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Abstract

Machine learning as well as data mining has been successfully applied to automatically or semi-
automatically create Semantic Web data from plain data. Only little work has been done so far to
explore the possibilities of machine learning to induce models from existing Semantic Web data.
The interlinked structure of Semantic Web data allows to include relations between entities in
addition to attributes of entities of propositional data mining techniques. It is, therefore, a perfect
match for Statistical Relational Learning methods (SRL), which combine relational learning with
statistics and probability theory.

This thesis presents SPARQL-ML, a novel approach to perform data mining tasks for knowl-
edge discovery in the Semantic Web. Our approach is based on SPARQL and allows the use of sta-
tistical relational learning methods, such as Relational Probability Trees and Relational Bayesian
Classifiers, as well as traditional propositional learning methods. We perform different exper-
iments to evaluate our approach on synthetic and real-world datasets. The results show that
SPARQL-ML is able to successfully combine statistical induction and logic deduction.





Zusammenfassung

Schon heute wird Machine Learning und Data Mining erfolgreich für das automatische und
semi-automatische Erstellen von Semantic Web Daten eingesetzt. Vergleichsweise wenig wur-
den hingegen die Möglichkeiten des Machine Learnings in Bezug auf das Erlernen von Mod-
ellen existierender Semantic Web Daten erforscht. Durch die verkettete Struktur der Semantic
Web Daten ist es möglich, neben propositionalen Attributen von Entitäten auch die Beziehungen
zwischen diesen in das Data Mining einzubeziehen. Es sind also optimale Voraussetzungen für
die Verwendung der Methoden des Statistical Relational Learnings gegeben, das das Lernen von
Beziehungen mit Statistik und Wahrscheinlichkeitstheorie verknüpft.

In der vorliegenden Arbeit wird SPARQL-ML vorgestellt, ein neuartiger Ansatz, um Data
Mining auf Semantic Web Daten anzuwenden. Er basiert auf SPARQL und ermöglicht die Ver-
wendung von Statistical Relational Learning Methoden wie beispielsweise Relational Probability
Trees und Relational Bayesian Classifiers, aber auch traditionelle propositionale Lernmethoden.
Zur Evaluation dieses Ansatzes wurden verschiedene Experimente mit künstlichen und realen
Datensätzen durchgeführt. Die Resultate zeigen, dass SPARQL-ML die Vorteile statistischer In-
duktion und logischer Deduktion erfolgreich vereinen kann.
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1
Introduction

1.1 Motivation
With the large and continuously growing amount of interlinked Semantic Web data, it is more and
more discussed, how machine learning and data mining can be applied for this data. Machine
learning techniques have been successfully used to automatically or semi-automatically create
Semantic Web data from plain data. However, only little work has been done so far to answer
the question on how we can best apply machine learning techniques to learn from existing Se-
mantic Web data. Learning algorithms should be able to exploit the relational structure of the
Semantic Web data by not only taking the intrinsic attributes of objects, for which a prediction
should be made, but also the extrinsic relations to other objects into account. It has been agreed
in the machine learning/data mining community that models trained from relational data should
perform at least as well as models without taking into account this additional information. In
addition, it has been shown that Statistical Relational Learning (SRL) methods can induce models
without prior propositionalization (i.e., translation to a single table) of the relation data, which
otherwise, would be a cumbersome and difficult task. The fact that companies such as Microsoft
and Oracle have recently added data mining extensions to their relational database management
systems underscores their importance, and calls for a similar solution for RDF stores and SPARQL
respectively.

The logic deduction capabilities of the Semantic Web allow to include additional inferred data
in the data mining process that can be searched for patterns by learning algorithms. This should
ultimately help to outperform statistical induction alone and open up new possibilities for the
machine learning/data mining community.

1.2 Goals of the Thesis
This thesis presents a novel approach to apply existing data mining techniques on Semantic Web
data. We introduce SPARQL-ML, an extension of SPARQL, which integrates data mining ca-
pabilities into the Semantic Web query language. By coupling the two, we hope to achieve more
accurate predictions on Semantic Web data, and at the same time allow the Semantic Web research
community to conduct data mining tasks with a familiar tool.
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The goals of this thesis are, hence:

• to show that the inferred data can serve as useful additional information in the data mining
process,

• to facilitate data mining tasks on Semantic Web data, such as classification or clustering,
with the use of an integrated tool, and

• to provide users with a generic toolset, offering relational and propositional learning meth-
ods for the Semantic Web.

The thesis is structured as follows: the next section summarizes the most important related
work, while Chapter 2 gives a short introduction into the concepts of Semantic Web data. In
Chapter 3 we present different data mining techniques focusing on relational data mining. We
also illustrate a possible combination of Semantic Web data and existing data mining methods.
Chapter 4 shows the theoretical concepts of SPARQL-ML and in Chapter 5 we present our ac-
tual implementation of SPARQL-ML, which serves as a general framework for data mining tasks
on Semantic Web data. We validate our approach in Chapter 6 with different experiments on
synthetic and real-world datasets. We compare the results of classification algorithms applied to
Semantic Web data with and without the support of inferencing. We also conduct an experiment
to compare SPARQL-ML to an existing learning approach on Semantic Web data. Finally, we com-
plete the thesis with the limitations, possible future work and the conclusions of our approach.

1.3 Related Work
Several recent studies focus on data mining from Semantic Web data or the enhancement of ex-
isting data mining tasks with inferred information from ontologies. We summarize these studies
and work out the differences to our approach.

1.3.1 Data Mining from Semantic Web Data
Edwards et al. [Edwards et al., 2002] present an empirical investigation of learning from the Se-
mantic Web, where they apply different machine learning methods to a typical user-profiling
problem. The goal of their experiments is to learn a model which could then be used to recom-
mend products to a user according to his profile. The authors test different datasets and compare
the performance of learning from plain text format with learning from semantic meta-data. For
the first experiment, they use traditional statistical machine learning methods. The results are not
very promising, showing that the learning from semantically annotated data is not able to outper-
form the learning from plain text for that particular experiment. For the second experiment they
apply the Progol Inductive Logic Programming (ILP) system, which is able to learn from supplied
example instances and supporting background information. The results indicate some improve-
ments: the algorithm is able to find a couple of reasonable rules for the classification task. They
conclude that the Semantic Web markup available at that time cannot be expected to outperform
conventional machine learning applied to plain text, with regards to the accuracy of the learned
model. Our work extends this evaluation by looking at new statistical approaches appropriate
for Semantic Web data and ontological support.
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Closely related to our approach is the research on data mining from ontological data of Bloe-
hdorn and Sure [Bloehdorn and Sure, 2007], in which they investigate on how to make current
machine learning algorithms amenable to work on instances that are described by means of an
ontological vocabulary. They present a framework for designing kernels that exploit the knowl-
edge of underlying ontologies. For their implementation, they extend the Support Vector Machine
(SVM) algorithm with adequate kernels on Semantic Web data. The framework is based on com-
mon notions of similarity. They introduce four different kernels, residing on different layers. The
identity layer kernel solely considers the identity of two instances, while the class layer considers
similarities of instances based on the classes they instantiate. The property layers on the other
hand, compare the similarities of instances based on the data properties and/or object properties.
To evaluate their framework, the authors present two experiments on different datasets. Experi-
ment one tries to imitate the classification behavior of an ontology given a semantically weakened
ontology. In a second experiment they predict the research group affiliation of persons and pub-
lications based on the SWRC ontology.1 Inspired by this work, we conduct the same experiments
using our SPARQL-ML approach and compare the results.

Chen et al. [Chen et al., 2003] use ontologies in a preprocessing step for attribute-value data
to improve the results for association rule mining. They argue that real-world data is often too
sparse to produce rules with reasonable support, for which reason they use the fact that ontologies
with concept hierarchies can help to produce rules with improved support. They present their
approach on a web marketing task, whose dataset consists of records of real personal data that
contain demographic and expressed interests data. The data was gathered from portal sites like
Yahoo and ICQ. When derivating association rules in the available data, the authors were not able
to gain good rules because people tend to be very specific with their interests. This leads to the
problem that only a few people in the data have a common interest and can be used to deduce
a new rule. In order to circumvent this problem, Chen et al. created an ontology containing a
concept hierarchy of interests. With the help of the ontology they raised the existing interest data
to a higher concept level, where there are more people with the same interests. The experiment
shows that the raised data was able to produce rules with a much larger support. In addition,
they state that raising often creates rules which better represent the domain than rules created
without raising. We follow a similar approach, and intend to enhance the data mining task with
ontologies. We map the given ideas to the Semantic Web environment, where the data is already
closely coupled with the concept of ontologies. The Semantic Web further allows the application
of rich inferencing possibilities and does not solely focus on concept hierarchies. By providing an
integrated tool for the Semantic Web, we furthermore skip the necessary step of preprocessing in
order to raise the data.

Getoor and Licamele [Getoor and Licamele, 2005] introduce the importance of link mining
for the Semantic Web and investigate the appropriate handling of correlations between enti-
ties. They state that the links among objects demonstrate certain patterns, which can be helpful
for many data mining tasks and are usually hard to capture with traditional statistical models.
We therefore apply relational learning algorithms, which take these patterns into account and
improve the performance of the statistical models. Other studies discuss the discovery of as-
sociation rules in RDF data by introducing new algorithms or operators [Jiang and Tan, 2006],
[Anyanwu and Sheth, 2003].

Gilardoni et al. [Gilardoni et al., 2005] argue, that the main driver behind the need for machine

1http://ontoware.org/projects/swrc/
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learning techniques for the Semantic Web is that the web is so huge. Therefore, support from tools
that are able to work autonomously is needed. SPARQL-ML offers this automation support and
helps to apply machine learning techniques on Semantic Web data to (i) find patterns in relational
data, and (ii), to further annotate existing Semantic Web data.

1.3.2 Tool Support
Little work has been done so far on seamlessly integrating knowledge discovery capabilities into
the Semantic Web. Kochut and Janik [Kochut and Janik, 2007] extended SPARQL with operators
for semantic association discovery, allowing the search for semantic associations among entities in
Semantic Web data. A semantic association is an undirected path that connects two entities in the
knowledge base using named relationships, which represent its meaning. They extend SPARQL’s
triple patterns to include path patterns, which are triple patterns created with the use of a path
variable in place of the property. During the pattern matching part, the path variable will be
bound to the located paths between two resources. The result will be represented as a sequence
of properties and the connecting resources, making out the path. Their evaluation shows the
use of the path pattern for the search for semantic associations in data from biological sciences.
We follow a similar approach for extending SPARQL with a prediction triple pattern. The triple
should allow to predict the value of a variable by applying an existing mining model. The benefit
of our approach is that we are able to use a multitude of different machine learning techniques to
not only perform semantic association discovery, but also classification and clustering.

Hartmann [Hartmann, 2004] presents an approach to a knowledge discovery workbench that
extends existing data mining methods with ontologies as background information. The work-
bench allows the interpretation and translation of Web documents into semantically enriched
representations. For the data mining task it uses the ILP system Progol, which applies inverse en-
tailment to generate only the most specific hypothesis. To further restrict the hypothesis space, the
user has to manually define first-order expressions which define predicate and function symbols.
Our approach differs from the one presented by Hartmann. By creating a principle framework
for data mining from Semantic Web data we do not focus on one machine learning technique but
allow the use of different propositional and relational learning algorithms. For our thesis we will
focus on the techniques provided by statistical relational learning that avoid the task of having to
rewrite Semantic Web datasets into logic programming formalisms.

1.3.3 Web Service Classification
Hess and Kushmerick [Hess and Kushmerick, 2004] present a machine learning approach to semi-
automatically classify web services. The goal of their experiments was to create an application,
which determines the category of a web service description and recommends it to the user for
further annotation. The authors state that the user would save a considerable amount of work if
he or she only had to choose between a few predicted categories. They treated the determination
of a web service’s category as a text classification problem and applied traditional data mining al-
gorithms, such as Naive Bayes and SVM. The dataset used for the experiments consists of WSDL
web services.2 We present a similar experiment on OWL-S web service descriptions.3 Our clas-

2http://www.w3.org/TR/wsdl
3http://www.daml.org/services/owl-s/1.1/
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sification of web services makes use of relational learning algorithms and additional inferred
knowledge provided by ontologies. We propose that, due to the given structure of Semantic Web
service descriptions, relational learning algorithms are able to create more accurate models than
propositional learning methods.

Sabou [Sabou, 2005] states that the Semantic Web can facilitate the discovery and integration
of web services. The addition of ontologies, containing knowledge in the domain of the service,
such as the type of an input or output parameter, offers new background information that can be
exploited by machine learning algorithms. We evaluate this assumption in our work by compar-
ing the results of machine learning algorithms applied on Semantic Web data with and without
ontology support. Furthermore we focus on the input and output parameters of Semantic Web
service descriptions to correctly classify the web services.





2
Characteristics of
Semantic Web Data

The Semantic Web enhances the traditional web by adding a semantic layer on top of the well-
known web data formats to make the web machine readable. In this chapter we introduce the
basic principles and characteristics of Semantic Web data, which will be necessary for the under-
standing of the remainder of this thesis.

