
CocoViz: Towards Cognitive Software Visualizations

Sandro Boccuzzo, Harald Gall
Department of Informatics, University of Zurich

{boccuzzo, gall}@ifi.unizh.ch

Abstract

Understanding software projects is a complex task. There
is an increasing need for visualizations that improve com-
prehensiveness of the evolution of a software system. This
paper discusses our recent work in software visualization
with respect to metaphors. Our goal is to use simple and
well-known graphical elements known from daily life such
as houses, spears, or tables to allow a user a quick and
intuitive understanding of a given visualization via their
proportions. We present a software metrics configurator
that handle different metaphors and allows optimizations to
their graphical representation. The results so far show that
large systems can be visualized effectively with metaphor
glyphs, yet more case studies and more metaphor glyphs
are required for a better understanding for offering a simple
and cognitive visual understanding of a software system.

1 Introduction

As software evolves and becomes more and more com-
plex, program comprehension moveover a major concern in
a software project. The amount of data and the complexity
of relationships between the entities are unmanageable for
engineers without effective tool support.

Additionally, stakeholders are interested in different as-
pects of a software project. Some of them might not be
interested in the entire complexity at all, but need a reflec-
tion of the state of a project (e.g., project managers). Oth-
ers might like to have some profound introduction about
the project, while not even being allowed to access the
source code (e.g., auditors, potential customers). All of
them can benefit from visualizations that support them in
their work. There is a great opportunity in providing views
on a software project to all of the different stakeholders,
offering them a comprehensive status on their current soft-
ware project. Software visualization aims to help the stake-
holders in understanding all the gathered information about
a project in aggregating the information into effective visual
representations.

The main contribution of this paper is a visualization ap-
proach we call CocoViz that offers improved software com-
prehension compared to abstract graphical representation
used in other approaches such as starglyphs [4] or parallel
coordinates [9]. Furthermore we address shortcomings of
the static polymetric views [13] with 1) a dynamic approach
allowing to interactively filter non relevant elements; 2) a
normalization approach to represent well-designed classes
as well-shaped metaphors (Figure 1b) and thereby enabling
comparability of projects through visualization even if the
analyzed context differs substantially.

Figure 1. House Metaphor showing a) a miss-
shaped b) a well-shaped glyph.

The remainder of this paper is organized as follows. In
Section 2 we describe the concepts of the CocoViz visual-
ization, the key visualization and the navigation concepts
used to map software metrics to cognitive metaphors. In
Section 3 we validate our approach with a case study of the
Mozilla project. We discuss related work in Section 4 and
finalize with our conclusions and future work in Section 5.

2 CocoViz Visualization

CocoViz maps particular metrics to graphical elements
in 2D and 3D following cognitive metaphors. For that it
uses a software metrics configurator (to be described later
in this section) to deal with appropriate as well as effective
metrics combinations and layouts.



Such metrics mapping has already been successfully ap-
plied in the RelVis approach [18] and in Polymetric Views
by Lanza et al. [13]. Based on these work, the CocoViz
approach further investigates the usefulness of the third di-
mension and other possible improvements with respect to
the comprehension of a visualized software project.

In the following we consecutively discuss several key vi-
sualization and navigation concepts used in our approach.
The concepts are explained in the order they build a visu-
alization in CocoViz: 1) Metrics Clusters; 2) metrics con-
figuration; 3) Glyphs; 4) Layouts; 5) Use of 2D and 3D Di-
mensions; 6) Releases and evolution across releases and 7)
Navigation, Tagging of entities (elements) and visualization
states.

