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Abstract— People are subjected to a multitude of interruptions.
This situation is likely to get worse as technological devices
are making us increasingly reachable. In order to manage the
interruptions it is imperative to predict a person’s interruptability
- his/her current readiness or inclination to be interrupted. In
this paper we introduce the approach of direct interruptability
inference from sensor streams (accelerometer and audio data)
in a ubiquitous computing setup and show that it provides
highly accurate and robust predictions. Furthermore, we argue
that scenarios are central for evaluating the performance of
ubiquitous computing devices (and interruptability predicting
devices in particular) and prove it on our setup. We also
demonstrate that scenarios provide the foundation for avoiding
misleading results, assessing the results’ generalizability, and
provide the basis for a stratified scenario-based learning model,
which greatly speeds-up the training of such devices.

Index Terms— Interruptability, Context Awareness, Wearable
Devices, Evaluation, Direct Prediction, Scenario

I. I NTRODUCTION

People are subjected to a multitude of interruptions. This
situation is likely to get worse as technological devices are
making us increasingly reachable. But the problem is not as
simple as it looks like at the surface. As examples, consider
the following situations:

• A physician visits the opera. Should she turn off her
pager as directed or leave it on? But what if she gets
an important page to perform some emergency surgery?
What about the daily financial update page from her
investment advisor?

• A manager is about to start an important meeting in his
office. Should he turn his phone off? What if the man-
ager misses some important breaking news that would
significantly change the course of the meeting?

What both these situations have in common is that a person
performs some task and can be interrupted by a technological
artifact. When interrupting the person (s)he incurs some cost,
be it the angry looks of other opera visitors or the interruption
of the ongoing meeting. On the other hand, the person might
greatly profit from receiving the message. The surgeon might
have to save somebody’s life or the manager might improve
the meetings outcome. The decision on whether to be informed
about the interruption or not is highly context dependent.
Research in context-aware computing has investigated whether

the interruption of a person based on sensory input is possi-
ble. The findings are promising. Some studies show a quite
acceptable accuracy when attempting to predict a person’s
interruptability [1], [2], [3], [4].
In most interruptability studies, however, interruptability is
predicted indirectly through the use of predefined categories
and it wasdifficult to assess the reliability/robustness of the
resultstowards changes in contexts and applications. Indirect
prediction requires the prior definition of categories such as
location of the subject and/or its actual activity. We show that
a direct prediction of interruptability is possible and provides
high accuracies without the need for predefined categories.
Addressing the difficulty to assess the reliability of such
experiments, this paper argues for ascenario-based evaluation
method, in which the typical activities of the experiment are
reported as part of the experimental description. A scenario -
a plan of activities and course of events - puts the evaluation
results in context and, hence, provides crucial background
information to facilitate their assessment. Basing our investiga-
tion on data from a wearable interruptability experiment akin
to [4], in which we use a wearable computer with accelerom-
eters and audio sensors to predict a subject’s interruptability,
we show that a scenario-based evaluation provides a better
guide for how a learned interruptability detector performs.
In particular we show how misleading the typically reported
accuracy statistics are when no detailed scenario is provided.
We support our assertion - scenarios help to vastly improve
an assessment of the robustness of results - with the following
claims sustained by our experimental data: First, the situational
variance of the data collected should correspond to the one
encountered in real-world use. A scenario helps to ensure
such an ample variance. Second, we show how accuracies are
typically better if the model has to perform in fewer situations,
which is misleading as specialized predictors often poorly
generalize. Third, we show how a scenario allows assessing
the performance of a predictor in situations it didn’t encounter
in its training phase - an evaluation, which is difficult without
a scenario. As a consequence of these three findings we can
see that it is imperative to report on the situation in which
the accuracy was trained and attained in order to assess the
reliability of a prediction method in general. This even argues
to provide scenarios for field-experiments, as some situations
might be central to a person’s activity but so seldom that
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they do not arise within the experiments timeframe. Fourth,
we show that scenarios can be used to speed-up the learning
phase using a stratified scenario-based learning model, similar
to the ones used in speech recognition software. Fifth, we
discuss the appropriateness of the sensors used, as we find
that accelerometers aren’t as predictive and are not as robust
towards situational variability in our environment as audio
recordings. Last, we question the use of accuracies as a sole
measure of prediction quality, as it assumes that the cost of
miss-prediction is known at design time (or implicitly assumes
equal cost for false positive and false negative classifications)
- an assumption which is typically wrong when users are
involved.
The remainder of this paper is organized as follows. In the
next section we introduce our experimental setup including
the technical data collection mechanism and the used office-
worker scenario. The following section provides the statistical
support for each of our claims based on the data gathered in
our experiments. We close with a discussion of related and
future work.

