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ABSTRACT

Summarization is an important task in data mining. A major chal-
lenge over the past years has been the efficient construction of
fixed-space synopses that provide a deterministic quality guaran-
tee, often expressed in terms of a maximum-error metric. His-
tograms and several hierarchical techniques have been proposed
for this problem. However, their time and/or space complexities
remain impractically high and depend not only on the data set size
n, but also on the space budget B. These handicaps stem from a
requirement to tabulate all allocations of synopsis space to different
regions of the data. In this paper we develop an alternative method-
ology that dispels these deficiencies, thanks to a fruitful application
of the solution to the dual problem: given a maximum allowed er-
ror, determine the minimum-space synopsis that achieves it. Com-
pared to the state-of-the-art, our histogram construction algorithm
reduces time complexity by (at least) a B log2 n

log ε∗ factor and our hier-
archical synopsis algorithm reduces the complexity by (at least) a
factor of log2 B

log ε∗+log n
in time and B(1− log B

log n
) in space, where ε∗ is

the optimal error. These complexity advantages offer both a space-
efficiency and a scalability that previous approaches lacked. We
verify the benefits of our approach in practice by experimentation.

Categories and Subject Descriptors

F.2 [Analysis of Algorithms and Complexity]: Miscellaneous;
H.3 [Information Storage and Retrieval]: Miscellaneous; H.2.4
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1 Introduction

The need to reduce a very large data set into a compact representa-
tion or synopsis that captures its basic characteristics arises often;
it finds application in OLAP/DSS systems [28], approximate query
answering [26, 3], cost-based query optimization [24], time-series
indexing [4], data mining [23], data stream approximation [2, 5]
and the efficient handling of multi-measure [6] and multidimen-
sional data sets [18]. Diverse synopsis data structures have been
proposed [9]; the goal with all of them is to minimize an appropri-
ate error metric over the original data in a given space budget. Past
research has led the way from conventional synopsis techniques
such as histograms [15, 17, 26, 14, 11, 2] and Haar wavelets [24,
28, 3, 7, 8, 20, 11, 12, 13, 6] to more sophisticated ones such as
compact hierarchical histograms [27] and the Haar+ tree [21].

A general optimal-histogram construction algorithm was presented
by Jagadish et al. [17] and later specialized by Guha et al. [14]
for the case of maximum-error metrics. The practical usefulness of
this class of error metrics has spawned focused attention to them in
recent studies, all based on hierarchical synopsis structures. A dy-
namic programming algorithm that derives the optimal Haar wavelet
synopsis for a maximum-error metric (as opposed to the computa-
tionally easier Euclidean error) was developed by Garofalakis and
Kumar [8] and optimized in terms of space and time by Guha [11].
Later, Guha and Harb [12, 13] improved on the robustness of the re-
stricted Haar wavelet synopsis model of [8, 11]. In their approach,
wavelet coefficient values in the synopsis are arbitrary, and differ
from those in the wavelet transform of the data; their approxima-
tion scheme for unrestricted Haar wavelet synopses achieves both
higher accuracy of approximation and better asymptotic behavior
in time than the restricted model. Recent research has created less
restrictive hierarchical synopsis data structures in two independent
routes [27, 21]. The Haar+ tree [21] goes further, in terms of flex-
ibility, than the unrestricted Haar wavelet model, by enhancing the
structure itself. The Compact Hierarchical Histogram (CHH) was
independently introduced in [27]; as we observe in this paper, it is
a special case of a Haar+ tree. In other words, a Haar+ structure
merges the unrestricted Haar wavelet and the CHH models. Both
[27] and [21] experimentally demonstrate that the structures they
propose can, in certain circumstances, achieve higher quality of ap-
proximation than the optimal histogram of [17, 14].

Despite this progress, the complexities of all summarization algo-
rithms for maximum-error metrics are still inefficiently high. The
main reason for this defect is their dependence on the given synop-
sis space budget B, due to a requirement to tabulate possible allo-
cations of space to different data intervals; the problem is gravest
in the models of [12, 13, 21], due to their two-dimensional tab-
ulation over both space and candidate approximation values. An



effort to tame these space complexities [11] did not manage to erad-
icate their dependence on B; besides, as we show, it creates an un-
wieldy tradeoff between time- and space-efficiency in the case of
maximum-error metrics. In this paper we eliminate these shortcom-
ings with an alternative approach, based on a lucrative application
of the solution to the dual, error-bounded problem: detect a space-
optimal synopsis under an error bound. Our solutions do not tab-
ulate over B and do not present performance tradeoffs. Compared
to the state of the art, in histogram construction we reduce the time
complexity from (at least) O(nB log2 n) to O(n log ε∗); in hier-
archical synopsis construction, we reduce the complexity from (at
least) O(R2n log2 B) to O(R2n(log ε∗+log n)) in time and from
(at least) O(RB log n

B
) to O(R log n+n) in space, where ε∗ is the

optimal error and R the cardinality of an examined value set. We
experimentally verify the practical implications of this reduction.

2 Background and Related Work
In this section we briefly present previous approaches to offline data
reduction with a maximum-error deterministic guarantee. We con-
sider the principal synopsis structures employed, namely plain his-
tograms and hierarchical representations. Under both approaches,
given an n-size data vector D = 〈d0, d1, . . . , dn−1〉, the problem
is to devise an approximate representation D̂ of D using at most
B space, so that a given error metric in the approximation is min-
imized. Maximum-error metrics are most generally expressed in
their weighted version:

Lw
∞
�
D̂,D

�
= max

i

�
wi|d̂i − di|

�
,

where d̂i denotes the reconstructed value for di and wi denotes a
weight for the corresponding error value; in the case of the maxi-
mum relative error (MRE), it is wi = 1

max{|di|,S} , where S > 0 is
a sanity bound that prevents small values from unnaturally domi-
nating the error result [8]. In the case that ∀i, wi = 1, the error
metric at hand is the maximum absolute error (MAE). Previous
studies [17, 8, 12, 13, 27, 21] have generalized their results into
wider classes of distributive and Minkowski-distance metrics. Still,
the sub-class of maximum-error metrics remains more practically
interesting than the esoteric metrics of those classes [7].

2.1 Histogram-based Data Reduction

A histogram synopsis (also called segmentation or partitioning) di-
vides D into B � n successive disjoint intervals [bi, ei], 1 ≤
i ≤ B called buckets or segments, and attributes a single value vi

to each of them that approximates all consecutive values therein,
dj , j ∈ [bi, ei]. A single bucket (segment) can be expressed by
the triad si = {bi, ei, vi}. Given a target error metric, the best
value for vi is defined as a function of the data values in [bi, ei].1

2B − 1 numbers suffice to represent a B-bucket histogram (since
∀i, 1 < i ≤ B, bi = ei−1 +1 and the edges are fixed). Initial work
on histograms focused on heuristics [16]. An O(n2B) dynamic
programming algorithm that assigns optimal bucket boundaries for
the Euclidean (L2) error metric (O(n3B) for other metrics) was
presented2 in [17]. The basic idea behind it is that the b-optimal
histogram for D can be recursively derived from the space of (b−1)-
optimal partitionings of prefix vectors of D. For a maximum-error

1For the Euclidean error, the optimal vi is the mean of the values
in [bi, ei] [17]; for MAE it is the mean of maximum and minimum
values in [bi, ei], while for MRE a case analysis is given in [14].
2Since this problem is a special case of the problem of approximat-
ing a curve by line segments, the solution of [17] is a special case
of the algorithm introduced in [1].

metric, the minimal error E(i, b) of a b-bucket histogram of the
prefix vector 〈d0, d1, . . . , di〉 is recursively expressed as:

E(i, b) = min
1≤j<i

{max{E(j, b − 1), E(j + 1, i)}} (1)

where E(j+1, i) measures the minimal maximum error for a bucket
that contains the items 〈dj+1, . . . , di〉. The resulting algorithm
requires an O(nB) tabulation of minimized error values E(i, b)
and chosen last-bucket boundaries j corresponding to those opti-
mal error values. Guha et al. [14] proposed a specialization of the
general-purpose algorithm of [17] for (among others) MRE (ap-
plicable to any maximum-error metric). The crucial observation is
that, in order to determine the j that minimizes the max function in
Equation 1, it suffices to perform a binary search, since E(j, b−1)
and E(j + 1, i) are monotonic functions of j. [14] employs an in-
terval tree to determine the minimum error for a bucket in logarith-
mic time. Hence this algorithm requires O(nB log2 n) time and
O(nB) space. Table 1 summarizes the complexity results of pre-
vious work on the offline one-dimensional histogram construction
problem for maximum-error metrics and introduces the complexity
of the solution3 we propose; B is the space-bound expressed as the
number of buckets and ε∗ is the optimal error. The space-efficient
variant of the algorithm in [14] is discussed in Section 3.