2.1 Metrics Clusters

Metrics Clusters represent a set of specific metrics which
together enable potential explanations for circumstances in
the software system under investigaion. Pinzger et al. [17]
used Metric Clusters as a solution to build condensed views
on source code and multiple release history data [5]. Lanza
et al. [13] used similar concepts in their polimetric views.
According to the results in [17], a combination of meaning-
fully clustered metrics can potentiate the comprehensibility
of a software visualization. For example, combining two
structural metrics such as number of functions and lines of
code and two complexity metrics such as Cyclomatic Com-
plexity [16] and Halstead Programm Difficulty [8] accentu-
ate complex software components that exhibit a variety of
functionality. Such components are difficult to maintain and
evolve and are candidates for design anomalies such as God
Classes [6].

Another metrics cluster combines relationship metrics
that measure fan-in and fan-out. The resulting view points
out components that are more important based on the ser-
vices they provide. Components providing many services
are often more vulnerable to maintenance and often demand
for special care.

Metric Clusters are provided as preset mappings for our
metric configurator. This offers an easy way to apply a clus-
ter to different visualizations and at the same time allows
enhancing or adjusting a cluster with other metrics to sat-
isfy the proper needs.

2.2 Metrics Configuration SV Mixer

The Software Visualization Mixer (SV Mixer) adopts the
concept of an audio mixer and equalizer for software vi-
sualization. All audio mixers process the level, tone, and
dynamics of audio signals with equalizers, filters, limiters,
and faders before sending the result to an amplifier. Our
software visualization mixer processes the particular soft-

ware metrics with filters, normalizers, and transformers be-
fore composing a visualization. The idea is to quickly ad-
just the metrics to fulfill our interests while perceiving the
view. Similar to the audio mixer channels, every visualiza-
tion has a specified set of visual representations. To stress
the comparability of visualizations in the course of a project
the SV Mixer configurations can be saved. Allowing default
configuration for a software project to be defined at the be-
ginning and used throughout the whole project. For general
purposes preconfigurated presets can be used. We currently
investigating on preconfigurated presets for know use cases
like the ones described by Marinescu [15].

2.2.1 Filtering Metrics

A visual representation is the visual object (e.g., a rooftop)
that represents the metric value in a visualization. A met-
ric can be mapped to a visual representation. To reduce
the selected elements to an adequate amount a simple fil-
tering method allows one to specify an interval of interest.
An interval of interest is specified for every metric map-
ping and represents the maximum and minimum value to
take into consideration. As in an audio mixer, every chan-
nel slider limits the interval of interest for a mapped met-
ric with its minimum and maximum value, offering an easy
and fast altering possibility of the data selection. In our
SV Mixer, every minimum and maximum slider by default
defines eight intervals. In the default configuration the in-
tervals are calculated based on a linear progression from
the smallest available value of the mapped metric up to the
highest. The slider allows one to quickly reduce the interval
of interest by e.g., the highest or lowest 33% of elements.

To calculate the filter threshold value (threshold ), we use
the minimal (minMV ) and the maximal (maxMV ) met-
ric values as well as the current (curSV ) and its maxi-
mal (maxSV ) slider value. The threshold value for every
mapped metric is then calculated via linear regression (but
not limited to).

threshold = minMV +
curSV ∗ (maxMV −minMV )

maxSV

2.2.2 Normalizing and Scaling Metrics

Beside filtering the selection of data, we further imple-
mented a concept to normalize the mapped metrics to each-
other. The idea is similar to an audio mixers pitcher: With
the pitcher different audio sources are stretched or con-
densed to bring each-other in tune. Similarly we want to
tune the visual representation values of the mapped met-
rics to meet a specific project’s needs. With the concept
of normalization the mapped metric for specific software
projects are customized to represent a well-shaped piece of
the software as a well-shaped glyph. Furthermore this con-
cept enables comparability of projects through visualization



even if the analyzed context differs substantially. As for
the filters a mapped metrics normalization factor is adjusted
with its slider. In the default configuration a linear func-
tion is used. The default normalization value (scalV ) for
each metric is calculated with the minimal (minMV ) and
the maximal value (maxMV ) as well as the current scalling
(curSV ) slider value of the mapped metric:

scalV = minMV +
(maxMV −minMV )

curSV

Currently, we are investigating if non-linear regression fit as
well for normalization.

