlab to generate heatmaps of the queried data to visualize the simi-
larity. On each axis of the graph (x and y) one release and its source files are listed. On every

4comma separated values

52 Chapter 4. Evaluation

intersection of two classes their calculated similarity value is presented using a color code. The
color changes depending on the similarity from black (no similarity), red (few similarity), yellow
(strong similarity) to white (equality). Figure 4.7 shows the heatmap of the comparison between
release 3.1 and 3.2 of the org.eclipse.compare plug-in using the TreeEditDistance algorithm. At a
first glance, the diagonal light line stands out of the figure. This line represents the comparison
of the same class, once from release 3.1 and once from 3.2. This line marks the effective change
made to the software project between the two releases. The other parts of the figure show the
similarities between the other classes. The underlying similarity strategy of figure 4.7 does not
regard the similarity between the nodes. It only compares the structure between two trees. With a
next experiment we wanted to see the effect on the similarity when the nodes (the uniqueNames)
are considered in the similarity calculations. Figure 4.8 shows the same measure as in figure 4.7
except the node similarity is considered by using a Levensthein string compare algorithm. The
result show a generally decreased similarity except the diagonal line seems unchanged. In an-
other cycle we conducted this experiment using the SubgraphIsomorphism algorithm. Again, a
Levenstein string comparator was used to calculate the similarities of the nodes. Figure 4.9 shows
the resulting heatmap. In a last experiment we applied our engineered custom algorithm (Figure
4.10).

4.4 Similarities 53

Figure 4.7: Similarity between release 3.1 and 3.2 using a TreeEditDistance algorithm

Figure 4.8: Similarity between release 3.1 and 3.2 using a TreeEditDistance algorithm and a Levenshtein node
comparator

54 Chapter 4. Evaluation

Figure 4.9: Similarity between release 3.1 and 3.2 using a SubgraphIsomorphism algorithm and a Levenshtein node
comparator

Figure 4.10: Similarity between release 3.1 and 3.2 using a custom algorithm and a Levenshtein node comparator

4.4 Similarities 55

Class History

Another interesting information is the history of a class. Usually, a class experiences different
changes over its life cycle. If a class underlies many changes, this can be an indicator of impor-
tance but, as well, be a sign of error-prone code. There are different approaches to measure the
change made to a class. A very simple way to measure the change could be by comparing the
filesize of two classes. A more sophisticated approach is made by textual diff tools, counting
the added, removed and changed lines. However, this is made on a textual base. The diff tool
cannot separate code from for example comments. With our approach, we can directly calculate
the change made to the code and omit changes made to comments, the moving of methods or at-
tributes etc. Where in the above section all the classes from two releases were examined we here
focus on single classes but try to consider their whole lifetime. Therefore, we need to compare
a single class in every release of the software. Because a software project can have hundrets of
releases, this would be cumbersome to measure in one query. Therefore, our query (4.19) com-
pares in a first step the same classes of only two releases. The compare algorithm is our foregoing
mentioned custom compare algorithm.

PREFIX isparql: <java:ch.unizh.ifi.isparql.query.property.>
PREFIX som: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/som#>
PREFIX vom: <http://www.ifi.unizh.ch/ddis/evoont/2007/02/vom#>
SELECT ?uniqueName ?sim
WHERE {

?release1 a vom:Release .
?release2 a vom:Release .
?release1 vom:name "<release2>" .
?release2 vom:name "<release1>" .
?file1 som:hasRelease ?release1 .
?file2 som:hasRelease ?release2 .
?file1 som:hasClass ?class1 .
?file2 som:hasClass ?class2 .
?class1 som:uniqueName ?uniqueName .
?class2 som:uniqueName ?uniqueName2 .
FILTER (?uniqueName = ?uniqueName2) .
?strategy isparql:name "SimpleListCompare" .
?strategy isparql:arguments (?class1 ?class2)
?strategy isparql:similarity ?sim.