Reference Time Space Algorithm Type
[17] O(n3B) O(nB)
[14] O(nB log2 n) O(nB) time efficient

[14, 11] O(nB log3 n) O(n) space efficient
This work O(n log ε∗) O(n)

Table 1: Summary of results for optimal offline one-
dimensional histogram construction (maximum-error metrics)

2.2 Hierarchical Data Reduction

Another stream of research has been based on index structures that
represent the data in consecutive hierarchical levels of detail. This
approach started with the application of the Haar wavelet decom-
position, long used in signal processing [19]. Most recently, two
independent, yet interrelated structures employing a hierarchy have
been introduced [21, 27]. We now review this research.

The Haar Wavelet Hierarchy. The Haar wavelet hierarchy can
be visualized through a complete binary tree, the Haar tree. The
coefficient in the Haar tree root node contains the overall average
value and each other coefficient value ci contributes the value +ci

to all data values (leaves) in its left sub-tree and −ci to those in its
right sub-tree. Hence each original data value is reconstructed by
adding/subtracting the coefficients in the path towards its position.
Figure 1a depicts the Haar decomposition of an example data vec-
tor D of 8 values (shown at the leaves of the tree). Value d3 = −6
can be reconstructed as +c0 + c1 − c2 + c5. A Haar wavelet syn-
opsis of D is a vector Ẑ of B � n non-zero 〈i, ci〉 terms, such that
its inverse wavelet transform D̂ = W−1(Ẑ) approximates the data
vector D. Figure 1b shows a {〈0, 4〉, 〈3,−2〉 〈4, 6〉 〈5,−7〉} syn-
opsis for the data array of Figure 1a, with maximum absolute error
4. This is the optimal MAE synopsis with B = 4. For the Euclid-
ean error (L2), the optimal Haar wavelet synopsis consists of the
top-B normalized coefficients of the complete Haar wavelet trans-
form [19]; the normalized value of a coefficient c is |c|√

2�
, where �

3After this work was submitted for publication, [2] proposed an
O(n + n log U

log n
B

) algorithm for offline histogram summarization,
where U is the size of the domain for data values; as U can be
arbitrarily large, our solution retains its competitiveness towards
that algorithm too.



is the level where c resides in the Haar tree. For example, the L2-
optimal synopsis, with B = 2, for the data vector in Figure 1a is
{〈0, 4〉, 〈5,−7〉}. This computational convenience has allowed for
the extension of the L2-synopsis methodology to various settings
[10, 18, 5, 6]. On the other hand, the problem is computationally
harder for maximum-error metrics.

Restricted Synopses for Maximum-Error Metrics. After its iden-
tification in [24], the first systematic treatment of the space-bounded
Haar wavelet synopsis problem for maximum-error metrics was
based on a randomized rounding scheme [7]. However, as shown
in [14] and [8], this scheme does not produce results of high qual-
ity. Garofalakis and Kumar [8] suggested a dynamic program-
ming (DP) scheme that deterministically retains the optimal coeffi-
cient subset of a dataset’s Haar wavelet transform. [20] proposed a
streaming-capable and reliable greedy counterpart to this solution.
Muthukrishnan [25] suggested that an algorithm solving the dual,
error-bounded problem4 can provide a shortcut to the solution of
the space-bounded problem, gaining a log n

log ε∗ -factor time complex-
ity advantage. Still, these solutions are all confined to the restricted
variant of problem, in which a coefficient may be only assigned a
fixed value in the complete Haar tree (candidate assigned values are
also fixed in advance in the low-quality probabilistic model).
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(a) Haar tree (n = 8) (b) Unrestricted Haar wavelet synopsis

Figure 1: A Haar tree and unrestricted synopsis (n = 8)

Unrestricted Synopses for Maximum-Error Metrics. Guha and
Harb [12, 13] discerned that the values assigned to the coefficients
retained in a wavelet synopsis can be arbitrary and provided a fully
polynomial-time approximation scheme (FPAS) for the resulting
unrestricted space-bounded Haar wavelet synopsis problem. The
solution of [12, 13] is a DP algorithm guided by a two-dimensional
tabulation per Haar tree node. Each node ci calculates the mini-
mum attainable error E(i, v, b) over both every possible incoming
value5 v and every possible amount of space b allocated to the sub-
tree rooted at ci; possible incoming values are discretized by a reso-
lution step δ. For each E(i, v, b) entry, both the δ-optimal assigned
value z (also quantized as a multiple of δ) and the δ-optimal distri-
bution of b units of space among the left iL and right iR subtrees
of ci are detected. This DP recursion can be summarized as:

E(i, v, b) = min

����
���

min
0≤b′≤b

�
max

�
E(iL, v, b′),

E(iR, v, b − b′)

��
,

min
z,0≤b′≤b−1

�
max

�
E(iL, v + z, b′),

E(iR, v − z, b − 1 − b′)

��

Computing E(0, 0, B) determines the best B nodes to keep in the
synopsis and the best values z to be assigned to each of these nodes
for a given value of δ. The ranges of incoming values v and as-
signed values z to be tested per node can be restricted using the
maximum absolute value M in D [12], or, more efficiently, by a
guessed upper-bound E for the target minimized error [13]. In both
4That is, find a minimal-space synopsis achieving error bound ε.
5The incoming value of a node ci is the value constructed by the
path from the root of the sparse Haar tree up to ci. For example, the
incoming value of node c7 in the tree of Figure 1b is c0 − c3 = 6.

cases, the resulting cardinality R = O(M
δ

) or R = O(E
δ
) of the

set of examined values enters the complexity expressions.

The Haar+ Tree The Haar+ tree [21] extends the Haar wavelet hi-
erarchy by allowing extra coefficient values which contribute their
(signed) value to a single dyadic interval alone. In the example
Haar+ tree of Figure 2, node c0 (root coefficient) contributes its
value to all approximated data values {d0, d1, d2, d3}. The root is
followed by a binary tree of triads (C1, C2 and C3), which substi-
tute the single non-root coefficients of the classical Haar tree. In
each such triad (e.g., C1), the head coefficient (e.g., c1) contributes
its value positively to its left sub-tree and the same value negatively
to its right sub-tree. The left (e.g., c2) and right (e.g., c3) supple-
mentary coefficients contribute their values positively only in the
single subinterval that they affect (e.g., c2 contributes positively to
d0 and d1 only). An optimal synopsis of space budget B for a given
error metric E places B non-zero coefficient values at any posi-
tions in the Haar+ tree so that E is minimized. For example, for the
four-element data set {5, 3, 12, 4} the 2-term Haar+ synopsis that
minimizes the MAE consists of the coefficients {c0 = 4, c8 = 8}.
The Haar+ structure outperforms its predecessors in both accuracy
of approximation and synopsis construction time [21].