2.3 Metaphors and Glyphs

Glyphs are visual representations of software metrics.
They are generated out of a group of visual representa-
tions together with the corresponding metrics mapping. The
mapped metrics values then specify the glyphs representa-
tion. In the following we introduce glyphs representing a
metaphor, that attempt to visualize a software in a compre-
hensible way, accomplishing a faster cognition of the rele-
vant aspects compared to glyphs without a metaphor (e.g.,
Starglyphs [4]). A viewer can so quickly distinguish a well
shaped glyph from a miss-shaped one. With accurately nor-
malized metrics the resulting visualization intuitively pro-
vides orientation about good-designed aspect in the soft-
ware and distressed ones. In the following we explain three
metaphors in further detail. Example visualizations are seen
in Figure 3, where the visual representations are mapped to
two structural metrics and two complexity metrics.

2.3.1 House Metaphor

The idea of this metaphor is to represent software enti-
ties such as classes as houses. A well-designed class then
looks like a well-shaped house, whereas a problematic class
results in a miss-shaped house. To build such a house
metaphor four parameters together with their metrics map-
ping are used: Two metrics are mapped to the width and
height of the roof, whereas the other two metrics repre-
sent the width and height of the body of the house. Figure
2 shows clearly some complex classes, represented by the
large cylinders. Most of the them have comparably small
cone width (number of functions) and medium to large cone
heights (lines of code). Such glyphs represent software
components that condense reasonably-sized complex code
on few functions. These components might be considered
problematic candidates to maintain and evolve.

We investigated visualizations with the house metaphor
with 2 and 3 dimensions. In the 2D visualization the roof
is drawn as a triangle with metric values for its width and
height and the body of the house as a rectangle with further

metric values for its width and height. In the 3D representa-
tion a cone with its height and diameter represents the roof
and a cylinder with its height and diameter the body (Figure
3a). With adequately normalized metrics, a well-designed
class results in a cylinder or rectangle with a slightly big-
ger cone or triangle on top of it (Figure 1b). Problematic
classes results in a variety of miss-shaped glyphs (Figure
1a). Interestingly enough in some cases the miss-shaped
glyph looks more like other metaphors such as a conifer
or fir tree or a church tower. With adequately normalized
metrics those special cases of miss-shaped glyphs represent
special categories of classes, which can be easily spotted in
a visualization.

2.3.2 Table Metaphor

The table metaphor is based on the idea of having soft-
ware entities such as classes represented as tables. A well-
designed class looks like a well-leveled table, whereas a
problematic class results in a non-planar table. To build
the table metaphor, four parameters together with their met-
rics mapping are used; each of the metric is mapped to a
table-leg (Figure 2b). The table-legs are represented as four
cylinders with a rectangle as tabletop placed on top of them.
With adequately normalized metrics a well-designed class
is perceived as a well shaped table. Problematic classes
can easily be recognized in tabletops bevelled to the right,
left, front or back. The table metaphor offers an interesting
way to perceive strange software components with a simple
metahpor-based glyph showing even or leaning tables.

In the table metaphor (Figure 3b) the same cohesion is
not as obviously visible as in the house metaphor. The ta-
ble metaphor is more complex to understand for the viewer,
even though the metrics are simply mapped to the table legs.
It is hard to distinguish which metric represents which leg
while navigating around in the system. Still, with the table
metaphor well-formed and miss-formed tables can be eas-
ily spotted, what offers a good and intuitive overview where
candidates for design anomalies might be and by tagging
such candidates they can be quickly found again in other
more perceivable views.

