
Mining Software Evolution to Predict Refactoring

Jacek Ratzinger, Thomas Sigmund
Vienna University of Technology
Institute of Information Systems

A-1040 Vienna, Austria
{ratzinger,sigmund}@infosys.tuwien.ac.at

Peter Vorburger, Harald Gall
University of Zurich

Department of Informatics
CH-8050 Zurich, Switzerland
{vorburger,gall}@ifi.unizh.ch

Abstract

Can we predict locations of future refactoring based on
the development history? In an empirical study of open
source projects we found that attributes of software evolu-
tion data can be used to predict the need for refactoring in
the following two months of development. Information sys-
tems utilized in software projects provide a broad range of
data for decision support. Versioning systems log each ac-
tivity during the development, which we use to extract data
mining features such as growth measures, relationships be-
tween classes, the number of authors working on a particu-
lar piece of code, etc. We use this information as input into
classification algorithms to create prediction models for fu-
ture refactoring activities. Different state-of-the-art classi-
fiers are investigated such as decision trees, logistic model
trees, propositional rule learners, and nearest neighbor al-
gorithms. With both high precision and high recall we can
assess the refactoring proneness of object-oriented systems.
Although we investigate different domains, we discovered
critical factors within the development life cycle leading to
refactoring, which are common among all studied projects.

1 Introduction

Refactoring is a state-of-the-art practice in software de-
velopment to improve the design of existing software sys-
tems without changing the external behavior. Developers
often use this technique to prepare object-oriented systems
for further improvements and extensions of functionality.
The identification of hot-spots where refactorings will take
place improves the effectiveness of engineers in focusing
on the relevant classes that will undergo changes in future
[11]. For project managers it is interesting to know which
locations are likely to demand refactoring. Refactoring im-
proves the understandability of the code, but on the other
hand requires development time [6]. The prediction of fu-

ture refactorings allows project managers a better coordi-
nation of software development and project management, a
more accurate budgeting, and efficient manpower utiliza-
tion. With limited time and resources project managers
want to focus on the most important refactorings. The right
time for a general refactoring can be better determined with
our approach.

A source to determine required refactorings of software
entities such as classes 1 can be their past development
and maintenance history. An entity, which undergoes many
changes in the past, bears a certain probability for refactor-
ing. Such information can be gained from versioning sys-
tems such as CVS (Concurrent Versions System) and issue
tracking systems such as Jira. Certainly, source code in-
spection can be used to reveal the demand of refactorings,
too. However, this work is very labor intensive and must be
carried out by specialists. As a result refactoring is expen-
sive. Therefore, we describe an automation of this approach
by utilizing machine learning.

In this work we screen evolution data from versioning
systems of two open source projects, namely ArgoUML and
the Spring framework, both open source frameworks where
refactoring is recognized as important engineering activity
for software evolution. They are developed in Java and con-
sist of 5000 and 10000 classes each. Each class is usually
placed in a separate file in Java, thus we use files equivalent
to classes and focus on files for our analysis. Several pre-
processing steps are taken to derive the key attributes from
the data. We use these attributes to generate models via an
open-source data mining tool called WEKA [20].

In the remainder of this paper, we first describe related
work (Section 2) and propose our research question (Sec-
tion 3) followed by the foundations of our prediction task
(Section 4). Afterwards, we present the results of our case
study (Section 5) and finish with conclusions and future
work (Section 7).

1in the entire document classes are a synonym for Java classes

2 Related Work

A number of publications show the usefulness of refac-
toring for software development. Capiluppi et al. [3]
found that understandability was increased by refactorings
in several projects. Kataoka et al. [11] try to measure the
maintainability enhancement effect of program refactorings
based on coupling metrics. In a larger experiment the de-
veloper’s subjective evaluations match the results of the
author’s approach to determine the effectiveness of refac-
torings. Najjar et al. [15] investigate refactoring of con-
structors, because constructors do not ideally communi-
cate the developer’s intention, and secondary produce du-
plicated code. The study investigated several Java systems
and found that the code of two systems could be econo-
mized. A survey paper, which discusses extensively re-
search in the field of software refactoring was written by
Mens and Tourwé [14]. It discusses refactoring activities
and numerous techniques. Demeyer et al. [5] validate sev-
eral metrics for identifying if refactorings took place for a
given file. In contrast, we preform a prediction task based
on evolution data.

Antoniol et al. [2] analyze the evolution of object-
oriented source code at the class level. The focus is on
a limited number of refactoring events, which are identi-
fied based on a vector space model. The application of the
proposed approach to an open source domain name service
produced a list of class refactoring operations. Advani et
al. [1] analyzed a range of open source systems, regarding
whether a refactoring occurred and if so, which were the
most common. They found that simple refactorings, like
basic operations on fields and methods occurred more fre-
quently, than more interweaved refactorings, such as those,
requiring manipulation of the inheritance hierarchy.

