
“A Bug’s Life”
Visualizing a Bug Database

Marco D’Ambros and Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Martin Pinzger
s.e.a.l. - software evolution and architecture lab

University of Zurich, Switzerland

Abstract

Visualization has long been accepted as a viable means
to comprehend large amounts of information. Especially in
the context of software evolution a well-designed visualiza-
tion is crucial to be able to cope with the sheer data that
needs to be analyzed. Many approaches have been investi-
gated to visualize evolving systems, but most of them focus
on structural data and are useful to answer questions about
the structural evolution of a system.

In this paper we consider an often neglected type of in-
formation, namely the one provided by bug tracking sys-
tems, which store data about the problems that various peo-
ple, from developers to end users, detected and reported.
We first briefly introduce into the context by reporting on
the particularities of the present data, and then propose two
visualizations to render bugs as first-level entities.

1 Introduction

Bug tracking systems play an important role in software
development [9, 12]. They are used by developers, quality
assurance people, testers, and end users to provide feedback
on the system. This feedback can be reported as an incorrect
or anomalous situation or as a request for enhancements.

Bug tracking systems are also used in software evo-
lution research to perform retrospective system analysis
[1,4,5,10]. In this context the analysis goal is to understand
which are the most problematic parts of the system. Bug
tracking systems provide useful information for each bug,
and include properties such as the description, the severity,
the person assigned to fix the bug, etc.

Visualization of software evolution information is not
new, and there are a number of techniques, which how-
ever exclusively focus on the structural evolution of sys-
tems. Bugs, often considered as an unwanted “side dish”
of the evolution phenomenon, in fact represent a valuable
source of information that can lead to interesting insights

about a system, that would be hard or impossible to obtain
relying exclusively on structural information.

In this paper we consider bugs as first-level entities
which can change and evolve over time. In particular we
focus on the bug life cycle, i.e., the history of a bug and
the various states it traverses. Based on the information we
recovered from a well-known bug tracking system, namely
Bugzilla1, we present two visualization techniques aimed at
understanding bugs at two different levels of granularity:

1. System Radiography. This visualization renders bug
information at the system level and provides indica-
tions about which parts of the system are affected by
what kind of bugs at which point in time. It is a high-
level indicator of the system health and serves as a ba-
sis for reverse engineering activities.

2. Bug Watch. This visualization provides information
about a specific bug and is helpful to understand the
various phases that it traversed. The view supports the
characterization of bugs and the identification of the
most critical ones.

In this paper we present and discuss both visualizations,
which are complementary to established structural visual-
izations and other reverse engineering techniques.

Structure of the paper. In Section 2 we introduce the
bug model, with a special focus on the bug life cycle. We
explain the challenges and the constraints in the analysis
of the Mozilla bug database in Section 3. Our two tech-
niques for visualizing and analyzing a bug database are pre-
sented in Section 4 and Section 5. In Section 6 we discuss
their benefits and shortcomings. In Section 7 we look at re-
lated work and conclude by summarizing our contributions
in Section 8.

1See http://www.bugzilla.org for more information.

1

2 Modeling Bugs

Our reference model of a bug is an abstraction of the
Bugzilla implementation. We chose Bugzilla because it is
the most used bug tracking system in the open source com-
munity and because the models of other systems, such as
Trac and Scarab2, are simplifications of the Bugzilla model.

Bugzilla describes the following properties of a bug:

• The problem. Includes the unique identifier (id), the
description (short description) of the problem and its
location in the system. The location is identified by the
pair Product::Component, where a product contains
several components. Each bug has a list of comments
(long description) describing possible solutions.

• The criticality of the bug, indicated by the fixing pri-
ority (from 1 to 5) and by its severity. The possible
severities are, in order: Blocker (application unusable),
critical, major, normal, minor, trivial (minor cosmetic
issue), enhancement (request of enhancement).

• The involved people, which includes the reporter of the
bug, the developer in charge to fix it (assignedTo), the
quality assurance (qa) person who will test the solution
and a list of people who are interested in being notified
of the bug fixing progress (CC).

• The condition in which the bug was detected, such as
operating system and platform.

• The state of the bug, composed of status and resolu-
tion. The status identifies at which stage of the life cy-
cle the bug is. The possible values are: Unconfirmed,
New, Assigned, Resolved, Verified, Closed and Re-
opened. The resolution indicates whether and how the
problem was solved, once the bug reaches the resolved
status. Possible values here are: Fixed, invalid, won’t
fix, not yet, remind, duplicate, and works for me.

