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Abstract— People are subjected to a multitude of interrup-
tions, which in some situations are detrimental to their work
performance. Consequently, the capability to predict a person’s
degree of interruptability (i.e., a measure of detrimental an
interruption would be to her current work) can provide a basis
for a filtering mechanism. This paper introduces a novel approach
to predict a person’s presence and interruptability in an office-
like environment based on audio, multi-sector motion detection
using video, and the time of the day collected as sensor data.
Conducting an experiment in a real office environment over
the length of more than 40 work days we show that the multi-
sector motion detection data, which to our knowledge has been
used for the first time to this end, outperforms audio data
both in presence and interruptability. We, furthermore, show,
that the combination of all three data-streams improves the
interruptability prediction accuracy and robustness. Finally, we
use these data to predict a subject’s phone behavior (ignore or
accept the incoming phone call) by combining interruptability
and the estimated importance of call. We call such an application
an artificial receptionist. Our analysis also show that the results
improve when taking the temporal aspect of the context into
account.

Index Terms— Interruptability, motion detection, multi-sector,
efficiency, phone, receptionist, context-awareness, user behavior

I. I NTRODUCTION AND MOTIVATION - INTERRUPTABILITY

AND WORK EFFICIENCY

An ordinary office day is often disrupted by interruptions
such as phone calls, email, people coming by to ask questions,
etc. Some of them might provide some benefit to an office
worker by, for example, providing some important piece of
information relevant for the current task or bringing an urgent
issue to attention [1], [2]. But others are annoying, interrupt
the current stream of thought, require an oftentimes time-
consuming task switch, and are, thus, detrimental to the overall
work performance [3], [4]. Oftentimes, the gravity of the detri-
mental effect is not only dependent on the actual interruption
[5], [6] but the current context (or state) of the interrupted
person [7]: Some activities require utmost concentration to
maintain the train of thought (e.g., deriving a mathematical
proof, complex decision tasks) and any interruption will lead to
a very costly task-switch, whereas others are not as susceptible
to interruption costs (e.g., reading one’s email, simple tasks)
[8]. In other words, the current task of a person determines his
interruptability - the amenability to interruption his/her current
working state has. Consequently, thedecision (usually made by
an administrative assistant) of whether an interruption should

be allowed to proceed to its intended recipient or whether it
should be held back for later processing is usually made based
on both the nature of the interruption and the interruptability
of the person. Some interruptions, such as phone-calls, don’t
carry any descriptive element of their content (beyond possibly
a caller-id which might indicate a prior probability of the call
importance). Andthe less we know about the content of an
interruption the more the person’s interruptability determines
what to do about an interruption.
This paper investigates a novel way of predicting a person’s
interruptability in an office based setup. More specifically, we
gather information about the subject’s context by considering
audio and motion detection sensors as well as the time of
the day. Using data collected in a real office environment
over the length of over 40 work days we, first, show how
well we can predict the subject’s presence in the office from
our observations, where motion detection outperforms the
other two data streams. Second, we show that we can predict
his/her interruptability with good accuracy. Specifically, we
demonstrate that multi-sector motion detection is superior to
audio (which has been known as best interruptability indicator
so far [9]) and that a combination of all data streams reaches
an even higher prediction accuracy. We also show that dividing
the motion detection information into different sectors repre-
senting different activity regions of the subject improves the
prediction power. Finally, we use the inferred degree of the
person’s interruptability and the estimated importance of call
(based on the phone number) to predict the person’s attitude
towards the incoming phone call. More specifically, we predict
whether the user would like to ignore or accept the incoming
phone call. The presented analysis also takes the temporal
aspect of office work into account.
The remainder of the paper is organized as follows. First, we
introduce the experiment we conducted to support our claims,
which involves presenting the methodology and the technical
setup. Then we evaluate the gathered data and analyze the
results. Finally, after comparing the results with related work,
we close with a discussion and the prospect of future work.

II. EXPERIMENT

Inferring a person’s interruptability can be a central element
in helping to manage interruptions, such as incoming phone
calls. But can we design a device that automatically predicts
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a person’s context and, hence, interruptability? The studies of
Hudson and colleagues [9], [7] have shown, such a prediction
seems feasible in general. We assert that the predictive power
of such a device can be significantly improved if it uses motion
detection in addition to audio (and other the typically used de-
vices). To that end we designed a long-term experiment, which
would allow us to collect the necessary sensor streams to test
our assertion with real-world data. This section describes this
experiment starting with the requirements to the experimental
setup and continuing with a description of the data collection.
The next section then discusses the results.

A. Requirements to the Collected Data

In order to be able to make the desired predictions we
needed to collect sensor data containing sufficient information
about the subject’s context in its environment, i.e., his/her
office. We, therefore, decided to record both audio and video
as well as self-reports provided by the subject.
For the motion detection recording we used a camera reporting
changes in different sectors of the office as dynamics might
be a significant indicator of someone’s context or context
changes. For simplicity, we did not consider face recognition
or any other high level image recognition techniques in this
work. The camera’s microphone recorded the auditory sur-
rounding of the person in the office. To support our approach
for the artificial receptionist we logged the phone number of
incoming calls and a self-report by the user. The phone call
content itself was not recorded. The self report was structured
along four dimensions:

1) His/her level of interruptability (How disrupting was the
phone call?). The level of interruption has been broken
down to five classes in a range from ”ok, I don’t care”
to ”do not disturb”.