2.1 Structure

As the corner stone for describing data in such a manner, the Resource Description Framework
(RDF) has been created. The RDF Specification provides the following definition:1 ”RDF is based
on the idea of identifying things using Web identifiers (called Uniform Resource Identifiers, or
URIs), and describing resources in terms of simple properties and property values”. RDF can be
described by its graph data model which states that the underlying structure of an RDF expression
is a collection of triples, each consisting of a subject, a predicate and an object. A triple can be
illustrated as a node-arc-node link as shown in Figure 2.1.

Subject Object
Predicate

Figure 2.1: RDF triple composed of subject, predicate, and object

The link represents a relation between the subject and the object, while the direction of the
predicate always points toward the object. The object can be a resource or a literal, whereas the
subject must not be a literal. If the object is a resource, it can itself be the subject of another triple
pointing to another object. A set of such triples is called an RDF graph.

1http://www.w3.org/TR/rdf-primer/
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2.2 Semantics
The OWL Web Ontology Language [Mcguinness and van Harmelen, 2004] allows an even greater
machine interpretability of the web by providing additional vocabulary and formal semantics to
make the data more expressive. It serves as a standard language to define the terms in vocab-
ularies and the relationships between those terms. Opposed to databases, ontologies serve as
conceptual structures to describe the entire application domain, instead of just describing one
specific application. The basic elements of an ontology are as follows:

• Classes serve as an abstraction mechanism for grouping resources with similar characteris-
tics. Every class is associated with a set of individuals, called the class extension.

• Individuals represent the instances of a class.

• Object properties link individuals to individuals with restrictions for the domain and the
range.

• Datatype properties link individuals to data values with restrictions for the domain and the
range. The datatypes defined by OWL rely on the XML Schema datatypes listed by Biron
and Malhotra [Biron and Malhotra, 2004].

Through the application of a reasoner on Semantic Web data, we can infer additional triples
from a given ontology. Hence, inferencing helps implicit knowledge to become explicit. This
thesis argues that the implicit knowledge can serve as useful additional information in the data
mining process. We will explain the use of ontologies in the data mining tasks in Chapter 3.

2.3 Querying
The RDF Data Access Working Group created a W3C recommendation for the querying of the
Semantic Web with the RDF query language SPARQL [Prud’hommeaux and Seaborne, 2007].2 It
consists of the syntax and semantics for the querying against RDF graphs. Therefore, the core
of the query language is based on matching graph patterns. The graph patterns contain triple
patterns which are similar to RDF triples, but with the option of replacing an RDF term in the
subject, predicate or object position with a query variable. The variables inside a triple pattern
are identified through the ’?’ prefix. SPARQL also allows the use of conjunctions, disjunctions,
and optional patterns. Listing 2.1 gives a simple example of the syntax of a SPARQL query.

A query mainly consists of the following parts: the prologue (line 1), which contains the defi-
nition of namespace prefix bindings. This allows a user to write the prefix inside a query instead
of rewriting the whole URI again. The desired output of a SPARQL query is defined through the
query type, which is a SELECT query in our example (line 3). The main part is the basic graph
pattern (BGP) (lines 4-7), which holds all the triple patterns to be matched to the underlying RDF
graph. Finally a SPARQL query may include solution modifiers (line 8), which modify the output
of the pattern matching with classical operators such as distinct, order, limit, and offset.

When querying the example dataset about different persons in Listing 2.2, the example query
in Listing 2.1 looks for the resources ?x and their given name ?givenName. The only constraint

2http://www.w3.org/2001/sw/DataAccess/
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1 PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

2

3 SELECT ?x ?givenName

4 WHERE {

5 ?x vcard:Family "Smith" .

6 ?x vcard:Given ?givenName .

7 }

8 LIMIT 1

Listing 2.1: SPARQL SELECT query with a LIMIT solution modifier.

1 @prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

2

3 <http://example.org/person#John>

4 vcard:Family "Myers" ;

5 vcard:Given "John" ;

6 vcard:Prefix "Dr" .

7

8 <http://example.org/person#Robert>

9 vcard:Family "Smith" ;

10 vcard:Given "Robert" ;

11 vcard:Prefix "Prof" .

12

13 <http://example.org/person#Claudia>

14 vcard:Family "Smith" ;

15

16 <http://example.org/person#Sarah>

17 vcard:Family "Richards" ;

18 vcard:Given "Sarah" ;

Listing 2.2: Example RDF dataset.

in the pattern matching part is that the resources need to have the family name ’Smith’ and an
existing given name. The final output of query 2.1 is shown in Table 2.1. The person with the fam-
ily name ’Smith’ and an existing given name is the resource http://example.org/person#Robert.
Although the result is limited to one record, the solution is not changed since the data has only
one resource that matches the BGP.

x givenName

<http://example.org/person#Robert> Robert

Table 2.1: Output of the SPARQL SELECT query in Listing 2.1.

SPARQL also introduces an OPTIONAL keyword to be used in the BGP, which basically allows
to define non mandatory triples. If the graph matching algorithm finds solutions for the variables
inside the optional clause it adds the additional bindings to the solution, otherwise it does not
return a value for the optional variables. The query in Listing 2.3 again looks for the resources
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in the data in Listing 2.2 with the familiy name ’Smith’, but we now enclosed the triple with the
given name property in an OPTIONAL clause. The results of this query are shown in Table 2.2.
The query now returns all resources ?x and their given names ?givenName that have the family
name ’Smith’ and an optional given name. The final output consists of two records, of which the
resource http://example.org/person#Claudia does not have a given name.

1 PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

2

3 SELECT ?x ?givenName

4 WHERE {

5 ?x vcard:Family "Smith" .

6 OPTIONAL { ?x vcard:Given ?givenName }

7 }

8 LIMIT 1

Listing 2.3: SPARQL SELECT query with an OPTIONAL clause.

x givenName

<http://example.org/person#Robert> Robert
<http://example.org/person#Claudia>

Table 2.2: Output of the SPARQL SELECT query in Listing 2.3.



3
Knowledge Discovery
for the Semantic Web

To introduce our approach of Knowledge Discovery for the Semantic Web (KDSW), we first have
to succinctly summarize the main terms used in the related area of Knowledge Discovery in
Databases (KDD). On this basis we can then elaborate on the techniques and methods used in
KDD to present their possible integration into the Semantic Web.

3.1 Definitions
To avoid misunderstandings, we will first define the most important terms used in conjunction
with KDD by summarizing the definitions given by Fayyad et al. [Fayyad et al., 1996].

• Knowledge Discovery in Databases is the non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data.

• Data Mining is solely a step in the KDD process concerned with applying computational
techniques to actually find patterns in the data.

The mentioned patterns consist of hidden predictive information, which helps us to solve
different problems, such as the classification or clustering of data. The traditional data min-
ing approach expects as input a table of independent instances. This approach is also called
propositional data mining. The Semantic Web data on the other hand is highly relational, with
instances depending on other instances. This situation demands for relational data mining tech-
niques, which take the additional dependencies of the heterogeneous and complex structure of
interlinked Semantic Web data into account. Due to the nature of Semantic Web data, this the-
sis focuses on relational learning techniques, although our approach also supports propositional
learning techniques.

The KDD process also includes steps for the data preparation and the evaluation of the dis-
covered patterns during the data mining process. The development and design of algorithms for
data mining can be summarized with the term machine learning.



12 Chapter 3. Knowledge Discovery for the Semantic Web

3.2 Propositional Data Mining
In propositional data mining, the input is considered to be a set of instances, which are indepen-
dent individuals of the concept to be learned. These instances are characterized by the values
of attributes, which measure different aspects of the individuals. Most of the data mining tasks
today follow this approach, for which there are numerous algorithms available.

The available algorithms create different data mining models, which have different knowledge
representations. We introduce the three main distinctions as proposed by Liu [Liu, 2007].

3.2.1 Supervised Learning
Probably the most often applied learning method in machine learning is supervised learning,
which is also called classification or inductive learning and involves the process of learning by
example. The algorithm tries to induce a general rule from a set of observed instances and then
assigns to an unclassified instance, the name of a class to which it belongs. The mining model
learned through supervised learning is called classification model, predictive model or classifier.
The instances in the supervised learning task have a set of attributes A =

{
A1, A2, ..., A|A|

}
, where

|A| denotes the number of attributes. Additionally, the instances have a target attribute C, which
is called the class attribute. In the training examples the class attribute is known, for which reason
the learning is called supervised.

Supervised learning methods can also be applied to Semantic Web data. As described before,
the input instances for a propositional learning algorithm have to be independent and homo-
geneous. This is mostly not the case in relational data (e.g. Semantic Web data), which is why
the concept of supervised learning has also been extended to the relational setting. Due to the
wide spread use and applicability to relational data, this thesis focuses on classification models
for Semantic Web data.

3.2.2 Unsupervised Learning
In unsupervised learning, the instances used for learning a mining model have no pre-defined
classes. The algorithm has to find the hidden structures and regularities in the data by itself. For
this purpose, the instances are organized into similarity groups, also called clusters. Instances in
the same cluster are similar to each other, while instances in different clusters are different from
each other. Clustering methods can also be applied to Semantic Web data, although similarity
measures have to include additional similarity concepts because of the heterogeneous structure
of the instances.

3.2.3 Association Rules and Sequential Patterns
The concept of association rule mining is very prominent in the data mining research due to
its applicability in real world situations. The classic application of association rule mining is
the market basket data analysis, which tries to discover the buying patterns of customers in a
supermarket. Basically, an association rule represents a co-occurrence relationship between two
items. In the supermarket example, the co-occurrence of cornflakes and milk in a supermarket
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basket could be treated as an association rule, which states that people who buy cornflakes also
buy milk. From this information we can conclude that to maximize our profit, we can for example
arrange the cornflakes and the milk in the same shelf. Sequential patterns expand the pattern
detection to find co-occurrences of items in some sequence.

3.3 Relational Data Mining
Most of the time, the necessary single table representation for propositional data mining is not
enough. For some tasks, complex relations between different objects have to be taken into ac-
count. In order to allow a different input for the data mining process, we have to introduce the
concepts of relational data mining. Getoor and Taskar [Getoor and Taskar, 2007] state that it is
necessary to include the rich logical structure of the underlying data for solving more general and
complex problems. Therefore, the relational approach looks for patterns that involve multiple
relations, instead of concentrating on a single table representation of the data.

Relational data basically violates two assumptions made by traditional data mining tech-
niques as stated by Neville et al. [Neville et al., 2003b]:

1. The instances in relational data are not recorded in a homogeneous structure. They consist
of sets of heterogeneous records.

2. The instances in relational data are not independent and identically distributed. They have
dependencies through relations and through chaining multiple relations together.

Working with relational data in the data mining process requires the ability to handle struc-
turally heterogeneous and dependent data instances, for which new algorithms need to be de-
veloped. Most techniques for relational data that are used today are based on inductive logic
programming (ILP, [Dzeroski, 2003]), which is concerned with finding deterministic patterns ex-
pressed as logic programs. ILP is situated at the crossing of the research fields of logic program-
ming and machine learning. The patterns found by ILP methods are expressed in first-order
logic. Since the process of defining logic programs is a complex task, relational data mining re-
search has begun to incorporate probabilistic representations in their algorithms. This new field,
joining relational data mining and probabilistic learning, is called Statistical Relational Learning
(SRL). Neville et al. [Neville et al., 2003c] have listed a number of advantages of SRL, stating that
probabilistic relational models are better than deterministic models in most real-world data clas-
sification tasks.

3.3.1 Statistical Relational Learning
Due to the similar structure of probabilistic relational models and Semantic Web data, we ar-
gue that relational learning algorithms based on probabilistic models are an ideal candidate for
the use with Semantic Web data. The structure of Semantic Web data (see Chapter 2) consists
of heterogeneous data, interconnected with different directed links. We can, therefore, construct
a graphical model of probabilistic relations of Semantic Web data. Our model is heavily influ-
enced by the representation of Probabilistic Relational Models (PRM, [Getoor et al., 1999]) and
Relational Dependency Networks (RDN, [Neville and Jensen, 2004]).
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To use the standard graph syntax of the Semantic Web, we use circles to represent resources
as objects On, rectangles to represent literals as attributes An, solid lines to represent properties
as links, and dashed lines to represent probabilistic dependencies. Every object has a number of
associated datatype properties linked to attributes {A1, ..., An}, and a number of object properties
linking to or from other objects {O1, ..., On}. Consider for example Figure 3.1, where the objects
Company, Employee, Project, and their relations are illustrated. We define the attribute Success

of the project object and, therefore, the datatype property isSucess to be our class label for a
classification task.