A number of metrics have been suggested to evaluate
diverse kinds of software engineering activities, in recent
years. Chidamber and Kemerer’s metrics [4] are often used
to detect faulty classes. Tsantalis et al. [19] try to quan-
tify the change probability of each class in future releases
with the help of these metrics. Forward and backward lo-
gistic regression was performed with the result, that only
some proposed measures such as class size where relevant
in the analyzed case studies. Their work identifies classes
that have a high probability of change and at the same time
can effect a large number of classes. In contrast, in our work
we want to predict the probability of future refactorings us-
ing evolution data instead of source code based metrics.

In a previous work [17] we investigated the design of
a software system based on evolution data, extracted from
source code management systems. This information is used
to detect architectural shortcomings in the design of the an-
alyzed software and how refactoring can support the evolv-
ability of software systems.

3 Research Question

In this paper we describe our prediction of refactorings
in software projects. In previous research activities sev-
eral studies analyzed the predictability of quality measures
such as error proneness, defect densities, and time to failure
[9, 16, 12]. We create models for the prediction of another
type of event within software engineering projects such as
refactorings. Similar to defects, refactorings provide an in-
sight into the necessary rework we have to expect in future
development activities. Table 1 summarizes our hypotheses
to guide our research.

4 Prediction Foundations

To predict refactorings we make use of data mining al-
gorithms. The classical KDD (knowledge discovery in
databases) process distinguishes between several stages: 1.
Data understanding, 2. Pre-processing, 3. Application of
machine learning algorithms, 4. Post-processing, 5. Analy-
sis of the results. The remainder of this section is organized
based on the KDD process, where the analysis will be dis-
cussed separately in Section 5.

4.1 Data Understanding: Descriptive Sta-
tistics

For our approach we use two different time periods from
which the attributes are obtained:

• Learning Period is a time frame where attributes of
software evolution are accumulated as input to the pre-
diction. We take all modifications to source code dur-
ing this time into account and compute for each file a
condensed history.

• Target Period is the time frame immediately after the
learning period, where we count the number of refac-
torings. These numbers are used to define our data
mining targets such as refactoring proneness.

Table 2 describes the number of refactorings of the two
independent software projects taken from the open source
community grouped by learning and target periods. These
two projects are known for their good engineering practices
and use refactoring as state-of-the art in their development.
Especially, ArgoUML exhibits a large number of refactor-
ings within our target periods, which were chosen to cover
two months. In these months we counted the number of
refactorings done by the developers in these projects. Addi-
tionally, for the first target period we analyze two learning
periods of different length to investigate hypothesis H2 in
Section 5.2. We provide data from the Spring framework,
which is a J2EE application server for Java. In both projects

Hypotheses
H1 Evolution data is a good predictor of future refactoring.
H2 It is possible to predict refactoring on short time frames.
H3 We can accurately predict the number of future refactorings for each file.
H4 There is a common subset of features essential for predictions in different projects.

Table 1. Research hypotheses

Project Learning Period Target Period Refactoring=0 Refactoring=1 Refactoring>=2
∑

Files
ArgoUML Oct.04 - Dec.04 Jan.05 - Feb.05 603 181 129 913

Jul.04 - Dec.04 Jan.05 - Feb.05 603 181 129 913
Spring Aug.05 - Oct.05 Nov.05 - Dec.05 750 110 35 895

Mai.05 - Oct.05 Nov.05 - Dec.05 750 110 35 895

Table 2. Refactoring distribution for analyzed periods by project

we selected the target periods to cover months with many
refactorings, as we aim for refactoring prediction. Table 2
summarizes the number of classes exhibiting a certain num-
ber of refactorings. Classes having no refactorings in the
target period we call non-refactoring prone. The number of
classes that were refactored once is much smaller than the
number of classes with no refactoring (i.e. we are dealing
with unbalanced class distributions). Even smaller is the
number of classes with two or more refactorings.

4.2 Pre-processing: Evolution Data

For mining of software development projects we use ver-
sioning systems like CVS, which allow handling of different
versions of files in cooperating teams. Developers check out
certain classes of the system, edit, and commit the changes
to the versioning system, which merges the modifications.

Versioning systems log every action to keep the history
of a file, which provides the necessary information about
the history of a software system. The underlying data for
our mining approach is retrieved via standard command line
tools, which create log-files about all modifications in the
past. These log-files are parsed and stored in a relational
database [21]. In the Java programming language files are
(roughly) equal to classes, because usually one class is de-
fined in one Java file.