II. OUR EXPERIMENTAL SETUP

A. The technical setup

For our experiments we used a technical setup that was
based on Kern and Schiele [4]. Using accelerometers and a
microphone - both resource-friendly, easily-available, cheap,
and simply-usable sensors - they showed very promising
results in terms of prediction quality. [5] also show that
different actions can be recognized by accelerometers attached
to a subject. In contrast to [4] we used both a different
annotation strategy and technology: they attached a PDA
(iPaq) to their recording Laptop annotating activities such as
”sitting,” ”standing,” ”walking,” etc., and the auditory context
(as ”street,” ”restaurant,” etc.) inferring the interruptability
tendencies using explicit mapping rules. Avoiding the need for
constructing mapping rules and the complexities of perpetually
selfrecording one’s context using a PDA we decided to use a
potentiometer (see also Figure 1, right), which was used by the
subject himself to report his interruptability by simply turning
the knob. This allowed the subject to simply annotate large
amounts of data, without averting his gaze from the current
activity.
We connected most sensors, i.e., the accelerometers and the
potentiometer to a Smart-it and multiplexer device [6], which
transform the analog input into a digital, multiplexed data
stream. This data stream could then be accessed through a
computer’s serial port, allowing the analog sensory data to be
queried from programs using standard serial port read/write
instructions. The microphone (recording at 44 kHz, 16 Bit
mono) was connected to the laptop’s sound port.
In order to ensure that we didn’t miss important information
about the subject’s motion we decided to use three 3-D
accelerometers. These accelerometers allowed us to measure
the motion in 3-D space of the subject’s shoulder, wrist1, and
leg (see also Figure 1, left). The subject wore the potentiometer

1The accelerometers on the wrist were mainly used to synchronize the
sound recording with the acceleration sensors by hand clapping.

Fig. 1. a) Subject wearing data acquisition setup with accelerometers (red
arrows, left side of figure), microphone (green arrow, top right side), and
potentiometer (blue arrow, bottom rightside). b) Potentiometer only on the
left.

for annotation attached to his belt and the microphone attached
like a necklace to his neck. The laptop and Smart-it electronics
were all carried in a backpack to allow the subject to move
around. The software on the laptop recorded the output from
each sensor and wrote it to a file. The output from the
microphone was recorded in wave files.

B. The data acquisition scenario

To assure the representativeness of our measures we con-
structed a scenario. The scenario was based on the idea that
every activity typically undertaken by an office worker should
be included at least once. Hence, we assembled a list of
typically lived-through tasks of an office worker based on our
own experience and informal interviews with office workers.
Then the subjects were asked to carry out the tasks using
appropriate activities (of their choosing). Note that we left the
subject unclear about when certain events would occur to avoid
setting the subject’s pre-conceptions about the possible course
of events influencing his behavior. For example, we left the
exact timing of some phone-calls to chance by asking some
people to call our subject at random times during the day.
After conducting the experiment we examined the activities
and categorized them into 6 major activity classes, which we
called situations. As Table I shows on the left the scenario
includes six rough situations (walking, riding the streetcar,
working at the office, visiting the cafeteria, and attending a
lecture) totaling in about 4 hours of recording time. The table
on the right also shows that some activities have a relatively
high prior probability of high interruptability (like streetcar)
while others have an extremely low prior (like attending a
lecture).
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TABLE I

SCENARIO ACTIVITIES, TIMES, & DURATION

             A. Bernstein, P. Vorburger, and P. Egger 

about when certain events would occur to avoid setting the subject’s pre-conceptions 
about the possible course of events influencing his behavior. For example, we left the 
exact timing of some phone-calls to chance by asking some people to call our subject 
at random times during the day. After conducting the experiment we examined the 
activities and categorized them into 6 major activity classes, which we called situa-
tions. As Table 1 shows on the left the scenario includes six rough situations (walk-
ing, riding the streetcar, working at the office, visiting the cafeteria, and attending a 
lecture) totaling in about 4¼ hours of recording time. The table on the right also 
shows that some activities have a relatively high prior probability of high interrupta-
bility (like streetcar) while others have an extremely low prior (like attending a lec-
ture). 