}

Listing 4.19: Query for similarity measures between the same classes of two releases

In a next step we took our list of all releases in chronological order and walked through that list
executing Query 4.19 for every pair of releases. Again the results were visualized using Matlab.
The output of this measure are 127 figures. Three of them are presented here. The three figures
show the class history over the whole lifetime of their classes. The height of the bars describe the
amount of change.

Classes show different lifecycle types. Where figure 4.11 shows a class with increasing changes
over time, the class shown in figure 4.12 seems to underly some equally spread, constant changes.
4.13 shows a class that seemed to have an activity peak in the middle of its history and then, the
change amount stabilized at a more or less constant level.

56 Chapter 4. Evaluation

Figure 4.11: Change history of class org.eclipse.compare.internal.Utilities

Figure 4.12: Change history of class org.eclipse.compare.CompareUI

4.4 Similarities 57

Figure 4.13: Change history of class org.eclipse.compare.internal.CompareAction

5
Conclusions

In this thesis we successively showed the application of Semantic Web techniques and formats
to the area of software engineering. First, we introduced the meta models for the three software
repositories, source code, versioning system and bug tracking system. These meta models serve
as a base for the implemented tools to retrieve and store the data from the three repositories. We
presented an eclipse plug-in able to extract the repositories’ data in an automated manner. In
the last chapter we conducted excessive experiments to proof our approach. The experiments
have shown, that OWL/RDF can be used as data exchange format for software meta data, and
that SPARQL, iSPARQL and SimPack are feasible for executing queries and retrieving meaningful
data from the models. The major advantage of the presented approach is the open, web-capable
format which allows future extension with further repositories such as email systems, data from
social networks etc. At last, the possibility to link web-wide spread semantic annotation to a
large documentation and annotation network offers a interesting approach for future software
engineering.

5.1 Limitations

The limitations of the proposed approach can be divided into two categories – ’Technical Limita-
tions’ and ’Conceptual Limitations’. Where the technical limitations are externally given and may
vanish over time, the conceptual limitations need a reconsideration of the used technologies and
proposed meta models.

5.1.1 Technical Limitations

The Semantic Web technology is grown out of different research projects. It has not the pragma-
tism certain industry-invented technologies have, but, therefore, is elaborate and proof of concept.
The technical limitations of such technologies are mostly at a second place because computers will
get faster and Internet connections will gain bandwidth. In this thesis, the limits were often given
by CPU power or memory size. For example, the measurement of certain queries was in the
range of several hours to days. To create the in-memory models and store them to OWL/RDF the
Jena framework is used. When parsing the data of a larger project, the model created by Jena is
too complex for the underlying Java virtual machine resulting in a java.lang.StackOverflowError.
Owl as part of the semantic web uses a lot of information to annotate the data. For example a
number is annotated with its proper XSD type to enable a reading computer system to identify

60 Chapter 5. Conclusions

the kind of data and how to handle it. Next, the underlying XML is more expressive than it techni-
cally would need to be. For instance a closing tag always repeats the name of the opening tag like
<example>...</example> where for a computer system <example>...</> would be enough.
All these redundancies are brought in to increase the readability for a human. The price for this
readability is a larger file size and therefore a slower processing. The models generated for this
thesis of the org.eclipse.compare plug-in which are the versioning model, the bug model and 286
code models have a file size of together 1.67 GB. This large filesizes make the models cumbersome
to handle and the queries long to execute.

5.1.2 Conceptual Limitations

The concept used has some flaws, especially when trying to extract metrics. There are many
metric calculations that need finer grained model components like if clauses, loops etc. These
elements are not included in the ontology models and parsers, therefore, not all metric calcula-
tions and pattern detections can be made. Another limitation of the meta model is the fixation on
Bugzilla. It would be desirable to have a generic meta model of a bug tracking system. This may
be part of a future work.