4.2.1 Data Preparation.

The data model of the evolution database is built on infor-
mation extracted from versioning systems in the following
way. Regarding versioning systems, revisions of files are
strongly related to modification reports. They provide his-
torical data about files such as change dates, change size
measured on the basis of lines, and the author of a change.
Revisions are related to each other, as the code of one revi-
sion replaces the code of the previous one. Releases are de-

fined as collections of revisions of all files maintained by the
particular versioning system. When a developer checks in
changes to several files at once, the versioning system only
stores the dates of the new revisions, but does not maintain
the transaction information. As a result we have to recon-
struct transactions when files were changed together in a
post-processing phase.

Reconstructing Transactions of Versioning Systems
Transactions Tn are sets of files, that were checked-in into
the versioning system by a single author with equal com-
mit messages within a short time-frame—typically a few
minutes. To capture the entire transaction, possibly last-
ing several minutes we use a dynamic time adaptation ap-
proach. Each transaction is initially set to last for 60 sec-
onds. Every change of a file with equal author and com-
mit message within the transaction window is added to the
transaction. The window is expanded to last 60 seconds
after the last detected change event related to this trans-
action. Transactions are later on used for the evaluation
of change couplings between software entities. We refer
to change coupling as: Two entities (e.g. files) are cou-
pled, if a modification of the implementation affected both
entities. The intensity of coupling between two entities
a, b can be determined easily by counting all log groups
where a and b are members of the same transaction, i.e.,
C = {〈a, b〉|a, b ∈ Tn} is the set of change couplings and
|C| is the intensity of coupling.

4.2.2 Feature Generation.

In data mining the input attributes used by the algorithms
are called features. Our evolution features are gathered on
file basis, whereby data from all revisions of a file within a
predefined time period is summarized (learning and target
period). To build a prediction model we created features to
represent several important information areas [18]. Predic-
tion models have to regard different aspects of software de-

velopment like the complexity of the designed solution, pro-
grammer/analyst skill, process used for development, etc.
[7]. As a result we present the following summary of fea-
tures for each file, containing changes within the inspection
period. We group our features into different categories:

Size.
This category contains size measures such as lines of code
from an evolution perspective: linesAdded, linesModified,
or linesDeleted relative to the total LOC (lines of code) of a
file. This represents a certain aspect of clean-up mentality,
where developers remove code they regard as unnecessary.
Other features of this category are linesType, which defines
whether there are more linesAdded or linesModified. Ad-
ditionally, we regard largeChanges as double of the LOC
of the average change size and smallChanges as half of the
average LOC of a specific file. We expect this value to be
an important feature for data mining, as other studies have
found that small modules are more defect-prone than large
ones. [10]

Team.
The number of authors of files influences the way software
is developed. We expect that the more authors are working
on the changes the higher the probability of rework and mis-
takes. We define a feature for the authorCount relative to
the changeCount. Further, the interrelation of people work
is interesting. We investigate work rotation between the au-
thors involved in the changes of each file as the feature au-
thorSwitches. The number of people assigned to an issue
and the authors contributing to the implementation of this
issue is another feature we use (authorMatch) for our pre-
diction models.

Work habits.
To get an estimation for the work habits of the develop-
ers, we inspect the number of addingChanges, modify-
ingChanges, and deletingChanges per author and per file.
This information provides input to the defect prediction of
files.

Complexity of existing solution.
According to the laws of software evolution [13], software
continuously becomes more and more complex. Changes
are more difficult to add as the software is more difficult to
understand and the contracts between existing parts have to
retain. As a result we investigate the changeCount in rela-
tion to the number of changes during the entire history of
each file. The changeActivityRate is defined as the num-
ber of changes relative the lifetime of the file measured in
months. The linesActivityRate describes the number of lines
of code relative to the age of the file in months.

We approximate the quality of the existing solution by
the bugfixCountBefore, which are the number of bug fixes
before our prediction period relative to the general number
of changes. The bugfixCount is computed by enumerat-
ing all changes to source code, where an bug tracking is-

sue is attached with type ”fix”. We expect that the higher
the fix rate is before the inspection period the more diffi-
cult it is to get a better quality later on. The bugfixCount is
used as well as bugfixLinesAdded, bugfixLinesModified, and
bugfixLinesDeleted in relation to the base measures such as
the number of lines of code added, modified, and deleted
for this file. For bug fixes not much new code should be
necessary, as most code is added for new requirements.
Therefore, linesAddPerBugfix, linesModifiedPerBugfix, and
linesDeletedPerBugfix are also interesting indicators, which
measure the average lines of code for bug fixes.