The attributes of an object can depend probabilistically on other attributes of the same object,
as well as on attributes of other related objects. The dependencies between the attribute Success

and other attributes are represented in the model with dashed lines. We omitted other dependen-
cies to keep the graph as simple as possible. The success of a project may depend on the budget
(Budget) allocated for the project, on the work experience (Experience) of employees working at
the project, or on the popularity (Popularity) of the company financing the project. Each attribute
is associated with a probability distribution conditioned on other attributes. The dependent at-
tributes of attribute Aj

n are therefore either associated with the same object Oj , or with another
object Ok linked to Oj through an object property or through a chain of object properties. If the
relation between Oj and Ok is one-to-many, the dependent attribute consists of a set of attribute
values. For this purpose, the model uses aggregation functions, either to create a single value out
of a set of values, or to combine a set of probability distributions into a single distribution. In our
case, this situation can occur for the object property between the objects Project and Employee.
The attribute Success can depend on more than one employee, and hence, on a set of attribute
values of the attribute Experience.

Company

ProjectEmployee

Age Budget

PopularityFoundingDate

SuccessExperience

isSuccess

hasBudgethasAge

hasExperience

hasEmployee hasProject

hasMember

hasPopularityisFounded

Figure 3.1: Probabilistic relational graph showing the dependencies between attributes of different objects.

In order to apply data mining tasks on relational models, new machine learning algorithms
have been developed. The resulting algorithms are able to create the necessary conditional prob-
ability distributions over possible class label values.

For our evaluation in Chapter 6, we particularly applied two well-known algorithms: the
Relational Bayes Classifier (RBC, [Neville et al., 2003b]) and the Relational Probability Tree (RPT,
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[Neville et al., 2003a]). Following, we will summarize the basic principles of these algorithms.

Relational Bayes Classifier (RBC)

An RBC is a modification of the traditional Simple Bayesian Classifier (SBC) for relational data.
The SBC assumes that attributes are conditionally independent of its class C. The RBC applies
this independence assumption to relational data. Before being able to estimate probabilities, the
RBC decomposes (flattens) structured examples down to the attribute level. Heterogeneous sub-
graphs are being transformed to homogeneous sets of attributes. Figure 3.2 shows an example
instance (subgraph) to predict the success of a business project in a relational dataset. The avail-
able attributes for the prediction include the age and the experience of the employees. Due to the
possibility that a project can have multiple employees, the attributes contain a multiset of values
for each subgraph. The same data can be decomposed to the representation shown in Table 3.1.
Each row makes out one subgraph, while each column represents an attribute. The cells contain
the sets of values for each subgraph.

Company Project

Employee

ExperienceAge

Employee

Employee

Employee

Employee

hasMember

hasProject

hasExperiencehasAge

Figure 3.2: Relational data represented as a subgraph [Neville et al., 2003b].

Success Employee Age Employee Experience ...
YES 23,25,37,32,41 2,4,3,1,12 ...
NO 18,25 1,7 ...
YES 17,26,44 1,3,17 ...

... ... ... ...

Table 3.1: Relational data decomposed by attribute.

The RBC then follows the technique of the SBC, which states that the probability of a class
C given an example can be computed as the product of probabilities of the example’s attributes
Ai, ..., An given the class (see Equation 3.1).

P (C = + |A1, ..., An) = αP (C = +)
∏n

i=1 P (Ai |C = +) (3.1)
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In order to estimate the probabilities of each attribute given the class, the RBC uses different
estimation techniques. The average value estimator averages the multisets of values after the
decomposition to the attribute level. Continuous values will, therefore, be replaced with their
average and discrete values will be replaced with the modal value. For example P (+ |E) =
αP (AverageAge = 29 |+)P (+) computes the probability of a project E being successful with an
average age of 29 for its employees.

The independent value estimator considers each value of each set to be an independent in-
stance. This increases the amount of instances for estimation to the number of linked objects
with the specified attribute. After the probability of each value has been computed, they are
multiplied into an overall probability, i.e. P (+ |E) = αP (17 |+)P (26 |+)P (44 |+)P (+). The
outcome will then be used for the final probability computation with the help of Equation 3.1.
Neville et al. evaluate the different estimators and identify the pros and cons of each approach in
[Neville et al., 2003b].

Relational Probability Tree (RPT)

The RPT extends standard probability estimation trees to a relational setting in which data in-
stances are heterogeneous and interdependent [Neville et al., 2003a]. The input for the RPT algo-
rithm consists of a collection of subgraphs, of which each subgraph contains a single target object
to be classified. Similar to the RBC, the RPT looks beyond the attributes of the item for which a
prediction should be made. It also considers objects of the relational neighborhood to estimate the
conditional probability distribution. After having decomposed the structure down to multisets of
attributes as illustrated in Table 3.1, the RPT searches over a space of binary relational features to
split the data. The features are created by mapping sets of values into a single value with the help
of aggregation functions. The RPT offers the following set of aggregation functions: MODE, AV-
ERAGE, COUNT, PROPORTION, MINIMUM, MAXIMUM, EXISTS and DEGREE. Almost all of them
are common aggregation functions for relational data, except of the DEGREE function. It allows
to use the structure of relational data as a feature in the probability tree by counting the number
of specific nodes in the subgraph. An example RPT is shown in Figure 3.3.

Average(Age)<30

Maximum(Age)>50P(YES)=0.15 (1/11)

P(NO)=0.85 (10/11)

P(YES)=0.83 (4/4)

P(NO)=0.17 (0/4)

P(YES)=0.22 (5/25)

P(NO)=0.78 (20/25)

Y 

Y 

N 

N 

Figure 3.3: Example RPT with two binary features for the attribute Age.

In order to split the data according to a feature, the RPT looks for a possible threshold that
could be used in conjunction with an aggregated attribute. A simple feature for example states
that the average age of the employees in a project has to be smaller than 30 (Average(Age) < 30).
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If a new project with an average age of 28 arrives at that specific feature in the decision tree, it
computes the feature (28 < 30) and according to the result moves further down the yes or no
branch. For this example project, it would move further down the yes branch since 28 is indeed
smaller than 30.

In order to decide which feature to use at which point in the decision tree, the algorithm cal-
culates the score for each feature. The score measures the correlation with the help of a chi-square
test on the class counts after splitting the training data according to a feature. Additionally the
algorithm calculates the p-value associated with the feature score and drops features with a non-
significant p-value. Among the remaining features, the feature with the best score is chosen to
be included in the probability tree. If the algorithm cannot find any feature with a significant
p-value, the tree growing stops and no further splits are applied. Finally, the algorithm calculates
the class distribution of the training examples at each leaf with the application of a laplace cor-
rection [Domingos and Provost, 2000]. For example, the class distribution of the leftmost leaf is 1
positive class and 10 negative classes. The probability of a class at a leaf can be calculated with
the frequency-based estimate p

N , where we have p examples of the class in question and N total
examples at a leaf. The probability would thus be 1

11 = 0.09 for the positive and 10
11 = 0.91 for the

negative class. The laplace correction improves the probability estimates by introducing a prior
probability of 1

C for each class, where C is the total number of classes. The final estimate would
therefore be p+1

N+C , which leads to a probability of 1+1
11+2 = 0.15 for the positive and 10+1

11+2 = 0.85 for
the negative class. The laplace correction has become standard procedure in machine learning for
the smoothing of probability estimates from small samples.

3.4 Semantic Web Mining
After having presented the characteristics of Semantic Web data and the concepts of relational
models, we will now present our approach on merging the two similar structures into a single
model for relational data mining on Semantic Web data.

The Semantic Web provides additional, sometimes crucial, inferred knowledge, which does
not exist in common relational data. With the use of inferencing we can go one step further and
improve the performance of learning from relational data by including implicit information given
by additional relations of individuals to or from classes and/or properties. In the following, we
illustrate example situations in which ontologies can be a benefit for the data mining task.

3.4.1 Implicit Class Knowledge
Ontologies allow the definition of classes, as well as whole class hierarchies. Consider for example
the business ontology shown in Figure 3.4. The ontology further refines the Person class into
subclasses, such as Manager or Non-Manager. On a next level we can refine these new classes
into for example production, sales, or marketing employees. This constitutes a class hierarchy
with a strict IS-A relationship between the classes.

According to the representation of subgraphs in the previous Section, we model our data as a
subgraph shown in Figure 3.2. The only difference now is that we substitute the employee objects
with individuals that instantiate our classes in the ontology and get a new subgraph represen-
tation such as the one shown in Figure 3.5. For reasons of readability we omitted the company
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Person

Non-ManagerManager

DivisionMgrProduc onMgrBoardMember SalesMgr SalesProduc onAdministra on Marke ng

Figure 3.4: Example business ontology.

object and the attributes.
The new subgraph now not only contains explicit relations between employees and projects

but also implicit relations between instantiated classes and their respective superclasses. These
additional relations determine whether an employee is a manager or not, and of course, whether
or not an employee is a person, which is the case for all employees since it is the root class of all
existing classes in the ontology. Our previous classification task, which has the goal to predict
the success of a business project, can now use these relations in the learning phase for a more
accurate prediction. We defined that most projects are successful, if more than three employees
working at a project are managers. Therefore, the best predictor is hidden in the ontology as
implicit information. With the help of inferencing it is possible to use this information in the data
mining task.

Project

Sales

Manager

Board

Member

Administra on

Employee

Sales

Employee

Division

Manager

Manager

NonManager

Person

type

type

hasMember

Figure 3.5: Relational data represented as a subgraph with inferred information about classes.

1 ?project ex:isSuccess ?success .

2 ?project ex:hasTeam ?employee .

3 ?employee rdf:type ?class .

Listing 3.1: SPARQL graph patterns with rdf:type predicate.

The SPARQL basic graph pattern (BGP) shown in Listing 3.1 matches all projects and its as-
sociated employees. The triple consisting of an ?employee subject, an rdf:type property, and the
?class object looks for the type of the employee individuals. Without inferencing, this triple pat-
tern would only match the direct types of an individual. The same BGP applied on an inferred
model also matches the super classes of the direct types for the ?class variable.

We can, therefore, extend the graphical model of probabilistic relationships presented in Sec-
tion 3.3.1 with a type object. Every object On can be associated with one or more types. Since each
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type only exists once in every subgraph but can be associated with more than one object at the
same time as shown in Figure 3.5, we have to consider the links as a measure for type occurrence
in a subgraph. The subgraph in Figure 3.5 for example contains three links to the type Manager
and two links to the type NonManager. The relational learning algorithms can calculate aggrega-
tions on this new feature and include it in the data mining task. In the case of an RBC, this adds a
new attribute to be used to estimate a conditional probability given the class. The RPT can com-
pute features on this information with the help of the available aggregation functions introduced
in Section 3.3.1.

3.4.2 Implicit Property Knowledge
Ontologies also allow the definition of object and datatype properties for classes. These defini-
tions state which links and what literals a class is allowed to have. Listing 3.2 presents an example
definition of an object property hasBenefit. It has the range Stocks or Bonus, indicating what kind
of benefits the classes in the domain can have besides their salary. Additionally, a minimum car-
dinality of one is set, which means that every class in the domain must at least have one benefit.

1 <owl:ObjectProperty rdf:ID="hasBenefit">

2

3 <rdfs:domain>

4 <owl:Class>

5 <owl:unionOf rdf:parseType="Collection">

6 <owl:Class rdf:about="#SalesManager"/>

7 <owl:Class rdf:about="#DivisionManager"/>

8 <owl:Class rdf:about="#BoardMember"/>

9 </owl:unionOf>

10 </owl:Class>

11 </rdfs:domain>

12

13 <rdfs:range>

14 <owl:Class>

15 <owl:unionOf rdf:parseType="Collection">

16 <owl:Class rdf:about="#Stocks"/>

17 <owl:Class rdf:about="#Bonus"/>

18 </owl:unionOf>

19 </owl:Class>

20 </rdfs:range>

21

22 <owl:minCardinality>1</owl:minCardinality>

23

24 </owl:ObjectProperty>

Listing 3.2: Object property definition.

In real-world datasets we often have the problem of sparse data, which means that we have
attributes with lots of null or zero values. It is difficult to achieve good results for a learning
algorithm on such a dataset due to insufficient data and potential incorrect treatment of missing
values. In the following we illustrate an example situation, where the enhancement of the data
mining task with property definitions can help to overcome the problem of sparse data.
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Our example ontology contains the object property definition in Listing 3.2 and the definition
of 8 classes, all being subclasses of the Person class. The class hierarchy of our ontology is shown
in Figure 3.6.

DivisionMgrProduc onMgrBoardMember SalesMgr SalesProduc onAdministra on Marke ng

Person

Figure 3.6: Example business ontology.

We once again want to predict whether a business project will be successful or not. Unlike
before, we now define a project to be successful if the project has more than three team members
with a hasBenefit property. In order to correctly simulate the situation of sparse data, our virtual
dataset contains only a few individuals with an actual hasBenefit property. The little explicit
information is therefore not enough to train a good classifier. With inferencing, it is possible
to infer additional triples, indicating, whether or not a team member has a benefit. By making
the implicit link to the property explicit, we eliminate the problem of sparse data and provide
the learning algorithm with a good predictor for the classification task. Figure 3.7 illustrates an
abstract subgraph for our classification task, showing the implicit links between the types and the
property definition in the ontology.

Project

Sales

Manager

Board

Member

Administra on

Employee

Sales

Employee

Division

Manager

hasBenefit

Stocks

Bonus

domain

range

hasMember

Figure 3.7: Relational data represented as a subgraph with inferred information about properties.