Our model takes time into account. Every field of a bug
can be modified over time thus generating a bug activity.
The activity records which field is changed, when, by whom
and the pair of old and new values. Activities are important
because they allow us to keep track of a bug’s life cycle, i.e.,
the sequence of statuses the bug went through.

Figure 1 shows all possible bug statuses and transitions.
Each possible status is associated to a different color. Green
colors represent statuses in which the bug is considered
fixed (resolved, verified, closed), while red colors represent
statuses in which the bug has to be fixed (new, assigned,
reopened). We consider reopened as the most critical sta-
tus, since a first attempt did not fix the bug. Unconfirmed is

2See http://trac.edgewall.org and http://scarab.tigris.org

Unconfirmed

New Resolved

Reopened

Verified

Assigned

Closed

Figure 1. The Bug Status Transition Graph.

associated to cyan, since it is not known yet if the reported
bug is real.

The typical life cycle of a bug is the following: It is re-
ported (either new or Unconfirmed according to the privi-
leges of the reporter), it is assigned to a developer for fixing
(Assigned) and then he/she proposes a solution (Resolved)
or decides that a solution is not needed (for example when
the resolution is set to duplicate or invalid or won’t fix).
When the bug is Resolved, the quality assurance tests the
proposed solution and sets the bug status to one of the fol-
lowing: Verified, Closed, Reopened, Unconfirmed. The bug
status transition graph does not have a final state, because a
bug can always be reopened.

3 Visualizing the Mozilla Bugs

In this paper we present visualizations of the bug data
set of Mozilla3 between September 1998 (when Bugzilla
was introduced) and April 2003. Due to its sheer size and
complexity this leads to a number of constraints on the vi-
sualization techniques. In particular, three properties of the
Mozilla bug database have to be considered:

1. Bug number: The database contains 255’302 bug re-
ports. This implies the use of visualizations which
scale up to this level.

2. Bug liveliness: On average a Mozilla bug lasts 523.2
days (time between the reporting and the last regis-
tered activity) with an average of 10.6 activities. This
requires the use of visualization techniques which can
not only display individual bugs, but also complemen-
tary information such as their activities and status his-
tories.

3. Bug importance: Expressed with severity and priority,
bugs have different impact and importance, and the vi-
sualization technique must help to convey this distinc-
tion.

3See http://www.mozilla.org

2

4 The System Radiography View

The goal of the System Radiography view is to support
the analysis of the bug database as a whole. We want to
study how the open bugs (not fixed yet) are distributed in
the system and over time.

Time

Product A

Product B

Component 1

Component 2

y position
Component

x position
Time Interval

Color
#bugs

Figure 2. The principles of the System Radio-
graphy visualization.

Visualization Principles. Figure 2 shows the principles
of the System Radiography visualization. The evolving sys-
tem is displayed using a matrix-based representation. Each
row of the matrix represents a system component, and each
group of rows, i.e., components, represents a system prod-
uct. This hierarchical decomposition of the system in Prod-
uct::Component is obtained by the bug database itself, since
each bug affects a particular component of a particular prod-
uct. The columns represent time from left to right. Each
column corresponds to a parametrizable interval of time.

The y position of each cell represents a Prod-
uct::Component pair, while the x position an interval of
time. The color of the cells maps the number of bugs af-
fecting the y component during the x time interval, where x
and y are the position of the cell. We use a gray scale: The
darker the color, the larger the number of bugs.

A bug, at any point in time (of its life), is characterized
by a status. Therefore, it does not make sense to count the
number of bugs during a time interval without considering
their statuses. For this reason, the color of the cells rep-
resents the number of bugs with a given status (or set of
statuses) during the considered time interval. This allows
us to see the distribution of the bugs in the system and over
time with respect to their status: For example “open” bugs,
i.e., bugs with new, assigned or reopened status, “solved”
bugs (resolved, verified or closed), or only new or reopened
bugs, etc. Other filters can be used, one per each field of the

bug. For example, we can use the severity filter to count the
blocker and critical bugs only.