Difficulty of problem.
In software development projects usually new classes are
added to object-oriented systems when new requirements
have to be satisfied. We use the information whether a file
was newly introduced during the prediction period as fea-
ture for data mining: To measure how often a file was in-
volved during development with the introduction of other
new files we use coChangeNew as a second indicator. Co-
changed files are identified as described in [8].

Relational Aspects.
In object-oriented systems the relationship between classes
is important. We use the co-change coupling between files
to estimate their relationship. The first feature of this cate-
gory are couplings such as the number of changes/revisions
where other files have been committed with. We use the
number of co-changed files relative to the change count of
the learning period as feature coChangedFiles.

Additionally, we quantify co-changed couplings with
features based on commit transactions similar to the size
measures for single files: tLinesAdded, tLinesModified,
and tLinesDeleted, tLinesType, tChangeType. These fea-
tures are defined for transactions (and all the involved files)
equivalent to the ones regarding only the file itself (e.g. line-
sAdd).

For file relations we also use bug fix related features: tLi-
nesAddedPerBugfix and tLinesChangedPerBugfix are two
representatives. Additionally, we use tBugfixLinesAdded,
tBugfixLinesModified, and tBugfixLinesDeleted relative to
the linesAdded, linesModified, and linesDeleted.

Time constraints.
As software processes stress the necessity of certain activ-
ities and artifacts, we believe that the time constraints are
important for software predictions. The avgDaysBetween-
Changes feature is defined as the average number of days
between revisions. The number of days per line of code
added or changed is captured as avgDaysPerLine.

Peaks and outliers have been shown to give interesting
events in software projects [8]. For the relativePeakMonth
feature we measure the location of the peak month, which
contains most revisions, within the prediction period. The
peakChangeCount feature describes the number of changes
happening during the peak month normalized by the overall

Figure 1. Analysis setup

number of changes. The number of changes is measured
based on the months in the prediction period with feature
changeActivityRate. For more fine grained data the lines of
code added and changed relative to the number of months
is considered for feature linesActivityRate.

4.2.3 Prediction Target: Refactoring Proneness.

With the features described in Section 4.2.2 we predict the
number of refactorings. Our prediction models are based
on two class problems, where in each application we group
files in one of the two classes: having refactoring vs. with-
out refactoring, having one refactoring vs. having several
refactorings (see Figure 1). In the field of data mining this
procedure is called classifier stacking.

Identification of refactorings. The number of refactor-
ings is obtained from the commit messages of the version-
ing system. We use evolution data not only for the compu-
tation of data mining features, but also for the identification
of change events as refactorings. For our prediction models
we do not distinguish different types of refactorings (e.g.
create super class, rename of method/class, extract method,
etc.). We only assess the fact that developers try to improve
the design. For our investigated projects we identify refac-
torings based on the commit message, which are provided
by developers as comments for their modifications of source
code. We start our identification by search for part of a word
called ”refactor”. We analyzed the results and discovered
that the code is not a refactoring, when ”needs refactoring”
is included in the commit message. With several refine-
ments we used for each project 15-20 SQL queries to mark
modifications as refactorings.

Evaluation of refactoring identification. With our SQL
queries based on the commit messages we labeled 7758
of 60369 changes as refactorings for ArgoUML (13%) and

6251 of the 56050 changes for the Spring framework (11%).
To estimate the number of refactorings we marked correctly
with our method, we used a statistical evaluation. For each
project we randomly selected a subset of 100 modifications
and checked whether or not it is a refactoring and if we
labeled them as refactoring. Table 3 shows that we ob-
tained a high rate of correct labels. For ArgoUML only
one modification (in the random set of 100) was labeled as
refactoring, which turned out to be not a refactoring (false
positive) and two refactorings were missed (false negative).
For the Spring framework we received even better results.
Although Spring exhibits a very unbalanced distribution of
only 11% refactorings in our random selection, we missed
only one refactoring in our labeling with the help of SQL
queries and identified only one modification wrong as refac-
toring.

4.3 Classifiers: Data Mining Algorithms
for Prediction Models

For the generation of prediction models we use several
data mining algorithms:

• J48 2 This classifier builds its decision nodes based
on entropy information. It includes improvements for
dealing with numeric attributes, missing values, and
noisy data (pruning). The great advantage of decision
tree compared to other algorithms is that they can be
easily interpreted by humans.

• LMT This is a data mining algorithm for building lo-
gistic model trees, which are classification trees with
logistic regression functions at the leaves. It uses vali-
dation to determine how many iterations to run, when
fitting the logistic regression function at a node of the
decision tree. Thus it is a classification algorithm
where first regression is built and the result is con-
verted into classes of elements.