Similar situations, where property definitions of an ontology can provide the data mining task
with inferred knowledge, can also be shown with datatype properties.
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SPARQL-ML

SPARQL-ML (SPARQL Machine Learning) is an extension of SPARQL, which supports data min-
ing tasks for knowledge discovery in the Semantic Web. Our extension adds new syntax elements
and semantics to the official SPARQL grammar described by Prud’hommeaux and Seaborne
[Prud’hommeaux and Seaborne, 2007].

SPARQL-ML facilitates the following two tasks on any Semantic Web dataset: (1) train/learn/
induce a model based on training data using the new CREATE MINING MODEL statement (Sec-
tion 4.1); and (2), apply a model to make predictions using the PREDICT statement (Section 4.3).
The model created in the CREATE MINING MODEL step follows the definitions in our SPARQL
Mining Ontology (SMO) also presented in Section 4.2.

4.1 Learning a Model
With the use of our CREATE MINING MODEL statement, it is possible to induce a classifier (model)
on any Semantic Web training data. The chosen syntax was inspired by the Microsoft Data Min-
ing Extension (DMX) that is an extension of SQL to create and work with data mining models in
Microsoft SQL Server 2005 Analysis Services (SSAS).1

The extended SPARQL grammar is tabulated in Table 4.1 and Listing 4.1 shows a particular
example query for our business project success prediction task in Section 6.2. Our approach adds
the CreateQuery symbol to the official SPARQL grammar rule of Query. The structure of Create-
Query resembles the one of SelectQuery, but has complete different semantics: the CreateQuery
expands to Rule [1.1] adding the new keywords CREATE MINING MODEL to the grammar fol-
lowed by a SourceSelector to define the name of the trained model. In the body of CreateQuery,
the variables to train the model are listed. Each variable is specified with its content type (Ta-
ble 4.2), which enables different processing during the learning process: variables of the type
CONTINUOUS allow the use of mathematical operations like average, minimum, and maximum.
DISCRETE variables can use mathematical operations like mode and exists. The RESOURCE type
holds an RDF resource (IRI or blank node). The content type is different from the datatype, be-
cause we only differ between three content types, while Semantic Web data is allowed to have
more different datatypes as listed in Table 4.2.

1http://technet.microsoft.com/en-us/library/ms132058.aspx
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In order to specify which variable should be learned by the model, we introduced two key-
words: PREDICT tells the learning algorithm that this feature should be predicted. Additionally,
one variable of the content type RESOURCE has to be specified with the TARGET keyword to de-
note the resource for which a feature should be predicted.

After the usual DatasetClause, WhereClause, and SolutionModifiers, we introduced a new Us-
ingClause. The UsingClause expands to Rule [1.2] that adds the new keyword USING, followed
by a SourceSelector and an optional BrackettedExpression to define the name and additional pa-
rameters for the learning algorithm.

[1] Query ::= Prologue( SelectQuery | ConstructQuery | DescribeQuery |

AskQuery | CreateQuery )

[1.1] CreateQuery ::= ’CREATE MINING MODEL’ SourceSelector ’{’

Var ’RESOURCE’ ’TARGET’

( Var ( ’RESOURCE’ | ’DISCRETE’ | ’CONTINUOUS’ ) ’PREDICT’? )+

’}’ DatasetClause* WhereClause SolutionModifier UsingClause

[1.2] UsingClause ::= ’USING’ SourceSelector BrackettedExpression

Table 4.1: Extended SPARQL grammar for the CREATE MINING MODEL statement.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX ex: <http://www.examplecompany.org/>

3

4 CREATE MINING MODEL <http://www.example.org/models/projectSuccess> {

5 ?project RESOURCE TARGET
6 ?success DISCRETE PREDICT {’YES’,’NO’}

7 ?member RESOURCE
8 ?class RESOURCE
9 }

10 WHERE {

11 ?project ex:isSuccess ?success .

12 ?project ex:hasTeam ?member .

13 ?member rdf:type ?class .

14 }

15 USING <http://www.kdl.cs.umass.edu/proximity/rpt>

Listing 4.1: SPARQL-ML CREATE MINING MODEL query.

Content type Description Example datatypes
RESOURCE Content is a resource (IRI or blank node) RDF resource
DISCRETE Content is a literal with a discrete value string, date
CONTINUOUS Content is a literal with a continuous value integer, double, float

Table 4.2: SPARQL-ML content types and supported datatypes.
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Semantics of CREATE MINING MODEL Queries

According to Pérez et al. [Perez et al., 2006], a SPARQL query consists of three parts: the pattern
matching part, the solution modifiers, and the output. In that sense, the semantics of the CREATE
MINING MODEL queries is the construction of new triples describing the metadata of the trained
model (i.e., a new output type). The metadata follows the definitions of our SPARQL Mining
Ontology, which is introduced in the next Section. The ontology enables to permanently save the
parameters of a learned model that are needed by the PREDICT query (see Section 4.3).

4.2 SPARQL Mining Ontology (SMO)
The SPARQL Mining Ontology (SMO) defines the necessary concepts to permanently save the
metadata of a learned model. By introducing these common definitions, we are able to seamlessly
integrate additional machine learning techniques into SPARQL-ML. Furthermore, it is possible to
query the metadata of different mining models with a standard SPARQL query. At runtime, the
PREDICT query can access the stored information of a specified model to correctly map the input
data to the feature definitions of the model. The SMO is illustrated in Figure 4.1 while Listing 4.2
shows an extract of an example metadata entry of a mining model.

1 @prefix smo: <http://www.ifi.uzh.ch/sparql/mining/> .

2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

3

4 <http://www.example.org/projectSuccess>

5 smo:hasModelFile <http://www.example.org/projectSuccess/model_RPT.xml> ;

6 smo:hasFeature <http://www.example.org/projectSuccess#project> ;

7 smo:hasFeature <http://www.example.org/projectSuccess#success> ;

8 smo:usesAlgorithm <http://www.kdl.cs.umass.edu/proximity/rpt> ;

9 smo:hasModelName "projectSuccess" ;

10 a smo:Model .

11

12 <http://www.example.org/projectSuccess#success>

13 smo:hasVarName "success" ;

14 smo:isPredict "1" ;

15 smo:hasFeatureType "DISCRETE" ;

16 smo:hasLink <http://www.example.org/projectSuccess/link/isSuccess> ;

17 smo:hasNominalValues _:b1 ;

18 a smo:Feature .

19

20 <http://www.example.org/projectSuccess/link/isSuccess>

21 smo:linkName "isSuccess" ;

22 smo:linkFrom <http://www.example.org/projectSuccess#project> ;

23 a smo:Link .

24

25 _:b1 rdf:li "NO" ;

26 rdf:li "YES" ;

27 a rdf:Bag .

Listing 4.2: SPARQL mining ontology example metadata.



24 Chapter 4. SPARQL-ML

Lines 4–10 show the constructed triples of a model with the name projectSuccess. The model
uses the algorithm described by the resource http://kdl.cs.umass.edu/proximity/rpt, which de-
fines the necessary parameters for a Relational Probability Tree. The model also contains a prop-
erty hasModelFile pointing to the actual file of the mining model. The model file is used in the
mining module that will be introduced in the next Chapter. The metadata also contains the spec-
ified features of the model through the hasFeature property. The model in Listing 4.2 has the
features project and success. On lines 12–27 the feature success is further described through its
variable name (hasVarName), the content type (hasFeatureType), whether the feature is to be pre-
dicted or not (isPredict), the given nominal values (hasNominalValues), and the links (hasLink)
to other features.

The metadata of the algorithms and mining modules is also stored as RDF data and follows
the SMO (see Appendix B). Table 4.3 describes the classes representing parts of the mining model
and Table 4.4 lists all datatype properties and their domain, revealing for which class this property
is applicable.

Name Description
Model A data mining model.
ModelFile A file resource that contains the actual mining model.
Feature Represents a feature of a mining model.
Link Represents a link between two features of a mining model.
Algorithm A data mining algorithm.
Param A parameter of a data mining algorithm.
MiningApp A mining application.

Table 4.3: Classes of the SPARQL mining ontology.

Name Type Domain Description
hasModelName string Model The name of the mining model, which

consists of the last part of the URI.
hasAlgorithmName string Algorithm The name of the algorithm.
hasAlgorithmDescription string Algorithm Algorithm description.
hasClass string Algorithm The Java class of this algorithm.
hasAppName string MiningApp The name of the mining application.
creator string MiningApp The author of the mining application.
hasName string Param The name of an algorithm parameter.
hasValue anytype Param The value of this algorithm parameter.
hasVarName string Feature The name of the SPARQL variable be-

hind this feature.
hasFeatureType string Feature Defines the content type of this feature.
isPredict integer Feature Indicates whether this feature is to be

predicted or not.
linkName string Link Name of a link between two features.

Table 4.4: SPARQL mining ontology datatype properties.
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4.3 Making Predictions
After inducing a model with the CREATE MINING MODEL statement, SPARQL-ML allows to
make predictions with the model via two new property functions (i.e., sml:mappedPredict and
sml:predict).2 The concept behind this is simple: whenever the predicate of a triple pattern is
prefixed with a special name (i.e., sml), a call to an external function is made and arguments are
passed to the function (by the object of the triple pattern).

The example query in Listing 4.3 explains the usage of sml:mappedPredict (line 9). As
argument, the function takes the identifier of the previously learned model of the model learning
step (Section 4.1) and the instance as specified by the parameters used whilst training the model
(in our case specified by the variables ?project, ?success, ?member, and ?class). In Listing 4.1,
we induced a classifier to predict the value for the variable ?success on the training data. This
classifier is then used on line 9 in Listing 4.3 to predict the value for ?success on the test data
with a different structure. The result of the prediction, either ’YES’ or ’NO’, and its probability
are finally bound on line 8 to the variables ?prediction and ?probability respectively. Note that
we also defined a shorter version for mappedPredict in the case the model is used on a dataset
with the same ontology structure (i.e., predict; Listing 4.4).

1 PREFIX sml: <java:ch.uzh.ifi.sparqlml.mining.pfunction.>

2

3 SELECT DISTINCT ?person ?prediction ?probability

4 WHERE {

5 ?person ex:hasAward ?award .

6 ?person ex:hasFriend ?friend .

7 ?friend rdf:type ?class .

8 ( ?prediction ?probability )

9 sml:mappedPredict ( <http://www.example.org/projectSuccess>

10 ’?project = ?person’

11 ’?success = ?award’

12 ’?member = ?friend’

13 ’?class = ?class’ ) }

Listing 4.3: SPARQL-ML PREDICT query example 1: apply the model on a dataset with a different ontology
structure.

1 PREFIX sml: <java:ch.uzh.ifi.sparqlml.mining.pfunction.>

2

3 SELECT DISTINCT ?project ?success ?prediction

4 WHERE {

5 ?project ex:isSuccess ?success .

6 ?project ex:hasTeam ?member .

7 ?member rdf:type ?class .

8 ( ?prediction ?probability )

9 sml:predict ( <http://www.example.org/projectSuccess>

10 ?project ?success ?member ?class ) }

Listing 4.4: SPARQL-ML PREDICT query example 2: apply the model on a dataset with the same ontology structure.

2http://jena.sourceforge.net/ARQ/extension.html#propertyFunctions
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By implementing the prediction task as a property function, we are able to use different models
in the same SPARQL query by writing multiple predict triples as shown in Listing 4.5. Hence, the
comparison of the results predicted by different algorithms in the same query is possible. In our
example we apply two models on the same test data, of which the first model was trained with a
Relational Probability Tree (line 9) and the second one with a Relational Bayes Classifier (line 12).

Another benefit of this approach is that no further syntax changes have to be introduced into
the SPARQL grammar. This approach is called the virtual triple approach [Kiefer et al., 2007],
as triple patterns including property functions are not matched against the underlying ontology
graph, but against the data mining model in this case.

1 PREFIX sml: <java:ch.uzh.ifi.sparqlml.mining.pfunction.>

2

3 SELECT DISTINCT ?project ?predictionRPT ?predictionRBC

4 WHERE {

5 ?project ex:isSuccess ?success .

6 ?project ex:hasTeam ?member .

7 ?member rdf:type ?class .

8 ?predictionRPT

9 sml:predict ( <http://www.example.org/projectSuccessRPT>,

10 ?project ?success ?member ?class ) .

11 ?predictionRBC

12 sml:predict ( <http://www.example.org/projectSuccessRBC>,

13 ?project ?success ?member ?class ) }

Listing 4.5: SPARQL-ML PREDICT query example 3: apply different models in the same query.

Semantics of PREDICT Queries

The semantics of our PREDICT query is basically that of a prediction join:3 (1) mappedPredict
maps the variables in the Basic Graph Patterns (BGP) to the features in the specified model, which
allows us to apply a model on a dataset with a different ontology structure; (2) mappedPredict
creates instances out of the mappings according to the induced model; (3) the model is used to
classify an instance as defined in the CREATE MINING MODEL query (Listing 4.1); and (4), the
values of the prediction and its probability are bound to variables in the PREDICT query (line 8
in Listing 4.3).