Table 1. Scenario activities, times, & duration 

Activity Start Time [s] Duration [s]
Walking 0 547
Streetcar 547 365
Walking 912 217
Office work 1129 2199
Walking 3328 204
Lecture 3532 1781
Walking 5313 164
Office work 5477 1077
Walking 6554 134
Cafeteria 6688 1270
Walking 7958 207
Office work 8165 225
Walking 8390 70
Meeting 8460 2225
Walking 10685 138
Cafeteria 10823 724
Walking 11547 90
Office work 11637 3161
Walking 14798 - 15381 583 

Situation Interruptability 
High [%]    Low [%] 

Walking 81.1 18.9 
Streetcar 100.0 0.0 
Office work 0.2 99.8 
Lecture 1.9 98.1 
Cafeteria 68.8 31.2 
Meeting 4.5 95.5  

3   Results – Supporting the claims 

To support our claims we first had to construct an interruptability predictor from the 
data stream. We extracted 17 features from the audio stream using principal compo-
nent analysis and normalization, which have been shown to be a good basis for con-
text-aware learning [2, 14]. Furthermore, we sampled all the data streams (acceler-
ometers and audio) down to 1 Hz. Then, we clustered each sensor stream using a 
simple k-means algorithm. This filtered each data stream into k discrete states, which 
we then used to learn a simple Markov model for the two prediction classes. At any 
given point in time the class is predicted using Markov chains. This prediction proce-
dure has two parameters: the number of clusters k and the number of steps s into the 
past as known as the length of the Markov chain.  

III. R ESULTS - SUPPORTING THE CLAIMS

To support our claims we first had to construct an interrupt-
ability predictor from the data stream. We extracted 17 features
from the audio stream using principal component analysis and
normalization, which have been shown to be a good basis
for context-aware learning [7]. Furthermore, we sampled all
the data streams (accelerometers and audio) down to 1 Hz.
Then, we clustered each sensor stream using a simple k-means
algorithm. This filtered each data stream into k discrete states,
which we then used to learn a simple Markov model for the
two prediction classes. At any given point in time the class
is predicted using Markov chains. This prediction procedure
has two parameters: the number of clusters k and the number
of steps s into the past as known as the length of the Markov
chain.
All of these computations allow us to support our claims from
above, which we will now visit in turn with their supporting
evidence.

A. Direct interruptability prediction

The general accuracy results (ten fold cross-validated) can
be seen in Table II, which shows the confusion matrixes for
the two-class problem (Interruptible/not Interruptible) for each
of the three sensors. As we can see the overall accuracy of our
experiment is very good: our accuracies are highly competitive
with those reported in related work , who reported accuracies
of ranging from 80.1% to 87.7% [1], [4]. The table also
reports on the parameter settings k and s for the inference
procedure, which we are going to maintain for the rest of the
paper. Note that we achieved these high accuracies without
any prior definition of categories (symbols) except for the
target symbol ”interruptability”. According to the literature [8]
we should, therefore, expect better generalization behavior by
our prediction method to new situations that have not been
encountered/defined before. Subsection 3.5 will discuss the
predictor’s generalization behavior to new situations.

TABLE II

MODEL CONFUSION MATRIXES. ”I” STANDS FOR” INTERRUPTABLE”

                 Direct Interruptablity Prediction and Scenario-based Evaluation 

All of these computations allow us to support our claims from above, which we will 
now visit in turn with their supporting evidence. 

3.1 Direct interruptability prediction 

The general accuracy results (ten fold cross-validated) can be seen in Table 2, which 
shows the confusion matrixes for the two-class problem (Interruptible/not Interrupti-
ble) for each of the three sensors. As we can see the overall accuracy of our experi-
ment is very good: our accuracies are highly competitive with those reported in re-
lated work [3, 10]. The table also reports on the parameter settings k and s for the 
inference procedure, which we are going to maintain for the rest of the paper. Note 
that we achieved these high accuracies without any prior definition of categories 
(symbols) except for the target symbol “interruptability”. Therefore, we expect better 
generalization behavior by our prediction method to new situations that have not been 
encountered/defined before. Subsection 3.5 will provide the basic to assess a predic-
tor’s generalization behavior to new situations.    

Table 2. Model confusion matrixes. “I” stands for “interruptable”. 
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3.2   The necessity of situation variance 

Our first claim concerning the scenario-based evaluation method states that it is im-
portant to ensure that the situations encountered within the experiment are as varying 
as the ones encountered in real-world use. Using a scenario as a basis for the experi-
ment can help such a correspondence of situation. While the claim is intuitive we 
used our experimental data to support it numerically. The audio prediction accuracies 
reported in Table 3 (the accelerometer results are similar) show how a model learned 
for each of the situations (rows) predicts the interruptability of all the other situations 
(in columns). Obviously, the models predict the situations well, in which they were 
learned, resulting in the high prediction accuracies in the diagonal. But we can also 
see that it is nearly impossible to infer how well the models are going to perform in 
situations other than the one they were learned in. The model learned in the cafeteria 
situation, for example, predicts walking, streetcar, and cafeteria with relative high 
accuracies, but performs relatively poor for the rest. As a consequence it is imperative 
to use a set of situations in an experiment that corresponds with situations that typi-
cally occur in an application area. Note that field experiments increase the chance of 
accruing the necessary situations but don’t guarantee it, as some highly important 
situations may occur infrequently. It would, consequently, be prudent to enrich field-
experiments with scenarios to attain full situational variance. 

