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Finding a good similarity assessment algorithm for the use in ontologies is central 
to the functioning of techniques such as retrieval, matchmaking, clustering, data-
mining, ontology translations, automatic database schema matching, and simple 
object comparisons. This paper assembles a catalogue of ontology based 
similarity measures, which are experimentally compared with a “similarity gold 
standard” obtained by surveying 50 human subjects. Results show that human and 
algorithmic similarity predications varied substantially, but could be grouped into 
cohesive clusters. Addressing this variance we present a personalized similarity 
assessment procedure, which uses a machine learning component to predict a 
subject’s cluster membership, providing an excellent prediction of the gold 
standard. We conclude by hypothesizing ontology dependent similarity measures.  
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1 Introduction 

Claudia is a geneticist who is about to write a paper. As a responsible scientist she 
wants to look up some information categorized in a large gene-ontology and 
formulates a query specifying a number of attributes/features of her gene and 
some of its relationships. She is especially excited about the prospect of finding 
some other, similar research that she will be able to cite in her paper. When 
executing the query, however, she is buried in hundreds of results…  

This is a very typical situation. People querying databases oftentimes find 
themselves either buried in results to their queries or find no results whatsoever. A 
common approach to dealing with these problems is to rank the results of a query, 
in the case of too many answers, or return similar documents, when no precise 
matches to the query exist [BaRi99; BriPa98]. Both of these approaches require a 
measure of similarity between answers and queries. Finding a good measure of 
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similarity is, thus, crucial for providing a good retrieval performance. But not only 
retrieval of objects profits from good similarity measures. A variety of techniques, 
such as clustering, data-mining, semantic sense disambiguation, ontology 
translations, automatic database schema matching, and/or simple object 
comparisons rely on good similarity measures. Thus, similarity prediction 
algorithms are a central element in the semantic web, artificial intelligence, or 
computer science researcher’s toolbox.  

The increased use of ontologies raises the question of an appropriate similarity 
measure for the use with ontologies or semantically enhanced applications. Most 
semantic-web systems, however, use traditional logic approaches where 
corresponding objects are determined by perfect matches and similarity (as 
opposed to equivalence or subsumption) isn’t used as a concept. Humans, on the 
other hand, typically have little difficulty in determining the intended meaning of 
ambiguous words, expressions, or even complex objects, whereas it is challenging 
to replicate this process computationally.  

This paper investigates algorithms for determining the semantic similarity 
between objects in an ontology. In particular, it experimentally compares a 
number of adapted or existing computational measures (mainly taken from the 
computer linguistics/natural language processing domain) with the human 
judgment of the similarity of instances in an ontology.  

As such, the contributions of this paper are the following: First, it assembles a 
catalogue of similarity measures used in ontologies and complements them with 
some additional, adapted measures from related domains such as natural language 
processing (NLP). Second, it compares those measures against a “similarity gold 
standard” within a large ontology (with over 5000 entries) established in an 
experiment with 50 subjects finding, among other things, that the quality of 
similarity assessment algorithms might be ontology dependent. Third, the 
experimental results provide a surprising insight into how the human 
understanding of similarity might require personalized and application-specific 
similarity measures. Last, it introduces a combined similarity measure that 
promises to capture the personalized preferences using a machine learning 
algorithm.  

The paper is structured as follows: Next, we review the literature on object 
similarity and present the findings as a catalogue of ontology similarity functions. 
Then, we provide a detailed explanation of our experimental setup, present the 
results of the experiment, and discuss limitations of the presented study. We close 
with a discussion of related work and some ideas for future work. 
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2 Semantic Similarity in Ontologies 

The question of similarity is a heavily researched subject in the computer science, 
artificial intelligence, psychology, and linguistics literature. In particular the 
information retrieval literature has a long tradition of looking at measures for the 
similarity between documents [BaRi99; SaMc83]. Those approaches typically take 
the single words (or word stems) of a document as features and operate on 
histogram vectors thereof usually ignoring the ontological relationships of the 
words.  