3http://msdn2.microsoft.com/en-us/library/ms132031.aspx
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Implementation

After having discussed the theoretical concepts of relational data mining on Semantic Web data,
we are going to present our implementation of SPARQL-ML to perform knowledge discovery
tasks in the Semantic Web. Besides the support of the SPARQL-ML syntax, different propositional
and relational learning algorithms should be integrated. In the course of this chapter we explain
our approach by first presenting the software we based our implementation on and then describe
the design and workflow of our application.

5.1 Software
For the implementation of SPARQL-ML we chose different open-source software tools. The core
of our application is built around the query processor ARQ 1 for Jena.2 Furthermore, we integrated
two mining modules: the open-source machine learning tools Weka3 and Proximity4 that provide
a collection of traditional and relational machine learning algorithms.

5.1.1 ARQ/Jena
ARQ is a query engine for Jena that supports the SPARQL RDF Query language described by
Prud’hommeaux and Seaborne [Prud’hommeaux and Seaborne, 2007]. Jena is an open-source
Java framework for building Semantic Web applications [Carroll et al., 2004]. It contains several
tools for RDF, RDFS and OWL, SPARQL, and also provides a rule-based inference engine. More
precisely, it allows the use of several inference engines or reasoners, which can be configured
to match the users needs. For our experimental evaluation in Chapter 6 we applied the tran-
sitive reasoner for OWL that allows inferencing on the transitive and symmetric properties of
rdfs:subPropertyOf and rdfs:subClassOf. Since it only considers these properties and disregards
any other definitions, it is orders of magnitude faster than the other OWL reasoners.

1http://jena.sourceforge.net/ARQ/
2http://jena.sourceforge.net/
3http://www.cs.waikato.ac.nz/ml/weka/
4http://kdl.cs.umass.edu/software/
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ARQ makes use of Jena and is easily extendable with custom functions and was therefore
our first choice for the implementation of SPARQL-ML. The ARQ query engine provides a full
implementation of SPARQL and allows the implementation of new grammar rules.

5.1.2 Weka
The Weka toolkit was developed at the University of Waikato and offers a collection of machine
learning algorithms. It focuses on propositional machine learning algorithms and additionally
provides tools for data pre-processing and visualization. We chose Weka as a mining module
because of its wide spread use in research. The Weka algorithms implemented so far can only
handle continuous or nominal values during the model learning process. Hence, the feature
input for Weka has to consist of continuous or discrete features with the indication of all possible
values. Our framework does not yet support the automatic propositionalization of relational data.
Therefore, the algorithms offered by Weka should only be used on data that is already in a simple
vector style format.

5.1.3 Proximity
Proximity is an open-source system for relational knowledge discovery designed and imple-
mented by the Knowledge Discovery Laboratory in the Department of Computer Science at the
University of Massachusetts Amherst. In order to work with Proximity, the user has to have
an instance of MonetDB running before executing any SPARQL-ML queries.5 With the use of a
vertical database like MonetDB, Proximity is orders of magnitude faster than systems hosted on
traditional SQL databases for the operations needed by relational data mining.

The data structure used by Proximity to represent the instances of the data mining process is
based on labeled graphs in which vertices correspond to objects and edges to links. Because of the
given similarities between this data structure and the structure of Semantic Web data introduced
in Chapter 2, we decided to integrate Proximity as another mining module.

5.2 Design and Workflow
We chose a modular architecture for the implementation of SPARQL-ML. Our modules represent
different data mining tools, which offer numerous learning algorithms for SPARQL-ML. By treat-
ing the mining tools as modules, we can easily extend our approach with more data mining tools
as they become available. This allows the use of different machine learning techniques with one
integrated tool. Our final implementation of SPARQL-ML is an extension of ARQ, which can be
used with an existing ARQ installation.

Figure 5.1 presents the workflow for data mining on Semantic Web data with our SPARQL-
ML implementation. In order to explain the elements of our extension, we will walk through
the steps in Figure 5.1. (1) A SPARQL-ML query is sent to the Query Engine of ARQ, where
a QueryML object is created that stores the specified information of the query. (2) The query
engine performs the matching of the basic graph patterns to the underlying data and creates

5http://monetdb.cwi.nl/
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the mappings for the variables. (3) The ResultSet is then passed on to the Mining Module that
implements the requested algorithm. (4) The Mining Module first transforms the ResultSet into
our internal subgraph structure (Section 5.3). When learning a new model, the Mining Module
(5) serializes the QueryML object to RDF after the definitions of our SPARQL Mining Ontology.
When performing a prediction task, the Mining Module (5) accesses the metadata of the specified
mining model. Finally, the Mining Module (6) returns either the metadata of the mining model
when learning or the predicted values when predicting. Appendix C shows a Java code example
on how to access the described functions of SPARQL-ML.
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Figure 5.1: Workflow of our SPARQL-ML implementation.

5.3 Subgraph Data Structure
In order to identify the single instances in a dataset, our implementation transforms the ARQ
ResultSet into a generic subgraph data structure for further processing. It follows a simple sub-
graph pattern: each subgraph consists of one or more objects (resources), links (properties) and
attributes (literals). Each subgraph contains exactly one target object for which we want to make
a prediction. The object is specified with the TARGET keyword in the CREATE MINING MODEL

query (see Section 4.1).
Listing 5.1 shows the pseudo algorithm for the transformation of the ResultSet into our sub-

graph structure. Its output is a collection of subgraphs for the use with the different algorithms
available in our implementation. As input, it requires the ResultSet of the data and the FeatureSet
of the model. The FeatureSet defines the structure of the subgraph and consists of the specified
variables in the CREATE MINING MODEL query (see Chapter 4). It is, therefore, stored in the
metadata. For the detection of the single subgraphs, we iterate through the results and treat the
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target object as the root node of the subgraph. The remaining features of the ResultSet with a
direct or indirect link to the determined root node belong to the same subgraph.

Once the subgraphs are stored in the generic data structure, we can easily export the data
into any given format for the use with the implemented data mining modules. Our SPARQL-
ML implementation performs an export to either the Proximity XML 6 format or the Weka ARFF 7

format.

1 Outputs: subgraphs, a collection of subgraphs

2

3 Inputs:
4 resultSet ←the set of all variable mappings;

5 featureSet ←the set of features chosen in the create mining model query;

6

7 s ← ®;
8 subgraphs ←{s};

9

10 for each result res in resultSet do
11 if subgraphs not contains res.Root then
12 s.addObject(res.Root);

13 subgraphs.put(s);

14 endif
15 for each feature currFeat in featureSet do
16 if res.currFeat.isURI() then
17 s.addObject(res.currFeat);

18 else if res.currFeat.isBlank() then
19 s.addObject(res.currFeat);

20 else if res.currFeat.isLiteral() then
21 s.addAttribute(res.currFeat);

22 endif
23 endfor
24 endfor

Listing 5.1: Pseudo algorithm for the transformation of a SPARQL resultset into a generic subgraph structure.

5.4 Package Structure

Figure 5.2 illustrates the main Java packages of our implementation, which is divided into an arq
and a mining package. The first one extends the query engine of ARQ, while the second one
provides interfaces for the interaction with different mining modules. The persistent storage of
the data mining models and accompanying metadata is organized in a mining folder inside the
ARQ root directory.

6http://kdl.cs.umass.edu/proximity/documentation/tutorial/apc.html
7http://weka.sourceforge.net/wekadoc/index.php
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arq

ModQueryIn

query

sparqlml

createcore

module

pfunc on

mining

Figure 5.2: UML diagram of the main packages of the SPARQL-ML extension for ARQ.

5.4.1 The ARQ Package

The arq package implements the syntax extensions of SPARQL-ML. For that purpose, the parser
had to be adapted with the new syntax introduced in Chapter 4. The ARQ parser was built
with the help of the Java Compiler Compiler (JavaCC),8 a parser generator for the translation of
grammar files into Java code that recognizes matches to a given grammar. We present our full
grammar extensions to the ARQ parser in Appendix A.

5.4.2 The Mining Package

The mining extension in Figure 5.3 provides the methods and tools to enable data mining for
knowledge discovery in Semantic Web data. The core package contains the functionality to trans-
form the data returned by the query process into our internal data structure as described in Section
5.3. The pfunction package contains the property functions of the PREDICT query introduced in
Section 4.3. Since a property function represents a traditional way of extending ARQ, we did not
place the package into the arq package. Finally, the module package contains the available mining
modules. Each mining module must have a class that implements the interface MiningApp.

core

Resources

Feature

Subgraphs

Subgraph

DataContainer

Link

proximity

weka

MiningModel

MiningApp

MiningModelFactory

BaseWriter

pa ern mappedPredict

predict

pfunc on module

Figure 5.3: UML diagram of the packages inside the mining extension.

8https://javacc.dev.java.net/
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The interface defines the following methods:

• init(MiningModel m): initializes the mining module with a given mining model.

• prepareModelData(ResultSet res, HashMap<Var, Var> mappings): provides
the necessary data preparation functions for the mining module.

• learnModel(): learns a new model with a given learning algorithm.

• applyModel(): applies an existing model on new data to get a prediction.

• getClassPrediction(int subgID): return the predicted value of a given subgraph.

• getClassProbability(int subgID): return the probability of the prediction given by
getClassPrediction.

Our extension can communicate with every data mining module that implements the given
interface. Each mining module also contains a class that extends the class BaseWriter, which
provides the functionality to export our internal subgraph data structure into the appropriate
format for the mining tool. In addition, the mining package implements the interfaces to the
learning algorithms and the helper classes for the evaluation of induced models.

Algorithms

Our implementation supports several different relational and propositional learning algorithms
provided by Proximity and Weka. In order to use an algorithm, it has to be described with the
necessary metadata following our SPARQL Mining Ontology (Section 4.2). We implemented the
following algorithms so far:

• Weka

J48 : a tree learner based on the C4.5 decision tree.

M5P: a tree learner for continuous classes.

Linear Regression: a linear regression for prediction.

• Proximity

Relational Bayesian Classifier: a simple bayesian classifier for relational data.

Relational Probability Tree: a tree learner for relational data.

The full RDF metadata of the implemented algorithms and the associated mining modules is
described in Appendix B.

Evaluation Features

In order to review and judge predictions made by SPARQL-ML, we implemented an evaluation
feature to compare the performance of learned models with several standard data mining eval-
uation methods. Every prediction automatically saves its evaluation results as a text file in the
/mining/results subfolder of ARQ. Besides the accuracy and the confusion matrix, the results
also contain the points of the ROC-curves and the area under the ROC-curve. We used these
measures to compare the results of our experiments in Chapter 6.



6
Evaluation

The goal of our evaluation was to show the usefulness and the simplicity of the integration of ma-
chine learning methods with the existing Semantic Web infrastructure. Furthermore, we wanted
to show that the combination of logic deduction and statistical induction holds over induction
only. To that end, we conducted four experiments:

1. Relational prediction experiment: test of our implementation on a simple relational dataset;

2. Business project success prediction experiment: evaluation of the prediction quality in a
synthetic dataset;

3. Semantic Web service domain prediction experiment: estimation of the classification per-
formance using a Semantic Web service dataset;

4. SVM-Benchmarking experiment: comparison of our approach with an approach based on
kernel methods used in Support Vector Machines.

In the following, we describe each of the experiments in detail giving insights into our exper-
imental setup as well as a discussion of the empirical results. We conducted all our experiments
on a two processor dual core 2.0GHz machine with 16GB RAM, 7200rpm disks, using a 64bit
operating system. Due to the advantages of relational learning methods for Semantic Web data,
which we described in detail in Chapter 3, we primarily used the Proximity mining module for
our evaluation.

6.1 Relational Prediction Experiment

We first conducted a simple prediction experiment to evaluate the applicability of relational learn-
ing methods for Semantic Web data. It is not focused on achieving superior results, but rather
serves as a proof of concept and illustrates the capabilities of SPARQL-ML. Because of the limited
possibilities of our dataset, we did not use an ontology for inferencing.
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6.1.1 Evaluation Procedure and Dataset
Our dataset contains descriptions about movies from the Internet Movie Database (IMDB).1 The
IMDB provides its data as raw text files that can be imported into various relational databases.
We converted this data to RDF and created a dataset that contains information about movies,
actors, directors, producers, studios, and their relations. We concentrated on movies released in
the United States from 1996 to 2001. We then split the data into a training and a test set according
to the following characteristics:

• Training Set: 1220 movies released in the United States from 1996 to 1999.

• Test Set: 736 movies released in the United States from 2000 to 2001.

Each movie contains an attribute indicating the opening-weekend receipt information. We
discretized this attribute, creating a positive class label for movies with a revenue of more than $2
million during the opening-weekend. The movies with less than $2 million during the opening-
weekend received a negative class label. The prior probability of a movie having a positive class
is 36%.

6.1.2 Step 1: Learning
We trained two classifiers on our test set, namely a Relational Bayes Classifier (RBC) and a Rela-
tional Probability Tree (RPT). Both classifiers are able to predict the discretized class label ?class.
The SPARQL-ML query for the model learning process is shown in Listing 6.1. To ensure that
every subgraph has enough structural information, we only used movies that have at least one
associated actor, director, producer, and studio.