B. The necessity of situation variance

Our first claim concerning the scenario-based evaluation
method states that it is important to ensure that the situations
encountered within the experiment are as varying as the ones
encountered in real-world use. Using a scenario as a basis for
the experiment can help such a correspondence of situation.
While the claim is intuitive we used our experimental data
to support it numerically. The audio prediction accuracies
reported in Table III (the accelerometer results are similar)
show how a model learned for each of the situations (rows)
predicts the interruptability of all the other situations (in
columns). Obviously, themodels predict the situations well,
in which they were learned, resulting in the high prediction
accuracies in the diagonal. But we can also see that it isnearly
impossible to infer how well the models are going to perform
in situations other than the one they were learned in. The
model learned in the cafeteria situation, for example, predicts
walking, streetcar, and cafeteria with relative high accuracies,
but performs relatively poor for the rest. As a consequence
it is imperative to use a set of situations in an experiment
that corresponds with situations that typically occur in an
application area. Note that field experiments increase the
chance of accruing the necessary situations but don’t guarantee
it, as some highly important situations may occur infrequently.
It would, consequently, be prudent to enrich field-experiments
with scenarios to attain full situational variance.
A second interesting observation can be made from Table III:
the results are asymmetric. The model learned in the cafeteria,
for example, is highly predictive for the streetcar (100%
accuracy) but the inverse performs poorly (68% accuracy).
This indicates that some situations contain more information
for the overall model than others. As a consequence we could
theorize about a measure of usefulness of a situation. One
might be the prior probabilities shown in Table I on the
right, where we can see that the streetcar situation contains no
information about non-interruptible situations and the cafeteria
has a prior 69% - practically the prediction accuracy of the
streetcar model on the cafeteria data. Another would be to use
the information content (or entropy) as a measure. Again, we
see the necessity for identifying the scenario situations as they
can guide our search for information rich situations.
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TABLE III

ONE BY ONE ACCURACIES FOR AUDIO

             A. Bernstein, P. Vorburger, and P. Egger 

A second interesting observation can be made from Table 3: the results are asymmet-
ric. The model learned in the cafeteria, for example, is highly predictive for the street-
car (100% accuracy) but the inverse performs poorly (68% accuracy). This indicates 
that some situations contain more information for the overall model than others. As a 
consequence we could theorize about a measure of usefulness of a situation. One 
might be the prior probabilities shown in Table 1 on the right, where we can see that 
the streetcar situation contains no information about non-interruptible situations and 
the cafeteria has a prior 69% – practically the prediction accuracy of the streetcar 
model on the cafeteria data. Another would be to use the information content (or 
entropy) as a measure. Again, we see the necessity for identifying the scenario situa-
tions as they can guide our search for information rich situations.  

Table 3. One by one accuracies for audio 

Test 
Training Walking Streetcar Office work Lecture Meeting Cafeteria 
Walking 98.7 100.0 1.5 5.1 16.8 58.9 
Streetcar 80.7 100.0 0.1 0.2 3.8 68.2 
Office work 19.3 0.0 99.9 99.7 96.2 31.8 
Lecture 26.6 4.0 90.2 99.9 87.6 34.3 
Meeting 39.3 20.2 97.1 98.7 99.9 30.2 
Cafeteria 68.7 100.0 8.8 6.9 18.0 99.9 

3.3   Specialized predictors can be misleading 

Our second claim is that specialized predictors seem to perform better. In other 
words, the more homogenous the learning/prediction sets (i.e., the fewer situations it 
covers) the higher the prediction accuracy is likely to be. To support this claim we 
evaluated our learning algorithms within all possible subsets of situations. Figure 1 
shows the average overall prediction performance of different subset sizes (from the 6 
subsets with only one situation to the one subset with all situations). At first, consider 
the results of the models based on accelerometers. When the subsets included only 
one situation then the predictions where highly accurate (at 0.98%). The more situa-
tions are added, i.e., the more heterogeneous the model gets, the less predictive the 
model becomes. This, again, emphasizes the need for a scenario. First, it highlights 
how mere reports of accuracies are problematic, as it makes it impossible to assess 
the variability of the situations underlying the reported results. The results could be 
based, for example on two situations, sitting in a movie theater and sitting in a street-
car, both of which, typically, have homogenous interruptability and are simple to 
differentiate with a light sensor. Second, without any information about the variability 
within and between the situations of a scenario it is almost impossible for the reader 
to assess how a given mechanism might fare in another environment. This is espe-
cially true, as the practical application of a prediction mechanism is likely to confront 
it with many heterogeneous situations, for which the accuracies of a predictor learned 
form specialized data are misleading. 