There are essentially two ways to make use of the hierarchical ontology structure 
for determining the semantic similarity between objects in an ontology: the edge 
based approach and the node based approach. The traditional edge based approach 
estimates the distance/edge length between nodes [Lee+93; Rada+89]. The shorter 
the path from one node to the other, the more similar they are. The problem with 
this approach is that it relies on the notion that edges in a taxonomy represent 
uniform distances, i.e. it assumes that all semantic links are of equal weight. The 
newer node based approaches [Res99] typically use information content measures 
or information on object-part relationships to determine the conceptual similarity. 
The similarity between concepts is determined by the extent to which they share 
information. 

In this section we will present five different distance measures, both node and 
edge based, that are derived from the literature and are adapted to the context of 
comparing complex objects in an ontology. As complex objects we define entities 
with attributes, attribute values, and relationships of which one might be a 
specialization (i.e., an is-a relationship denoting any type of subclassing). This 
definition, thus, subsumes both explicit ontologies such as WordNet [Mill+93], 
where the specialization relationship is explicitly defined, as well as ontologies, 
where this relationship is to be derived logically (e.g., using subsumption). 
Consequently, we consider complex objects such as classes and instances in a 
semantic web ontology or a programming language, entities and records in a 
relational or object-oriented database, as well as any other compound data 
structure. For each of the measures we will briefly explain its source and how its 
adaptation to complex objects works. 

Ontology Distance 

The most intuitive similarity measure of objects in an ontology is their distance 
within the ontology. Obviously, sparrows are more similar to geese than to 
whales. They also reside closer in the typical biological taxonomies. The 
calculation of the ontology distance is based on the specialization graph of objects 
in an ontology.  
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The graph representing a multiple inheritance framework is not a tree but a 
directed acyclic graph. In such a graph the ontology distance could be defined as 
the shortest path going through a common ancestor or as the general shortest path, 
potentially connecting two objects through common descendants/specializations. 
For the purposes of this study we decided to employ the former, common-ancestor 
based specification, which seems to better reflect the common sense 
understanding of the closeness of two objects in a taxonomy. The pseudo-code 
algorithm looks as follows: 

1. gen_a = all transitive generalizations of the object A 

2. gen_b = all transitive generalizations of the object B 

3. from gen_a ∩ gen_b determine the most recent common ancestor (MRCA) 

4. ontology distance = count the length of the path from A to MRCA to B 

Information-theoretic Approaches 

The problem of the ontology distance is that it is highly dependent on the 
construction of the ontology. The measure is, therefore, highly dependent on 
(oftentimes) subjective ontology engineering decisions. To address this problem 
researchers in the NLP domain have proposed measuring the similarity between 
two objects (in their case words) in an ontology (i.e., WordNet) in terms of 
information-theoretic entropy measures [Lin98; Res99].  

Specifically, Resnik [Res95; Res99] argues that an object (i.e., word) is defined by 
the members of the class specified. When using an explicit ontology like WordNet 
the set of members is equivalent to the descendants (hyponyms) of an object 
(word). The information of a class is defined as the probability P(.) of finding a 
use of the class or its descendents in a corpus (in the case of WortNet: the 
probability of appearance of a word or one of its hyponyms in a corpus). The 
entropy of a class is the negative log of that probability. Similarity is now defined 
as: 

sim(A,B) = ( 2*log P(MRCA(A,B)) ) / ( log P(A) + log P(B) ), (1) 

where MRCA is the most recent common ancestor of classes A and B. Intuitively, 
this measure specifies similarity as the probabilistic degree of overlap of 
descendants between two objects. Modeling his evaluation on an experiment by 
Miller and Charles [MiCha91], which uses human subjects to rate the similarity 
between 30 noun pairs, Resnik shows that this information theory based method 
provides significant improvement (correlation 0.79) over traditional edge methods 
(correlation 0.60).  

We can directly reuse this approach for complex objects resulting in the following 
algorithm: 
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1. U = the total number of objects (or uses)  

2. Find the most recent common ancestor (MRCA) of A and B 

3. P(A) = (number of uses of A) / U 

4. P(B) = (number of uses of B) / U 

5. P(MRCA) = (number of specializations of MRCA) / U 

6. sim(A,B) = ( 2*log P(MRCA(A,B)) ) / ( log P(A) + log P(B) ) 

Note that most ontologies today don’t come with large annotated corpora, but 
instead contain instances. We can, hence, compute the P(A) as the number of 
instances of A divided by the total number of instances. 