5.2 Future Work

The presented ontology models and parser show a first approach. The ontology models as well
as the parsers should be extended to regard more information stored in the repositories. The
concrete extensions of the meta models would be:

• Extend the version ontology model to include more entities of the CVS system. Also, other
versioning systems should be regarded such as Subversion.

• Adapt the bug ontology model to be compatible with other bug tracking systems such as
Mantis1 or Scarab2.

• Extend the software ontology model to include more facets of the Java language (like some
features of version 1.5 i.e Generics) and different programming languages such as C++ or
SmallTalk.

Every extension made to the meta models results in a necessary extension of the parsers. When-
ever adding support for a new programming language, bug tracking system or versioning system,
a completely new parser needs to be written to be able to retrieve data from that system. When
extending the meta model, the existing parsers need to be adapted. Another extension that may
be part of future work is the extension with completely new types of repositories. This could in-
clude email conversation, organization hierarchy data or data from message forums. These new
repositories can be easily attached to the existing models and meta models. Interesting experi-
ments using data mining techniques could be adapted. The here shown experiments only use
simple queries and some post-processing steps. Probably a lot more data and information can be
retrieved by applying data mining to the generated models.

1http://www.mantisbt.org
2http://scarab.tigris.org

A
Code Listings

Some selected source code listings are presented in this section. The selection of the code snip-
pets is based on the usefulness for understanding its functionality. Far not all the source code
generated in this thesis is listed here. A complete collection of all programs can be found on the
accompanying DVD. See appendix C for details.

A.1 A Generic Function for Counting with ARQ

This function is inspired by the group class created by Andy Seabourne at the HP labs. The
original file is not part of the standard Jena or ARQ distribution and can be found on Jena’s
CVS server in the package com.hp.hpl.query.extension.library. Below, only the central
method, exec, is presented.

public QueryIterator exec(QueryIterator input, List args, String uri,
ExecutionContext execCxt) {

//argument 1 (the variable holding the input
Expr expr = (Expr)args.get(1);
NodeVar saveTo = (NodeVar)args.get(0);
HashMap<NodeValue,List<Binding>> count = new HashMap<NodeValue,List<

Binding>>();
while(input.hasNext()){

Binding binding = input.nextBinding();
// we evaluate the expression for the actual binding
NodeValue nodeValue = expr.eval(binding, execCxt);

//check if the hashmap already contains this nodevalue
if(count.containsKey(nodeValue)){

//add the binding (grouping)
count.get(nodeValue).add(binding);

}else{
//not yet in list. create the new list and add this binding
List<Binding> list = new ArrayList<Binding>();

62 Appendix A. Code Listings

list.add(binding);
count.put(nodeValue, list);

}

}

Collection<List<Binding>> list = count.values();
List<Binding> returnList = new ArrayList<Binding>();
for(List<Binding>bindingList:list){

if(bindingList.get(0) != null){

Binding save = bindingList.get(0);
//the number members in this group (count) is bindingList.size()
save.add(saveTo.getVarName(), NodeValue.makeInteger(bindingList.

size()).asNode());
returnList.add(bindingList.get(0));

}

}

return new QueryIterPlainWrapper(returnList.iterator(),execCxt);

}

Listing A.1: countChilds.java

The next two classes, changingClasses and changingMethods also count entities within
a query but are much more sophisticated. These two classes only work with our ontology mod-
els and their respective instances files. The first class, changingClasses, counts the number
of classes, a method has invokers in. The second, changingMethods, counts the number of in-
vokers. These two classes were created for the Shotgun Surgery pattern as the above presented,
generic counting function has problems when being called mulitple times in the same query.

public QueryIterator exec(QueryIterator input, List args, String uri,
ExecutionContext execCxt) {

//argument 1 (the variable holding the input
Expr expr = (Expr)args.get(1);
NodeVar saveTo = (NodeVar)args.get(0);
HashMap<NodeValue,List<Binding>> count = new HashMap<NodeValue,List<