Once the matrix is created, we apply a sorting algorithm
to its rows before displaying it. The goal is, for each prod-
uct, to sort its components according to the similarity of
their histories, i.e., the numbers of bugs for every time in-
terval. Given a product p and two components c1, c2, cor-
responding to the matrix rows r1, r2 of size n (number
of columns), the similarity between the components is de-
fined as the Euclidian distance of the points r1, r2 in a n-
dimensional space, as defined by Equation 1.

d(r1, r2) =
q

(r1(1) − r2(1))2 + · · · + (r1(n) − r2(n))2 (1)

The value of ri(j) is the number of bugs with a given
status (and after the filtering) of the i component at the j
time interval.

After sorting, we obtain a matrix in which the products
are alphabetically sorted and where the components within
each product are sorted according to the defined similar-
ity. This sorting allows us to detect groups of components
which were affected by a large number of bugs in the same
time window.

Figure 3 shows our tool visualizing a System Radiogra-
phy of Mozilla, from June 1999 to April 2003, where open
bugs only are considered. The time interval used is three
days, meaning that each column of the matrix represents
three days of time. The main window of the tool is divided
in a visualization part on the left, containing the actual Sys-
tem Radiography, and an information part on the right. This
part displays the information relative to the matrix cell un-
der the pointer: The time interval, the product::component
pair and the list of bugs (id and short description) affect-
ing that component during that time interval. Only the bugs
with the considered statuses and severities are listed.

Visualization Interpretation. Our goal with this first vi-
sualization is to understand where and when the open bugs
are concentrated. In Figure 3 we see that Browser is the
biggest product, in terms of number of components, and the
most affected by open bugs. It has a large number of gray
rows, i.e., components affected by many bugs. We identi-
fied and annotated five system areas with the highest density
of open bugs, described in Table 1.

These areas contain system components which were af-
fected by a large number of open bugs for a long period of
time. The average number of bugs per basic time interval
(three days) varies from 145 to 408, while the total amount
of different bugs varies from 874 to 24407. The shortest
time interval is 22 months, the longest 46 months. Such
amounts and densities of bugs with such a persistency over
time are bad symptoms, which indicate that the components

3

Time Inteval

List of bugs

Product::Component

1
2

3
4

5

Figure 3. The System Radiography of Mozilla from June 1999 to April 2003. Only bugs with new,
assigned or reopened statuses are considered.

Label Product Components Time interval Avg no. of
bugs / 3 days

of different
bugs

1 Browser Bookmarks, Layout: Form Controls, Layout: Tables, Plug-ins,
XP-Apps: GUI Features, Event Handling

May ‘01-Jan ‘03 215 5570

2 Browser Browser-general, Layout, XP Toolkit/Widget, Editor Core,
Networking, XP Apps, OJI

Jun ‘99-Apr ‘03 291 24407

3 MailNews Networking IMAP, Account Manager May ‘01-Mar ‘03 145 874
4 MailNews Address Book, Composition, Mail Back End, Mail Window

Front End
Aug ‘99-Apr ‘03 408 9421

5 Tech Evangelism Europe West, US General Oct ‘00-Apr ‘03 250 1871

Table 1. The properties of the five highlighted areas in Figure 3.

are badly designed or implemented and thus they should be
reengineered to decrease the number of introduced bugs.

The same bug can be present in different cells of the
same row. For example, if a bug was in the assigned sta-
tus for 9 days, and the time interval is three days, then the
bug is present in three cells. On the other hand, since the
product and component fields of a bug can have just one
value, the same bug cannot be present in different cells of
the same column.

Our second goal of the analysis in the large is to under-
stand where and when the open and most severe bugs are lo-

cated. To do so, we generate a second System Radiography
by selecting the bugs with the blocker or critical severity.
In the obtained visualization, not shown for lack of space,
there is one area only similar to the ones highlighted in Fig-
ure 3. The area contains the components Browser-General
and OJI from March 2002 to April 2003. The average num-
ber of bugs per three days is 54 with a total of 256 different
bugs. The two components are present also in area 2 in
Figure 3. They are the most critical components in terms
of being affected by bugs, and thus should be analyzed in
detail.

4

Beginning: 10/19/1999End: 10/16/2001

12/21/1999

1/31/2000

6/5/2000

7/3/2000

8/31/2000
9/21/2000

10/24/2000
11/15/2000

3/2/2001

7/8/2000

2/6/2000

3/12/2001

6/22/2001

8/6/2001

Time

Activity
Layer

Severity/Priority
Layer

Status
Layer

Status HistoryActivity History

Id, priority, severity Description

Figure 4. A Bug Watch Figure visualizing Bug 5119 of Mozilla between Oct 19 1999 and Oct 16 2001.