Vector Space Approaches 

Vector space models are very common in information retrieval [BaRi99; SaMc83] 
or machine learning [Mitch97]. They represent each object as a vector of features 
in a k-dimensional space and compute the similarity by measures such as cosine or 
Euclidean distance. We adapted the vector space model to the complex object 
setting by representing it as a k-dimensional vector. Here k is the number of 
unique object attributes/relations with a given value of the object and the length of 
the k-th component of the vector is associated with the object part frequency in the 
objects. The similarity between two objects’ vectors is now simply defined as their 
inner product. The pseudo-code algorithm is: 

1. Determine vector x from the object parts of A 

2. Determine vector y from the object parts of B 

3. sim(A,B) = |xy| / |x| * |y| 

As an example consider the object chair, which has four legs and one back, to 
which it has a has-part relation, as well as a room office, to which it has a is-in 
relation. The chair vector [4, 1, 1] would represent the chair in the space with the 
dimensions [has-part_legs, has-part_back, is-in_office]. Obviously, this type of 
“vectorization” is problematic as it, for example, does not capture that the 
dimensions has-part_legs and has-part_back are (semantically) closer related to 
each other than to is-in_office. It does, however, have the advantage of being 
computationally cheap. We, therefore, decided to use this measure as one option 
out of a whole set of possible vectorizations. An exhaustive study of complex 
object similarity measures would have to consider other vector space encodings as 
they are currently discussed in the propositionalization of relational machine 
learning problems [DzeLa01] and is beyond the scope of this paper.  
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Edit Distance (Levenshtein Distance) 

The similarity between strings is often described as the edit distance (also called 
the Levenshtein Distance [Lev66]), the number of changes necessary to turn one 
string into another. Here a change is typically defined as either the insertion of a 
symbol, the removal of a symbol, or the replacement of one symbol with another. 
In our case we do not need to compare strings but objects. Therefore, we calculate 
the number of transformation steps needed to turn one object into another object. 
In other words, we count the number of insert, remove, and replacement 
operations of attributes, attribute values, relationships, or relationship types. Note 
that we ignored the names of attributes and relationships. Names could be added 
but would complicate the distance computation. 

In a first version we assume equal costs (=1) for each of the transformations. In an 
alternative implementation we weigh each transformation type with a value that 
represents the “real” costs. For example, is the replacement transformation 
comparable with a deleting procedure followed by an insertion procedure? Hence, 
we could argue that the cost function c would have the following behavior: 

c(deleting) + c(inserting) >= c(replacing) (2) 

Using this assumption we calculate the worst case for the cost of a transformation 
from A to B by replacing all object parts of A with object parts of B, then deleting 
the rest of object parts of A, and inserting additional object parts of B. The worst 
case cost is then used to normalize the edit distance. The overall algorithm looks 
as follows: 

1. Determine parts (attributes/relationships) of A 

2. Determine parts of B 

3. Compute number of transformation steps (replace, insert, delete) from A to B  

4. Compute worst case cost for the procedure 

5. Relative edit distance = (number of transformation steps) / (worst case costs) 

Full-text Retrieval Method (tfidf) 

The probably most often used similarity measure comes from the information 
retrieval literature and compares two documents by using a weighted histogram of 
the words they contain [BaRi99; SaMc83]. Specifically, the “term frequency and 
inverse document frequency” weighing scheme (short tfidf) works as follows: it 
counts the frequency of occurrence of a term in a document in relation to the 
word’s occurrence frequency in a whole corpus of documents. The resulting word 
counts are then used to compose a weighted term vector describing the document. 
The similarity between the two documents is then computed as the cosine between 
their respective weighted term vectors. In our case we created a (text) document 
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for each object in the ontology. Every document contained the object name, its 
attributes, and a brief description of its relationships (similar to the descriptions 
shown in Figure 1). We then took the cosine between the tfidf-weighed word 
vectors generated from each of the object-describing documents computed by an 
off-the-shelf algorithm [McCal96] as the similarity. 