• Rip Repeated Incremental Pruning is a propositional
rule learner. It uses a growth phase, where antecedents
are greedily added until the rule reaches 100% accu-
racy. Then in the pruning phase, metrics are used to
prune rules until the defined length is reached.

• NNge is a Nearest Neighbor generalization. In this
case a nearest-neighbor algorithm is used to build rules
using non-nested generalized exemplars.

4.3.1 Evaluation of Classification.

To evaluate our prediction models we use 10-fold cross val-
idation. In our analysis of prediction models for refactoring

2J48 is the WEKA implementation of the state-of-the-art decision tree
learner C4.5

Project Modifications Identified Refactorings Other Type False Positives False Negatives
ArgoUML 100 16 84 1 2
Spring 100 11 89 1 1

Table 3. Evaluation of classifying modifications as refactorings

Predicted
yes no

Actual yes true positive false negative
no false positive true negative

Table 4. Outcome of prediction of two groups

we use precision, recall, and F-measure — three essential
markers characterizing model performance. These evalua-
tion measures are defined based on formulas regarding dif-
ferent rates such as true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). True positives
describe the predictions that are correctly classified. False
positives are the ones that are classified to be in a particular
group (e.g. number refactorings = 0), but the classification
is wrong (e.g. number refactorings = 1 or ≥ 2). The number
of elements that is correctly classified not to belong to the
given group forms the true negatives. False negatives are
elements that belong to the group of interest, but are erro-
neously classified to belong be outside of the group. (see
Table 4)

• Precision describes the percentage of correctly classi-
fied entities.

precision =
TP

TP + FP
·100% =

predicted correct

total predicted

The higher the precision the more predictions are cor-
rect.

• Recall describes the percentage of entities classified
from the group of positive entities.

recall =
TP

TP + FN
·100% =

predicted correct

total positive

The higher the recall the more elements can be found.

• F-measure is a dimensionless measure combining pre-
cision and recall by the formula.

F − measure =
2 · TP

2 · TP + FP + FN
= · · ·

· · · =
2 × recall × precision

recall + precision

We use the F-measure to compare the performance of
our prediction models.

5 Results

To investigate our hypotheses in Table 1 we carried out
several trials. For the investigation of the following research
questions we focus particularly on the results of ArgoUML.
Tables 5,6, and 7 show that the values of ArgoUML and
Spring are comparable.

5.1 Hypothesis H1: Is evolution data a
good predictor of future refactorings?

To answer this question we have a look at Table 5, which
describes the quality of prediction models for two open
source projects, ArgoUML and Spring framework. We ana-
lyze the prediction of two groups of object-oriented classes,
the ones having no refactoring in the target period (defined
in Table 2) and classes that have one or more refactorings.
For both open source projects we list four different classifi-
cation algorithms: J48, LMT, Rip, and NNge.

We can see that the prediction of classes that are non-
refactoring prone have better quality indicators than classes
exhibiting refactorings. For ArgoUML both precision and
recall are about 0.8, which results in a high f-measure of
also 0.8. For classes with refactorings the value range is 0.5
to 0.67, which results in f-measures of approximately 0.6
for the ArgoUML project. These values express that classes
with refactorings are more difficult to predict than classes
that are not prone to refactoring. One possible explana-
tion is that we do not distinguish between different types
of refactorings. Thus, changes to variables, methods and
classes are weighted equally. We are solely interested in the
fact that refactoring takes place. Refactoring is defined as
the activity of improving design of existing code without
changing observable behavior. However, the discrepancy
between the prediction measures of classes with zero refac-
toring and classes subject to refactoring is due to the fact
that the distribution of these two groups is not equal.

As in both projects the precision is above 0.5 (except
the NNge model for Spring) the number of correctly pre-
dicted instances is high, which is important for practical ap-
plication of our approach. When the developer wants to be
proactive and to take care of those classes that are prone for
refactoring, she has a high probability (in most cases more
than 2/3) to investigate relevant files.

Table 2 shows that for the first period of ArgoUML that
we investigate the number of classes not being refactored
is 603 and the ones with refactoring is 310 (181 + 129).

Project Classifier Refactoring = 0 Refactoring >= 1
Algorithm Prec.(%) Recall(%) F-measure Prec.(%) Recall(%) F-m.