2) The level of importance of call as expected to be
before answering only knowing the caller’s number
and/or name as it shows up on the phone display. The
spectrum of the level ranges from ”unimportant” to
”highly important” broken down to five classes.

3) The level of the importance of call after hanging up
knowing how important the call really was. Here the
report included the same five classes as in the estimated
importance of call before answering the call.

4) The action (accept or ignore) that the subject would have
executed in advance if he/she had known the content
the actual phone call. There are two classes to choose
between: ”would have better ignored” and ”good that I
answered”.

Due to the limited number of (expected) phone calls to the
subject taking part in the experiment, we decided to conduct
another closely related experiment in parallel. As explained in
more detail in the next section we prompted the subject on a
regular basis to report his/her level of interruptability, similar
to the interruptability report on incoming phone calls. There
are two advantages on this procedure. First, we can collect a
larger data collection about interruptability without depending
on phone calls, which leads to more precise statements about

the interruptability. And second, we can compare these self-
reports with the self-reports on the phone calls, which elevates
the significance of the latter predictions as well, if similar.

B. Method

According to Feldmann-Barrett and Barrett [10], there are
three ways to conduct experience sampling:

1) Interval contingent: Sampling occurs at regular intervals.
2) Event contingent: Events of interest trigger the sampling

procedure.
3) Signal contingent: Sampling is performed randomly over

a period of time.

The annotation of incoming phone calls corresponds to event
contingent experience sampling. Our concept of the interrupt-
ability self-report on a regular basis corresponds to a mixture
of interval and signal contingent experience sampling. To
ensure an upper and lower limit of the number of annotations
we generate acoustic signal (or ”beep”) every 15 minutes. We
also used a variance of 10 minutes on the signal to avoid
”training” the users to expect the signal and thus altering
their behavior. According to the subject the frequency of
”beeps” turned out not to be too disruptive after some days of
experimentation but their occurrence was still frequent enough
to collect a significant number of self-reports.
The subject was asked to adhere to the following directions
during the experiment. When a ”beep” occurs the subject
has to perform the self-report (assuming that the person is
present in the office). This instruction allowed us to also
gather information about the subject’s presence in the office.
Furthermore, the subject was asked to answer all incoming
phone calls even if he/she preferred to ignore a call allowing
a correct ex-post specification of the importance of call.

C. Data Collection Setup

The environment of the experiment is an office with three
work places/locations (Figure 1). The office is typically used
by one person only. The two remaining seats are used sporad-
ically by other people as well as by the subject. The subject
corresponds to the researcher profile of [9].
The audio and video data were recorded by an off-the-shelf
webcam (Logitech QuickCam Pro 4000). We added a wide
angle lens widening the aperture from 45 to 75, such that
the entire office could be overviewed as shown in Figure 1.
The audio recording was set to CD quality but mono instead
of stereo (i.e., the settings are 16bit, 44.1 kHz, mono). The
recorded video had 320*240 pixels (in color) at 25 frames per
second. We compressed the video stream using the XviD codec
setting I420 to ensure that one day of recording would fit on
one DVD, while ensuring good recording quality. The recorded
files were saved in ”avi”-format for further processing, keeping
the audio and video streams synchronized.
For the self-report we used a modified keyboard. All informa-
tion sources were collected on a single PC on working days
from 8.15am to 6.15pm.
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Fig. 1. On the picture on the left, the office is seen through the webcam. The
picture on the right, shows the camera mounted in the corner of the office.

Fig. 2. Sources of video inferences. On the left, another person than the
subject is in the office. On the right an open window covers the office partly.

D. Sources of Interference

The experiment was conducted in a real-life environment.
As a consequence, much interference influenced the gathered
data. In this section we provide a list of possible interferences.
The video used as motion detector was sensitive to all kinds
of movements in the office. Therefore, the quality of collected
data suffered from the presence of people other than the sub-
ject in the office - especially, when the subject was not present
as seen in Figure 2 on the left. Furthermore, disturbances such
as objects (like an open window) covering part of camera’s
view or changing brightness influenced the recording quality.
Background noise interfered with the audio recordings.
Sources of such background noise originate from outside the
office (e.g., people chatting on the corridor, or the neighing
horse on the paddock next to the university) or from inside
the office (e.g., computer ventilators).
Error sources in the annotation procedure stem from the
subject ignoring ”beeps” or phone calls as well as inadvertent
annotation mistakes. Addressing this risk we implemented a
control mechanism using a feedback message for impossible
annotation sequences.
Finally, as a matter of course this experiment was influenced
by the experiment itself. The ”beeps” prompting for a report
on the subject’s interruptability were disruptive for the subject.