3 Experimental Evaluation 

The similarity measures introduced above provide a first catalogue of candidates 
for an ontology based similarity metric. All of them have been used in some form 
or another for related problems and, therefore, have the potential of being useful in 
the semantic-web domain. In order to assess their usefulness, however, we need to 
evaluate them against a “gold standard” of object similarity.1 To that end we 
designed a detailed experiment in which human subjects were asked to assess the 
similarity between two objects. As Budanitsky and Hirst [BuHi01] found in a 
study comparing WordNet similarity measures human judgments give the best 
assessments of the “goodness” of a measure, a finding supported by Blok et al. 
[Blok+02]. This section will describe the experimental setup and the statistical 
evaluation of the results setting the stage for a discussion of the results in the next 
section. 

Study Design 

To establish our gold standard we first needed a suitable experimental setup. We 
found that the experiment described in Miller and Charles [MiCha91], which 
relies on human judgments, has become the benchmark in determining the 
similarity of words in NLP research (see [BuHi01; JarSz01; JiCon97; Lin98; 
Res95; Res99]). We reused their overall experimental design and adapted it to be 
usable for complex objects in an ontology as follows: First, we had to find a 
number of suitable object pairs from a large ontology. Then, we had to define an 
appropriate order in which those pairs were going to be presented to the subjects, 
who assessed the similarity of the pairs on a scale between one (totally dissimilar) 
and five (identical). After carefully testing the overall survey with some test 
subjects and complementing it with demographic questions, we called on three 
groups of subjects to fill out the survey. Last but not least, we carefully evaluated 
the answers statistically. We will now visit each of these steps in detail. 

                                                           
1 Alternatively, we could have evaluated the measures in a realistic application for 

similarity measures, which would go beyond this paper’s scope. The analysis can be 
found in [Bern+04]. 
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As the underlying ontology we chose the MIT Process Handbook ontology 
[Mal+03; Mal+99], which contains over 5000 organizational processes and has 
been carefully developed for over 10 years. The ontology has a number of 
advantages. Each process in the ontology has a variety of relationships to 
attributes, subprocesses, exceptions, etc. and also provides a detailed textual 
description, providing the subjects with multiple types of information about the 
processes. Furthermore, the ontology has been used in other semantic-web 
projects [GroPo02; KleBe04] and treats a domain of interest to researchers in the 
semantic-web field (services and their description). Finally, note that the subjects’ 
ability to relate to the ontology content is crucial for the success of the experiment. 
Lord et. al [Lord+03], for example, had to forgo an evaluation with human subjects 
as experts in their application domain (biology) are difficult to find. Consequently, 
the Process Handbook was especially suitable, as it treats a domain (business 
processes/services) that most people can relate to. Unfortunately, the Process 
Handbook is sometimes confusing in that it, like WordNet, doesn’t distinguish 
between instances and classes.  

From the Process Handbook we selected 40 processes that we thought would be 
understandable to a general audience and combined them into pairs fulfilling the 
following criteria: 

• At least one pair should be in close vicinity in the ontology-graph. 

• At least one pair should be far apart in the ontology-graph. 

• At least one pair should consist of a process and its descendant/specialization. 

• One process was paired with itself.  

The rest of the processes were paired in a way such that the processes’ name, 
description, attributes, or relations (e.g., parts) featured some similarities. 

Each pair was then turned into a web-page using the on-line survey tool Opinio™, 
which offered a comfortable graphical user interface and permitted an accurate 
definition of survey parameters. As can be seen in Figure 1 the subjects were 
asked to assess the similarity between two processes on a scale from 1 (no 
similarity) to 5 (identical). With a simple drop-down list the users could specify 
how they had made the assessment: 1. by process name, 2. by process description, 
3. by process parts/relationships, 4. a combination of 1-3, and 5. using other 
assessment method. This question should capture in respect to which features of 
the object the similarity was observed by the subjects – a notion that similarity 
researchers in the social sciences have found to be central [GeMe98]. Finally, the 
subjects could add some comments on their assessment.  

When participating, a subject was presented with a carefully arranged step-by-step 
introduction and was given the opportunity to assess a simple example. At the end 
of her assessment, she was offered to finish the survey or continue assessing a 
second group of ten pairs. When finishing the survey, the subjects where presented 
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with a final page of questions asking some demographic questions such as age 
group (e.g., 10-19, 20-29, …), education (high-school, bachelor, …), knowledge 
of English (none, basic, good, …), and whether they had any knowledge in 
computer science (yes/no) or linguistics (yes/no). As usual we piloted it with test 
candidates.  