 

C. Specialized predictors can be misleading

Our second claim is that specialized predictors seem to
perform better. In other words, the more homogenous the
learning/prediction sets (i.e., the fewer situations it covers)
the higher the prediction accuracy is likely to be. To support
this claim we evaluated our learning algorithms within all
possible subsets of situations. Figure 2 shows the average
overall prediction performance of different subset sizes (from
the 6 subsets with only one situation to the one subset with
all situations).

At first, consider the results of the models based on ac-
celerometers. When the subsets included only one situation
then the predictions where highly accurate (at 0.98%). The
more situations are added, i.e., the more heterogeneous the
model gets, the less predictive the model becomes. This, again,
emphasizes the need for a scenario. First, it highlights how
mere reports of accuracies are problematic, as it makes it
impossible to assess the variability of the situations underlying
the reported results. The results could be based, for example
on two situations, sitting in a movie theater and sitting in
a streetcar, both of which, typically, have homogenous inter-
ruptability and are simple to differentiate with a light sensor.
Second, without any information about the variability within
and between the situations of a scenario it is almost impossible
for the reader to assess how a given mechanism might fare in
another environment. This is especially true, as the practical
application of a prediction mechanism is likely to confront it
with many heterogeneous situations, for which the accuracies
of a predictor learned form specialized data aremisleading.
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Fig. 2. Specialization accuracies

D. Sensor robustness towards situational variability

Figure 2 reveals a second interesting finding: in our scenario
the predictors based on the audio sensor were much more
robust towards situational variability than the ones based on
accelerometers. This raises the issue whether the accelerome-
ters are suitable for our task or whether their omission might
lead to better results, which has been stated in our fifth claim.
This hints at a basic underlying machine learning problem
(called over fitting) that sometimes more features for learning
might actually misguide the induction algorithm and some
sampling of the feature space might improve the algorithm’s
performance. For our particular problem we can conclude that
accelerometers don’t seem to provide a highly discriminative
measure for interruptability prediction in the used scenario.
This shows again how crucial it is to report the application
scenario as a part of the results. We will revisit this issue in
subsection 3.7 below.

E. Generalizability of predictors

The ultimate question for any (interruptability) prediction
approach is how well it generalizes to situations not encoun-
tered in the training phase. We were, therefore, especially
interested how our setup would fare in situations not included
in the training set. To that end we took our overall dataset
and analyzed it as follows. First, we trained the models on
one situation and evaluated the resulting model on all the
others. Second, we trained on two situations and evaluated
the model using the remaining ones, and so forth. The results
of this analysis can be found in Figure 3, which shows a
similar behavior for all sensor streams. At first, as expected,
the results improve the richer the situational variability is in the
training set. Interestingly, however, the prediction performance
degrades when including a fourth situation. This is due to the
symmetry in the experimental setup. In the closed world of the
scenario there is only a limited set of situations. Assuming
that the situations in the scenario actually provide different
sensory readings, the training set starts to be increasingly
dissimilar to the test set with every situation that is moved
from the test to the training set. With other words, the figure
shows two counteracting effects. The more situational variety
in the training set the better the model becomes. The less
situational variability in the test set the more exceptional its
sensory readings become and the more difficult it is to learn a
good predictor for it from other situations. Nevertheless, our
results are very interesting. First, we see that it is actually
possible topredict never before encountered situations with
a fair accuracy of 70%. Note that this result is better than
it looks as the overall performance of the predictor, i.e., the
performance including predictions in situations similar to the
ones in the training set, is likely to be much better. Second,
our evaluation takes place in a somewhat artificially ”closed
world,” where the situational variety is limited. In the real
world, the situational diversity is always (much) higher than
in the test set. As a consequence, we can expect the improving
trend to continue beyond just three situations. Nonetheless, we
have to expect that there will always be exceptional situations
not covered in any training set, which will lead to miss-
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Fig. 3. Generalizability accuracies

classifications.
Summarizing, we have found that our approach generalizes
with acceptable success to situations not encountered in the
training set. This analysis shows again how important an
underlying scenario is, as it would be nearly impossible to
investigate situational generalizability of predictors without a
scenario. It also shows that any assessment of generalizability
without a scenario is ”doomed” to fail, as it is impossible for
the reader to assess the correspondence of situations she might
think about with situations in the test and/or training set. Thus,
prediction accuracies can only be understood in the context of
their evaluatory scenario.