2.3.3 Spear Metaphor

In the spears metaphor a well-designed software entity
looks like a well-formed spear. To build this metaphor, three
parameters together with their metrics mapping correspond
to the spear shaft’s width and height and to its spike height
(Figure 2c). The spear shaft is represented as a cylinder
with two spikes represented as cones on both ends of the
shaft. A miss-shaped glyph then looks like a very long or
a very wide spear. Beyond that representation additional
metrics can be mapped on the spear stripes. On the negative



Figure 2. Mapped software metrics to glyphs a) House- b) Table- c) Spear-Metaphor

side, similar to the table metaphor, it does not have any fur-
ther glyphs, which can additionally categorize the problem-
atic classes. In (Figure 3c) the height of a spear is mapped
to the number of functions, the width to the lines of code
and the spear point represents the Cyclomatic Complexity
metric. All the small fat spears that are visible in the view
right away therefore represent large classes with few func-
tions. If they further have a notably sized spear top, they are
components that might be considered problematic to main-
tain and evolve. Additionally to the house metaphor, we
mapped access and bug metrics to the stripes. If a problem-
atic candidate beside being large and complex also feature
many bug reports and many incoming accesses (orange to
red strips) that emphasize the candidate as already problem-
atic and critical components.

2.4 Layouts

Layouts are an essential part in our approach as in the
fewest cases a visualization is built out of one glyph only. In
the majority of cases we need to visualize thousands of soft-
ware entities. To prevent the thousands of glyphs from over-
lapping or hiding relevant aspects and sustain the compre-
hensibility we need to layout them accordingly. We inves-
tigated different layout algorithms. Basic layout algorithms
such as arrangements in circles or chessboard accomplish
the intent only to a certain level.

To prevent dispensable overlapping more complex lay-
outs are needed. Furthermore layout algorithms can use vi-
sual representations (e.g., coordinate-axes) through which
glyphs can be layouted according to mapped metrics. A
layout can as well be useful for a specific case only. The
primary goal thus is to adequately present a specific set of
glyphs based on the situation. In addition to that differ-
ent glyphs clusters can have their own layout so that glyphs
from one model can be arranged differently than glyphs
belonging to an other. In our project, the partners from
the Università della Svizzera Italiana, Richard Wettel and

Michele Lanza, experiment on such layout algorithms that
allow one a better observation of the glyphs in a visualiza-
tion of large sets of software entities [20].

2.5 2D and 3D Dimensions

In our approach the third dimension is used for a gen-
eral navigation, filtering and selection, before flipping to a
detailed representation in a two-dimensional view. We do
so as a three-dimensional navigation space has the benefit
of dipping into the visualization in a horizontal or vertical
view. Software structures can be perceived on a voyage in
a virtual world. Nevertheless a third dimensional view has
the drawback that too much information and overlapping
glyphs can menace to spot relevant aspects. As the met-
ric mapping for the third dimension is not always beneficial
we switch to a two-dimensional visualizations whenever we
can show proportions and relevant aspects in a more cogni-
tive way. With this approach we stay as flexible as possible
and combine the best of the two worlds.

2.6 Releases and Evolution over Time

We visualize time in two different ways, dependent from
the amount of input data:
1) We presented all the elements in one view, laid out ac-
cordingly on a time axes, whenever changes within evolved
software components need to be compared.
2) Whenever a greater amount of components is visualized
and confusion arises within the components belonging to
different releases, we visualize the data set as a set of vi-
sual snapshots. We then can switch through those snapshots
and get a small animation like presentation showing the key
changes between releases.

As changes made to components between releases are
harder to perceive in the snapshots and the all in one view in
general offers superior comprehensibility and comparison,
we prefer the first approach on small data sets.



Figure 3. Comparison of not normalized a) House- b) Table- c) Spear-Metaphors

2.7 Tagging Glyphs and Visualization States

In CocoViz we implemented a concept to preserve vi-
sualization states or remember interesting glyphs for later
analysis. We do so since during the navigation within a
visualization, relevant aspects are spotted and need to be
remembered before proceeding with the interaction. The
remembered aspects can then later be analyzed or shared
within the working group. To dynamically interact in a
three-dimensional view such a functionality becomes far
more important as it allows one to mark the interacting trail
and prevents from getting lost within the visualization. Fur-
thermore such a functionality allows to switch to other visu-
alizations and further examine the spotted aspects from an-
other view. Our approach offers two interoperability modes
for this issue.