1 PREFIX imdb: <http://www.imdb.com/>

2

3 CREATE MINING MODEL <http://www.example.org/models/imdb> {

4 ?movie RESOURCE TARGET
5 ?class DISCRETE PREDICT {’YES’,’NO’}

6 ?genre DISCRETE
7 ?actor RESOURCE
8 ?director RESOURCE
9 ?producer RESOURCE
10 ?studio RESOURCE
11 }

12 WHERE {

13 ?movie imdb:hasClass ?class .

14 ?movie imdb:hasGenre ?genre .

15 ?movie imdb:hasActor ?actor .

16 ?movie imdb:hasDirector ?director .

17 ?movie imdb:hasProducer ?producer .

18 ?movie imdb:hasStudio ?studio .

19 } USING <http://kdl.cs.umass.edu/proximity/rbc>

Listing 6.1: SPARQL-ML create query for IMDB box office revenue prediction.

1http://www.imdb.com
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In order to evaluate the correct representation of our resulting instances for the use in the
model learning process, we visualized a few example subgraphs created by the SPARQL-ML
query. The example subgraphs in Figure 6.1 clearly show the heterogeneous structure of our
data: a movie must have at least one association with an actor, director, producer, and studio, but
is allowed to have more than one. A propositional learning algorithm must have a fix amount of
attributes to train a model on such data, whereas a relational learning algorithm can deal with an
arbitrary amount of attributes and objects for each subgraph. This is possible due to the automatic
flattening of the data as introduced in Section 3.3.1.

Figure 6.1: IMDB instances represented as subgraphs.

6.1.3 Step 2: Prediction

After having successfully learned our models, we evaluated our classifiers on our test set with
the prediction query shown in Listing 6.2.

6.1.4 Results and Discussion

The Figure 6.2 shows the results of our experiment in terms of prediction accuracy (ACC; in
legend), Receiver Operating Characteristics (ROC; graphed), and the area under the ROC-curve
(AUC; in legend). The Receiver Operating Characteristics (ROC-curve) graphs the true positive
rate (y-axis) against the false positive rate (x-axis), where an ideal curve would go from the origin
to the top left corner (0,1), before proceeding to the top right one (1,1) [Provost and Fawcett, 2001].
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1 PREFIX imdb: <http://www.imdb.com/>

2 PREFIX sml: <java:ch.uzh.ifi.sparqlml.mining.pfunction.>

3

4 SELECT DISTINCT ?movie ?class ?prediction

5 WHERE {

6 ?movie imdb:hasClass ?class .

7 ?movie imdb:hasGenre ?genre .

8 ?movie imdb:hasActor ?actor .

9 ?movie imdb:hasDirector ?director .

10 ?movie imdb:hasProducer ?producer .

11 ?movie imdb:hasStudio ?studio .

12 ?prediction

13 sml:predict ( <http://www.example.org/models/imdb>

14 ?movie ?class ?genre ?actor ?director

15 ?producer ?studio )

16 }

Listing 6.2: SPARQL-ML predict query for the IMDB box office revenue prediction.

It serves as a prior-independent approach for comparing the quality of a predictor. The area under
the ROC-curve is, typically, used as a summary number for the curve.
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RBC: acc = 0.671, auc = 0.841
RPT: acc = 0.703, auc = 0.739

Figure 6.2: ROC-curves of the IMDB box office revenue prediction.

The learning algorithms shown are a Relational Probability Tree (RPT) and a Relational Bayesian
Classifier (RBC). The RPT has a slightly better accuracy than the RBC, but has a lower score for
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the area under the ROC-curve. Hence, we conclude that the RBC is a better choice for our movie
box-office prediction task. All in all, the results are not that impressive, which is why a future
experiment would have to include additional attributes in the model learning task, such as the
age of an actor, to achieve a better prediction quality.

6.2 Project Success Prediction Experiment
In order to demonstrate the enhancement of the data mining task with inferred data, we con-
ducted an experiment with a synthetic dataset. Due to the synthetic nature, we hope to better
understand the results and reduce any experimental noise, such as different correlations between
attributes and the class label. The goal of this experiment is to predict, whether a business project
will be successful or not.

6.2.1 Evaluation Procedure and Dataset
The constructed Business Project dataset consists of different business projects and the employees
of an imaginary company. The company occupies 40 employees, of which everyone has exactly
one out of 8 different occupations. Figure 6.3 shows part of the created business ontology in more
detail. 13 employees belong to the superclass Manager, whereas 27 employees belong to the
superclass Non-Manager.

We then created business projects and randomly assigned up to 6 employees to each project.
The resulting teams consist of 4 to 6 members. As a final step we randomly defined each project to
be successful or not, with a bias for projects being more successful, if more than three team mem-
bers are of the type Manager. We did not add any attributes to the employees to avoid a possible
correlation between the project outcome and the attributes. The resulting dataset contains 400
projects with different teams. The prior probability of a project being successful is 35%. We did a
50:50 split of the data and followed a single holdout procedure, swapping the roles of the testing
and training set and averaged the results. We applied a stratification technique to preserve the
original distribution of class labels in both sets.

6.2.2 Step 1: Learning
The only available feature for the learning process is the information given through the employees
assigned to the projects. Our target attribute for the prediction is the variable ?success. Since the
target attribute can either have the value ’YES’ or ’NO’, we learned a binary classifier. Listing 6.3
shows the whole SPARQL-ML create query for the model learning process.

We learned different classifiers to compare the performance of different learning algorithms
on our dataset. We compare the results of an RPT, an RBC and a k-Nearest-Neighbor algorithm.
As another varying parameter, we once learned a classifier without inferred triples for every
algorithm and once with additional inferred triples. We use the ontology illustrated in Figure 6.3,
which we presented in Chapter 3.

With the Jena reasoner disabled, the last triple (line 10) of the basic graph pattern in Listing
6.3 matches only the directly instantiated class of an employee. Therefore, the learning algorithm
does not receive any inferred triples as additional features. With the reasoner enabled, the same
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1 CREATE MINING MODEL <http://www.example.org/models/projectSuccess> {

2 ?project RESOURCE TARGET
3 ?success DISCRETE PREDICT {’YES’,’NO’}

4 ?member RESOURCE
5 ?class RESOURCE
6 }

7 WHERE {

8 ?project ex:isSuccess ?success .

9 ?project ex:hasTeam ?member .

10 ?member rdf:type ?class .

11 }

12 USING <http://kdl.cs.umass.edu/proximity/rpt>

Listing 6.3: SPARQL-ML create query for the business project success prediction.

Person

Non-ManagerManager

DivisionMgrProduc onMgrBoardMember SalesMgr SalesProduc onAdministra on Marke ng

Figure 6.3: Example business ontology.

Figure 6.4: Example subgraphs built from data a) without inferencing and b) with inferencing.

triple matches also the newly inferred triples, indicating whether an employee belongs to the
Manager or to the Non-Manager class. Figure 6.4 shows two abstract subgraphs resulting from
our SPARQL-ML query. The subgraph in Figure 6.4.a) contains only the explicit information
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given in our dataset, which consists of the direct types of an employee. The subgraph in Figure
6.4.b) is extended with additional inferred triples, which have been made explicit. As a result, the
subgraph contains more information although we used exactly the same dataset.

6.2.3 Step 2: Prediction

The prediction query shown in Listing 6.4 outputs the distinct projects, their actual value for the
property isSuccess, and the prediction given by our classifier. We again enabled the reasoner for
the use with our mining model that was learned with the additional inferred data.

1 PREFIX sml: <java:ch.uzh.ifi.sparqlml.mining.pfunction.>

2

3 SELECT DISTINCT ?project ?success ?prediction

4 WHERE {

5 ?project ex:isSuccess ?success .

6 ?project ex:hasTeam ?member .

7 ?member rdf:type ?class .

8 ?prediction

9 sml:predict ( <http://www.example.org/models/projectSuccess>

10 ?project ?success ?member ?class )

11 }

Listing 6.4: SPARQL-ML predict query for the business project success prediction.

count([type.class]=

ex:Non-Manager)>=4

count([type.class]=

ex:Manager)>=3

mode([hasTeam.

member])=ex:P17

P(YES)=0.008 (0/117)

P(NO)=0.992 (117/117)

P(YES)=0.976 (40/40)

P(NO)=0.024 (0/40)

P(YES)=0.25 (0/2)

P(NO)=0.75 (2/2)

P(YES)=0.767 (32/41)

P(NO)=0.233 (9/41)

Y

Y

Y

N

N

N

Figure 6.5: RPT of the business project success prediction experiment (with inferencing support).
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6.2.4 Results and Discussion
Due to the synthetic data it is quite obvious that without inferencing the model learning algorithm
will not have access to the ontological information, whether an employee is a manager or not, and
hence, should score worse. The results shown in Figure 6.6 confirm our assumptions. We present
the results of a Relational Probability Tree (RPT), a Relational Bayes Classifier (RBC), both with
and without inferencing, and as a baseline, we applied a k-Nearest Neighbor (k-NN) learning
algorithm with inferencing and k=9, using a maximum common subgraph isomorphism metric
[Valiente, 2002]. The k-NN belongs to the supervised learning algorithms and basically compares
every subgraph in the training set with every subgraph in the test set. For every instance in the
test set, we then only consider the top 9 subgraphs from the training set with the highest similarity.
We then used the most common class amongst the nearest neighbors as our final prediction. In
addition to the accuracy as a measure for the quality of the prediction, we also calculated the ROC-
curves shown in Figure 6.6, which show the sensitivity and specificity of the binary classifier. We
present the area under the ROC-curve as an additional measure for comparing the ROC-curves.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

RPT w/ inf: acc = 0.928, auc = 0.980
RPT w/o inf: acc = 0.783, auc = 0.835
RBC w/ inf: acc = 0.895, auc = 0.948

RBC w/o inf: acc = 0.873, auc = 0.934
kNN w/ inf: acc = 0.730, auc = 0.806

Figure 6.6: ROC-Curves of business project success prediction.

Figure 6.6 shows that the RPT with inferencing was able to outperform all other learning algo-
rithms concerning accuracy and AUC. The RPT has also the biggest differences in accuracy and
AUC between the results with and without inferencing. Therefore, we investigate the structure
and features of both RPTs to find the differences.

Figure 6.5 shows the RPT learned with inferencing support. The decision tree is able to detect
the best predictor provided by the inferred triples and performs the first and second binary split
on the information on how many employees are managers or non-managers.

The first feature splits the 200 subgraphs in our training set into 117 subgraphs with the class
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’NO’ and 83 subgraphs with the classes ’YES’ and ’NO’. The left branch leads to a leaf since no
further split is necessary. According to the computation in Section 3.3.1, the probability of a project
being successful at that specific leaf is 117+1

117+2 = 0.992. The remaining 83 subgraphs move down
the right branch where they get split again, leading to another leaf with 40 subgraphs with the
class ’YES’. The remaining 43 subgraphs are split a last time leading to the two final leafs of the
tree. The leafs of the RPT indicate the probability that a subgraph will be of a given class at that
specific leaf. In contrast to the expressiveness of the RPT with inferencing, the RPT built without
inferencing support in Figure 6.7 is bigger and less selective. The probabilities indicated at the
leafs are lower than the probabilities in Figure 6.5 and therefore less reliable. Hence, the structure
of the RPTs confirms that the enhancement of the data mining process with inferred triples is able
to outperform the same task without inferencing.

6.3 Semantic Web Service Domain Prediction Experiment
With our first set of experiments, we showed how our approach can be used for instance-based
prediction on a synthetic dataset. We now apply the same techniques to assess the ability of our
approach to correctly classify Semantic Web services in a real-world dataset.

Our dataset consists of Web services that use the OWL-S ontology to describe the concepts
and their relations to each other.2 OWL-S serves as a semantic mark up language for Semantic
Web services. According to the creators, the main motivation for the creation of this new ontology
were the following:

• Automatic Web service discovery.

• Automatic Web service invocation.

• Automatic Web service composition and interoperation.

Service

ServiceProfile

ServiceGrounding

ServiceModel

supports

(how to access it)

Figure 6.8: Top level of the service ontology after Martin et al. [Martin et al., 2004].

We expand the use of the dataset with a scenario that automatically classifies Web services.
In order to understand the feature selection for the learning process, it is necessary to introduce

2http://www.daml.org/services/owl-s/1.1/
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the basic structure of OWL-S in Figure 6.8. A service has a name and a text-description. The
service profile helps to identify what the service does, while the service grounding gives infor-
mation about how an agent can access the service, and the service model tells the user how the
service works. For our experiment we concentrate only on the service profile, which provides
information about the Input/Output-parameters of the service as we believe that they are most
informative for this task.

6.3.1 Evaluation Procedure and Dataset
We used the OWLS-TC v2.1 service retrieval test collection.3 We did not perform Semantic Web
service matchmaking, which is the main goal of the dataset, but used it to perform classification
of the given Semantic Web services into 7 different domains. Table 6.1 lists the domains and their
prior distribution in the dataset. The dataset contains a total of 578 Web service descriptions in
OWLS-S.