F. Scenario-based, stratified training

The preceding analysis raises the question whether a sce-
nario can inform the selection of data for model induction.
In particular, one could hypothesize that if situationswithin
a scenario provide a somewhat homogenous data stream then
one should be able to plan the initial training data collection
using the scenario as a guide to quickly gain good induction
performance. In other words, a small sample of each situation
within a typical application scenario should be sufficient to
learn a well performing model.
To investigate this hypothesis we looked how the prediction
accuracy of our model changed when varying the amount
of training data available for the scenario situations. We
started with randomly chosen one-minute segments from each
situation to train a model and determined the accuracy of its
performance on the remaining data. We then repeated this
evaluation continuously increasing the training segment size
by 1 minute until a total of 30 minutes was reached. To avoid
non-representative outliers in the trainings set we performed
5 evaluation runs on 5 randomly selected segments from each
situation and averaged the reported results. The results of this
analysis are shown in Figure 4, which graphs the relative
accuracy for each sensor in respect of the best achievable
overall accuracy. Thus the figure essentially shows how fast
the model climbs the learning curve, i.e., achieves its best
attainable model.
The results we found are very promising. Using only a 3
minute audio sample of each situation was enough to attain

Fig. 4. Relative accuracy gains with scenario-based stratified training

about 87% of the overall accuracy. The two accelerometer
sensors also provide good results, but climb the learning
curves slower. A good scenario, therefore, provides the basis
for a shortened stratified learning scenario, which is used
to learn large percent of the attainable accuracy only with
brief situational example segments. Further improvements can
then be achieved via relevance feedback within use. Such
an approach would significantly lower the barrier for using
wearable devices as users oftentimes want to see the benefits
of their tools early - otherwise they grow frustrated and don’t
bother using it at all [9], [10]. A good scenario could, thus, be
the foundation to shorten the deployment time of a wearable
interruptability prediction device, akin to the introductory
training texts used to train speech recognition software.
The results so far have shown how important a scenario can
be for determining the robustness of a wearable interruption
prediction mechanism. We have seen how a scenario can as-
sure situational variance, provide context for reported accuracy
figures, which ultimately allow evaluating the generalizability
of an interruptability prediction approach. Furthermore, we
have seen how a scenario can provide the basis for a fast strat-
ified model-learning procedure speeding the learning curve of
the prediction models and, thus, lowering the barrier to the
approach’s practical use. Our experiment also gave rise to
some interesting, scenario-independent findings, which we are
going to discuss in the next two sub-sections.

G. Are accuracies enough? - The dominance of audio sensors
for predicting interruptability

One issue with interpreting the results of papers about
interruptability prediction is that they all report accuracies.
Accuracies are problematic: they assume that the cost-tradeoffs
between false positives and false negatives (for two class
problems) are known at learning time. Most papers we found
didn’t report any assumption about the cost of misclassification
in which case we have to assume that they implicitly used
an equal cost for both false positives and false negatives.
Obviously, this doesn’t reflect the application domains. Users
typically associate different costs with the various types of
misclassification. Wrongly classifying a wanted phone call
(such as a surgery request) as unwanted, for example, has
a higher cost then occasionally classifying a telemarketer as
wanted.
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As an alternative to reporting accuracies one could use the
receiver operating characteristics (ROC) curve - a measure
from signal theory that recently has gained high acceptability
in machine learning [11]. The ROC curve graphs the true pos-
itive rate versus the false positive rate. The random classifier
corresponds to the diagonal. The closer the curve to the upper
left corner the better it is. Cost is related to the angle of a
tangent resulting in a cost-based cutoff for classification using
class probability estimators. As a consequence, ROC curves
allow comparing two classification approaches independent
of any cost assumptions. The area under the ROC curve
(AUC) supplies a single number measure for the overall, cost-
independent performance of a classifier.

As we can see from Figure 5 the ROC curves differ between
the models. Apart from the area left of a false positive rate
of 0.08 the audio model clearly dominates both accelerometer
models. Only when the cost of a rejected but desired inter-
ruption is more than 1.66 times the cost of an accepted, but
undesired interruption, then the accelerometer model provides
better predictions (for calculation details see [12]). Even when
combining the audio with the accelerometers’ data the audio
model still provides excellent (dominating) results. Figure
5 shows two such combinations: one based on building a
classifier based on a combination of all features, another based
on combining the three models’ prediction using a nave Bayes
classifier, which the literature [12] predicts to be superior. But
even the feature combined model is outperformed by the audio
model, which provides a larger area under the curve. Only the
model combination outperforms the audio model, drawing on
the accelerometer data to improve the AUC to 0.961 and the
accuracy to an excellent 93.7% (see confusion matrix in Table
IV).
Summarizing, we can say that reporting ROC curves is supe-
rior to accuracies and confusion matrices. We have also seen
that under most reasonable cost-assumptions the audio model
dominates the accelerometer data stream and only a model
combination improves over the audio model’s performance.

Adding the only somewhat improved accuracy in the combined
model and the poor generalizability of this sensor stream (see
section 3.3.) raises the question what sensors might be more
suitable in our environment for interruptability prediction than
accelerometers.