 

 
Figure 1: A sample survey page showing the two processes to compare 

We deliberately recruited our subjects from three different groups. The first group 
consisted of the staff, researchers and faculty of the computer science department. 
The second group was chosen from the computer science students association. 
And the last group was made up from computer linguists (both students and staff). 
From each group an approximately equal number of subjects participated totaling 
in 50 survey participants, larger than any other study we found in the literature. 

First Results/Data Analysis 

To assess the quality of the similarity algorithms we compared their assessments 
with those of the subjects. This turned out to be a non-trivial task. First, while the 
algorithms provided nominal predictions the subjects’ assessments where on an 



10  A. Bernstein, E. Kaufmann, C. Bürki, M. Klein 

ordinal scale. Second, the prediction of some algorithms was non-linear 
complicating their comparison using traditional correlations. We, therefore, chose 
to compare each pair of assessments (including both the subjects’ assessments 
and the algorithms’ predictions) using the corrected Spearman correlation 
coefficient rs, which compares bindings (corrected ranks) of assessments rather 
than absolute values addressing both issues [Sachs02]. This coefficient compares 
two paired sets by assigning each number a rank with respect to its set and 
provides a number rs between -1 and 1, where 1 represents perfectly correlated 
sets, -1 inversely correlated sets, and 0 completely uncorrelated sets. Typically 
values of rs ≥ 0.5, respectively rs ≤ -0.5, are taken as some correlation and values 
of rs ≥ 0.7, respectively rs ≤ -0.7, as good correlations. In other words, we took 
each series of similarity assessment (by either of the 50 human subjects or 5 
algorithms) and compared it to every other assessment using the corrected 
Spearman rank correlation. The resulting correlation coefficients are represented 
in Figure 2 as grey-scales, in which the subjects are numbered from 2 to 51 and 
the algorithms have alphabetic identifiers (A, …, F).  

At a first glance the result looks rather abysmal. A large part of the assessments 
don’t seem to correlate at the rs ≥ 0.5 (respectively ≤ -0.5) level. After careful 
consideration, however, we find the following interesting results in the data. 

First, in general the algorithms seem to correlate no better or worse with the 
subjects’ predictions than the subjects do among themselves. It even turns out that 
the correlations of the subjects among each other are significantly similar to the 
correlations of each algorithm with the human subjects’ assessments (as shown by 
a t-test at level below 0.005 for all but one algorithm; below 0.9 for the 
information theory measure). Consequently, given the problematic correlation 
between the subjects’ answers, the algorithms mostly perform significantly similar 
to “yet another subject,” potentially (as we will see below) providing a good basis 
to mimic the human similarity measure. 

Second, the weighted edit distance (A), simple edit distance (B), and vector space 
(C) predictions seem to correlate well with each other as well as (slightly less 
consistently) the information theory (D), ontology distance (E), and full-text (F) 
algorithms. After further consideration, we find that those two groups are 
indicating clusters in the answers of the subjects. The first cluster, identified by 
good correlation with either edit distance measures, is shown in Figure 3a. With 
few exceptions those subjects correlate above the rs = 0.5 threshold. The second 
cluster, shown in Figure 3b, shows a similar inner cohesion. Consequently, the 
subjects can be divided into clusters each showing a very high correlation with 
some of the measures. 
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Figure 2: Grey-scale Spearman correlation matrix between all subjects (with numerical 
identifiers) and (right of the boxed line) the algorithms (with alphabetic identifiers). The 
fields are colored white for absolute(rs) < 0.5, grey/yellow for 0.5 ≤ absolute(rs) < 0.7, and 
black for 0.7 ≤ absolute(rs). 

This is an important empirical finding: it shows that a general similarity measure 
reflecting human similarity assessments can hardly be found. Much more widely 
applicable similarity measures will have to be personalized to the user’s similarity 
assessment style. While one might argue that those personalized measures are not 
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necessary for optimally completing purely computational tasks, they are likely to 
be more suitable when users are involved. This finding also provides rationale for 
the recent surge of personalized web search services by companies such as 
Google™ and Eurekster™. 

 
a) 

 
b) 

Figure 3: Corrected Spearman rs for a) edit distance based cluster, b) ontology-oriented 
cluster. Values ≥ 0.5 (or ≤ -0.5) are highlighted yellow/grey; values ≥ 0.7 (or ≤ -0.7) are 
shown in bold. 

