
Imprecise RDQL: Towards Generic Retrieval in Ontologies
Using Similarity Joins

Abraham Bernstein
Department of Informatics

University of Zurich
Switzerland

bernstein@ifi.unizh.ch

Christoph Kiefer
Department of Informatics

University of Zurich
Switzerland

kiefer@ifi.unizh.ch

ABSTRACT
Traditional semantic web query languages support a logic-
based access to the semantic web. They offer a retrieval (or
reasoning) of data based on facts. On the traditional web
and in databases, however, exact querying often provides an
incomplete answer as queries are overspecified or the mix of
multiple ontologies/modelling differences requires “interpre-
tational flexibility.” Therefore, similarity measures or rank-
ing approaches are frequently used to extend the reach of
a query. This paper extends this idea to the semantic web.
It introduces iRDQL—a semantic web query language with
support for similarity joins. It is an extension of traditional
RDQL (RDF Data Query Language) that enables the users
to query for similar resources ranking the results using a sim-
ilarity measure. We show how iRDQL allows to extend the
reach of a query by finding additional results. We quantita-
tively evaluated four similarity measures for their usefulness
in iRDQL in the context of an OWL-S semantic web ser-
vice retrieval test collection and compared the results to a
specialized OWL-S matchmaker. Initial results of iRDQL
indicate that it is indeed useful for extending the reach of
queries and that it is able to improve recall without overly
sacrificing precision. We also found that our generic iRDQL
approach was only slightly outperformed by the specialized
algorithm.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval–query formulation, search process

General Terms
Similarity, Information Retrieval, RDQL, Matchmaking

Keywords
Similarity Measures, Semantic Web, Similarity Joins, Im-
precise Queries, Service Matchmaking, Evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06,April, 23–27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

1. INTRODUCTION
Imagine the following situation: you want to buy a used

car—not just any car, but a car that has certain properties
such as a minimum age, a favorite color, and a certain brand.
All you have is a web interface that is connected to a large,
semantically annotated database of cars, trucks, and other
vehicles. When executing the query, however, you are buried
in hundreds of results (or you may not get any answer as
you overspecified the query). This situation is very typical.
People querying the semantic web, databases, or also the
web in general often find themselves either buried in results
to their queries or with no results whatsoever. A common
approach to handle these problems is to rank the results
of a query, in the case of too many answers, or to return
similar results, when no precise matches to the query exist
[1, 5]. Both solutions require a measure of similarity between
queries and answers.

One means for querying the semantic web or ontologies is
RDQL (RDF Data Query Language) [19, 20] that is a query
language for RDF [17] in Jena models [6]. RDQL allows
the user to formulate queries which return precise results.
We extended traditional RDQL with similarity joins [7] to
retrieve not only the precise results of a query but also simi-
lar ones. In other words, our approach exploits the semantic
annotation on the semantic web in conjunction with similar-
ity measures to improve the performance of queries. It finds
similar results when no precise results to a query exist. We
called our approach iRDQL. The i stands for imprecise indi-
cating that two or more resources do not have to be precisely
equal, but should be considered as equal (or similar) with
respect to their similarity value as computed by the similar-
ity measure. The ranking of the results may be improved (or
worsened) by specifying different similarity measures. Note
that it is not necessarily clear which measure is best. On the
contrary, the choice of the best performing similarity mea-
sure is highly context and data dependent [2, 8, 13]. We,
therefore, implemented a set of such similarity measures in
SimPack, our Java library of similarity measures for the use
in ontologies [3].

The contribution of this paper is our proposed iRDQL
framework that extends traditional RDQL. It implements a
generic retrieval approach to allow the use of generic simi-
larity elements hereby improving query performance.

The paper is organized as follows: Section 2 explains our
extensions to RDQL that make use of similarity joins. In
Section 3 we illustrate the usefulness of our approach with
the preliminary results from an evaluation that uses a se-

presentsdescribedBy

Beach

Surfing

Grounding

supports

serviceName
textDescription

beach surfing

It returns information

of surfing facility

of the given beach.

Beach

Surfing

Service

Beach

Surfing

Profile

Beach

Surfing

ProcessModel

Figure 1: Partial semantic network representation
of an OWL-S service instance called Beach Surfing
Service showing its service ProcessModel, Ground-
ing, and Profile (compare [14] Figure 1)

mantic web service retrieval test collection as dataset. We
close the paper with some related and future work as well
as conclusions.

2. iRDQL: RDQL WITH SIMILARITIES
RDQL (RDF Data Query Language) [19, 20] is a query

language to formulate queries over RDF [17] in Jena models
[6]. It looks at the information held in the models as RDF
triples which consist of a subject, a property, and an object,
where the object may again be a typed resource or a literal
value. For illustration purposes refer to Figure 1 that shows
a fragment of an RDF-graph of a particular OWL-S [14] ser-
vice instance (Beach Surfing Service). Given a model that
holds this instance, the following RDQL query (shortened)
finds exactly the service instance shown in Figure 1.

SELECT ?S1,?P1

WHERE ?S1 presents ?P1

?P1 serviceName ‘‘beach surfing’’

?P1 textDescription ‘‘It returns ...’’