We performed a 10-fold cross validation. 90% of the data was used to learn a classification
model, and the remaining 10% to test the effectiveness of the learned model. This approach is
standard practice in Machine Learning. We again applied a stratification technique to preserve
the original distribution of class labels in all 10 sets.

Service domain Distribution (%)
weapon 4.33
food 4.33
communication 5.02
medical 8.99
travel 18.34
education 23.36
economy 35.63

Table 6.1: OWLS-TC service domain distribution.

6.3.2 Step 1: Learning
We first learned a Relational Probability Tree without inferencing and then enabled inferencing for
a second run. We defined the variable ?domain as our target attribute to be predicted. The service
profile with its input and output parameters serves as the available information for the model
learning process. Listing 6.5 shows the complete SPARQL-ML query used to learn the classifier.
By using OPTIONAL graph patterns it is possible to include services with no outputs or inputs in
the learning process. The additional OPTIONAL graph pattern for the rdfs:subClassOf triples
(lines 25, 30) enables us to run the same query with and without the support of an ontology.
With inferencing enabled, the SPARQL query finds additional matches for the OPTIONAL triple
patterns with the property rdfs:subClassOf by inferring supplementary types of service in-
and outputs.

3http://projects.semwebcentral.org/projects/owls-tc/
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Figure 6.9 visualizes the abstract subgraphs created by our CREATE MINING MODEL query.
Figure 6.9.a) represents the subgraph without inferred triples and 6.9.b) shows the additional
inferred triples outputSuper and inputSuper for the subgraph.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX service: <http://www.daml.org/services/owl-s/1.1/Service.owl#>

3 PREFIX profile: <http://www.daml.org/services/owl-s/1.1/Profile.owl#>

4 PREFIX process: <http://www.daml.org/services/owl-s/1.1/Process.owl#>

5

6 CREATE MINING MODEL <http://www.ifi.uzh.ch/ddis/services> {

7 ?service RESOURCE TARGET
8 ?domain DISCRETE PREDICT
9 {’communication’,’economy’,’education’,

10 ’food’,’medical’,’travel’,’weapon’}

11 ?profile RESOURCE
12 ?output RESOURCE
13 ?outputType RESOURCE
14 ?outputSuper RESOURCE
15 ?input RESOURCE
16 ?inputType RESOURCE
17 ?inputSuper RESOURCE
18 }

19 WHERE {

20 ?service service:presents ?profile .

21 ?service service:hasDomain ?domain .

22 OPTIONAL {

23 ?profile profile:hasOutput ?output .

24 ?output process:parameterType ?outputType .

25 OPTIONAL { ?outputType rdfs:subClassOf ?outputSuper . }

26 }

27 OPTIONAL {

28 ?profile profile:hasInput ?input .

29 ?input process:parameterType ?inputType .

30 OPTIONAL { ?inputType rdfs:subClassOf ?inputSuper . }

31 }

32 }

33 USING <http://kdl.cs.umass.edu/proximity/rpt> (’maxDepth’=6)

Listing 6.5: SPARQL-ML create query of the Semantic Web service classification.

6.3.3 Step 2: Prediction

The prediction query shown in Listing 6.6 outputs the distinct services, their correct domain, and
the prediction given by our classifier. We again enabled the reasoner for the use with our mining
model that was learned with the additional inferred data.
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1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX service: <http://www.daml.org/services/owl-s/1.1/Service.owl#>

3 PREFIX profile: <http://www.daml.org/services/owl-s/1.1/Profile.owl#>

4 PREFIX process: <http://www.daml.org/services/owl-s/1.1/Process.owl#>

5 PREFIX sml: <java:ch.uzh.ifi.sparqlml.mining.pfunction.>

6

7 SELECT DISTINCT ?service ?domain ?prediction

8 WHERE {

9 ?service service:presents ?profile .

10 ?service service:hasDomain ?domain .

11 OPTIONAL {

12 ?profile profile:hasOutput ?output .

13 ?output process:parameterType ?outputType .

14 OPTIONAL { ?outputType rdfs:subClassOf ?outputSuper . }

15 }

16 OPTIONAL {

17 ?profile profile:hasInput ?input .

18 ?input process:parameterType ?inputType .

19 OPTIONAL { ?inputType rdfs:subClassOf ?inputSuper . }

20 }

21 ?prediction

22 sml:predict ( <http://www.ifi.uzh.ch/ddis/services>

23 ?service ?profile ?domain ?output ?outputType

24 ?outputSuper ?input ?inputType ?inputSuper )

25 }

Listing 6.6: SPARQL-ML predict query of the Semantic Web service classification.

6.3.4 Results and Discussion

The averaged classification accuracy of the results of the 10 runs are given in Table 6.2. Through
inferencing we were able to improve the accuracy by 0.319. The more detailed results in Table
6.3 show even better that the model learning algorithm is able to improve the results for all 7
domains present in the dataset. We used the well-known data mining measures False Positives
Rate (FP Rate), Precision, Recall and F-measure that is the weighted harmonic mean of precision
and recall, to present the class-specific improvements. As the results of a paired one-tailed t-test
show, the differences for the Recall and F-measure are highly significant. The results for Precision
just barely misses significance at the 95% level.

Accuracy
w/o Inferencing 0.5102
w/ Inferencing 0.8288

Table 6.2: Accuracy for the Semantic Web service classification.

A closer look at the structure and binary features used in the RPT with inferencing, reveals
that the features are always computed with the help of the rdfs:subClassOf predicate, which
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Figure 6.9: Subgraphs of the Semantic Web service classification task, a) without inferencing and b) with inferencing.

speaks for the good predictive quality of the underlying concept hierarchy. An example RPT is
shown in Appendix D. Not less than 6 features are found inside the Suggested Upper Merged
Ontology (SUMO) [Pease et al., 2002] that is extremely broad in scope and serves as a generalized
upper ontology. Through the access to these newly inferred triples, the learning algorithm is
able to find corresponding super-classes for several domains. Table 6.4 lists some of the inferred
types that serve as binary features in the decision tree shown in Appendix D. New features
with better support for the domains food, travel and medical where generated. All the Semantic
Web services inside the weapon domain deal with the funding, giving or financing of weapons,
which is why the super class ChangeOfPossession is the best match to accurately identify
these services. The SUMO ontology did not provide any general predictors for the classification
of the remaining domains.

Domain FP Rate Precision Recall F-measure
w/o inf w/ inf w/o inf w/ inf w/o inf w/ inf w/o inf w/ inf

weapon 0.002 0.002 0.917 0.964 0.367 0.900 0.524 0.931
food 0 0.002 0 0.960 0 0.800 0 0.873
communication 0.007 0.004 0.819 0.900 0.600 0.600 0.693 0.720
medical 0.006 0.030 0 0.688 0 0.550 0 0.611
travel 0 0.069 1 0.744 0.245 0.873 0.394 0.803
education 0.538 0.090 0.311 0.716 0.904 0.869 0.463 0.786
economy 0.081 0.018 0.810 0.964 0.644 0.889 0.718 0.925
Average 0.091 0.031 0.551 0.848 0.394 0.783 0.399 0.807
t-test (paired, one-tailed) p=0.201 p=0.053 p=0.009 p=0.004

Table 6.3: Detailed, class-specific results for the Semantic Web service domain prediction.
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Service domain Super class of input/output parameter
food SUMO.owl#Food

medical SUMO.owl#BiologicalProcess

weapon SUMO.owl#ChangeOfPossession

travel travel.owl#Destination

Table 6.4: Detected super classes for the classification of service domains

6.4 SVM-Benchmark Experiment

The final experiment also deals with a real-world Semantic Web dataset containing information
about research communities and relations among them. The goal was to replicate the experiments
described by Bloehdorn and Sure [Bloehdorn and Sure, 2007] and to compare the results. In their
work, they introduce a framework for the design and evaluation of kernel methods that are used
in Support Vector Machines, such as SV M light.4 The framework provides various kernels for
the comparison of classes as well as datatype and object properties of instances. Moreover, it is
possible to build customized, weighted combinations of such kernels.

Our experiments, therefore, include two tasks: (1) prediction of the affiliation a person be-
longs to (person2affiliation), and (2) prediction of the affiliation a publication is related to (publi-
cation2affiliation).

6.4.1 Evaluation Procedure and Dataset

The dataset we used is based on the SWRC ontology,5 which is a collection of OWL annotations
for persons, publications, and projects, and their relations from the University of Karlsruhe.6 The
data consists of instances of the type Person, Publication, Topic, Project, and ResearchGroup. 177
instances have type Person with an affiliation to one of the four research groups, whereas 1155
instances have type Publication. Table 6.5 shows the prior distribution of the research group af-
filiations of persons and publications. For the person2affiliation task, the nodes and relations
we used for the remaining subgraph contain the worksAtProject and worksAtTopic object
properties. We also include the publication object property pointing to the publications of a given
person. We added the worksAtTopic object property of the Person class and used it instead
of the workedOnBy object property of the Topic class to simplify the relations of the resulting
subgraphs. For the publication2affiliation task, we used the isAbout and author object prop-
erties pointing to associated topics and authors respectively. In order to predict the affiliation a
publication is related to, we defined the affiliation to be the research group, where the major part
of the authors of this publication belong to. Bloehdorn and Sure defined the affiliation to be the
research group where one of the authors is affiliated with.

4http://svmlight.joachims.org/
5Semantic Web for Research Communities available at http://ontoware.org/projects/swrc/
6http://www.aifb.uni-karlsruhe.de/about.html
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Research Group Persons Publications
Business Information and Comm. Systems (id1) 73 152
Efficient Algorithms (id2) 28 121
Knowledge Management (id3) 60 839
Complexity Management (id4) 16 43
Total 177 1155

Table 6.5: Distribution of research group affiliations in the SWRC metadata.

6.4.2 Step 1: Learning

We applied an RBC and an RPT learning algorithm to both tasks. The full SPARQL-ML query
used for the person2affliation prediction is shown in Listing 6.7. We again used the OPTIONAL
clause for the object properties to include persons without any relations to projects, topics, or
publications.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX swrc: <http://swrc.ontoware.org/ontology#>

3

4 CREATE MINING MODEL <http://www.ifi.uzh.ch/ddis/affiliations> {

5 ?person RESOURCE TARGET
6 ?group RESOURCE PREDICT
7 ?project RESOURCE
8 ?topic RESOURCE
9 ?publication RESOURCE
10 ?personType RESOURCE
11 ?publicationType RESOURCE
12 }

13 WHERE {

14 ?person swrc:affiliation ?group .

15 ?person rdf:type ?personType .

16 OPTIONAL { ?person swrc:worksAtProject ?project } .

17 OPTIONAL { ?person swrc:worksAtTopic ?topic } .

18 OPTIONAL {

19 ?person swrc:publication ?publication .

20 ?publication rdf:type ?publicationType

21 }

22 }

23 USING <http://kdl.cs.umass.edu/proximity/rpt>

Listing 6.7: SPARQL-ML create query for the research group affiliation prediction.

The resulting subgraph instances created by SPARQL-ML are shown in Figure 6.10. We chose
a different way to illustrate the subgraphs because of the increased amount of nodes in the sub-
graph.
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Figure 6.10: Example subgraphs built for the research group affiliation prediction, a) without inferencing and b) with
inferencing.

6.4.3 Step 2: Prediction

The prediction query shown in Listing 6.8 outputs the persons, the actual research group they are
affiliated with, and the prediction given by our classifier.

1 PREFIX sml: <java:ch.uzh.ifi.sparqlml.mining.pfunction.>

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 PREFIX swrc: <http://swrc.ontoware.org/ontology#>

4

5 SELECT DISTINCT ?person ?group ?prediction

6 WHERE {

7 ?person swrc:affiliation ?group .

8 ?person rdf:type ?personType .

9 OPTIONAL { ?person swrc:worksAtProject ?project } .

10 OPTIONAL { ?person swrc:worksAtTopic ?topic } .

11 OPTIONAL {

12 ?person swrc:publication ?publication .

13 ?publication rdf:type ?publicationType

14 } .

15 ?prediction

16 sml:predict ( <http://www.ifi.uzh.ch/ddis/affiliations>

17 ?person ?group ?personType ?project ?topic

18 ?publication ?publicationType )

19 }

Listing 6.8: SPARQL-ML predict query of the research group affiliation prediction.
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6.4.4 Results and Discussion
The RBC clearly outperformed the RPT, hence, we concentrate only on the results given by the
RBC. For both tasks, our tests with inferencing have shown that the additional inferred triples do
not increase the prediction performance. Neither the types of a person nor the types of publica-
tions were good predictors for the research group affiliation.

Table 6.6 summarizes the macro-averaged results that were estimated via Leave-One-Out
Cross-Validation (LOOCV) according to [Bloehdorn and Sure, 2007]. The first row represents the
best results given by Bloehdorn and Sure with the same features, calculated with a Support Vec-
tor Machine and customized kernels for Semantic Web data. The second and third row show
our results with an RBC with and without inferencing. As Table 6.6 shows, our method clearly
outperforms the kernel-based approach in terms of prediction error, recall, and F-Measure (F1),
while having slightly lower precision. We argue that the inferior results of the RBC with inferred
triples are due to a possible overfitting of the classifier.