Last, we find some interesting results regarding the overall predictive quality of 
the measures. The two edit distances performed equally, alleviating the need for 
any type of weighting. The vector space method, so successful in the full-text 
retrieval domain, performed rather disappointingly throughout. The information-
theoretic method didn’t perform too well. It was mostly equivalent in performance 
with the ontology distance method. This contradicts the findings from the NLP 
domain where information theoretic measures outperform the ontology distance 
[BuHi01; JarSz01; JiCon97; Lin98; Res95; Res99]. One explanation is the 
difference of the ontology underlying the experiment: the NLP findings based 
their experiments on WordNet; we used the Process Handbook. This indicates that 
the quality of a similarity measure seems to be dependent on the ontology – a 
question definitely deserving further attention in future research. The most 
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consistently performing method seems to be the adapted tfidf-measure. We will 
have to revisit the overall good performance of this measure below. 

Summary 

In this section we presented our adaptation of the well established semantic 
similarity experiment by Miller and Charles [MiCha91]. We asked 50 subjects 
from three different populations to assess the similarity between carefully chosen 
process pairs from within the large Process Handbook ontology. When comparing 
the assessed similarities using the corrected Spearman’s rank correlation we found 
that (1) the algorithms correlated with the subjects’ assessments to the same 
extend as the subjects did among themselves, that (2) the algorithms and human 
assessments could be grouped into cohesive clusters, and (3) we raised the 
question whether the applicability of a similarity measure is highly ontology 
dependent, as some measures unexpectedly outperformed others contradicting 
findings with WordNet. 

4 Discussion: Towards a Personalized Similarity 
Predictor 

The survey results provide an interesting foundation for further exploration: we 
have seen that the algorithmic similarity measures indeed mimic human similarity 
assessments as long as they belong to the same cluster. While this is a great 
success in itself it would be interesting to understand the nature of the two major 
clusters (shown in Figure 3). In this section we will first analyze the nature of the 
two clusters. Basing on this analysis we will then try to predict cluster 
membership, which will build the basis for a combined, personalized similarity 
algorithm. 

What is the nature of the clusters? 

The first question we will need to address is whether there seems to be a 
theoretical justification for the two arising clusters. Indeed, the first group of 
measures (the two edit distances and the vector model) largely focuses on the 
object’s parts, i.e., its attributes and relationships (especially the subprocesses). 
The correlation between the two edit distances is to be expected; essentially they 
only differ in the weights. The vector space model is highly similar in that it builds 
a vector from the parts and uses the similarity between those vectors to assess 
similarity. Two measures of the second group of measures, the information-
theoretic approach and the ontology distance are oriented towards a process’s 
location in the ontology: the information-theoretic approach through its reliance 
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on the processes’ descendants, which are likely to be more common for closer 
objects, and the ontology distance by the direct count of the closeness in the 
ontology. Also recall that these two measures did correlate in the NLP 
experiments. Assuming that the Process Handbook ontology is well constructed 
and, therefore, reflects the “general” mental ontological model of the 
object/process pairs we chose this would lead to the following conclusions: 
Subjects who mainly assessed the similarity by the processes’ composition 
correlate with the first group. Subjects who mainly assessed the similarity using a 
(potentially implicit) ontology that possibly somewhat reflected the Process 
Handbook largely correlate with the second group.  

But where does this explanation leave the full-text tfidf based method? As we can 
see in Figure 3, this measure mostly correlated with the second group and was the 
most consistently performing method. The nature of its good performance is likely 
to be found in its construction. Recall that this method based on a full-text 
description of the name of the object, all its attributes and their values, as well as 
all its relationships including the name of the objects participating in that 
relationship. In addition, it is useful to note that all the attributes (including the 
object’s description) and parts are inherited down the ontology. Therefore, they 
are likely to be similar for an object and its descendant unless they were changed 
by the ontology designers (who often rely on the ontology’s inheritance feature). 
As such this measure somehow combined the parts-oriented nature of the first 
cluster with the ontology-oriented nature of the second one. 

What about the subjects that don’t seem to correlate with either cluster? We 
hypothesize that there are three explanations for those. First, they could be people 
who often changed their assessment method within the experiment. Alternatively, 
they could be people who mainly based their assessment on the processes’ names 
– an approach for which we didn’t have a similarity measure. Finally, there were 
some subjects who obviously only gave serious answers to the first few questions 
and then clicked through to the end of the survey. 