5 The Bug Watch View

With the System Radiography view we obtained a big
picture of the system from the bug perspective and we de-
tected the critical components. The purpose of the Bug
Watch view is to ease the analysis of single bugs. Our goals
are to characterize the bugs affecting a given set of com-
ponents during a given time interval and to detect the most
critical bugs. Our underlying assumption is that the critical-
ity of a bug does not depend only on its severity and priority,
but also on its life cycle. For example, a bug reopened sev-
eral times indicates a deeper problem than expected.

For this type of analysis we need a visualization which
fulfills the following requirements:

• Considering time. The visualization has to be time-
based in order to show the life cycle history of a bug.

• Considering severity and priority. These bug proper-
ties, in the context of a bug’s life cycle, allow us to
detect critical bugs.

Visualization Principles. Figure 4 shows a Bug Watch vi-
sualization of a Mozilla bug. This visualization technique
uses a watch metaphor to represent time: The initial times-
tamp is mapped to 00:00 on the watch, the final timestamp
is mapped to 11:59. The figure is composed of three layers:

1. The Status layer represents the bug life cycle. Each
status the bug passed through is visualized as a sector,
using the same color schema as in Figure 1. The posi-
tion and the size of each sector map when and for how
long the bug had the corresponding status.

2. The Activity layer visualizes modifications of any bug
property. Each activity is represented as a black bar
and positioned according to when the modification
happened. An activity is an event and therefore its vi-
sual representation has a fixed size. Wider bars denote
several activities in the same time interval.

3. The Severity/Priority layer depicts information about
the severity and the priority of a bug. Dark colors de-
note high priority and blocker or critical severity, while
bright colors denote low priority and minor, trivial or
enhancement severity.

5

1

3

2

22

3

4

5

4

4

Figure 5. Bug Watches applied to the bugs affecting the Browser::Networking component of Mozilla.
The reference time interval is from November 2002 to April 2003.

We can map different bug metrics on the radius of a Bug
Watch. We usually choose the number of statuses in the
considered time interval which also corresponds to the num-
ber of sectors. This, besides facilitating the detection of
bugs with an intense life cycle, has also the benefit of mak-
ing the statuses more readable: Bugs with many statuses are
represented with larger figures. Figure 5 shows an example
of this: Statuses are always readable, as long as they do not
last for a very short time.

One problem of the Bug Watch visualization is that it is
not possible to distinguish between different activities, since
they are all visualized in the same way. We opted against the
use of different colors for different activities because this
would make the figure too complex to interpret. A second
problem arises when there are statuses which last for short
periods of time. They are represented as narrow sectors,
which are difficult to distinguish, especially in zoomed out
views as for example in Figure 5. To overcome these issues,
we provided our tool with panels showing complementary
information about the bug in focus (see Figure 4).

Considering the high number of bugs, the question is
which bugs to visualize using the Bug Watch. The starting
point is usually the previously presented System Radiogra-
phy view: We select/draw a rectangle in the System Radio-
graphy which will be converted in a set of bugs and in a
time interval. To build the set of bugs, all the matrix cells

covered by the rectangle are considered, and all the cor-
responding bugs are added. Depending on its height, the
rectangle can cover one or several system components. The
time interval is created by considering the first and the last
matrix columns covered by the rectangle.

The selected bugs are then visualized by means of Bug
Watches, with the same reference time interval. Figure 5
shows a Bug Watch view (without the information panels
for space reasons) applied to the rectangle annotated with
2 in Figure 3. The area covers the Networking compo-
nent from November 2002 to April 2003. In the visual-
ization shown in Figure 5, we grouped the bug watches us-
ing the following criterion: Bugs having similar life cycles
(in the considered time interval) are grouped and placed in
the same box. Bugs with a diverse life cycle form single-
element boxes. The boxes are placed in a way that similar
boxes, with respect to the similarity of the contents, stay
close to each other. This grouping technique facilitates the
characterization of bugs, according to their life cycles, and
the identification of “exceptional bugs”.