The ease-of-use of our approach, which basically consists of writing a simple SPARQL-ML
query, is a major benefit compared to the complex task of choosing from various kernels, kernel
modifiers, and parameters.

person2affiliation publication2affiliation

algorithm err prec rec F1 algorithm err prec rec F1

sim-ctpp-pc, c=1 4.49 95.83 58.13 72.37 sim-cta-p, c=10 0.63 99.74 95.22 97.43
RBC w/o inf 3.53 87.09 80.52 83.68 RBC w/o inf 0.09 98.83 99.61 99.22
RBC w/ inf 3.67 85.72 80.18 82.86 RBC w/ inf 0.15 97.90 99.25 98.57

Table 6.6: LOOCV results for the person2affiliation and publication2affiliation tasks.



7
Limitations

In this chapter we discuss some of the major limitations of our approach and how they could be
tackled to improve the use and performance of our implementation.

7.1 Conceptual Limitations
A major challenge was to find good datasets that can be used for data mining. To gain a good un-
derstanding of the data and to create models with reasonable support we are in need of complete
and noise-free datasets. Most available datasets are not carefully selected nor up-to-date, hence,
the task of predicting anything from this data will not yield good results. During this thesis, we
came across a lot of datasets that were either incomplete or simply not expressive enough to allow
an accurate prediction. Hence, we argue, that further experiments on data mining from Semantic
Web data could be greatly facilitated with the creation of common datasets for the evaluation and
comparison of different approaches.

The benefit of our approach is based on the expressiveness of the underlying ontologies. While
ontologies with a deep inheritance hierarchy can outperform data mining without ontology sup-
port, the results for the prediction task are less likely to improve by applying an ontology with a
flat hierarchy with less expressive concepts. Therefore, the careful and exact creation of ontologies
is an important task to improve the results of data mining from Semantic Web data.

7.2 Technical Limitations
A technical limitation of our implementation is the inferior performance for the data mining task
on large datasets. By exporting the data into the appropriate format for the import into a data
mining module, we allow the use of a stand-alone knowledge discovery tool. However, this ad-
ditional step takes more time than the direct import of the data into the mining module. To over-
come this limitation, without sacrificing the benefit of an intermediate format, we could create a
new parameter that allows the user to choose which technique he would like to use.





8
Conclusions and Future Work

This thesis presented a novel approach we call SPARQL-ML. It extends traditional SPARQL with
data mining support to perform knowledge discovery in the Semantic Web. We showed how
our framework enables to predict unseen data in a new dataset, based on the results of a mining
model. In particular, we demonstrated how models trained by statistical relational learning meth-
ods (SRL) such as Relational Probability Trees (RPTs) and Relational Bayesian Classifiers (RBCs)
outperform models not taking into account the additional information about the links between
objects. Additionally, we improved the results of learning algorithms with the integration of im-
plicit data, which can be made explicit through inferencing. We presented an implementation of
our theoretical framework into ARQ/Jena, which was then used for our evaluation of SPARQL-
ML.

Our approach is extensible in terms of the supported data mining algorithms, and generic
as it is applicable for any Semantic Web datasets. We fully analyzed SPARQL-ML on synthetic
and real-world datasets to show its excellent prediction and classification quality, as well as its
superiority to other related approaches, such as kernel methods used in Support Vector Machines.
Finally, given the usefulness and the ease of use of our novel approach, we believe that SPARQL-
ML could serve as a standardized way on how to perform data mining tasks on Semantic Web
data.

8.1 Future Work
Future work will investigate further enhancements of SPARQL-ML, such as the introduction of
a DELETE query to allow the removal of learned models. The evaluations in this thesis concen-
trated mainly on Proximity as a mining module, but other relational learning tools like NetKit1 or
Alchemy2 can also be integrated into our extension. This would ultimately help to easily compare
different learning algorithms on the same dataset. A tighter implementation of Weka would also
include the research of different propositionalization strategies for Semantic Web data. Instead
of relying on existing data mining tools, a future goal is the design and integration of self-made

1http://www.research.rutgers.edu/sofmac/NetKit.html
2http://alchemy.cs.washington.edu/
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Semantic Web learning algorithms which are influenced by the benefits of relational learning al-
gorithms and the logic deduction capabilities offered by ontologies.

As another focus of our future research, we intend to investigate which features of an ontology
could help to improve the performance of predictions. While our research has shown that a
deep concept hierarchy is a reliable prediction factor, we have not yet empirically shown how the
implicit information given by object or data properties could improve the data mining task. As
another important field of future work, we can think of generating useful Semantic Web datasets
for data mining purposes. This could lead to the creation of new datasets or the enhancement of
exiting datasets with more expressive ontologies.



A
SPARQL-ML Grammar Extension

1 void Query() : { }

2 {

3 Prologue()

4 ( SelectQuery() | ConstructQuery() | DescribeQuery()

5 | AskQuery() | CreateQuery() )

6 }

Listing A.1: Grammar extension of the Query method to include the CreateQuery in the list of possible query types.

1 void CreateQuery() : { Node v ; Node miningModel; int type;

2 int predict; ArrayList nomValues ;}

3 {

4 <CREATEMININGMODEL>

5 { getQuery().setQueryCreateType() ; }

6 ( miningModel = IRIref() {getQuery().setMiningModel(miningModel);} )

7 <LBRACE>

8 (

9 (v = Var() { predict=0; type = -1; nomValues = new ArrayList(); }

10 (

11 (<RESOURCE> { type=0;} )

12 (<PREDICT> {predict=1;} | <TARGET> {predict=2;})?

13 (nomValues = NomList())?

14 { getQuery().addMiningVar(v, type, predict, nomValues); }

15 |

16 (<DISCRETE> { type=1; } )

17 (<PREDICT> {predict=1;} )?

18 (nomValues = NomList())?

19 { getQuery().addMiningVar(v, type, predict, nomValues); }

20 |

21 (<CONTINUOUS> { type=2; } )

22 (<PREDICT> {predict=1;} )?

23 { getQuery().addMiningVar(v, type, predict, nomValues); }

24 )

25 ) +
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26 { getQuery().setQueryResultStar(false) ; }

27 )

28 <RBRACE>

29 ( DatasetClause() )*
30 WhereClause()

31 SolutionModifier()

32 UsingClause()

33 }

Listing A.2: The CreateQuery extension defines the grammar of our CREATE MINING MODEL query. It allows
the specification of variables and their content types for the model learning process.

1 ArrayList NomList() : {Token t;

2 ArrayList nomList = new ArrayList(); String value;}

3 {

4 (

5 <NIL>

6 |

7 <LBRACE>

8 t = <STRING_LITERAL1>

9 { value = stripQuotes(t.image) ; nomList.add(value) ; }

10 (<COMMA> t = <STRING_LITERAL1>

11 { value = stripQuotes(t.image) ; nomList.add(value) ; } )*
12 <RBRACE>

13 )

14 { return nomList ; }

15 }

Listing A.3: The NomList extension allows to specify a list of nominal values for a DISCRETE variable in the
CREATE MINING MODEL query.

1 void UsingClause() : {Node miningAlg; ExprList args ;}

2 {

3 <USING> ({ miningAlg = IRIref(); }

4 { getQuery().setMiningAlg(miningAlg) ; })

5 ( args = ArgList() { getQuery().setMiningAlgArgs(args); } ) ?

6 }

7 }

Listing A.4: The UsingClause allows to specify the learning algorithm and its parameters.



B
Metadata of the Implemented
Mining Modules and
Algorithms

1 <smo:MiningApp rdf:about="http://www.cs.waikato.ac.nz/ml/weka">

2 <smo:hasAppName>Weka</smo:hasAppName>
3 <dc:creator>The University of Waikato</dc:creator>

4 <smo:hasClass>ch.uzh.ifi.sparqlml.mining.module.weka.WekaApp</smo:hasClass>

5 </smo:MiningApp>

6

7 <smo:MiningApp rdf:about="http://kdl.cs.umass.edu/proximity">

8 <smo:hasAppName>Proximity</smo:hasAppName>
9 <dc:creator>University of Massachusetts Amherst -

10 Knowledge Discovery Laboratory</dc:creator>

11 <smo:hasClass>

12 ch.uzh.ifi.sparqlml.mining.module.proximity.ProximityApp

13 </smo:hasClass>

14 <smo:hasConnection>localhost:30000</smo:hasConnection>

15 </smo:MiningApp>

Listing B.1: Metadata of the implemented mining modules (Weka and Proximiy) after the definitions in our SPARQL
mining ontology (SMO).
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1 <smo:Algorithm rdf:about="http://www.cs.waikato.ac.nz/ml/weka/j48">

2 <smo:hasAlgorithmName>J48</smo:hasAlgorithmName>
3 <smo:hasMiningApp rdf:resource="http://www.cs.waikato.ac.nz/ml/weka"/>

4 <smo:hasClass>weka.classifiers.trees.j48</smo:hasClass>

5 </smo:Algorithm>

6

7 <smo:Algorithm rdf:about="http://www.cs.waikato.ac.nz/ml/weka/m5p">

8 <smo:hasAlgorithmName>M5P</smo:hasAlgorithmName>
9 <smo:hasMiningApp rdf:resource="http://www.cs.waikato.ac.nz/ml/weka"/>

10 <smo:hasClass>weka.classifiers.trees.m5p</smo:hasClass>

11 </smo:Algorithm>

12

13 <smo:Algorithm

14 rdf:about="http://www.cs.waikato.ac.nz/ml/weka/linearRegression">

15 <smo:hasAlgorithmName>Linear Regression</smo:hasAlgorithmName>
16 <smo:hasMiningApp rdf:resource="http://www.cs.waikato.ac.nz/ml/weka"/>

17 <smo:hasClass>weka.classifiers.functions.LinearRegression</smo:hasClass>

18 </smo:Algorithm>

19

20 <smo:Algorithm rdf:about="http://kdl.cs.umass.edu/proximity/rbc">

21 <smo:hasAlgorithmName>Relational Bayes Classifier</smo:hasAlgorithmName>
22 <smo:hasMiningApp rdf:resource="http://kdl.cs.umass.edu/proximity"/>

23 <smo:hasClass>kdl.prox3.model.classifiers.RBC</smo:hasClass>

24 </smo:Algorithm>

25

26 <smo:Algorithm rdf:about="http://kdl.cs.umass.edu/proximity/rpt">

27 <smo:hasAlgorithmName>Relational Probability Tree</smo:hasAlgorithmName>
28 <smo:hasMiningApp rdf:resource="http://kdl.cs.umass.edu/proximity"/>

29 <smo:hasParam

30 rdf:resource="http://kdl.cs.umass.edu/proximity/rpt#maxDepth"/>

31 <smo:hasParam

32 rdf:resource="http://kdl.cs.umass.edu/proximity/rpt#numThresh"/>

33 <smo:hasParam

34 rdf:resource="http://kdl.cs.umass.edu/proximity/rpt#pVal"/>

35 <smo:hasClass>kdl.prox3.model.classifiers.RPT</smo:hasClass>

36 </smo:Algorithm>

Listing B.2: Metadata of the implemented algorithms after the definitions in our SPARQL mining ontology (SMO).
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Accessing SPARQL-ML with Java

1 // Create new QueryML object with a CREATE MINING MODEL

2 // query string (QueryString).

3 QueryML query = QueryFactoryML.create(QueryString);

4

5 // Create query execution for the query object and the input data (DataModel).

6 QueryExecutionML qe = QueryExecutionFactoryML.create(query, DataModel);

7

8 // Execute create statement and receive the metadata of the learned model.

9 Model trainModel = qe.execCreate();

10

11 // Write the model to the output.

12 trainModel.write(System.out, "RDF/XML-ABBREV");

Listing C.1: Example on how to access the create statement of SPARQL-ML from Java source code.

1 // Create new QueryML object with the PREDICT query string (QueryString).

2 QueryML query = QueryFactoryML.create(QueryString);

3

4 // Create query execution for the query object and the input data (DataModel).

5 QueryExecutionML qe = QueryExecutionFactoryML.create(query, DataModel);

6

7 // Execute select query and receive the ResultSet.

8 ResultSet results = qe.execSelect();

9

10 // Write the results to the output.

11 ResultSetFormatter.out(System.out, results, query);

Listing C.2: Example on how to access the predict statement of SPARQL-ML from Java source code.
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Figure D.1: RPT on inferred data for the Semantic Web service domain prediction.
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The enclosed CD-ROM contains all the data created during this thesis. Table E.1 describes the
content of the different folders in more detail.

Folder Content
Code Contains the source code of SPARQL-ML and other

helper programs used for data preprocessing.
Ontology Contains the SPARQL Mining Ontology (SMO)

with the necessary metadata files for SPARQL-ML.
Experiments Contains the data used for our experiments in Chapter 6,

as well as the detailed results and outputs of SPARQL-ML.
Text Contains a digital version of this thesis and additional documentation.

Table E.1: Table of Contents of the enclosed CD-ROM.
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