E. Preprocessing

Beside the synchronization of all data streams we had to
preprocess the raw audio and video data to get the most
appropriate features for our problem. First, we extracted the
features from audio (spectral center of gravity, temporal fluc-
tuations of spectral center of gravity, tonality, mean amplitude
onsets, common onsets across frequency bands, histogram

Fig. 3. Illustration of the motion detection features obtained by equidistant
splitting

Fig. 4. Illustration of the motion detection features obtained by assigning
five activity regions.

width, variance, mean level fluctuations strength, zero crossing
rate, total power, and the 10 first cepstral coefficients) as
described in [11]. This resulted in audio feature vectors of
20 features for every second of the recording.

As we used the video stream as a motion detector we
calculated the changes between two frames separated by one
second in the video stream. We divided each frame into
rectangles of the size of 15x20 pixels resulting in 256 (16x16)
distinct fields. To measure the motion in the office we summed
the number of changed pixels between the two frames. Hence,
for every second of the recording we obtained feature vectors
with 256 features. Based on this large feature set we calculated
smaller sets by summarizing the values of adjacent rectangles
such that we got feature sets of the size of 64 (8x8), 16 (4x4),
4 (2x2), and 1 as depicted in Figure 3. Additionally, we created
another feature set by dividing the room into five sectors as
shown in Figure 4. The borders of the five sectors separate
different activity regions. Three of the regions are located at
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Fig. 5. Histogram of the movements recorded by the video camera on the
left and the corresponding camera view on the right side.

the three work places; the other two are only active when
people walk around. Thus, our motion detector is a little more
sophisticated than the usually used motion detectors because
it distinguishes between different sectors, except where we
employed the feature set of size 1.
Finally, we constructed a two-dimensional feature vector
representing the time of the day by taking the hour and
distinguishing between am and pm.

III. R ESULTS

This section presents the results obtained after conducting
the experiment. The experiment lasted 41 (working) days.
During this time the two data sets were recorded. The data
set generated by the ”beeps” consists of 1349 self-reports. In
the following we refer to this data set as the ”beep” data set.
The data set concerning the phone calls consists of 98 self-
reports to which we refer as the ”phone” data set.

A. Data Overview (Descriptive Statistics)

1) Motion Detection: The motion detection data shows
patterns as depicted in Figure 5. The usual location of the
subject can easily be identified as the bright area. There are
other lighter regions near the door and around the second work
place. The Figure additionally shows the sectors of the five
features we have chosen as activity regions. The borders of the
particular sections overlap partially with the motion pattern.

2) Presence:The larger data set generated by the ”beeps”
contains information about both the subject’s interruptability
and his/her presence in the office. Figure 6 shows the overall
presence of the subject illustrating that the subject is in his/her
office about 45.1% of the time. The histogram on the right
graphs the presence depending on the time of the day. The
lunch break manifests itself as a dip at noon. The (average)
presence decreases at both ends of the day (note that the
distinctive decrease at 8am and 6pm are mainly due to the
partial recording).

3) Interruptability: When present, the subject self-reported
his/her degree of interruptability on a scale from 1 ”easily
interruptible” to 5 ”not at all interruptible”. Figure 6 on the
left shows the distribution of the interruptability in the ”beep”
data. Class 2 ”quite interruptable” is dominant with a prior
probability of 29.3% followed by class 5 with 25.2%. Figure
6 on the right is the corresponding distribution for the phone
data. The two distributions are of similar shapes.

Fig. 6. The histogram on the left shows the overall presence of the subject
in the office; the histogram on the right shows the presence vs. the time of
the day.

Fig. 7. Interruptability self-reports on a scale of five classes. On the left
are the self-reports derived from the ”beep” data set and on the right the
equivalent histogram but from the telephone data set.

4) Phone Calls / Phone Call Data Set:The phone call
data set contains only annotations to answered phone calls
but no information about missed phone calls, thus there is
no information about presence in it. The histogram in Figure
8 shows the distribution of the (anonymized) phone numbers.
Note that 9 out of 22 phone numbers where nonrecurring. This
data set is about one sixth as large as the presence part of
the ”beep” data set but contains more self-report dimensions.
The first dimension of the self-reports is the interruptability as
introduced in the larger data set. The histogram on the right
of Figure 6 shows a similar distribution as seen in the larger
data set. The dominant class 2 (degree of interruptability) has
a prior probability of 35.7%. The biggest difference between
the two histograms in Figure 6 is the decrease of class 3.
Hence, we infer that the smaller data set is nearly as significant
as the larger dataset because of the similarity of these two
distributions.
The next two self-report dimensions are the importance of
the incoming phone calls, before and after answering the
call. Figure 9 shows both histograms. The figure on the right
shows that most of the phone calls turned out to be important.
The figure on the left illustrates the estimated importance of
call before answering it. By comparing two histograms it is
interesting to note that the estimations made by the subject ex-
ante are higher than the importance of the phone call actually

Fig. 8. Distribution of incoming phone calls. Each character represents a
unique phone number.
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Fig. 9. The histogram on the left shows the distribution of the self-reports on
the estimated importance of call, where ”5” corresponds to ”very important”.
On the right is the distribution of the importance of call as it turned out after
answering the call.

was.
5) Behavior/Action:The fourth and last dimension of the

phone call self-reports is the behavior of the subject. The two
considered behavior patterns are ”ignore” or ”accept”. The two
requested actions are reported after answering a phone call in
the experiment; however the goal of this dimension is that
an artificial receptionist anticipates these actions. The class
”accept” dominates with 77.6% of all calls.