+

co

d3d2d1

-+
c1c2 c3

+ +

C1

-+
c4c5 c6

+ +

C2

-+
c7c8 c9

+ +

C3

d0

Figure 2: An One-Dimensional Haar+ Tree
Compact Hierarchical Histograms The Compact Hierarchical His-
togram (CHH) [27] is a related data approximation structure, which
defines a (binary by default) hierarchy of (dyadic) intervals and se-
lects an optimal subset of nodes to represent the approximated data
set. In fact, the CHH structure is equivalent to a Haar+ tree, in
which only supplementary coefficients are allowed. With the bene-
fit of hindsight, a Haar+ tree can be seen as a merging of a CHH and
a Haar tree. [27] proposed heuristic CHH construction techniques,
after observing that the calculation of the optimal value to retain
on a node is computationally hard, due to the interdependence be-
tween nodes in the hierarchy. On the other hand, [21] eschews this
problem by an approximation technique, similar to that in [12, 13],
which provably approximates the theoretically optimal solution by
a small margin of error. Hence, the Haar+ technique can achieve at
least as high accuracy as an heuristically derived CHH over a binary
hierarchy due to both its structural and algorithmic advantages.

2.3 A Space-Efficiency Technique

Guha [11] identified space as the most significant resource for an
offline summarization problem and furnished a space-efficiency par-
adigm for synopsis construction. His main idea is to avoid storing
all tabulated results throughout the DP; part of them can be dropped
and re-computed later. In histogram construction, the tabulation
(Equation 1) on {i, b} should progress with increasing b, 1 ≤ b ≤
B (i.e., the loop of b is the outer loop). Since the values E(∗, b) are
fully determined by E(∗, b−1), after a b-column has been used
to calculate the (b +1)-column, it is dropped. Hence the space
is O(n). Besides, the tabulation also detects and stores the sin-
gle bucket M(i, b) in the optimal b-partitioning of 〈d0, d1, . . . , di〉
that contains the middle data item �n

2
	 of the summarized vector.

After the optimal error E(n, B) and middle-item bucket M =
M(n, B) have been established, the two O(n

2
) independent sub-



Reference Time Space Synopsis Model
[7] O(nq2B log(qB)) O(n + qB log2 n) probabilistic restricted Haar
[8] O(n2B log B) O(n2B) optimal restricted Haar

[20] O(n log3 n) O(n log n) greedy restricted Haar
[11] O(n2) O(n) optimal restricted Haar
[25] O(n2 log ε∗

log n
) O(n) optimal restricted Haar

[27] O(nB log n log B) O(nB log n) Compact Hierarchical Histogram (time efficient)
[27] O(nB log2 n log B) O(B log2 n + n) Compact Hierarchical Histogram (space efficient)

[12, 13, 21] O(R2n log2 B) O(R min{B2 log n
B

, n log B}) unrestricted Haar and Haar+ (time efficient)
[12, 13, 21] O(R2n log n log2 B) O(RB log n

B
+ n) unrestricted Haar and Haar+ (space efficient)

This work O(R2n(log ε∗ + log n)) O(R log n + n) unrestricted Haar and Haar+

Table 2: Summary of results for offline one-dimensional hierarchical synopsis construction (maximum-error metrics)

problems for the intervals on the left and right of M are re-solved
recursively. Hence, the total time for the general-error histogram
construction algorithm [17] becomes O

��log n
�=1 2�

�
n
2�

�2
B
�

=

O(n2B), i.e., the re-computation cost is amortized. [11] applies
the same methodology to the restricted Haar wavelet synopsis al-
gorithm of [8]. In this case, the required tabulation progresses in
a bottom-up fashion in the Haar tree; all table entries on a parent
node are computed from the tables of its children nodes, which can
then be dropped. Accordingly, at most log n + 1 tables need be
concurrently stored, covering one path through the Haar tree. Af-
ter the solution is established at the top level of the Haar tree, the
two half-size sub-problems in the two sub-trees of c1 are re-solved
[11]. Restricted Haar wavelet synopsis construction requires time
quadratic to n, because each of n Haar tree nodes has to consider
O(2log n) = O(n) possible choices of values in its ancestor-set [8].
Hence, the re-computation cost is amortized in this case as well.
Table 2 summarizes the complexity results of previous work on the
offline one-dimensional space-bounded hierarchical synopsis con-
struction problem for maximum-error metrics and introduces the
complexity of the solution we propose; q is a probability quantiza-
tion parameter, R is the cardinality of the examined set of incoming
or assigned values per coefficient, and ε∗ is the optimal error. We
explain the space- and time-efficient variants in the sequel.

3 Motivation
The state-of-the-art for all examined methods features a demand-
ing tabulation over space allocations [14, 12, 13, 27, 21]. Guha
strived to tame these space demands [11]; the result was good, but
not sufficient: the burden of space tabulation remains. This burden
is heaviest for the unrestricted Haar and Haar+ methods: their two-
dimensional tabulation renders their memory requirement imprac-
tical for large data sizes. Besides, the amortization achieved by the
paradigm of [11] does not hold for the algorithms of time linear (or
near-linear) to n reviewed in Section 2. Applied on them, the para-
digm creates a tradeoff between space- and time-efficiency, as [21]
presented for the Haar+ case. Hence, applied on the MRE algorithm
of Section 2.1, this technique decreases its space requirements to
O(n), but increases its time complexity to O(nB log3 n) (Table
1). The same holds for the unrestricted Haar and the Haar+ cases of
Section 2.2 (Table 2). In the space-efficient variant, after the arrays
E(iL, ∗, ∗) and E(iR, ∗, ∗) have been used to calculate the entries
of E(i, ∗, ∗), they are dropped. Again, at most log n + 1 arrays
need to be concurrently stored. The price for this space-efficiency
is an extra log n time complexity factor due to re-computation. For
the time-efficient variant two different approaches are possible: If
B
√

n, then it is advantageous to maintain all E(i, ∗, ∗) arrays in
memory. The size of the array at node ci, residing in level �i in the

tree, is O
�
R min{B, 2�i}�, which, after summation, gives a space

complexity of O (Rn log B). Still, if B�√
n, then it is preferable

to keep only the at most log n+1 necessary arrays, with the full
solutions corresponding to each of their entries appended on them
as lists, as suggested in [13]. The size of a solution maintained with
each entry of an array at level �i is at most min{B, 2�i}, therefore
the space required for an array at level �i is O

�
R(min{B, 2�i})2�.

This sums up to a space complexity of O
�
RB2 log n

B

�
. The two

expressions are equal when nlogB = B2log( n
B

)⇔B=
√

n. Val-
ues of B both higher and lower than

√
n are likely to occur, thus

the preferable method depends on the application at hand. Table 2
shows both. A similar performance tradeoff applies to the win-
ner greedy heuristic of [27] (Table 2). Overall, the complexity
question on summarization with deterministic guarantees remains
unsatisfactorily resolved. In this paper, we provide an alternative
methodology that addresses6 these shortcomings. We show how
the space-bounded summarization problems can be solved more
efficiently by exploiting their duality to the corresponding error-
bounded problems through binary search; in those dual problems,
the goal is to minimize the space of a synopsis that achieves error
no larger than an error bound ε. In the sequel, we formulate and
solve the error-bounded histogram and hierarchical synopses prob-
lems. Then we define and analyze Indirect synopsis construction
algorithms for the corresponding space-bounded problems.

4 Indirect Histogram Construction
This section introduces our solution to the space-bounded histogram
construction problem for weighted maximum-error metrics. Our
technique utilizes the solution to the complementary error-bounded
problem. Section 4.1 presents a linear algorithm7 for this auxil-
iary problem, which achieves the minimal space B∗ under an error
bound ε; we discuss how the solution can be tested on whether it
achieves, secondarily, the minimal error ε∗ in the required space
B∗, providing a strong optimization. In Section 4.2 we exploit this
solution in order to efficiently solve the space-bounded histogram
construction problem, which is our main interest and contribution.