Binding>>();
while(input.hasNext()){

Binding binding = input.nextBinding();
// we evaluate the expression for the actual binding
NodeValue nodeValue = expr.eval(binding, execCxt);

//check if the hashmap already contains this nodevalue
if(count.containsKey(nodeValue)){
//add the binding (grouping)
count.get(nodeValue).add(binding);

A.1 A Generic Function for Counting with ARQ 63

}else{
//not yet in list. creat the new list and add this binding
List<Binding> list = new ArrayList<Binding>();
list.add(binding);
count.put(nodeValue, list);

}

}

Collection<List<Binding>> list = count.values();
List<Binding> returnList = new ArrayList<Binding>();
for(List<Binding>bindingList:list){

if(bindingList.get(0) != null){

Binding save = bindingList.get(0);
//the number members in this group (count) is bindingList.size()
save.add(saveTo.getVarName(), NodeValue.makeInteger(bindingList.

size()).asNode());
returnList.add(bindingList.get(0));

}

}

return new QueryIterPlainWrapper(returnList.iterator(),execCxt);

}

Listing A.2: changingClasses.java

public QueryIterator exec(QueryIterator input, List args, String uri,
ExecutionContext execCxt) {

OntModel model = ModelFactory.createOntologyModel(OntModelSpec.
OWL_DL_MEM ,ModelFactory.createModelForGraph(execCxt.
getActiveGraph()));

Expr expr = (Expr)args.get(1);
NodeVar saveTo = (NodeVar)args.get(0);
List<Binding> bindings = new ArrayList<Binding>();
while(input.hasNext()){

Binding binding = input.nextBinding();
NodeValue nodeValue = expr.eval(binding, execCxt);
NodeIterator ni = model.listObjectsOfProperty(model.getResource(

nodeValue.asNode().getURI()), model.getProperty(Namespace.SOM
+"isInvokedBy"));

int i = 0;
while(ni.hasNext()){
RDFNode node = ni.nextNode();

64 Appendix A. Code Listings

System.out.println("Processing method invocation node: "+node.
toString());

NodeIterator ni2 = model.listObjectsOfProperty(model.
getResource(node.asNode().getURI()), model.getProperty(
Namespace.SOM+"isMethodOf"));

i++;

}

NodeValue nv = NodeValue.makeInteger(i);
bindings.add(new Binding1(binding, saveTo.getVarName(), nv.asNode

()));

}

return new QueryIterPlainWrapper(bindings.iterator(),execCxt);

}

Listing A.3: changingMethods.java

B
UI Elements of the Plug-in

In the following section, the different steps during the user interaction of the plug-in is presented.

Figure B.1: Entry point where exporters can be activated

66 Appendix B. UI Elements of the Plug-in

Figure B.2: Location of the OWL-Exporter in the list of exporters

Figure B.3: Selection of the project to export

67

Figure B.4: Selection of the software releases to export

Figure B.5: Providing an export folder and Bugzilla URL. Start of the parsing action

C
DVD

All the created and generated files within this thesis are stored on the accompanying DVD. Table
C.1 gives a brief overview of the files and folders on the disc and their contents. The need of
using a DVD instead of a CD is the large file size of the generated org.eclipse.compare models
using about 1.67 GB of space.

Name Description
Code All source code used and created in this the-

sis. The sub folders of this folder are Eclipse
projects

Text This document as PDF as well as the
LATEXsource code

Ontologies All the OWL files used in this thesis
Output The output of the different queries and mea-

sures presented above. Also the images to vi-
sualize the data created with Matlab

Parsed The generated source code, versioning and
bug-models from the org.eclipse.compare
plugin.

Table C.1: An overview over the files and folder on the DVD and their contents

Bibliography

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider,
P. F. (2003). The Description Logic Handbook: Theory, Implementation, Applications. Cambridge
University Press, Cambridge, UK.