B. Prediction Quality

In this section, we present the prediction results of the
subject’s self-reports from the sensor streams. First, we explain
the prediction methods followed by the results.

1) Applied Classification Methods:We used the Weka 3
machine learning software package [12] to predict the subject’s
self-reports. For all classification tasks we tested the data with
two standard learning algorithms: naı̈ve Bayes and the ”J48”
decision tree learner. We preprocessed the data by normalizing
and discretizing it with the standard Weka algorithms for
better predictions. For the predictions, we took data up to
5 minutes prior to the event into account. We incorporated
this information by an additional processing of the data by
averaging the data (with equal weight) for each self-report. The
depth of this averaging defines how much of the information
about the past is incorporated. For each original feature the
resulting new feature vector then contains the mean and
standard deviation1. All results reported below are based on a
10 fold cross-validation.

2) Presence:For a future artificial receptionist application
it is important to determine if the person is present in the
office or not. Both graphs in Figure 10 show the prediction
accuracy versus past time. The graph on the left shows the
prediction from motion detection evaluating all six possible
feature-combinations. The largest feature set (the most finely
grained with 256 rectangles per frame) turns out to be the
most predictive. The graph on the right, compares the best
motion detector prediction with audio. Both audio and motion
detection show a distinct maximum at about 20 seconds.
Motion detection reaches an accuracy of 96% at 20 seconds
using the J48 decision tree classifier outperforming audio
that reaches 89.9% using naı̈ve Bayes. This shows that inter-
ruptability prediction contains an important temporal aspect.
Furthermore, the alignment of the best predictions accuracies

1We also tried Markov chains and hidden Markov models. However, they
were outperformed by our coarse approach.

Fig. 10. Accuracies of presence prediction dependent on the past time. On the
left, we see the motion detection with all six features for feature selection, on
the right, the presence prediction from audio data compared with the prediction
of from motion detection.

of both models when taking the last 20 seconds into account
could indicate that the time window to be considered of 20
seconds is inherent to the contextual phenomena investigated
(i.e., presence) rather than a sensory artifact. This makes
particularly sense with presence detection, as just less than 20
seconds is about the time a person might stay still (motion
detection) and be quiet (i.e., not type, cough, etc.) during
typical work.

TABLE I

CONFUSION MATRICES FOR PRESENCE PREDICTION BASED ON20

SECONDS OF PAST DATA. (CLASS 1 CORRESPONDS TO” NOT PRESENT”

AND CLASS 2 TO ” PRESENT”).

               P. Vorburger, A. Bernstein, and A. Zurfluh 
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Fig. 9. Accuracies of presence prediction dependent on the past time. On the left, we see the 
motion detection with all six features for feature selection, on the right, the presence prediction 
from audio data compared with the prediction of from motion detection 

  
Presence, audio 

Model 
prediction  
1 2 

1 582 159 Self-
Report 2 98 510 

Accuracy: 80.9% 
Base: 54.9% 

 
Presence, motion 

Model 
prediction  
1 2 

1 719 22 Self- 
Report 2 32 576 

Accuracy: 96.0% 
Base: 54.9% 

 
Presence, time of day 

Model 
prediction  
1 2 

1 570 171 Self-
Report 2 365 243 

Accuracy: 60.3% 
Base: 54.9% 

Fig. 10. Confusion matrices for presence prediction based on 20 seconds of past data. 

Interruptability 
We have two data sets to infer the degree of the subject’s interruptability. This 
prediction task is a 5-class classification prediction with a base of 29.3% for the larger 
and 35.7% for the smaller data set. Figure 11 shows that the 5-sector feature of the 
motion detector is the most predictive. The left graph of Figure 12 shows the 
prediction accuracies of audio and motion detection vs. the time into the past. Both 
audio and motion detection show very good results with a maximum at 150s. Motion 
detection is superior (41.6%) to audio (40%) and, furthermore, motion detection 
seems to be more robust to variations on the time dimension. Predicting the 
interruptability from the time of the day using naïve Bayes results in an accuracy of 
35.9%. Combining audio and motion detection by a naïve Bayes meta-classifier 
results in a remarkably better prediction result (maximum at 150s: 44.6%) indicating 
that both sensor inputs provide partly independent information. Combining all three 
information sources (audio, motion detection, and time of the day) results in an even 
better result with a maximum accuracy of 45.4% at 150s. Furthermore, the 
combination of the three sources results in a much more robust result in terms of time 

When taking only the time of the day into consideration to
infer the presence we reach an accuracy of 60.3% which is
still better than the prior annotation distribution of 54.9% (see
Table I for the detailed confusion matrices). We combined
the three classifications by meta-classifiers on their class
prediction probabilities but the results were not better than the
prediction from motion detection. Thus, audio and the time
of the day do not contribute any new information to achieve
better accuracies but might contribute to higher robustness.