Can we predict cluster membership? 

The average (absolute) Spearman correlations of the algorithms, between 0.026 
(for the vector measure) and 0.485 (for the tfidf method), are low, largely because 
of the clustering of the subjects. If we could predict a subject’s cluster 
membership, then we could just choose the best performing algorithm in that 
cluster and use that as the automated similarity measure. This would result in a 
combined, personalized similarity measure.  

To assess whether this approach would actually work we first manually 
determined each subject’s cluster-membership. For each subject we then chose the 
algorithm that performed best within the predicted cluster. The result was an 
average correlation of 0.689, a highly significant result at the 5% level.  
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This motivated us to try to automatically predict a subject’s cluster-membership. 
To that end we used the off-the-shelf decision tree learner J48, the Weka 
[WiFra00] implementation of C4.5 machine learning algorithm [Quin93]. As an 
input to the algorithm we used the (rather limited) demographic information 
gathered at the end of the survey. We complemented this information with the 
subjects’ self-reported explanations of how they performed the similarity 
assessments. We then evaluated the quality of the algorithm’s cluster-
membership-prediction using a leave-one-out approach, which assesses how well 
a subject’s cluster-membership could be predicted, given that the membership of 
all other subjects is known – a realistic setup for our problem. Even though our 
demographic data was so limited J48 could predict the cluster membership with an 
astonishing 70% accuracy. Furthermore, choosing the best performing algorithm 
in the J48-predicted cluster resulted in an average Spearman rank correlation of 
0.624 – a highly significant figure (at the 5% level), only slightly worse than what 
we got with the manual cluster prediction. Confirming our hypothesizing about the 
nature of the clusters above, the algorithm found that the most discriminating 
feature for predicting a subject’s cluster membership was whether (s)he had 
reported more than three times that (s)he had used the processes’ parts as the 
major guiding principle when assessing similarity.  

 

Summarizing, we found that the clusters indeed seem to be the result of different 
human similarity judgment processes. This indicates, again, that we need to know 
more about human understanding of complex objects and ontologies in order to be 
able to devise appropriate algorithms for human-computer interaction. 
Furthermore, we showed that the use of a simple machine learning algorithm can 
provide the means for deciding which of the presented algorithms to use, which 
could be used to build a highly accurate and personalizable similarity assessment 
algorithm – the goal we set ourselves at the onset of this paper.  

The primary limitation of our evaluation is its restriction to one ontology. 
Assessing the generalizability of our findings requires the replication and 
augmentation of our experiment with other large ontologies. This is especially 
important as we found that methods that were found to be very predictive in other 
ontologies (such as WordNet) performed rather poor in our ontology. As 
mentioned above, however, finding a large ontology to which subjects can relate 
to is a difficult task, which we intend to undertake in a future study. Furthermore, 
we are convinced that additional work is needed to confirm the hypotheses 
regarding the nature of the clusters. Other ontologies could even give rise to 
additional clusters. This would definitely require researchers to gather more data 
about the subjects’ assessment process. Last, a few subjects reported that they 
changed their assessment method during the test. How would an algorithm look 
like that could dynamically predict the similarity method desired for the next use 
of the retrieval, clustering, or other technique? What type of contextual input 
information would it require? 
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5 Related Work 

The NLP literature provides the largest group of related work. Motivated by 
Resnik’s study [Res95; Res99] a number of papers describe improvements to his 
information-theoretic measure. Wu and Palmer [WuPal94] focus on the semantic 
representation of verbs in computer systems and find those measures well 
applicable in machine translation. Jiang and Conrath [JiCon97] propose a 
combined edge counting and node based method that outperforms either of the 
pure approaches. This hints at the usefulness of combined approaches like the 
cluster-aware one we proposed in the previous section. 