4.1 Error-bounded Histogram Construction

We formulate the Lw
∞-bounded histogram construction problem:

Problem 1 Given a data vector D and an Lw
∞-error bound ε, con-

struct a histogram H of D with the minimum number of buckets
B∗, such that Lw

∞ (D,H) ≤ ε.

6The basic idea behind this methodology was applied for the re-
stricted Haar wavelet synopsis problem in [25], but yielded only a
marginal benefit (see Table 2) that did not reveal its full potential.
7A similar algorithm was proposed in [22] for the effective sum-
marization of data streams, albeit it treated the MAE metric only.



Our algorithm for this problem establishes a minimal-space his-
togram H of B∗ buckets that satisfies ε in one linear pass, drawing
from the following Lemma.

LEMMA 1. Let B∗ be the minimum number of buckets required
to satisfy the bound ε for data vector D and H = {{bi, ei, vi}},
1 ≤ i ≤ B∗ be a B∗-bucket histogram such that the achieved
error is Lw

∞ (H,D) ≤ ε. Furthermore, let Lw
∞,i be the error in

bucket (segment) si = {bi, ei, vi} ∈ H, i < B∗. Then, if after we
advance the right bucket boundary ei by one position, so that the
bucket becomes s̃i = {bi, ei + 1, ṽi}, the new bucket error value
remains L̃w

∞,i ≤ ε, then the new segmentation H̃ as a whole also

achieves the error bound Lw
∞
�
H̃,D

�
≤ ε.

Based on Lemma 1, the MinHistSpace algorithm of Figure 3 per-
forms a linear scan of the data. During this scan, it extends the
right boundary of the running segment si as long as Lw

∞,i ≤ ε. An
encountered data item di with error weight wi defines a tolerance
interval [di − ε

wi
, di + ε

wi
]; bucket values within this interval sat-

isfy ε for di. The algorithm only needs to calculate the intersection
I of such intervals for arriving data items. When I becomes null,
si cannot be magnified any more. Then a new bucket boundary is
inserted before the last read data item. The value assigned to the
formed bucket is defined as v =

wjdj+wkdk

wj+wk
, where dj , dk are the

data items responsible for the limits8 a, b of the last non-null value
of I = [a, b]. Hence MinHistSpace needs O(n) time and space.

As an example, assume that we want to find a histogram with L∞
error at most ε = 5 approximating the data vector D =
{11,−1,−6, 8,−2, 6, 6, 10}. MinHistSpace scans D and com-
putes H incrementally. d0 = 11 combined with d1 = −1 violate
the ε bound (the absolute error of such a bucket is 11−(−1)

2
= 6).

Thus, the first bucket has b1 = e1 = 0 and value v1 = 11.
The algorithm continues by putting d1 in the next bucket which
is terminated when d3 = 8 is found (d3 violates ε). Continu-
ing this way, MinHistSpace eventually computes the histogram
H = {{0, 0, 11}, {1, 2,−3.5}, {3, 6, 3}, {7, 7, 10}}.

Algorithm MinHistSpace(ε)
Input: error bound ε, n-data vector [d0, . . . , dn−1]
Output: histogram partitioning H that satisfies ε
1. i = 0; r = 1;
2. while (i < n)
3. read di;
4. compute vr , Lw∞,r for the r-th bucket from data read so far;
5. if

�Lw∞,r > ε
�
;

7. er = i − 1; vr = prev; r := r + 1; // fix r-th bucket
8. re-compute vr from di; //initialize new bucket
9. prev = vr ; i := i + 1;
10. er = n; // fix last bucket
11. return created partitioning H;

Figure 3: Minimum Space Histogram construction algorithm

We now prove that MinHistSpace achieves space-optimality.

THEOREM 1. The histogram H returned by MinHistSpace has
achieved the minimal space B∗ subject to the Lw

∞-error bound ε.

PROOF. Let B be the number of buckets in H. Assume there
exists a histogram segmentation of D in B′ < B segments H′ =
{{b′i, e′i, v′

i}}, 1 ≤ i ≤ B′, such that Lw
∞ (H′,D) < ε. Then there

will be at least one segment {b′i, e′i, v′
i} ∈ H′ such that e′i > e1

i ,
where e1

i is the right boundary of the i-th segment in H, otherwise
8The item di most distant from the limit at hand, hence of smallest
weight wi, is chosen in case more than one items are responsible
for the same limit.

H′ would not have less segments than H. Let {s′i, e′i, v′
i} ∈ H′

be the first such segment encountered from left; then s′i = s1
i ,

hence [s1
i , e

1
i ] ⊂ [s′i, e

′
i]. Since [s′i, e

′
i] satisfies ε, its subdivision

[s1
i , e

1
i + 1] can also satisfy this bound as a bucket. However, if al-

gorithm MinHistSpace has fixed the i-th segment as [s1
i , e

1
i ], then

the interval [s1
i , e

1
i + 1] could not make a segment satisfying ε. By

reductio ad absurdum, it follows that there is no histogram seg-
mentation H′ as we assumed. Hence the B is the ε-optimal space
B∗.

The following lemma defines an error-optimality test for the his-
togram returned by MinHistSpace. Given the result H of an exe-
cution of MinHistSpace, the objective of the test is to determine,
with one more call of MinHistSpace (i.e., in linear time), whether
the actual Lw

∞-error of H is the minimum possible for the space
B∗ occupied by H.

LEMMA 2. Let H be the B∗-bucket histogram segmentation of
D for error bound ε returned by MinHistSpace and ε̄ ≤ ε be the
actual Lw

∞-error of H. Let H̃ be the B̃-bucket histogram segmenta-
tion of D returned by MinHistSpace running under the constraint
Lw

∞,r < ε̄, allowing error values less than but not equal to ε̄. Let
ε∗ be the minimum Lw

∞-error of a histogram segmentation of D in
B∗ buckets. Then ε̄ = ε∗ if and only if B̃ > B∗.

PROOF. B∗ is the least number of buckets required to satisfy
error bound ε ≥ ε̄, hence B̃ ≥ B∗. If B̃ = B∗, then there exists
a B∗-bucket histogram partitioning of D with Lw

∞-error less than
ε̄, hence H has not achieved the optimal error ε∗ in B∗ buckets.
Therefore ε̄ = ε∗ ⇒ B̃ > B∗. In reverse, if B̃ > B∗ then any his-
togram partitioning of D with Lw

∞-error less than ε̄ requires more
than B∗ buckets, hence H has achieved error optimality. Thus,
B̃ > B∗ ⇒ ε̄ = ε∗. In conclusion, ε̄ = ε∗ ⇔ B̃ > B∗.