IV. RELATED WORK

There are essentially two groups of studies that relate
to ours: interruptability investigation in the stationary and
wearable setting. Belonging to the first group, Horvitz et al.
use Bayesian networks based on information stored in a user’s
calendar including the status of properties of appointments as
well as information generated by interactions with computing
devices to predict the ”relevance” and cost of interruptions
[2], [13]. [1] equipped an office with physical sensors such
as microphones, magnetic switches determining whether the
door is open, motion sensors, etc. Using self-reported inter-
ruptability annotations they found that the audio streams where
the most predictive sensors with accuracies between 80.1%
(for an intern) and 87.7% (for a manager) for a two class
prediction (highly non-interruptible and other). These results
can be compared with our overall accuracy of 90.6% accuracy
for the audio measure. Note that the difference might be both
in the choice of features and algorithms. A full comparison
would, therefore, require further analysis.
The second group considers wearable setups. The SenSay
project [14] connects a notebook to a cell phone, which is
connected to a number of sensors like ”audio,” ”accelerom-
eters,” ”temperature,” and ”visible light”. Another wearable
computing platform is the audio-only Nomadic Radio [15]
that uses speech recognition, message priority, as well as a
contextual notification model to define when a message should
be posted on the user’s heads-up display. The most similar to
our efforts is the project by Kern and Schiele [4]. They connect
accelerometers via a sensor module to a laptop. Using these
sensory data they predict the activity of the user as defined by
the activity classes ”sitting,” ”standing,” ”walking,” ”walking
up-stairs,” ”walking down-stairs,” and ”running” with an ac-
curacy of 86.5%. Furthermore, they classify a person’s social
context as defined by the states ”street,” ”restaurant,” ”lecture,”
and ”conversation” using a microphone with an accuracy of
83.17%. Combining these two classifications they infer a
tendency for a person’s interruptability. A comparison with
our approach is difficult, as both our annotation structure
and prediction goals (interruptability vs. activity setting/social
context) were different.

TABLE IV

MODEL COMBINATION CONFUSION MATRIX. ”I” STANDS FOR

” INTERRUPTABLE”.

                 Direct Interruptablity Prediction and Scenario-based Evaluation 

more than 1.66 times the cost of an accepted, but undesired interruption, then the 
accelerometer model provides better predictions (for calculation details see [12]). 
Even when combining the audio with the accelerometers’ data the audio model still 
provides excellent (dominating) results. Figure 4 shows two such combinations: one 
based on building a classifier based on a combination of all features, another based on 
combining the three models’ prediction using a naïve Bayes classifier, which the 
literature [15] predicts to be superior. But even the feature combined model is outper-
formed by the audio model, which provides a larger area under the curve. Only the 
model combination outperforms the audio model, drawing on the accelerometer data 
to improve the AUC to 0.961 and the accuracy to an excellent 93.7% (see confusion 
matrix in Table 4). 

Table 4. Model combination confusion matrix. “I” stands for “interruptable”. 

  Predicted  
  I ¬ I 

I 20.8% 1.2% Reported 
¬ I 5.1% 72.9% 

accuracy = 
93.7% 

 
Summarizing, we can say that reporting ROC curves is superior to accuracies and 
confusion matrices. We have also seen that under most reasonable cost-assumptions 
the audio model dominates the accelerometer data stream and only a model combina-
tion improves over the audio model’s performance. Adding the only somewhat im-
proved accuracy in the combined model and the poor generalizability of this sensor 
stream (see section 3.3.) raises the question what sensors might be more suitable in 
our environment for interruptability prediction than accelerometers. 

4 Related Work 

There are essentially two groups of studies that relate to ours: interruptability investi-
gation in the stationary and wearable setting. Belonging to the first group, Horvitz et 
al. use Bayesian networks based on information stored in a user’s calendar including 
the status of properties of appointments as well as information generated by interac-
tions with computing devices to predict the “relevance” and cost of interruptions [7, 
8]. [3] equipped an office with physical sensors such as microphones, magnetic 
switches determining whether the door is open, motion sensors, etc. Using self-
reported interruptability annotations they found that the audio streams where the most 
predictive sensors with accuracies between 80.1% (for an intern) and 87.7% (for a 
manager) for a two class prediction (highly non-interruptible and other). These results 
can be compared with our overall accuracy of 90.6 % accuracy for the audio measure. 
Note that the difference might be both in the choice of features and algorithms. A full 
comparison would, therefore, require further analysis.  
The second group considers wearable setups. The SenSay project [13] connects a 
notebook to a cell phone, which is connected to a number of sensors like “audio,” 
“accelerometers,” “temperature,” and “visible light”. Another wearable computing 
platform is the audio-only Nomadic Radio [12] that uses speech recognition, message 
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V. CONCLUSION AND FUTURE WORK