3) Interruptability: We have two data sets to infer the
degree of the subject’s interruptability. This prediction task
is a 5-class classification prediction with a base prior of
29.3% for the larger and 35.7% for the smaller data set.
Figure 11 shows that the 5-sector feature of the motion
detector is the most predictive. Specifically, note that the
incorporation of domain knowledge into the model through
the informed choice of the 5 sectors pays off, as it leads
to an improved prediction accuracy2. Figure 12 shows the

2We intend to investigate whether the sectors could also determined
automatically through analyzing the histogram of the movement data (c.f.
Figure 5)
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Fig. 11. Interruptability detection from all features setups of the motion
detector using J48.

Fig. 12. 5-class interruptability prediction vs. time to past from the larger
”beep” data set. The figure shows the audio and motion detection predictions
and the combinations.

prediction accuracies of audio and motion detection vs. the
time into the past. Both audio and motion detection show
very good results with a maximum at 150s. Motion detection
is superior (41.6%) to audio (40%) and, furthermore, motion
detection seems to be more robust to variations on the time
dimension. Predicting the interruptability from the time of
the day using näıve Bayes results in an accuracy of 35.9%.
Combining audio and motion detection by a naı̈ve Bayes
meta-classifier results in a remarkably better prediction result
(maximum at 150s: 44.6%) indicating that both sensor inputs
provide partly independent information. Combining all three
information sources (audio, motion detection, and time of the
day) results in an even better result with a maximum accuracy
of 45.4% at 150s. Furthermore, the combination of the three
sources results in a much more robust result in terms of time
dependency. Again we see that that the temporal aspect of the
contextual situation is very prominent. Specifically, we see that
the prediction quality of the models rises until at least about
20 seconds have been taken into account.
Table II shows the performance of the different calculations

on the basis of confusion matrices. The graph on the right of
Figure 13 shows the same predictions based on the smaller
telephone data set. The curve based on the smaller data set
show a much weaker performance than the results of the larger
data set. On one hand this indicates that the model based on

Fig. 13. 5-class interruptability prediction vs. time to past from the smaller
phone data set.

motion detection needs more training instances than the model
based on audio data. On the other hand the subsequeent results
based on this interruptability calculation will suffer from this
effect.

4) Importance of Call:We estimate the importance of an
incoming call based on the caller’s phone number. Of course,
the target label is the importance of call after answering (ex-
post), as it is closer the actual importance of call as opposed
to the (ex-ante) estimation of the subject before answering
the call. Our prediction task takes the subject’s self-report
about the estimated importance of call as benchmark for
our classification based on the phone number. The confusion
matrix on the left in Table III shows that the subject often
overestimated the importance of the incoming phone calls
as seen in the overview of the collected data. The subject
reached an accuracy of 37.8% compared to the base of 26.5%.
Applying a näıve Bayes classifier on the phone numbers

TABLE II

CONFUSION MATRICES FOR THE5-CLASS INTERRUPTABILITY DETECTION

ON THE ” BEEP” DATA SET.

               P. Vorburger, A. Bernstein, and A. Zurfluh 

 
Interruptability, audio 

 Model prediction (naïve Bayes) 
 1 2 3 4 5 

1 12 51 11 5 24 
2 13 106 17 8 34 
3 8 65 14 5 23 
4 3 15 2 6 33 

Se
lf-

R
ep

or
t 

5 8 25 8 7 105 

 Accuracy: 40.0% (at 150s) 
Base: 29.3%  

Interruptability, motion 
 Model prediction (J48) 

 1 2 3 4 5 
1 27 45 6 0 25 
2 22 125 3 3 25 
3 15 75 4 1 20 
4 9 25 0 1 24 

Se
lf-

R
ep

or
t 

5 12 33 5 7 96 

 Accuracy: 41.6% (at 150s) 
Base: 29.3%  

Interruptability, time of the day 
 Model prediction (naïve Bayes) 

 1 2 3 4 5 
1 1 40 1 0 61 
2 5 104 4 0 65 
3 4 46 0 0 65 
4 1 19 0 0 39 

Se
lf-

R
ep

or
t 

5 4 36 0 0 113 

 Accuracy: 35.9% 
Base: 29.3% 

 
Interruptability, all combined 

 Model prediction (naïve Bayes) 
 1 2 3 4 5 
1 35 24 18 8 18 
2 15 103 38 4 18 
3 7 53 34 3 18 
4 6 11 9 2 31 

Se
lf-

R
ep

or
t 

5 8 11 22 10 102 

 Accuracy: 45.4% (at 150s) 
Base: 29.3% 

Fig. 13. Confusion matrices for the 5-class interruptability detection on the “beep” data set. 