1) We offer one to tag an interesting element while nav-
igating through a view. With this interoperability specific
elements can be remembered for later analysis or visualiza-
tion in another view.

2) Allows one to save the actual view like a snapshot. A
snapshot is then used to go back to a certain state or to share
spotted aspects within the working group.

3 Case Study

To validate our CocoViz approach we visualized the dif-
ferent metaphors with data sets used in our other works. We
use Mozilla as the case study; in particular the same data set
as utilized in similar projects by Pinzger et al. [18] and Fis-
cher et al. [5]. The data set contains the full Mozilla open
source project program code with around 1.7 million lines
of code. The used evolutionary data set consists of seven
Mozilla releases from version 0.92 to version 1.7. The met-
rics were calculated per release.

In the following we have a closer look at the Mozilla
Project, using the spear metaphor. We start our inspection
with a size-complexity-mapping (System Hot-Spot-View).
This view shows us complex software components that con-
dense a variety of functionality. As stated before such com-
ponents are difficult to maintain and evolve and are candi-
dates for design anomalies such as God Classes. Figure 4
on the left shows an overview of the version 1.7. At a first
glance we note two extreme types of spears. The small long
and the fat large spears. The small long spears represent
classes having a huge amount of functions but being no-
tably small in size. Like nsHTMLTableCellElement (Figure
4a) , which is a part of the complex Document Object Model
(DOM)-Module. The class is used to represent HTML con-
tent and has 96 functions on 552 lines of code. Classes
from that type might as well be more complex (e.g., if they
implement an algorithm). They could have many bugs or
be critical parts of the application as a central and widely
used element. However, they turn out to be simple classes
such as interface declarations. To ensure that our classes are
less critical, we us the SV-Mixer to temporary filter out the
classes that are less complex. We filter out classes that have
a history of none to very few critical or non-critical bugs
and have few incoming access calls.

The second extreme type of classes, represented as large
fat spears, has a notable amount of functions and is large
in size. These candidates are considered more problematic
to maintain and evolve. To see the potential candidates we
filter the classes based on their lines of code and hide the
smallest 30%. We further want to know which of these are
complex and therefor critical, we do so in applying a filter
based on a complexity metric. We can also argue that in-
coming access calls are more important, as they represent
how the classes are used in the system, and therefor filter
on an incoming access call metric. With that we reduce the
classes to five critical candidate. To verify whether those



Figure 4. Spear Metaphor showing a system hot-spot-view of Mozilla version 1.7: left shows an
overview, from where potential candidates were sequentially filtered out.

candidates really are critical for the Mozilla project, we take
a closer look at our metrics and the information provided by
the official Mozilla developers site1.

The nsGlobalWindow (Figure 4c) as the previously men-
tioned nsHTMLTableCellElement is part of the complex
Document Object Model (DOM)-Module. The class is used
to open windows with the represented HTML content and
its interaction. It has 230 functions on 6193 lines of code.
It accesses 36 functions from other classes and its functions
are used by 7 functions from other modules. We further
note that it has over 100 non trivial problemreports. ns-
GlobalWindow clearly is a critical component.

nsSelection (Figure 4b) and nsCSSParser (Figure 4d) are
found within the DOM-Content-Module and deal with the
interaction of selections and the parsing CSS files. With 211
functions on 7749 lines of code and 112 functions on 5530
lines of code, they are obviously not small either. Both have
over 40 / 20 non trivial problem-reports. nsSelection might
be less critical as it does not provide basic functionality and
is accessed only from one other class.