Algorithm IndirectHist(B)
Input: space bound B, n-data vector [d0, . . . , dn−1]
Output: Lw∞-error optimal histogram partitioning H
1. εu = Lw∞-error of equi-width B-histogram;
2. elow = 0; ehigh = εu;
3. while not finished
4. emid = (ehigh + elow)/2;
5. H=MinHistSpace(emid); B̄ = size of H;
6. ε̄ = actual Lw∞-error of H; /* ε̄ ≤ ε */
7. if (B̄ ≤ B)
8. H̃=MinHistSpace(< ε̄); B̃ = size of H̃;
9. if (B̃ > B)
10. finished := 1; /* optimal result found */
11. else ehigh = ε̄;
12. else if (B̄ > B) elow = emid

13. return H;

Figure 4: Indirect histogram construction algorithm

4.2 Application to the Space-Bounded Problem

We now define an efficient algorithm for space-bounded histogram
construction under a maximum-error metric that exploits the so-
lution to the dual error-bounded problem. Formally, given a data
vector D and a space bound B, we seek a histogram with at most
B buckets that has minimal Lw

∞-error. The crucial observation is
that the Lw

∞ -error of the optimal B-histogram is monotonically
non-decreasing with B. Therefore we can apply binary search
with guesses of ε in the space of error-bounded problems. This
idea is materialized by our IndirectHist algorithm shown in Fig-
ure 4. In our implementation, the seed value of ε is obtained by
linearly measuring the Lw

∞-error of an equi-width B-bucket his-
togram of D, which provides an upper bound for the B-optimal



Lw
∞-error. Thereafter, the MinHistSpace procedure is repeatedly

invoked with binary search on the error bound value ε; it performs
an optimality test, as defined in Lemma 2, for each guessed er-
ror bound value ε that does not require more than B space. The
search terminates when the guessed error bound reaches a value
that requires a histogram of B̄ ≤ B space and actual error ε̄,
while the optimality test indicates than any error bound ε < ε̄ re-
quires B̃ > B space; then an optimal histogram of minimum error
ε∗ = ε̄ in the space budget B has been created. At line 8 of Fig-
ure 4, the call MinHistSpace(< ε̄) corresponds to a variation of
MinHistSpace(ε̄), in which the condition at line 5 of Figure 3 is
replaced by (Lw

∞,r ≥ ε̄). This search process brings an O(log ε∗)
runtime factor9, hence the time complexity of the Indirect algo-
rithm is O(n log ε∗). Section 6.2 verifies the time advantage of this
algorithm in practice.

5 Indirect Space-bounded Hierarchical Syn-
opses

In this section we introduce our solution to the space-bounded hi-
erarchical synopsis problem for maximum-error metrics. We study
both the unrestricted Haar and Haar+ models. Again our technique
exploits the solution to the dual error-bounded problem.

5.1 Error-bounded Hierarchical Synopses

We formulate a strong version of the Lw
∞-bounded hierarchical syn-

opsis problem as follows:

Problem 2 Given a data vector D and an error bound ε, construct
a representation Ẑ of D, producing a reconstruction D̂, such that
Lw

∞
�
D, D̂

�
≤ ε and the number of non-zero entries s∗ in Ẑ is

minimized. Of all representations with s∗ non-zero terms satisfying
ε, select the one with the minimal actual error ε∗ ≤ ε.

An incoming value at node ci of the Haar tree (or triad Ci of the
Haar+ structure) is a value reconstructed in the path of ancestor co-
efficients from the root node up to ci in the sparse representation Ẑ
of D. In a wavelet decomposition W(D), this is the average value
in the interval I under the scope of ci, henceforward called real
incoming value at ci. Similarly, an assigned value at node ci is a
coefficient value retained at that node in Ẑ; in W(D), this is the ac-
tual semi-difference of the average values in the two sub-intervals
IL, IR under the scope of ci, henceforward called real assigned
value. For example, in Figure 1a, the real incoming value of node
c6 is 2, while the incoming value constructed for this node in the
synopsis of Figure 1b is also 2. On the other hand, the incoming
value of node c3 in Figure 1b is 4, whereas the corresponding real
incoming value is 5 (see Figure 1a). Similarly, the real assigned
value to node c3 is −3, whereas the value assigned to this node in
the synopsis −2. These concepts are directly extended to the Haar+

tree [21]. In order to construct our solution, we need to explore the
space of possible retained coefficients and values assigned to them.
We use a dynamic-programming (DP) framework, as in previous
hierarchical synopsis algorithms [6, 7, 8, 11, 25, 12, 13, 21]. In a
bottom-up process, this algorithm considers all possible incoming
values v and, for each v, all possible assigned values zv

i at each
node ci of the Haar tree and determines the optimal value to assign
at ci for v; in a Haar+ tree, possible head and left/right supplemen-
tary coefficients, zh, zl, zr , on a triad Ci are all examined. We
quantize the (real-valued) domains of v and zv

i into multiples of a
small resolution step δ. The next section outlines some lemmata

9The log function expresses the dependence of running time on the
derived error value; it is to be understood as a growth function, as
in [25]; the case ε∗ ≤ 1 does not imply non-positive time.

that establish upper and lower bounds for these domains.

5.1.1 Delimiting the Value Domains

Haar Wavelet Synopses We study the simple Haar wavelet case
first. As we will see, despite its disadvantage in accuracy and, for
non-maximum error metrics, complexity, in relation to the Haar+

tree, the classical Haar wavelet structure has an advantage in its po-
tential for delimitation of search space for maximum error metrics.

LEMMA 3. Let vi be the real incoming value at node ci. Let v
be an incoming value to ci for which the error bound ε under the
Lw

∞ metric can be satisfied, and ε̄ = ε
minj∈I{|wj |} , where I is the

interval under the scope of node ci; then |vi − v| ≤ ε̄.

Lemma 3 implies that the finite set Si ⊂ IR of possible incoming
values we have to examine at node ci consists of the multiples of δ
in the interval [vi − ε̄, vi + ε̄]; thus, |Si| ≤ � 2ε̄

δ
	 + 1 = O( ε

δ
). 10

We now demarcate the assigned values.

LEMMA 4. Let vi be the real incoming value to node ci, zi the
real assigned value at ci, v ∈ Si be a possible incoming value to ci

for which the maximum error bound ε can be satisfied, and zv
i be a

value that can be assigned at ci for incoming value v, satisfying ε;
then |zi − zv

i | ≤ ε̄ − |vi − v|.
Lemma 4 implies that the finite set Sv

i ⊂ IR of possible assigned
values we have to examine at node ci, for a given incoming value
v ∈ Si, consists of the multiples of δ in the interval [zi − (ε̄−|vi −
v|), zi +(ε̄−|vi −v|)]; hence, |Sv

i | ≤ � 2(ε̄−|vi−v|)
δ

	+1 = O( ε
δ
).

Lemmata 3 and 4 are most simple in the case of the maximum
absolute error metric, when ∀i, wi = 1; in the case of the maximum
relative error metric, ε̄ = ε · max{S, maxj∈I{|dj |}}, where S
is the sanity bound. Naturally, the same lemmata hold with any
upper bound E for the optimal Lw

∞ error of a synopsis, even when
that error is not known in advance. This observation will be useful
in our implementation of the direct solution to the space-bounded
problem (Section 6.3).
Haar+ Synopses Delimitation lemmata analogous to Lemmata 3
and 4 also apply to the Haar+ structure. [21] shows how the flexi-
bility of this structure enables an equally robust delimitation of the
search space, based on minimum and maximum data values, for any
target error metric; this comes in contrast to the classical Haar tree,
where such target-generic delimitation is not possible. However,
due to the same flexibility, the delimitation that exploits a given
error bound, particular to the case of a maximum error metric, is
less tight with the Haar+ structure. In this case, the delimitation
lemmata take the following forms.

LEMMA 5. Let mi be the minimum and Mi the maximum in-
dividual data value under the scope of triad Ci and v ∈ Si be a
possible incoming value at Ci for which the maximum error bound
ε is satisfied, and ε̄ = ε

minj∈I{|wj |} , where I is the interval under
the scope of Ci; then v ∈ [mi − ε̄, Mi + ε̄].

Lemma 5 implies that the set Si of incoming values we have to
examine for triad Ci consists of the multiples of δ in the interval
[mi − ε̄, Mi + ε̄]; thus, |Si| ≤ �Mi−mi+2ε̄

δ
	 + 1 = O(∆

δ
), where

∆ is the difference of the minimum from the maximum value in D.

We now demarcate the values assigned to the head coefficient.

LEMMA 6. Let v ∈ Si be a possible incoming value at Ci and
zh ∈ Sv

i,H be a value that can be assigned at the head coefficient of
Ci for incoming value v, satisfying the individual-data error bound
ε; then |zh| ≤ min{Mi − v, v − mi} + ε̄.