Importance of Call 
We predict the importance of an incoming call based on the caller’s phone number. 
Of course we predict the importance of the call after answering (ex-post), as it is 
closer the actual importance of the call as opposed to the (ex-ante) estimation of the 
subject before answering the call. Our prediction task takes the subject’s self-report 
about the estimated importance of call as benchmark for our classification based on 
the phone number. The confusion matrix in Figure 14 shows that the subject often 
overestimated the importance incoming phone calls as seen in the overview of the 
collected data. The subject reached an accuracy of 37.8% compared to the base of 
26.5%. Applying a naïve Bayes classifier on the phone numbers (phone numbers are 
treated as independent classes) we reach a prediction accuracy of 30.6% as shown in 
detail in the confusion matrix on the left in Figure 14. It is not surprising that the 
subject outperforms the naïve Bayes algorithm because the subject already had prior 
knowledge about the phone numbers. This advantage is intensified by the fact that 
most phone numbers occur very seldom as seen in the phone number histogram in the 
overview of the data set. 
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TABLE III

CONFUSION MATRICES OF THE PREDICTION OF THE ACTUAL AND THE

ESTIMATED IMPORTANCE OF CALL.

               P. Vorburger, A. Bernstein, and A. Zurfluh 
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 1 2 3 4 5 
1 1 40 1 0 61 
2 5 104 4 0 65 
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R
ep

or
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5 4 36 0 0 113 

 Accuracy: 35.9% 
Base: 29.3% 
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 1 2 3 4 5 
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Se
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R
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or
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5 8 11 22 10 102 
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Fig. 13. Confusion matrices for the 5-class interruptability detection on the “beep” data set. 

Importance of Call 
We predict the importance of an incoming call based on the caller’s phone number. 
Of course we predict the importance of the call after answering (ex-post), as it is 
closer the actual importance of the call as opposed to the (ex-ante) estimation of the 
subject before answering the call. Our prediction task takes the subject’s self-report 
about the estimated importance of call as benchmark for our classification based on 
the phone number. The confusion matrix in Figure 14 shows that the subject often 
overestimated the importance incoming phone calls as seen in the overview of the 
collected data. The subject reached an accuracy of 37.8% compared to the base of 
26.5%. Applying a naïve Bayes classifier on the phone numbers (phone numbers are 
treated as independent classes) we reach a prediction accuracy of 30.6% as shown in 
detail in the confusion matrix on the left in Figure 14. It is not surprising that the 
subject outperforms the naïve Bayes algorithm because the subject already had prior 
knowledge about the phone numbers. This advantage is intensified by the fact that 
most phone numbers occur very seldom as seen in the phone number histogram in the 
overview of the data set. 

  
Importance of call, phone number 

 Subject’s prediction 
 1 2 3 4 5 

1 0 3 4 5 1 
2 0 1 6 3 2 
3 0 0 10 10 6 
4 0 0 4 11 11 
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lf-
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5 0 0 2 4 15 

 Accuracy: 37.8% 
Base: 26.5% 

 
Importance of call, phone number 

 Model prediction (naïve Bayes) 
 1 2 3 4 5 
1 0 0 11 2 0 
2 0 0 10 1 1 
3 2 0 14 7 3 
4 0 0 19 4 3 

Se
lf-

R
ep

or
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5 0 0 6 3 12 

 Accuracy: 30.6% 
Base: 26.5% 

Fig. 14. Confusion matrices of the prediction of the actual and the estimated importance of a 
call  

 

TABLE IV

ACTION PREDICTION BASED ON THE SELF-REPORTS.

The Artificial Receptionist: Anticipating a Person’s Phone Behavior                

Subject’s Phone Behavior 
Besides the presence determination the subject’s phone behavior is the most important 
prediction category for our work. The goal is to predict the appropriate action of the 
subject, i.e. ignoring the phone call or accepting it. The following measurements show 
how precise the action can be determined from the two dimensions “interruptability” 
and “importance of call”. 

 
Interruptability Estimated importance of 

call before answering 
Actual importance of 
call after answering 

Prediction of 
behavior 

X   77.6% 
 X  81.6% 
  X 88.8% 

X X  79.6% 
X  X 94.9% 

Fig. 15. Action prediction based on the self-reports. 

First we examine how precise the action can be determined directly from the 
subject’s self-reports disregarding the sensor data. Figure 15 shows the prediction of 
the action using a naïve Bayes classifier. The “X” marks which self-report have been 
taken into account. It turns out that the combination of knowing the degree of 
interruptability and knowing the actual importance of a call best determines the most 
appropriate action. Obviously, the predictions involving the estimated importance of 
calls do not perform as well as the predictions based on the actual importance of a call 
due to the bias of the subject’s estimation. It is remarkable that the actual importance 
of the calls contributes more to the action prediction than the interruptability 
(interruptability alone only reaches the prior probability of the action distribution of 
77.6%). Nevertheless, the combination of those two dimensions shows that both of 
them are required for reliable predictions. These values are used as benchmark for the 
following predictions based on sensor data streams. 

For the prediction of the subject’s phone behavior we determined the 
interruptability from the audio, motion detection, and the time of the day data. These 
three predictions as well as the prediction of the importance of the call were combined 
using a naïve Bayes meta-classifier. Figure 16 shows the accuracy vs. time to past. At 
a first look this result does not seem to be overwhelming except for the region around 
25s with an accuracy of 81.6% compared to the base accuracy of 77.6%. But at a 
second look this value of 81.6% is better than the prediction from the benchmark 
calculation based on the self-reports of interruptability and estimated importance of 
the call showing that the algorithm classifies as good as the subject would. Even 
more, from the benchmark calculation in Figure 15 we can induce that improving the 
model on the importance of calls could result in a much better accuracies up to 94.9%.  
 