Budanitsky and Hirst [BuHi01] support our claim that the quality of similarity 
measures is dependent on the ontology. They mention that differences in the 
quality of WordNet based assessment algorithms found in various papers can be 
explained by different versions of WordNet used. Jarmasz and Szpakowicz 
[JarSz01] empirically support this statement by showing how similarity measures 
based on the Penguin’s Roget’s Thesaurus of English Word and Phrases 
Thesaurus outperform those based on WordNet. Addressing this issue Lin [Lin98] 
tries to find an information-theoretic measure of similarity that is not tied to a 
particular domain or application and that is less heuristic in nature. The measure is 
found to outperform Resnik’s similarity algorithm slightly. It does, however, still 
require a probabilistic model of the application domain, which he gets from 
parsing a large word corpus. This limitation makes it problematic for smaller 
ontologies. Note that most of these approaches are focused on the comparison of 
nouns, limiting their generalizability to complex objects or even hierarchies of 
verbs (which the Process Handbook is in some sense). 

Di Noia et al. [DiNoi+03] compare a human based ranking (20 subjects) of 12 
items with the returns of an ontology based retrieval engine, which attains 
imprecise matching by relaxing query constraints. This is similar to using an 
ontologized edit distance for ranking retrieved objects. They find the automated 
rankings to show “...good correspondence…” to the average human subject’s 
assessment and refer to ongoing large-scale experiments for further details. Their 
work differs from ours in the focus on ranking retrieved objects rather than 
similarity measures in general. Furthermore, they do not compare their ranking 
method with any other approaches. 

Using an experiment with 37 subjects Rodriguez and Egenhofer [RodEg03] find 
that feature matching is important for detecting the similarity of objects across 
ontologies relaxing the requirement for a single ontology. Their feature matching 
algorithm uses a weighted string matching operation of the words describing the 
feature, which is similar to a (specially) weighted string-oriented edit distance 
metric. Their study as well as the work of Wu and Palmer shows the potential that 
similarity measures have for supporting translations between ontologies. 
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Focusing on the bioinformatics application domain, Lord et al. [Lord+03] compare 
sequence similarity of proteins with Resnik’s information-content based similarity 
operating on protein annotations. They found a good correlation between the two, 
but did not perform any subject based experiment due to the difficulty of obtaining 
domain-qualified subjects.  

Ouzzani and Bouguettaya’s [OuzBou04] propose and implement a generic 
approach for optimally querying web services using exact, overlapping, partial, as 
well as combined partial and overlapping matches on their input/output 
parameters. This is similar to a specially weighted edit distance matching over 
those parameters, whose sole use for retrieval has been shown to be problematic 
[KleBe04]. They don’t report any evaluation of their approach. Andreasen et al. 
[And+03] discuss different principles for measuring similarity of atomic or 
compound concepts based on edge based principles extending the simple ontology 
distance metric we used. They don’t report any evaluation or comparison to other 
similarity metrics. 

Summarizing, we can say that we found no study that compared a comparable 
catalogue of similarity measures using a similar size subject pool as we did. While 
quite a few papers mention the need for ontology-specific measures, none of them 
seems to have found person-to-person differences. This could be due to the use of 
WordNet in most human subjects based experiments, which has been modeled 
after common sense use of the language opposed to most other ontologies, which 
are designed by specialists for a particular use. 

6 Conclusions 

In this paper we argued that similarity measures in ontologies, a central 
component of techniques such a clustering, data-mining, semantic sense 
disambiguation, ontology translations, automatic database schema matching, and 
simple object comparison, deserve more attention. We assembled a catalogue of 
five algorithms (one of which was presented in two versions) and compared them 
with an experimentally derived gold standard, which we obtained by surveying 50 
human subjects. We found that human predictions had a large variance, but that 
the algorithms varied with them almost mimicking the subjects. We also found 
that the users and algorithms could be grouped into cohesive clusters showing that 
similarity assessments will have to be personalized to attain good results. We then 
constructed a personalized similarity assessment algorithm that predicts a 
subject’s cluster membership using a machine learning algorithm providing 
surprisingly accurate similarity assessments for the subjects in our study. Last, 
given the difference of our results with the findings reported in the NLP literature, 
we hypothesized that the prediction quality of similarity assessment algorithms 
might be ontology dependent. 
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This study provides a first investigation of similarities in ontologies. Nevertheless, 
the task of understanding similarity in ontologies is far from over. To that end 
both technical work on better, feature combining, ontology-adapting, and 
personalized similarity assessment algorithms as well as behavioral studies 
exploring people’s understanding of similarity and their use of similarity based 
features are needed.  
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