10The inequality ≤ accommodates for the variation in the number
of integers in a fixed interval.



Lemma 6 implies that the finite set of possible assigned values
we have to examine for the head coefficient at Ci is Sv

i,H , where
|Sv

i,H | = O(∆
δ
). The possible assigned values at the left and right

supplementary coefficients of triad Ci can be delimited in a sim-
ilar fashion. Based on this delimitation, we devise our dynamic
programming solution. Its essence is the same in both the Haar
wavelet and the Haar+ case. We use the former model as our illus-
trative example. The extension to the latter is straightforward by
incorporating provisions for the supplementary coefficients.

5.1.2 Deriving the Answer

In a nutshell, our recursive MinHaarSpace procedure works in a
bottom-up left-to-right scan over the Haar (or Haar+) tree. At each
visited node ci it calculates an array A of size |Si| from the pre-
calculated arrays L and R of its children nodes ciL , ciR (a single
array C for the child iC of the root node). A holds an entry A[v]
for each possible incoming value v at ci (a single element A for
the root node). Such an entry contains: (i) the minimum number
A[v].s = S(i, v) of non-zero coefficients that need to be retained in
the sub-tree rooted at ci with incoming value v, so that the resulting
synopsis satisfies the error bound ε; (ii) the δ-optimal value A[v].z
to assign at ci, for incoming value v; and (iii) the actual minimized
maximum error A[v].e thus obtained in the scope of ci. S(i, v) is
recursively expressed as:

S(0, 0) = min
z∈S0

0

{S(iC , z) + (z �= 0)}

S(i, v) = min
z∈Sv

i

{S(iL, v + z) + S(iR, v − z) + (z �= 0)}

The above equations compute the least of (i) the minimum required
space if a non-zero coefficient value z is assigned at node ci; and
(ii) the required space if a zero value is assigned at it. The latter
case applies only if 0 ∈ Sv

i . For economy in presentation, the +1
term that appears in the former case is uniformly expressed by the
boolean integer (z �= 0). This convention is used throughout this
section. For a last level node (i ≥ n

2
), the value of S(i, v) is 0 if the

coefficient at ci can be omitted with incoming value v, or 0 ∈ Sv
i ,

1 otherwise. The former case occurs if and only if the maximum
error yielded by v at the affected data values below ci satisfies ε.
The s entry of array A at node ci for each allowed incoming value
v, A[v].s, is computed from those of arrays L and R of children
nodes ciL and ciR (array C for the child ciC of the root node).
Let S̄v

i ⊂ IR denote the set of those assigned values at node ci

for incoming value v that require the minimum space in order to
achieve the error bound ε:

S̄0
0 = argmin

z∈S0
0

{S(iC , z) + (z �= 0)}

S̄v
i = argmin

z∈Sv
i

{S(iL, v + z) + S(iR, v − z) + (z �= 0)}

The δ-optimal value to select is the one among these candidates
that also minimizes, in a secondary priority, the obtained Lw

∞ error
in the scope of ci. Let E(i, v) be the minimum Lw

∞ error obtained
in the scope of ci with incoming value v and an assigned value z,
with S(i, v) coefficients retained in the sub-tree rooted at ci:

E(0, 0) = min
z∈S̄0

0

{E(iC , z)}

E(i, v) = min
z∈S̄v

i

{max{E(iL, v + z), E(iR, v − z)}}

This error value is assigned to A[v].e; the value A[v].z is the as-
signed value that minimizes the error expression above. For a last
level node (i ≥ n

2
), if 0 /∈ Sv

i , then the best non-zero value z∗

to assign at ci is the one that minimizes the Lw
∞ error yielded at

the two affected data values: wiL |diL − (v + z∗)| and wiR |diR −
(v − z∗)|. This maximum error is minimized when the two are
equal: wiL |diL − (v + z∗)| = wiR |diR − (v − z∗)| ⇔ z∗ =
wiL

diL
−wiR

diR
+v(wiR

−wiL
)

wiL
+wiR

. In the case of the maximum ab-
solute error, this is the actual Haar wavelet decomposition value at
node ci. Hence, for last-level nodes, we do not need to consider
multiples of δ; the value of E(i, v) for a last-level node is:

E(i, v) =

�
max{wiL |diL − v|, wiR |diR − v|}, 0 ∈ Sv

i
wiL

wiR
wiL

+wiR
|diL + diR − 2v|, 0 /∈ Sv

i

This error value has to be assigned to A[v].e in this case; A[v].z is
either 0 or z∗, respectively. A pseudo-code for the proposed recur-
sive MinHaarSpace DP procedure is shown in Figure 5. Following
the generic space-efficiency paradigm of [11], the memory occu-
pied by the arrays C, L and R needs to be reserved only when
their entries are first computed and is freed after they have in turn
been used for the creation of A. Therefore, for a data set of size
n, the maximum number of arrays that need to be concurrently
stored is log n + 1: one array for each level of resolution plus the
currently computed ones. This maximum is necessitated when the
right-bound post-order recursion reaches the right-most Haar tree
node. This basic bottom-up process computes the wavelet trans-
form’s incoming and assigned values on-the-fly in order to define
the sets Si and Sv

i as it needs. Hence a recursive procedure that
derives the δ-optimal space result answer without constructing the
synopsis itself is defined.

Algorithm MinHaarSpace(i, ε)
Input: index i, error bound ε, n-data vector D = [d0, . . . , dn−1]
Output: array A with retained value z for ci, minimum

space s occupied in sub-tree and error e for each v ∈ Si

1. if (i = 0) // root node
2. C = MinHaarSpace(1, ε);
3. compute s, z ∈ S0

0 , e of A from C;
4. else if (i < N

2
) then // internal node

5. L = MinHaarSpace(iL, ε); R = MinHaarSpace(iR, ε);
6. for each v ∈ Si

7. compute s, z ∈ Sv
i , e of A[v] from L, R;

8. else if (i ≥ N
2

) then // leaf node
9. for each v ∈ Si

10. compute s ∈ {0, 1}, z ∈ {0, ci}, e of A[v] from D;
11. return A;

Figure 5: Recursive Minimum Space procedure

Complexity Analysis The result array A on each node ci holds
|Si| entries, one for each possible incoming value, hence its size
is O( ε

δ
); besides, at each node ci and for each v ∈ Si, the loop

through all |Sv
i | possible assigned values needs O( ε

δ
) time. Hence,

the runtime of MinHaarSpace(0, ε) is O
�
( ε

δ
)2n

�
. Besides, since

at most log n + 1 arrays need to be concurrently stored, the space
complexity is O

�
ε
δ

log n + n
�
, where n stands for the storage of

the data.

5.1.3 Constructing the Synopsis

The construction of the synopsis after the δ-optimal answer has
been established by a run of MinHaarSpace(0, ε) presents us with
a time-space tradeoff. We outline both alternatives.

The Space-Efficient Solution. After MinHaarSpace returns from
the topmost level, so that the values of c0 and c1 have been estab-
lished, we can call a process that reenters the problem in the two
branches of c1 and recomputes the respective solutions thereafter,



recursively. The total running time is the sum of the basic running
time for all re-entered sub-problems. Setting � as the Haar tree
level, this sum becomes O

�
( ε

δ
)2
�log n

�=0 2� n
2�

�
= O

�
( ε

δ
)2n log n

�
.

On the other hand, the space complexity remains O
�

ε
δ

log n + n
�
,

as we need to maintain the stored data set (or its wavelet transform)
throughout the computation.