ArgoUML J48 0.819 0.834 0.827 0.666 0.642 0.654
LMT 0.81 0.801 0.806 0.621 0.635 0.628
Rip 0.768 0.844 0.804 0.624 0.503 0.557

NNge 0.804 0.849 0.826 0.67 0.597 0.631
Spring J48 0.884 0.937 0.91 0.53 0.366 0.433

framework LMT 0.874 0.961 0.916 0.586 0.283 0.381
Rip 0.876 0.975 0.923 0.689 0.29 0.408

NNge 0.893 0.913 0.903 0.492 0.434 0.462

Table 5. Predicting non refactoring prone vs refactoring prone classes

The algorithms are biased towards the dominant class dis-
tribution (prior) and therefore overestimate classes with no
refactoring. To assess the algorithms on equally distributed
data sets, we adjust the number of classes by randomly
ignoring non-refactoring prone files. Now, the prediction
algorithms then perform even better: both refactoring and
non-refactoring prone classes are predicted very well with
a f-measure better than 0.85 for ArguUML and 0.75 for the
Spring framework. Both are high values and we therefore
confirm:

It is possible to predict refactoring with evolution data
with a high accuracy.

5.2 Hypothesis H2: Is it possible to
predict refactorings on short time
frames?

To answer the question, whether we can predict refac-
torings based on short time frames we compare Table 5
with Table 6. The first describes the prediction of refac-
torings happening in two months based on features taken
from three previous months, and the second describes the
prediction of the same two months based on features from
six months (for exact period definition see Table 2). The
prediction with the help of three months shows even better
results than the prediction based on six months. Why do we
obtain these interesting results? Most open source project,
also ArgoUML, rely on agile development practices, where
refactoring is used to improve design of source code that
has been introduced lately. Therefore, the last few months
before refactoring takes place are the ones with the most
relevant attributes.

Thus, we conclude:

It is possible to predict refactoring of the next two
months based on the last three months of development
time.

5.3 Hypothesis H3: Is it possible to
distinguish between different groups
of files: Without refactoring, with
just one refactoring, and with several
refactorings?

We investigate this research question with the help of two
classification tasks: First we distinguish between classes
without refactoring and classes having refactoring. Then
we take the second group and examine if we can distinguish
classes with just one refactoring from classes with several
refactorings (see Figure 1. Table 5 shows the quality val-
ues for the prediction non-refactoring prone vs. refactoring
prone. We obtain high values for the f-measure, which indi-
cates the overall performance of the prediction models. In
Section 5.1 we describe that we could get even better mea-
sures, if the number of classes in each group is similar. As
a result we can distinguish classes with/without refactoring
very well.

Table 7 shows the results of the prediction models distin-
guishing classes with one refactoring vs. classes with sev-
eral refactorings. The f-measures are not as high as the ones
for the prediction of refactoring-proneness. An f-measure
of 0.75 and 0.65 for the two groups of files having refactor-
ing are still good, as the number of classes is much lower
than for the prediction models of Table 5, which we can see
in Table 2.

When developers take care of classes that are highly
refactoring prone, they would investigated the group with
>= 2 refactorings. In this group the precision is quite high
being close to or above 0.6, which is important developers
have a high probability to look at relevant classes. As the
recall is also around 2/3, developers have the opportunity to
analyze many refactoring prone classes to assess their de-
sign quality and their impact on the software architecture.

We come to the following conclusions:

Refactoring prone/non refactoring prone classes can be
identified very accurate.

Project Classifier Refactoring = 0 Refactoring >= 1
Algorithm Prec.(%) Recall(%) F-measure Prec.(%) Recall(%) F-m.

ArgoUML J48 0.811 0.826 0.818 0.581 0.556 0.568
NNge 0.799 0.849 0.823 0.593 0.507 0.547

Spring J48 0.874 0.912 0.893 0.514 0.349 0.416
framework NNge 0.887 0.899 0.893 0.481 0.413 0.444

Table 6. Predicting refactoring proneness based on a larger time frame (6 months)

Project Classifier Refactoring = 1 Refactoring >= 2
Algorithm Prec.(%) Recall(%) F-measure Prec.(%) Recall(%) F-m.

ArgoUML J48 0.747 0.735 0.741 0.636 0.651 0.644
NNge 0.767 0.746 0.756 0.657 0.682 0.669

Spring J48 0.694 0.718 0.708 0.624 0.617 0.62
framework NNge 0.713 0.725 0.719 0.593 0.638 0.615

Table 7. Predicting classes with one refactoring vs. classes with several refactorings

Distinction between classes with one, or several refac-
torings is possible.

5.4 Hypothesis H4: Is there a com-
mon subset of attributes for different
projects?

To answer this question we take a look at the decision
trees of the two projects in our case study (Figure 2). The
trees represent the result of the classification of instances
containing no refactoring vs. instances with one or more
refactorings. The higher the nodes in the tree the more rel-
evance they have for the prediction. We restrict our trees in
Figure 2 to five levels out of twelve to investigate only the
most important features.