 

(phone numbers are treated as independent classes) we reach
a prediction accuracy of 30.6% as shown in detail in the
confusion matrix on the right in Table III. It is not surprising
that the subject outperforms the naı̈ve Bayes algorithm because
the subject already had prior knowledge about the phone
numbers. This advantage is intensified by the fact that 9 of 22
phone numbers were non-recurring and hence the algorithm
was not able to include them in the model (c.f. phone number
histogram in Figure 8).

5) Subject’s Phone Behavior:The subject’s phone behavior
is the last prediction category of our study. The goal is to
predict the appropriate action of the subject, i.e. ignoring the
phone call or accepting it. The following predictions show how
precise the action can be determined from the two dimensions
”interruptability” and ”importance of call”. This provides a
benchmark for the following estimations under the assumption
that the two used dimensions have been determined with an
perfect accuracy of 100%.

First we examine how precise the action can be determined
directly from the subject’s self-reports disregarding the sensor
data. Table IV shows the prediction of the action using a naı̈ve
Bayes classifier.

The ”X” marks which self-report have been taken into
account. It turns out that the combination of knowing the
degree of interruptability and knowing the actual importance
of call best determines the most appropriate action. Obviously,
the predictions involving the estimated importance of call do
not perform as well as the predictions based on the actual
importance of call due to the bias in the subject’s estimation.
It is remarkable that the actual importance of call contributes
more to the action prediction than the interruptability (the
interruptability alone only reaches the prior probability of the
action distribution of 77.6%). Nevertheless, the combination
of those two dimensions shows that both of them are required
for reliable predictions. These values are used as benchmark
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Fig. 16. On the left the prediction of the action vs. time. On the left the confusion matrix for the 
maximal accuracy at 25 seconds. 

Usually, it is very difficult to evaluate classifiers in unequal distributions like in 
this problem using classification accuracy. Therefore, we use the alternative approach 
of receiver operating characteristics (ROC) curves – a measure from signal theory that 
has gained high acceptability in machine learning [17]. The ROC curve graphs the 
true positive rate versus the false positive rate. The random classifier corresponds to 
the diagonal, the closer the curve to the upper left corner the better it is. As the curves 
are always monotonically increasing the area under the curve can be used as a 
measure for the classifier performance. Figure 17 shows the two ROC curves for the 
two classes “ignore” and “accept” for the model generated at 25 seconds. The curve 
on the left for “ignore” has an area under curve of 0.81 and the curve on the right for 
“accept” has an area of 0.8, which is good. 
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Fig. 17. ROC curves for the two classes of the subject’s behavior. On the left the curve for 
“ignore”, on the right the curve for “accept”. 

ROC curves allow a cost independent investigation of classifiers. Even more we 
have the possibility to assign a cost-based cutoff for classifications using probability 
estimators. Reconsidering our desired phone application a subject can individually 
assign cost to the actions. E.g., a subject is rather willing to accept phone calls that are 
misclassified as “accept” than to miss a really important call - so the subject could 
weight the costs of a misclassification of an “ignored” call higher. 

Fig. 14. On the left the prediction of the action vs. time. On the left the
confusion matrix for the maximal accuracy at 25 seconds.

Fig. 15. ROC curves for the two classes of the subject’s behavior. On the
left the curve for ”ignore”, on the right the curve for ”accept”.

for the following predictions based on the sensor data streams.
For the prediction of the subject’s phone behavior we deter-
mined the interruptability from the audio, motion detection,
and the time of the day data. These three predictions as well as
the prediction of the importance of call were combined using
a näıve Bayes meta-classifier. Figure 14 shows the accuracy
vs. time to past. At a first look this result does not seem to
be overwhelming except for the region around 25s with an
accuracy of 81.6% compared to the base accuracy of 77.6%.
But at a second look this value of 81.6% isbetter than the
prediction from the benchmark calculation based on the self-
reports of interruptability and the estimated importance of call
showing that the algorithm classifies as good as the subject
would. Even more, from the benchmark calculation in Table
IV we can induce that improving the model on the importance
of call could result in a much better accuracies up to 94.9%.
Usually, it is very difficult to evaluate classifiers in unequal
distributions like in this problem using classification accuracy.
Therefore, we use the alternative approach of receiver oper-
ating characteristics (ROC) curves - a measure from signal
theory that has gained high acceptability in machine learning
[13]. The ROC curve graphs the true positive rate versus the
false positive rate. The random classifier corresponds to the
diagonal, the closer the curve to the upper left corner the better
it is. As the curves are always monotonically increasing the
area under the curve can be used as a measure for the classifier
performance. Figure 15 shows the two ROC curves for the two
classes ”ignore” and ”accept” for the model generated at 25
seconds. The curve on the left for ”ignore” has an area under
curve of 0.81 and the curve on the right for ”accept” has an
area of 0.8, which is good.