Visualization Interpretation. Figure 5 shows the open
bugs affecting the Browser::Networking component of
Mozilla from November 2002 (mapped to 00:00 on the
watch) to April 2003 (mapped to 23:59). We observe 5 in-
teresting facts, annotated in the figure:

6

1. It is a crucial bug in the component, since it has blocker
severity and maximum priority (dark severity/priority
layer), and it was reopened four times. The activity
layer of the figure shows that the history of the bug
is rich of activities. By reading the details of these
activities in the information panels, we found out that
the developer in charge of fixing the bug changed six
times and that many people are interested in the bug,
since many e-mail addresses were added to the CC.
The bug id is 31174 and the problem is related to SSL
channels and proxies, as stated in the short description.

2. All these bugs are hard to fix, since they were reopened
at least one time (and at most three). They have various
levels of severity and priority, but only one of them
(marked also as 4) has a critical severity.

3. These bugs have an unusual life cycle: They pass from
a resolved or verified status to an unconfirmed or new
status, without being reopened. By reading the activity
details, we discovered that this behavior is associated
with a change of person in charge (assignedTo) and
often with a change of quality assurance person (qa).

4. All these bugs have the maximum level of priority and
severity (critical or blocker).

5. This bug has a life cycle composed of one status only,
but its history is full of activities. All these activi-
ties are an addition of a CC, meaning that increasingly
more people are interested in that bug.

All the other bugs have a “normal” life cycle for not-
yet-fixed bugs, following for example the transitions uncon-
firmed → new or new → assigned. None of these bugs has
both maximum priority and blocker or critical severity.

6 Discussion

The proposed visualizations support the analysis of a bug
database at two different but complementary levels of gran-
ularity. This has two main benefits: (1) The technique scales
up to the size of Mozilla, i.e., 250’000 bugs and 2’700’000
activities, and (2) it is possible to visualize and inspect any
individual bug together with its history.

The interaction capabilities the tool offers, allows the
user to “jump” from the large scale System Radiography to
a detailed Bug Watch view, which visualizes a selected part
of the system or even only one bug. The tool allows also
to customize the views by applying filters on bug properties
such as priority and severity.

Another advantage of the approach is that both visual-
izations include the time dimension. In particular the Bug
Watch view has the time embedded in each figure. This
allows any type of layout and grouping, without loosing

or modifying time-based properties of bugs (e.g., life cy-
cle and activities). The last benefit comes from the sorting
and grouping techniques used in both views, which ease the
detection of critical areas of the system and the characteri-
zation of bugs.

Concerning shortcomings, the data set we used to exper-
iment our visualizations is limited, since it does not contain
recent data (up to April 2003). Recent versions of Bugzilla
are still based on the bug and life cycle models used in this
paper and a validation with recent data is required. Another
weak point of our approach is that we propose a general
technique based on a single data set. To prove that the ap-
proach is general we need to apply it on other case studies.

7 Related Work

The approach presented in this paper is a follow up of
our previous work in which we showed how to extract and
integrate versioning data from CVS and bug reporting data
from Bugzilla into a Release History Database (RHDB) [6].
The data is used to analyze the evolution of software sys-
tems such as presented by D’Ambros et al. in [4] and by
Pinzger et al. in [11]. These approaches focused on provid-
ing visualizations for CVS, Bugzilla, and source code data
whereas in this paper we take into account the bug report
details and in particular their life cycles.

Fischer and Gall used CVS and Bugzilla data to depict
the evolution of features [5]. They use graph-based visu-
alizations to project bug report dependence onto feature-
connected files and the project directory structure. Depen-
dencies occur through source files that were modified to fix
a particular bug. The two different views allow the spec-
tator to uncover hidden dependencies between features and
shortcomings in the design.

Similar to our approach Halverson et al. presented a
number of visualizations [7] to support the coordination of
work in software development, namely the Work Item His-
tory and the Social Health Overview. The Work Item His-
tory shows status changes of bug reports and makes prob-
lematic patterns such as resolve/reopened visible. The So-
cial Health Overview provides an interactive overview of
bug reports with drill down capabilities. Whereas they fo-
cus on analyzing team coordination we focus on analyzing
the evolution of software systems.

Mozilla has been addressed in a number of case studies
such as by Mockus et al. [9]. They used data from CVS
and Bugzilla focusing on the overall team and development
process such as code contribution, problem reporting, code
ownership, and code quality including defect density in final
programs, and problem resolution capacity as well.

The knowledge stored in bug repositories has been used
by researchers to aid in bug triaging. For instance, in [2]
Anvik et al. presented an approach to semi-automatically

7

assign a developer to a newly received bug report. Using the
data who solved what kinds of bugs from Bugzilla reposito-
ries they apply machine learning algorithm to recommend
to a triager a set of developers who may be appropriate for
resolving the bug. A similar approach has been presented
by Čubranić et al. in [3]. Instead of recommending devel-
opers our approach provides visualizations to analyze and
understand bug life cycles.