The nsPresShell (Figure 4f) is found in the layout en-
gine HTML-module, which Mozilla uses for rendering tree
construction, layouts, paintings, etc. The presentation shell
(nsPresShell) is used for arena allocations and response to
user or script actions like window resizing, document’s de-
fault font changes or drag & drop operations. It has 226
functions on 8013 lines of code. It uses 242 functions from
other classes and its functions are accessed by 7 functions
from other modules. In addition to that it has over 130 non
trivial problem-reports. Clearly nsPresShell is a central and
critical component too.

Last but not least nsCSSFrameConstructor (Figure 4e)
within the same layout engine HTML-Module handles CSS

1http://www.mozilla.org/owners.html

Frames. It has 210 functions on 13494 lines of code. It
uses 813 functions from other classes and is accessed by
10 functions from other modules. With over 200 non triv-
ial problem-reports it is obviously at least as critical as the
previously mentioned classes.

Within our quick tour through the case study we still
have not focused on many details yet. Further options are
1) tagging the elements of our interest and further analyze
them in other visualizations; 2) inspect whether there were
surprisingly many changes to particular classes over the last
revisions; 3) compare the tagged elements by applying other
metric-cluster. Nevertheless we showed that with few sim-
ple steps we can focus on the essential parts of a system and
how CocoViz with its simplicity lets us interact rapidly with
profound, complex source-code data.
Results Our first validation with evolution data from the
Mozilla case study can be summarized as follows:
1) The SV Mixer allows fast focusing on component qual-
ities of our interest; 2) With the applied metaphors, glyph
artifacts can be differentiated rather intuitively; 3) With the
house and spear metaphors problematic candidates where
quickly perceivable; 4) Tagging candidates allows one to
easily interact in different visualizations; 5) Further metrics
mapped on the glyphs can help to emphasize critical com-
ponents

4 Related Work

Software visualization aims to visually represent the
complex context of today’s software projects. Due to the
amount of information that needs to be understood a vi-
sualization is crucial. Most of the visualization methods
use a graphical representation of data rendered either in a
two-dimensional or three-dimensional view. In the past few



years a variety of approaches dedicated to software visual-
ization and software reengineering has emerged.

Hierarchical visualization approaches tempt to display
large hierarchies in a comprehensible form. Johnson and
Shneidermann proposed Treemaps [11] to map tree struc-
tures on to rectangular regions. The efficient use of space
allows to display very large hierarchies with thousands of
leaves, while still being comprehensible. However the read-
ability decreases if very large hierarchies are displayed.

In contrast to the concept of Treemaps, Robertson et al.
[19] suggested Cone Trees. In their work they laid out the
hierarchy in a three-dimensional way, where the children of
a node are placed evenly spaced along a cone base. Through
rotation of the cone base a viewer brings different parts of
the tree into focus. But, as stated in [12] Cone Trees with
more than 1000 nodes are difficult to manipulate. There-
fore, Cone Trees might be considered for medium-sized
trees only.

In [2] Dachselt and Ebert recommend an interaction
technique for medium-sized trees: The Collapsible Cylin-
drical Trees (CCT) map the child nodes on a rotating cylin-
der. This offers a fast and intuitive interaction and allows
one to dynamically hide or show further details. The inter-
esting part of this work is that beside most other work in the
field of hierarchical views they do not concentrate on how
to display large hierarchies in a comprehensible form but
concentrate on the interaction with the data itself.

CocoViz distinguishes itself from the hierarchical visu-
alizations among other things in that it uses a 3D view to
avoiding space limitations. Appropriate layout algorithms
to prevent dispensable overlapping and an advanced dy-
namic approach that allows intuitive interaction.

Metrics visualization in contrast to hierarchical visual-
izations, describe a software state or situation. Metrics are
not part of a hierarchy, but they describe a specific software
entity. The goal of this approach is to show aspects of a
software by visualizing the representing metrics.

Eick’s Seesoft [3] mapped the lines of code of every
software entity to a thin row. The rows are then colored
based on a statistics of interest, e.g., most recently, least re-
cently changed, or locations of characters. With that, one
can quickly overview the fragmentation of a software and
highlight parts of interest. In [14] Marcus et al. extend the
Seesoft approach by utilizing the third dimension, and by
adding different manipulation techniques. They use cylin-
ders where the height, depth, color, and position would rep-
resent the metrics.