The Time-Efficient Solution. Alternatively, we may choose to
maintain all necessary computed information throughout the re-
cursion of MinHaarSpace. This maintenance allows us to con-
struct the final solution as soon as the minimum space has been
derived. Consider a DP array entry A[v] at node ci; this entry de-
scribes the local part of a candidate solution, for incoming value
v, which has already been calculated in the sub-tree rooted at ci.
The rest of this candidate solution is maintained by annexing to
entry A[v] the set of all coefficient values retained in it. There-
with the sub-problem re-entry is avoided. The total running time
remains only O

�
( ε

δ
)2n

�
. For each DP array entry A[v] of node ci

at level �, a set of at most min{BM , 2�} coefficients is retained,
where BM is the maximum size of a candidate solution stored
throughout the computation. Thus, the space complexity becomes
O
�

ε
δ

�log n
�=0 min{BM , 2�}

�
= O

�
ε
δ
BM log n

BM

�
. In this case,

storage of the decomposition is not required.

5.1.4 Verifying Space Optimality

MinHaarSpace approximates the optimal solution in IR. In the
space-bounded problem, if EB is the optimal maximum absolute
(L∞) error for a B-term synopsis in IR, then rounding its val-
ues to the closest multiples of δ can increase that error by at most
δ
2

min{B, log n} [12, 21]. For the error-bounded problem, we can
formulate the conditions under which the minimum space under
resolution δ is the optimal in IR, as follows:

THEOREM 2. Let B be the minimum space, under resolution δ,
that satisfies the L∞ error bound ε, and E be the minimum L∞
error that can be achieved within space B − 1, under resolution
δ. If δ < 2(E−ε)

min{B−1,log n} then B is the minimum space required to
satisfy error bound ε in IR.

PROOF. If E ≤ ε, then the approximation algorithm for the
error-bounded problem with bound ε would find the solution with
B − 1 space; hence E > ε. Let EB−1 be the error achieved by
the optimal (B − 1)-term representation in IR. B is the optimal
space for bound ε if and only if ε cannot be satisfied with less
than B non-zero terms; hence it should be EB−1 > ε. Since E ≤
EB−1 + δ

2
min{B − 1, log n}, a sufficient condition for optimality

is E − δ
2

min{B − 1, log n} > ε, or δ < 2(E−ε)
min{B−1,log n} .

According to Theorem 2, in order to ascertain that the answer B,
derived for an L∞-error bound ε under resolution δ, is optimal in
IR, we need to derive the error result E for the space-bounded prob-
lem with space bound B−1 under δ. If δ and E satisfy the condition
δ < 2(E−ε)

min{B−1,log n} , then B is optimal; otherwise, we set a smaller
value of δ and repeat the process until we reach space-optimality.

5.2 Application to the Space-Bounded Problem

As discussed in Section 2.2, the state-of-the-art solution [12, 13,
21] for space-bounded hierarchical synopsis construction is bur-
dened by a two-dimensional tabulation of E(i, v, b) entries per
node. We infer that, as in the histogram case, the space-bounded
problem can be more efficiently solved through a binary search in-
vocation of the algorithm for the error-bounded that shuns the tab-
ulation over b. In our implementation, the upper bound of ε in the

search is the E corresponding to the synopsis of B largest Haar
decomposition coefficients by absolute value, easily computed in
O(n log B) time; the lower bound of ε is the (B + 1)-th high-
est absolute coefficient value |zk|. Given that the solution to the
strong error-bounded problem minimizes the error within the δ-
optimal space, its application to the space-bounded problem yields
the δ-optimal error when the binary search converges to the space
budget B. Still, in order to ensure the termination of the search,
MinHaarSpace also performs an optimality test (as in Section 4.2)
for guessed error bound values ε that require less than B space.
Hence, the search terminates when it reaches an error bound that
either requires a synopsis of exactly B space, or requires a synop-
sis of B̄ <B space and actual error ε̄, while any error bound ε< ε̄
requires B̃ > B space. When the tested error bound is decreased
during the binary search, the minimum error derived for the previ-
ous bound is used for determining the new bound. Figure 6 shows
a pseudocode for this IndirectHaar algorithm.

Algorithm IndirectHaar(B)
Input: space bound B, n-data vector [d0, . . . , dn−1]
Output: Lw∞-error optimal B-sized unrestricted synopsis
1. εu = Lw∞-error of B-largest-term synopsis;
2. εl = (B + 1)-th largest coefficient;
3. elow = εl; ehigh = εu;
4. while (not finished)
5. emid = (ehigh + elow)/2;
6. Ẑ=MinHaarSpace(emid); B̄ = size of Ẑ;
7. ε̄ = actual Lw∞-error of Ẑ; /* ε̄ ≤ ε */
8. if (B̄ < B)
9. Z̃=MinHaarSpace(< ε̄); B̃ = size of Z̃;
10. if (B̃ > B)
11. finished := 1; /* optimal result found */
12. else ehigh = ε̄;
13. else if (B̄ > B) elow = emid

14. else finished := 1; /* B̄ = B */
15. return Ẑ;

Figure 6: Indirect hierarchical synopsis construction

Complexity Analysis. As in the histogram case, the binary search
increases the time requirements of the error-bounded problem by an
O(log ε∗) worst-case factor. We present a space-efficient solution
without dependence on B. The advantage of the alternative time-
efficient solution in time is negligible, since the O(log ε∗) factor is
comparable to the log n factor which is paid only once for synopsis
construction. Since the highest value of the changing bound ε is E ,
the runtime of this Indirect algorithm is O

�
(E

δ
)2n(log ε∗ + log n)

�
.

The former log term expresses the cost of the binary search, while
the latter expresses the cost of constructing the B-term synopsis
in a space-efficient manner after the optimal error value ε∗ has
been established. This complexity absorbs the O(n log B) term
for determining the seeds of the search. The log ε∗ factor does
not grow with n, hence this runtime is decisively lower than the
O
�
(E

δ
)2n log n log2 B

�
runtime of the space-efficient Direct algo-

rithm and, unless11 n 
 Blog B , lower than its O
�
(E

δ
)2n log2 B

�
basic runtime too. Besides, the Indirect algorithm requires
O
�E

δ
log n + n

�
space, which is lower than the O

�E
δ
B log n

B
+ n

�
space of the space-efficient Direct algorithm in cases where log n �
B log n

B
⇔ n 
 B

B
B−1 . This inequality holds in reasonable sum-

marization scenaria, assuming B ≤ n
2

. In addition, the respective
O(n2)-time restricted algorithm uses O(B log n

B
+ n) = O(n)

space [11], which becomes larger than O
�E

δ
log n + n

�
when

B log n
B


 E
δ

log n. This inequality holds when B 
 E
δ

and,

11The constraint is verified for reasonable B
n

ratios; e.g. for B =

16, Blog B = 65536.



additionally, ( n
B

)B 
 n
E
δ ⇔ n 
 B

B

B−E
δ ; hence, it holds for

large enough summarization problems. In conclusion, this Indirect
algorithm has better asymptotic behavior than both direct counter-
parts in time and space. Section 6.3 verifies the runtime benefit of
this Indirect algorithm in practice.