ArgoUML
The topmost attributes of model ArgoUML, starting from
the root are: linesChangePerChange, linesActivityRate,
coChangedFiles, changeFrequencyBefore, coChangedNew,
relNumberChanges, and tLinesType.

Spring framework
The topmost attributes of model Spring, starting at the
root are: tChangesType, coChangedNew, lastChange-
Month, linesActivityRate, tLinesChangePerChange, tLi-
nesAddPerBugfix, coChangedFiles, largeChanges, rela-
tivePeakMonth, largeTransactions, lastChangeMonth, and
linesChange.

Common Both tree models of ArgoUML and Spring
framework have the following attributes in common:
coChangedNew, linesActivityRate, and coChangedFiles.
The first one coChangedNew describes the number of files
that are created (newly introduced) together with changes
to the inspected instance. This feature indicates that new
functionality is added, because new classes are introduced

together with modifications of the inspected class. If line-
sActivityRate describes that lines are changed often during
the entire lifetime of the class, then also the probability for
the number of refactorings rises. The number of classes
changed together with the inspected one is described by
coChangedFiles, which takes into account the importance
of interrelationships in object-oriented software systems.

The trees have more commonalities than just these fea-
tures. linesChangePerChange is the topmost feature in the
tree of ArgoUML, which describes the average number
of altered lines within change events, which is measured
for each predicted instance. A similar measure appears in
the Spring framework where tLinesChangePerChange is lo-
cated on the third level in the second half of the tree, which
describes the number of altered lines within the files of the
entire transaction where the file of interest was changed. It
is surprising that people related features like the number of
authors is not represented in the trees of our case study.

We conclude that:

There is a common subset of attributes for different
projects.

6 Limitations

We found that we can predict refactoring for the Spring
framework quite well, but could get even better results
for ArgoUML. These could be based on the projects, as
they have different project histories. ArgoUML is an older
project and started in 1998, whereas Spring framework fol-
lowed later and started in 2003. Spring exhibits a dynamic
evolution based on his young development history. As a re-
sult the results of ArgoUML are slightly better, but we still
get predictions for the Spring framework with a precision

ArgoUML decision tree
−−−−−−−−−−−−−−−−−−
linesChangePerChange
linesChangePerChange
| linesActivityRate
| | coChangedFiles
| | | coChangedNew
| | | | tLinesType
| | | | | . . .
| | | | tLinesType
| | | | | . . .
| | | coChangedNew
| | coChangedFiles
| | | relNumberChanges
| | | | changeFrequencyBefore
| | | | changeFrequencyBefore
| | | relNumberChanges
| linesActivityRate
| | changeFrequencyBefore
| | changeFrequencyBefore

Number of Leaves : 41
Size of the tree : 81

Spring decision tree
−−−−−−−−−−−−−−−−−−
tChangesType
| coChangedNew
| coChangedNew
| | linesActivityRate
| | | tLinesAddPerBugfix
| | | | relativePeakMonth
| | | | | . . .
| | | | relativePeakMonth
| | | | | . . .
| | | tLinesAddPerBugfix
| | linesActivityRate
| | | coChangedFiles
| | | | largeTransactions
| | | | largeTransactions
| | | coChangedFiles
| | | | lastChangeMonth
| | | | lastChangeMonth
| | | | | . . .
tChangesType
| lastChangeMonth
| lastChangeMonth
| | tLinesChangePerChange
| | tLinesChangePerChange
| | | largeChanges
| | | largeChanges
| | | | linesChange
| | | | linesChange

Number of Leaves : 28
Size of the tree : 55

Figure 2. Decision trees based on classifier
J48 for classification 0 vs. >= 1 refactoring

between 0.53 and 0.89.
We identify refactorings based on the commit mes-

sages of revisions entered by developers, when committing
changes to files. To assess the quality of our identification
technique, we tested our labeling of refactoring with ran-
domly selected revisions. As described in Section 4.2.3 the
number of false positives as well as the number of false neg-
atives is very low.

We did not distinguish between the type of refactorings
such as class refactorings or method refactorings. Instead
we only tried to predict the number of future refactorings
based on the past, independently from their nature. As a
result simple refactorings such as rename are treated equally
other refactorings such as extract super-class or introduce
new parameter.

7 Conclusions and Future Work

We have carried out a study of refactoring activities in
open source projects. Our work contributes to the under-
standing of the nature of software projects in several ways.

In contrast to previous studies where quality measured
by the number of defects is predicted (e.g. [18]), we created
classification models for refactoring, which is an important
activity in state-of-the-art software projects. Refactoring is
an essential element to keep the quality high and to allow
further evolution based on new customer needs.

We described how refactoring prediction models can be
built on short time frames. In our case study we used three
months of development time to predict the number of refac-
torings for each file within the following two months. This
information can be used by project managers to plan time
and budget for future development activities.