Polymetric Views of Lanza and Ducasse [13] attempt to
help understanding the structure of a software system and
detect problems as early as possible in the initial phases of

a reverse engineering process. In their concept they dis-
play the software entities based on their metric values as
a rectangular shape. Whereas the position, the height, the
width and the color of one rectangle each represents a met-
ric value of the same software entity. This approach offers a
quick overview of the softwares subdivision. Compared to
Seesoft the Polymetric Views additionally includes a repre-
sentation of the relations within the software entities.

Inselberg and and Dimsdale presented a way to visual-
ize multi-dimentional analytic and synthetic geometry [9].
In the parallel coordinates, they arrange the various met-
ric scales vertically one after the other. For every software
entity the metric values are marked on the corresponding
metric scale. A line connecting all the marks of one entity
then represents that software entity.

For several years researchers tried to refine the paral-
lel coordinates to address the limitation of displaying large
data sets. Fua et al. [7] proposed a multi-resolution view
of the data. With this approach it is possible to navigate
through a structure by hierarchically clustering a certain
level of detail. In [1] Benedix et al. explain how the lay-
out of parallel coordinates can be used to visualize categor-
ical data. In their adoption the data points are substituted
with a frequency-based representation offering auxiliary ef-
ficient work with meta-data. Johansson et al. [10] extended
the standard parallel coordinates to the third dimension. In
their Clustered Multi-Relational Parallel Coordinates (CM-
RPC) they propose a technique that offers a simultaneous
one-to-one relation analysis between a selected dimension
and the other dimensions.

In [4] Fanea et al. combined parallel coordinates and
star glyphs to provide a more efficient analysis compared
to the original parallel coordinates. Pinzger et al. proposed
to use star glyphs to visualize condensed graphical views on
source code and relation history data [18]. In their Kiviat di-
agram, metric values of different releases are reflected like
annual rings on a tree-stump. The diagrams can be used to
show one metric in multiple modules or multiple metrics in
one module. Furthermore relation of modules are charac-
terized with connections between those modules.

CocoViz distinguishes itself from the other metrics visu-
alization approaches through its metaphor glyphs an the re-
sulting improved software comprehension compared to ab-
stract graphical representation used in other approaches. An
interactive approach where a viewer analyses the software
in walking through the views and tagging elements. And
last but not least a dynamic approach that allows to quickly
filter non relevant elements out.

5 Conclusions & Future Work

In this paper we discussed how the perception of rele-
vant aspects in evolved software projects can be improved.



Based on previous work in visualization, we filtered key
concepts for software visualization, and considered im-
provements on these key concepts.

We introduced the concept of a software metrics configu-
ration mixer, which brings the benefits of an audio mixer to
software visualization. This SV Mixer offers a fast access
to the metric configurations and allows one a quick situa-
tional accommodation to the visualizations while observ-
ing it. Relevant aspects in the software are experienced in
swiftly filtering temporary irrelevant data out and tagging
relevant aspects for later analysis. In the SV Mixer con-
cepts such as metric clusters are as well incorporated in a
straightforward way offering shifts in the visualization right
on the filtered aspects of interest. Beyond that, specific met-
ric configurations of a particular project can be predefined
and shared within a project team.

We further proposed that software is better understood if
its metric based analysis is visualized in cognitive percep-
tible metaphors. A metaphor maps the metric values of the
analyzed software to visual representations which together
represent a software entity as a glyph. Good-designed as-
pects of a software can be distinguished much faster from
distressed ones if the used glyph metaphor represents one of
the states in an well-shaped object known to the observer.
With the house, table, and spear metaphor, we introduced
possible implementations of such metaphors.