[Baggenstos, 2006] Baggenstos, D. (2006). Implementation and Evaluation of Graph Isomorphism Al-
gorithms for RDF-Graphs. PhD thesis, University of Zurich.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web
(berners-lee et. al 2001).

[Boehm, 1981] Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

[D’Ambros and Lanza, 2006] D’Ambros, M. and Lanza, M. (2006). Software Bugs and Evolution:
A Visual Approach to Uncover Their Relationships. In Proc. of the 10th European Conf. on Soft-
ware Maintenance and Reengineering (CSMR ’06), pages 227–236. IEEE CS Press.

[Demeyer et al., 1999] Demeyer, S., Tichelaar, S., and Steyaert, P. (1999). Famix 2.0. Technical
report, University of Berne.

[Dietrich and Elgar, 2005] Dietrich, J. and Elgar, C. (2005). A Formal Description of Design Pat-
terns Using OWL. In Proc. of the 2005 Australian Software Engineering Conf. (ASWEC ’05), Bris-
bane, Australia.

[Fischer et al., 2003] Fischer, M., Pinzger, M., and Gall, H. (2003). Populating a release history
database from version control and bug tracking systems. In Proceedings of the International
Conference on Software Maintenance, pages 23–32, Amsterdam, Netherlands. IEEE Computer
Society Press.

[Fowler, 1999] Fowler (1999). Refactoring. Improving the Design of Existing Code. Addison-Wesley.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns.
Addison-Wesley, Boston, MA.

[Happel et al., 2006] Happel, H.-J., Korthaus, A., Seedorf, S., and Tomczyk, P. (2006). KOntoR:
An Ontology-enabled Approach to Software Reuse. In Proc. of the 18th Int. Conf. on Software
Engineering and Knowledge Engineering (SEKE ’06), San Francisco, CA.

[Hyland-Wood et al., 2006] Hyland-Wood, D., Carrington, D., and Kapplan, S. (2006). Toward a
Software Maintenance Methodology using Semantic Web Techniques. In Proc. of the 2nd Int.
IEEE Was. on Software Evolvability at IEEE Int. Conf. on Software Maintenance (ICSM ’06), pages
23–30, Philadelphia, PA.

72 BIBLIOGRAPHY

[Lanza and Marinescu, 2006] Lanza, M. and Marinescu, R. (2006). OO-Metrics in Practice.
Springer, Berlin.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary Codes Capable of Correcting Deletions, Inser-
tionsand Reversals. Soviet Physics Doklady.

[Mäntylä et al., 2003] Mäntylä, M., Vanhanen, J., and Lassenius, C. (2003). A Taxonomy and an
Initial Empirical Study of Bad Smells in Code. In Proc. of the Int. Conf. on Software Maintenance
(ICSM ’03), Washington, DC. IEEE Computer Society.

[Prudh́ommeaux and Seaborne, 2006] Prudh́ommeaux, E. and Seaborne, A. (2006). Sparql query
language for rdf. Technical report, W3C.

[Sager et al., 2006] Sager, T., Bernstein, A., Pinzger, M., and Kiefer, C. (2006). Detecting Similar
Java Classes Using Tree Algorithms. In Proc. of the 2006 Int. Was. on Mining Software Repositories
(MRS ’06), New York, NY. ACM Press.

[Shatnawi and Li, 2006] Shatnawi, R. and Li, W. (2006). A Investigation of Bad Smells in Object-
Oriented Design Code. In Proc. of the 3rd Int. Conf. on Information Technology : New Generations
(ITNG’06), Washington, DC. IEEE Computer Society.

[Stocker, 2006] Stocker, M. (2006). The fundamentals of isparql. Master’s thesis, University of
Zurich.

[Valiente, 2002] Valiente, G. (2002). Algorithms on Trees and Graphs. Springer.

[W3C, 2004a] W3C (2004a). Owl web ontology language overview.

[W3C, 2004b] W3C (2004b). Xml schema part 2: Datatypes second edition.