We demonstrated that several features such as lines ac-
tivity rate and number of lines altered per commit provide
much information for the assessment of refactorings. But
also the structure of the system is crucial for refactorings,
as the number of co-changed files and the number of files
introduced during the maintenance are relevant features.
Both ArgoUML and Spring framework have these common
features in their decision trees for refactoring prediction al-
though they cover different domains as ArgoUML is a UML
tool and Spring framework is a J2EE application server.

Our future work will continue to develop an ECLIPSE
plug-in to generate models and discover the classes, in need
for the most refactorings, or at least estimates the number
of refactorings needed in near future.

References

[1] D. Advani, Y. Hassoun, and S. Counsell. Refactoring trends
across n versions of n java open source systems: an empiri-
cal study. Technical report, University of London, 2005.

[2] G. Antoniol, M. Di Penta, and E. Merlo. An automatic ap-
proach to identify class evolution discontinuities. In Pro-
ceedings of the International Workshop on Principles of
Software Evolution, pages 31–40, Kyoto, Japan, 2004.

[3] A. Capiluppi, M. Morisio, and P. Lago. Evolution of un-
derstandability in oss projects. In Proceedings of the Euro-
pean Conference on Software Maintenance and Reengineer-
ing, pages 58–66, Tampere, Finland, March 2004.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on Software En-
gineering, 20(6):476–493, June 1994.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. In Proceedings of the 15th ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pages 166–177, 2000.

[6] S. Demeyer, F. Van Rysselberghe, T. Girba, J. Ratzinger,
R. Marinescu, T. Mens, B. Du Bois, D. Janssens, S. Ducasse,
M. Lanza, M. Rieger, H. Gall, and M. El-Ramly. The
lan-simulation: A research and teaching example for refac-
toring. In Proceedings of the International Workshop on
Principles of Software Evolution, pages 123–131, Septem-
ber 2005.

[7] N. E. Fenton and M. Neil. A critique of software defect pre-
diction models. IEEE Transactions on Software Engineer-
ing, 25(5):675–689, September 1999.

[8] H. Gall, M. Jazayeri, and J. Ratzinger (former Krajewski).
CVS release history data for detecting logical couplings. In
Proceedings of the International Workshop on Principles of
Software Evolution, pages 13–23, Lisbon, Portugal, Septem-
ber 2003. IEEE Computer Society Press.

[9] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans-
actions on Software Engineering, 26(7):653–661, 2000.

[10] L. Hatton. Re-examining the fault density-component size
connection. IEEE Software, 14(2):89–98, March/April
1997.

[11] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quanti-
tative evaluation of maintainability enhancement by refac-
toring. In Proceedings of the International Conference on
Software Maintenance, pages 576–585, October 2002.

[12] P. Knab, M. Pinzger, and A. Bernstein. Predicting defect
densities in source code files with decision tree learners. In
Proceedings of the International Workshop on Mining Soft-
ware Repositories, pages 119–125, Shanghai, China, May
2006. ACM Press.

[13] M. M. Lehman and L. A. Belady. Program Evolution -
Process of Software Change. Academic Press, London and
New York, 1985.

[14] T. Mens and T. Tourwé. A survey of software refactoring.
IEEE Transactions on Software Engineering, 30(2):126 –
139, 2004.

[15] R. Najjar, S. Counsell, G. Loizou, and K. Mannock. The role
of constructors in the context of refactoring object-oriented
systems. In Proceedings of the European Conference on
Software Maintenance and Reengineering, pages 111–120,
March 2003.

[16] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the
bugs are. In Proceedings on the International Symposium on
Software Testing and Analysis, pages 86–96, Boston, Massa-
chusetts, USA, July 2004.

[17] J. Ratzinger, M. Fischer, and H. Gall. Improving evolvabil-
ity through refactoring. In Proceedings of the International
Workshop on Mining Software Repositories, pages 69–73,
St. Louis, USA, May 2005.

[18] J. Ratzinger, M. Pinzger, and H. Gall. EQ-Mine: Predicting
short-term defects for software evolution. In Proceedings
of the Fundamental Approaches to Software Engineering,
pages 12–26, Braga, Portugal, March 2007.

[19] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides. Pre-
dicting the probability of change in object-oriented systems.
IEEE Transactions on Software Engineering, 31(7):601–
614, July 2005.

[20] I. H. Witten and E. Frank. Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann,
San Francisco, USA, 2 edition, 2005.

[21] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In Pro-
ceedings of the International Conference on Software Engi-
neering, volume 00, pages 563–572, Edinburgh, Scotland,
UK, May 2004.