5.3 Comparison to the Restricted Haar Strategy

Our focus is the Indirect solution to the space-bounded problem.
We have devised an algorithm for the error-bounded problem in
order to serve this goal. Still, this algorithm can present an in-
dependent interest of its own. In this context, it is comparable
to the O( n2

log n
)-time restricted Haar algorithm for the maximum-

error-bounded problem that was proposed in [25]. This algorithm
tries the incoming values yielded by all 2� ancestor subsets of a
node ci at level � in the Haar tree; it stops recursing and resorts
to local search within each of the � n

log n
� sub-trees in the bottom

�log log n	 Haar tree levels; the examined assigned values for ci

are zi and 0. The application of Lemmata 3 and 4 prunes ancestor
subsets that add up to prohibited incoming values in this algorithm,
yet does not annul its near-quadratic time complexity. This com-
plexity is due to the fact that the restricted strategy explicitly enu-
merates and examines different ancestor-subsets whose coefficients
may add up to nearby incoming values. In contrast, the unrestricted
Haar and Haar+ strategies precalculate a set of equally-spaced al-
lowed incoming values that anticipate all possible contributions an-
cestor coefficients can add up to. The algorithm in [25] determines
the minimum space without constructing the synopsis itself, us-
ing O(n) space for storing the decomposition. A sub-problem re-

computation in this case costs O

��log n−1
�=0 2�( n

2� )2 1
log n

2�

�
. Set-

ting k = log n
2� , the complexity becomes O

�
n
�log n

k=1
2k

k

�
=

O( n2

log n
). Hence, constructing the synopsis does not present a time-

space tradeoff. On the other hand, the algorithm of Section 5.1 is
linear to n; hence, for sufficiently large n, it outpaces the near-
quadratic restricted Haar algorithm. For an appropriate value of δ,
it produces better synopses too (as in [12, 13, 21]). Hence, our al-
gorithm for the error-bounded problem not only provides the basis
for a more efficient solution to the dual space-bounded problem,
but treats the error-bounded problem itself more efficiently and ac-
curately than previous approaches too.

6 Experimental Evaluation
In this section we present experimental results demonstrating the
advantage of our Indirect solutions vs. the respective Direct for all
considered summarization methods. Both solutions compute syn-
opses of equal error (in the hierarchical cases, for equal resolution
δ); hence our comparison pertains to runtime (with MAE as the tar-
get metric); besides, the space advantage for hierarchical synopses
is clear, due to its connection with B. All algorithms were imple-
mented with the g++ 3.4.3 compiler and run on a 4 CPU Opteron
2.2GHz machine with 4GB of main memory running Solaris.

6.1 Description of Data

We used two real data sets. The first data set (TM) is a sequence of
178,080 sea surface temperature measures extracted from drifting
buoys positioned throughout the equatorial Pacific. The average
value in TM is 26.75 and the set has a standard deviation of 1.91.
The second data set (FC) is extracted from a relation of 581,012
tuples describing the forest cover type for 30 x 30 meter cells, ob-
tained from US Forest Service. FC contains the frequencies of the

distinct values of attribute aspect in the relation. The frequen-
cies average at 1613 (standard deviation: 730) and feature spikes
of large values (min value: 499, max value: 6308). FC and TM
were downloaded from the UCI KDD Archive.12

6.2 Histogram-based Summarization

In this experiment we measure the runtime for histogram construc-
tion. We compare the Direct solution of [14], in its space-efficient
variant, to our Indirect method (Section 4.2). For the Direct method,
we measured the basic runtime required to derive the optimal error
result only. The Indirect algorithm computes the optimal histogram
segmentation per se, which is the same for both. Figure 7a shows
their performance as a function of n with a constant summarization
ratio B = n/64 for various-sized subsets of the TM data set. As
expected from our theoretical analysis, Indirect vastly outperforms
Direct. Our second experiment measures the running time with re-
spect to the bucket space B for a constant data size n. Figure 7b
shows the results for the FC data set with constant n = 360. As ex-
pected, the Indirect method exhibits its independence of B in both
cases; it always terminated after a few repetitions (mean 12.3). In
contrast, the runtime of Direct grows with B.
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Figure 7: Runtime comparison (Histograms)

6.3 Hierarchical Summarization

Haar Wavelet Synopsis Construction In this experiment we mea-
sure the runtime of hierarchical summarization algorithms, starting
with the classical Haar case. We first compare the Indirect method
of Section 5.2 to two versions of the maximum-error unrestricted
Haar synopsis algorithm of [12, 13]. The former, Direct, first cal-
culates, in O(n log B) time, the target error for the synopsis con-
sisting of the top-B Haar wavelet terms by absolute value; then it
employs it for bounding the search space. The latter, OracleDirect,
is an infeasible algorithm, which represents a conceptual limit for
the best-case performance of the guess-based solution of [13]. In
OracleDirect, the value of the final optimal error is assumed to be
provided in advance by an oracle, hence its search space is opti-
mally delimited. Both direct algorithms compute the same error
result as Indirect. After experimentation, we settled for a reason-
able, in the given data set, constant value of δ = 0.1 (i.e. the res-
olution step for delimiting the domains of incoming and assigned
values) for all three algorithms. Smaller values burdened the run-
ning time without significant quality increase; larger values were
undermining the quality of the synopses. We also ran an enhanced
version of the restricted algorithm of [8, 11] (Restricted), which
also prunes its search space using a precalculated error bound. For
all algorithms, we measured the basic time required to derive (for
OracleDirect, to verify) the optimal error result. Figure 8a shows
(on a log-log graph) their performance as a function of n with a
constant summarization ratio B = n/64 for various-sized subsets
of the TM data set. As expected, Indirect presents the most afford-

12Available at http://kdd.ics.uci.edu/



able runtime growth; not only it outperforms Direct, but it outpaces
the OracleDirect too; hence it invariably produces identical qual-
ity in shorter time and smaller space. Besides, Restricted, which
achieves lower synopsis quality, undergoes the fastest growth, even-
tually becoming the slowest, due to its quadratic time complex-
ity; this result reconfirms the finding of [12] in the realm of these
pruning-intensive enhanced variants and with larger data sizes that
reveal the disadvantage more clearly. Figure 8b plots (on a log-
lin graph) the runtime for the FC data set with respect to B (for
constant n = 512, obtained after zero-padding the wavelet decom-
position), setting δ at 5 and 10. The results for Direct exhibit the
interplay between two factors affecting the running time: One the
one hand, the increase of B results into tighter delimitation of the
search space based on a smaller pre-calculated error upper bound,
with a significant impact on running time. However, B affects
the time complexity itself as well. Hence the runtime of Direct
presents unstable behavior, with a maximum at the intermediary
position B = 15. On the other hand, the runtime of Indirect tends
to decrease as B (hence the tightness of the error bound) grows;
this algorithm terminated after a few repetitions, even fewer than
in the histogram case: it converges more robustly thanks to its ex-
ploitation of the strong version of the error-bounded problem.
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Figure 8: Runtime comparison (Haar wavelets)

Haar+ Synopsis Construction We repeated, in the Haar+ case,
with the same data sets and configurations, the comparison between
the Indirect method of Section 5.2 and its Direct counterpart [21];
this also prunes its search space as much as possible, using a pre-
calculated error bound and Lemmata 5 and 6. Figure 9 shows the
results. The runtime of Direct is larger in this case, due to the less
intensive pruning that the Haar+ structure allows. However, the per-
formance of Indirect is equally satisfactory as in the classical Haar
case (compare Figures 8a and 9a). The difference is more conspic-
uous for runtime versus synopsis size B (Figure 9b). In this case,
the increasing tightness of the pre-calculated error bound cannot
overcome the effect of the increasing B itself on the runtime of
Direct; hence, it grows with B. Still, the runtime of Indirect shows
a decreasing trend as B grows in this case too. The plots of Figure
9 have identical x-axes to those of Figure 8, but their logarithmic
y-axes are scaled differently for the sake of readability.
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7 Conclusions
In this paper we have examined the problem of summarization
with deterministic guarantees from a new perspective, applied on
state-of-the-art histogram and hierarchical methods. We demon-
strated the advantage gained by solving the computationally heavy
and memory-hungry space-bounded problems through their lighter
error-bounded counterparts; this advantage consists of complexities
which are lower, independent of synopsis space and free of perfor-
mance tradeoffs; it stems from the removal of a tabulation that hin-
dered previous solutions and, in the hierarchical case, the tight de-
limitation of the search space. In conclusion, our solutions provide
the most recommendable option for the time- and space-efficient
offline summarization of very large data sets with a maximum-error
guarantee. In the future, we plan to extend our techniques to the
summarization of multi-measure and multidimensional data.
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