In this paper we introduced a method for accurately pre-
dicting a person’s interruptability directly from simple sensors
without any intermediate steps/symbols. The direct prediction
seems to be competitive or even superior to indirect prediction
methods and we have not observed any drawbacks yet.
Based on the data gathered we showed that the problem of
predicting contextual status from sensory reading can greatly
be helped by using an application scenario. It provides a basis
to (1) ensure that thesituational diversityof the training set
corresponds to the real-world application, (2) avoidmisleading
results of specialized predictors, (3) assess thegeneralizability
of approachesto new situations, and (4) provide the basis for
a stratified scenario-based learning model, which can greatly
speed-up the training time of a wearable predictive device.
Finally, using an ROC-analysis, we illustrated thesuperiority
of the audio sensor stream for our taskraising the question of
other suitable sensors.
In the future we intend to focus on two limitations of our
current approach: generalization and computational efficiency.
The first issue relates to the problem that our current data only
stems from one subject. We intend to extend our investigation
to multiple subjects over long periods of time to further
validate the generalizability of our findings beyond the cur-
rent single-subject setup. This would, furthermore, allow the
investigation of whether models learned for different subjects
can be related to each other. Recruiting multiple ’real-world’
subject, however, would require a size (and weight) reduction
of our data acquisition setup, as only few people would want to
wear the (somewhat intrusive) sensors over extended periods
of time. The second issue relates to computational efficieny:
we intend to investigate whether different algorithms attain
similar prediction quality while limiting the computational
requirements – a prerequisite for the approach’s widespread
use and size reduction of the experimental setup.
In closing we would like to highlight that the prediction of a
person’s interruptability based on contextually collectable in-
formation essentially consists of two related sub-problems: the
collection of suitable data streams and the efficient inference
from these data. While vast advances have been made in the
field of machine learning regarding the inference, the problem
of which data to collect is still in its infancy and needs further
exploration.
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[7] J. Syrj̈alä, “Context classification using audio data for wearable com-
puter,” Master’s thesis, Swiss Federal Institute of Technology, 2003.

[8] R. Pfeifer and C. Scheier,Understanding intelligence. MIT Press,
Cambridge, Mass., 2000.

[9] J. Grudin, “Groupware and social dynamics: eight challenges for devel-
opers,”Commun. ACM, vol. 37, no. 1, pp. 92–105, 1994.

[10] ——, “Group dynamics and ubiquitous computing,”Commun. ACM,
vol. 45, no. 12, pp. 74–78, 2002.

[11] F. J. Provost and T. Fawcett, “Robust classification for imprecise
environments,”Machine Learning, vol. 42, no. 3, pp. 203–231, 2001.

[12] K. M. Ting and B. T. Low, “Model combination in the multiple-data-
batches scenario,” inECML ’97: Proceedings of the 9th European
Conference on Machine Learning. London, UK: Springer-Verlag, 1997,
pp. 250–265.

[13] E. Horvitz, P. Koch, C. M. Kadie, and A. Jacobs, “Coordinate: Proba-
bilistic forecasting of presence and availability,” inProceedings of the
Eighteenth Conference on Uncertainty and Artificial Intelligence (UAI
’02), 2002, pp. 224–233.

[14] D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N. Moraveji,
K. Reiger, J. Shaffer, and F. L. Wong, “Sensay: A context-aware
mobile phone,” inISWC ’03: Proceedings of the 7th IEEE International
Symposium on Wearable Computers. Washington, DC, USA: IEEE
Computer Society, 2003, p. 248.

[15] N. Sawhney and C. Schmandt, “Nomadic radio: scaleable and contextual
notification for wearable audio messaging,” inCHI ’99: Proceedings of
the SIGCHI conference on Human factors in computing systems. New
York, NY, USA: ACM Press, 1999, pp. 96–103.

Abraham Bernstein is Associate Professor and
heads the Dynamic and Distributed Information Sys-
tems Group in the Department of Informatics at the
University of Zurich, Switzerland. Before joining
the University of Zurich he was Assistant Profes-
sor in the Department of Information, Operations
and Management Sciences at New York Universitys
Leonard N. Stern School of Business and received
a Ph.D. from MIT’s Sloan School of Management.
His research interests include the various aspects of
supporting dynamic (intra- and inter-) organizational

processes with a special focus on machine learning, the semantic web, and
pervasive computing.

Peter Vorburger holds a master’s degree in physics
obtained at the ETH Zurich, Switzerland. He is
PhD. candidate at the Dynamic and Distributed
Information Systems Group in the Department of
Informatics at the University of Zurich, Switzerland.
Before joining the University of Zurich he worked
for four years as physicist in industry and as a CRM
freelance consultant in the financial services sector.
His research interests include context-awarenss and
machine learning theory.