ROC curves allow a cost independent investigation of clas-
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sifiers. Even more we have the possibility to assign a cost-
based cutoff for classifications using probability estimators.
Reconsidering our desired phone application a subject can
individually assign cost to the actions. E.g., a subject is rather
willing to accept phone calls that are misclassified as ”accept”
than to miss a really important call - so the subject could
weight the costs of a misclassification of an ”ignored” call
higher.

IV. COMPARISON TORELATED WORK

Our work can be best compared to the studies by Forgarty
and colleagues [7], [9], as their setup is the most comparable to
ours. In [7] they present a so-called ”Wizard of Oz” feasibility
study to predict people’s interruptability. They simulate a
sensor-equipped office using a video and audio recording of
the office, which are then hand-coded by people determining
features such as the number of people currently in the office,
who is speaking, what task objects are being manipulated,
whether the phone is on or off the hook, and other similar
facts about the environment. In a follow-up study [9], [14]
they equipped an office with real physical sensors. They placed
microphones in the office, logged the beginning and end of
each non-silent interval, after applying a speech recognition
tool that detected conversations. Additionally, two magnetic
switches, one near each side of the top of the door frame,
allowed them to sense whether the door was open, cracked, or
closed. Two one-sector motion sensors were put in each office
but not used in any of the predictions. Another magnetic switch
was used to determine whether a person’s phone was physi-
cally off its hook. Software on each subject’s computer logged,
once per second, the number of keyboard, mouse move, and
mouse click events in the previous second. It also logged
the title, type, and executable name of the active window
and each non-active window. The interruptability annotation
was done the same way as introduced in the preceding study
by audibly prompting the subjects (i.e., self-reporting). All
this information together with the interruptability annotation
was used to build interruptability predictors. Forgarty and
colleagues found a prediction accuracy of 51.5% for the 5
class prediction problem using all of their sensors. At the
first sight this outperforms our predictions. Note, however, that
their data was clearly different, in that they reported a higher
prior of up to 40.9% (for one of his subjects) with an average
of 31.9% whereas we had a prior of 29.2% lowering the overall
accuracy. Furthermore, their study found that the 1-sector
motion detector didn’t add any prediction accuracy to the
model. Our study shows thatmulti-sector motion detectionout-
performs pure audio predictions (c.f. Figure 10), which were
the most predictive in their study. We also show thatmulti-
sector motion detection is complimentary to audio(c.f. Figure
12). Consequently, it is reasonable to assume that multi-sensor
motion detection extracts useful information about the context
in a non-obtrusive way. Hence, we believe that augmenting the
setup by Fogarty and colleagues with motion detection would
either improve their overall prediction accuracy or make some
of the other sensors they used obsolete. Alternatively, we can
assume that our prediction accuracy could be further improved

with the addition of some of the sensors proposed by them.
Even though there are other studies to predict interruptabiliy
in both the office setting [15], [16] and the mobile setting
[17], [18], [19] these are extremely difficult to compare to
our setup. [15], [16] uses information stored on the PC as
well as a key-logger to predict accuracy. Consequently, those
studies only use the ”virtual” context rather than the physical
environment making them complimentary to our investigation.
[17], [18], [19] all present wearable devices to predict a
person’s interruptability exploring a different style of work
rather than the office-based setup.
At this time we have no knowledge about studies examining
the prediction of a person’s phone behavior.

V. L IMITATIONS AND FUTURE WORK

The major drawback of this study is that the experimental
setup is restricted to only one single subject. To strengthen
the external validity of the experiment we intend to conduct
this experiment with a broad range of different people. These
measurements will also allow comparing different user profiles
and the adaptability of models between people. Furthermore,
we also plan to consider multi-person offices to examine
the influence of multiple persons on the prediction quality
as well as the presence of additional persons on someone’s
interruptability - a subject that has not yet been investigated
in any study we know.
Furthermore, we plan to complement the camera simulating a
motion detector by infrared cameras. These offer the ability to
detect objects that are warmer than background, which allows
identifying persons or active devices (like screens) without
taking motion (and time) into account and could lead to better
prediction accuracies. Consequently, we are expecting stronger
predictive power from infrared motion detectors. We also plan
to apply our approach to other areas such as instant messaging
systems or phone applications in vehicles (since a vehicle
can be viewed as a room on wheels). Last but not least,
we are investigating the use of more sophisticated prediction
algorithms.

VI. CONCLUSIONS

In this study we successfully introduced multi-sector motion
detection to augment context-awareness in office-like setups.
We found that we can predict whether a person is present in the
office or not, based on motion detection, audio, and daytime
data, where multi-sector motion detection clearly outperforms
the others. We also found that we can predict the person’s
degree of interruptability from these three information sources,
where multi-sector motion detection again turned out to be
the most reliable sensor-stream, which could, however, be
improved when complemented with audio. Our study shows
clearly that the interruptability of people can be predicted with
a highly simple and non-obtrusive sensory setup (of only one
small web-cam). Combined with a prediction of the nature of
the interruption this simple setup can provide a major building
block for a cheap and reliable device to manage interruptions
and, thus, improve overall work performance.
Summarizing, this study represents a first step towards the
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design and implementation of an artificial receptionist. Its
findings strongly indicate that such a receptionist can be
implemented with simple sensors.
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