A number of approaches use bug report data to train
mining algorithms and validate their results. For instance,
Śliwerski et al. [13] and later on Kim et al. [8] investigated
changes that induce bug fixes. They start with a bug report
indicating a fixed problem, extract the associated changes
in the source code, and analyze the earlier changes that
might have induced the reported bug. In contrast to these
approaches we focus on a detailed analysis of bug reports
and present a set of criteria to identify the critical bugs.

8 Conclusion

In this paper we have proposed an approach to sup-
port the analysis of a bug database, by means of two vi-
sualizations: The System Radiography and the Bug Watch
views. The System Radiography is aimed at studying the
bug database in the large: The visualization is helpful to
understand how the bugs are distributed in the system prod-
ucts and components and over time. It also highlights the
critical parts of the system, e.g., the components affected by
most of the bugs. The Bug Watch view supports the analysis
of the bugs affecting a limited part of the system, e.g., one
or few components. The visualization facilitates the charac-
terization of bugs and the identification of critical bugs.

The main contributions of the paper are:

1. Introducing the concept of a Bug’s Life, i.e., bugs
are considered as evolving entities which change over
time. Studying the history and, in particular, the life
cycle of bugs permits an accurate characterization.

2. Using the watch metaphor, and introducing the corre-
sponding Bug Watch figure, to visualize and analyze
the life cycle of bugs.

3. Introducing a new criterion for bug criticality. Besides
the severity and priority we also consider the life cy-
cle. The underlying assumption is that bugs reopened
several times are more critical.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science foundation
for the projects “COSE - Controlling Software Evolution”
(SNF Project No. 200021-107584/1).

References

[1] G. Antoniol, M. Di Penta, H. Gall, and M. Pinzger. Towards
the integration of versioning systems, bug reports and source
code meta-models. In Proceedings Workshop on Software
Evolution Through Transformation (SETra 2004), pages 83–
94, Amsterdam, 2004. Elsevier.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In ICSE ’06: Proceeding of the 28th international
conference on Software engineering, pages 361–370, New
York, NY, USA, 2006. ACM Press.

[3] D. Cubranic and G. C. Murphy. Automatic bug triage using
text categorization. In SEKE, pages 92–97, 2004.

[4] M. D’Ambros and M. Lanza. Software bugs and evolution:
A visual approach to uncover their relationship. In Pro-
ceedings of CSMR 2006 (10th IEEE European Conference
on Software Maintenance and Reengineering), pages 227 –
236. IEEE Computer Society Press, 2006.

[5] M. Fischer and H. Gall. Visualizing feature evolution of
large-scale software based on problem and modification re-
port data. Journal of Software Maintenance and Evolution:
Research and Practice, 16(6):385–403, 2004.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proceedings International Conference on Software
Maintenance (ICSM 2003), pages 23–32, Los Alamitos CA,
Sept. 2003. IEEE Computer Society Press.

[7] C. A. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg.
Designing task visualizations to support the coordination of
work in software development. In Proceedings of the 2006
20th anniversary conference on Computer supported coop-
erative work (CSCW 2006), pages 39–48, New York, NY,
USA, 2006. ACM Press.

[8] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead. Au-
tomatic identification of bug-introducing changes. In ASE
’06: Proceedings of the 21st IEEE International Conference
on Automated Software Engineering (ASE’06), pages 81–90,
Washington, DC, USA, 2006. IEEE Computer Society.

[9] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM Trans. Softw. Eng. Methodol., 11(3):309–346,
2002.

[10] M. Pinzger, H. Gall, and M. Fischer. Towards an integrated
view on architecture and its evolution. Electronic Notes in
Theoretical Computer Science, 127(3):183–196, 2005.

[11] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. In Proceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualization), pages 67–
75, St. Louis, Missouri, USA, May 2005.

[12] C. R. Reis and R. P. de Mattos Fortes. An overview of
the software engineering process and tools in the mozilla
project. In The Open Source Software Development Work-
shop, pages 155–175, 2002.

[13] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proceedings of International Work-
shop on Mining Software Repositorie – MSR’05, Saint Lous,
Missouri, USA, 2005. ACM Press.

8