Future work aims to identify further improvements on
the key concepts used in software visualization with evolu-
tionary data. One line of research will focus on augment-
ing the SV Mixer’s capabilities with advanced filter capa-
bilities. Filter configurations will be enhanced with sta-
tistical information and the observed data subsets dynam-
ically prepared while observing the visualization. Further
investigations will be conducted to produce other cognitive
metaphors that can facilitate the perception of the analyzed
software in specific use cases. Our approach will be evalu-
ated in comparison to additional software projects. We will
further evaluate our approach against other known visual-
izations to document in which situations we gain advantages
over the others.

6 Acknowledgments

We are grateful to M. Fischer, G. Reif, M. Pinzger,
and the anonymous reviewers for their valuable input.
This work was partially supported by the Hasler Stiftung
Switzerland.

References

[1] F. Bendix, R. Kosara, and H. Hauser. Parallel sets: visual
analysis of categorical data. IEEE Symp. on Info. Visualiza-
tion, pages 133–140, 2005.

[2] R. Dachselt and J. Ebert. Collapsible cylindrical trees: A
fast hierarchical navigation technique. IEEE Symp. on Info.
Visualization, pages 79–86, 2001.

[3] S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr. Seesoft - a
tool for visualizing line oriented software statistics. IEEE
Trans. Softw. Eng., 18(11):957–968, 1992.

[4] E. Fanea, S. Carpendale, and T. Isenberg. An interactive
3d integration of parallel coordinates and star glyphs. IEEE
Symp. on Info. Visualization, pages 149–156, 2005.

[5] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proc. Int’l Conf. on Softw. Maintenance, pages 23–
32, 2003.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, 1999.

[7] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner. Hierarchi-
cal parallel coordinates for exploration of large datasets. In
Proc. Conf. on Visualization, pages 43–50, 1999.

[8] M. H. Halstead. Elements of software science, operating and
programming system series. Elsevier, 7, 1977.

[9] A. Inselberg and B. Dimsdale. Parallel coordinates: a tool
for visualizing multi-dimensional geometry. In Proc. IEEE
Conf. on Visualization, pages 361–378, 1990.

[10] J. Johansson, M. Cooper, and M. Jern. 3-dimensional dis-
play for clustered multi-relational parallel coordinates. Int’l
Conf. on Info. Visualization, pages 188–193, 2005.

[11] B. Johnson and B. Shneiderman. Tree-maps: a space-filling
approach to the visualization of hierarchical information
structures. In Proc. IEEE Conf. on Visualization, pages 284–
291, 1991.

[12] J. Lamping, R. Rao, and P. Pirolli. A focus+context tech-
nique based on hyperbolic geometry for visualizing large
hierarchies. In Proc. SIGCHI Conf. on Human factors in
computing systems, pages 401–408, 1995.

[13] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering. IEEE Trans. on
Softw. Eng., 29(9):782–795, 2003.

[14] A. Marcus, L. Feng, and J. I. Maletic. 3d representations
for software visualization. In Proc. ACM Symp. on Softw.
Visualization, pages 27–36, 2003.

[15] R. Marinescu. Detection strategies: metrics-based rules for
detecting design flaws. In Proc. IEEE Int’l Conf. on Softw.
Maintenance, pages 350–359, 2004.

[16] T. J. McCabe. A complexity measure. IEEE Trans. on Softw.
Eng., 2(4), 1976.

[17] M. Pinzger. ArchView - Analyzing Evolutionary Aspects of
Complex Software Systems. Vienna University of Technol-
ogy, 2005.

[18] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. In Proc. ACM Symp. on Softw.
Visualization, pages 67–75, 2005.

[19] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone
trees: animated 3d visualizations of hierarchical informa-
tion. In Proc. SIGCHI Conf. on Human factors in computing
systems, pages 189–194, 1991.

[20] R. Wettel and M. Lanza. Program comprehension through
software habitability. In Proc. Int’l Conf. on Program Com-
prehension, 2007.