Suppose now the main goal is NOT to find exactly this
instance, but to find services which present profiles similar
to the Beach Surfing Profile. To achieve this goal, we ex-
tended the traditional RDQL language with three additional
language constructs that we call IMPRECISE, SIMMEASURE,
and OPTIONS. The IMPRECISE clause defines the variables of
the query whose bindings (found resources) will be matched
imprecisely when executing the query. That is, they are
added to the result set of the query together with their cor-
responding similarity value as computed by the similarity
measure. The measure to compare two resources is speci-
fied by the SIMMEASURE clause. Here, any similarity measure
implemented in SimPack [3] can be used. Additional param-
eters of the similarity measure are specified by the OPTIONS

clause. The extended iRDQL syntax looks as follows (short-
ened):

SELECT [selectClauseVariables]

FROM [fromClause]

WHERE [whereClause]

AND [filterClause]

USING [usingClause]

IMPRECISE [impreciseClauseVariables]

SIMMEASURE [similarityMeasureClause]

OPTIONS [similarityMeasureOptionsClause]

As an example, assume that the three services Beach Surf-
ing Service, Beach Broker Service, and Abstract Broker Ser-
vice together with their corresponding service profiles Beach
Surfing Profile, Beach Broker Profile, and Abstract Broker
Profile are stored in a Jena model. The query corresponding
to our users desiderata would look like the following:

SELECT ?S1,?P1,?P2

WHERE ?S1 presents ?P1

?P2 serviceName ‘‘beach surfing’’

?P2 textDescription ‘‘It returns ...’’

IMPRECISE ?P1,?P2

SIMMEASURE Levenshtein

OPTIONS IGNORECASE false THRESHOLD 0.7

The query looks for a service ?S1 with service profile ?P1.
It retrieves all profiles ?P2 which have the service name
“beach surfing” and the textual description “It returns infor-
mation of surfing facility of the given beach.”1 The similar-
ity between ?P1 and ?P2 is computed using the Levenshtein
string edit distance (see Equation 1) and is returned with
the possible combinations of ?S1, ?P1, and ?P2 as shown in
Table 1. String comparison is case sensitive and a threshold
of 0.7 is used expressing that two strings are equal if their
similarity is at least 0.7 in this example.2

hasInput

hasOutput

Beach

Surfing

Profile

Surfing

Beach

SURFING

BEACH

label

label

Figure 2: Partial semantic network representation
of an OWL-S service profile instance called Beach
Surfing Profile

The implementation of iRDQL consists of a pre- and post-
processor to the Jena-based RDQL engine. The preprocessor
divides the iRDQL statement into independent RDQL state-
ments which are executed by the Jena RDQL engine. The
postprocessor combines the results of those subqueries, com-
putes the necessary similarities using the specified similarity
measure, and returns the results.

For this paper, we evaluated four such measures: the
Levenshtein string edit distance measure, the cosine vec-
tor measure, TFIDF, and the Jensen-Shannon information
divergence based similarity measure, that we all took from
SimPack, our library of similarity measures [3].

The Levenshtein measure first takes an RDF resource (e.g.
Rx) and maps it to a vector. Thus, the mapping of the
RDF graph in our example shown in Figure 2 results in
the vector x = [BeachSurfingProfile, hasInput, Beach, label,
BEACH, hasOutput, Surfing, label, SURFING]T . Then,
it uses the Levenshtein string edit distance algorithm [11]

1In our current approach, ?P2 acts like a target or tem-
plate for comparison, i.e., all retrieved service profiles ?P1
are compared against this target ?P2.
2Although not applied at the moment, additional query ex-
pansion methods can be used as, for instance, described in
[21] to further extend a query’s search space.

S1 P1 P2 Sim

Beach Surfing Service Beach Surfing Profile Beach Surfing Profile 1.0
Beach Broker Service Beach Broker Profile Beach Surfing Profile 0.85

Abstract Broker Service Abstract Broker Profile Beach Surfing Profile 0.7

Table 1: Output of the iRDQL example query

that calculates the number of insert, remove, and replace-
ment operations to transform vector x to vector y that is
obtained from another resource Ry. This edit distance is
defined as xform(x,y). But should each type of transfor-
mation have the same weight? Is the replacement transfor-
mation, for example, not comparable with a deleting proce-
dure followed by an insertion procedure? Hence, we could
argue that the cost function c should have the behavior
c(delete) + c(insert) ≥ c(replace). Consequently, we can
calculate the worst case transformation cost xformwc(x,y)
from x to y replacing all concept parts of x with parts of
y, then deleting the remaining parts of x, and inserting ad-
ditional parts of y. The worst case cost is then used to
normalize the edit distance, resulting in

simlevenshtein(Rx, Ry) =
xform(x,y)

xformwc(x,y)
(1)

The cosine measure aligns two vectors x and y along their
properties, like, for instance, in the following example where
Rx and Ry denote sets of (RDF) properties declared on re-
sources Rx and Ry.

Rx = {type, name} ⇒ x′ =

0@ 0
name
type

1A⇒ x =

0@ 0
1
1

1A
Ry = {type, age} ⇒ y′ =

0@ age
0

type

1A⇒ y =

0@ 1
0
1

1A
The measure computes the similarity of x and y as the cosine
of the angle between the two vectors. In equation 2, ||x||2
is the L2-norm, thus ||x||2 =

pPn
i=1 |xi|2.

simcosine(x,y) =
x · y

||x||2 · ||y||2 (2)

The TFIDF measure (term frequency–inverted document
frequency) uses a corpus of text documents generated from
all resources in the knowledge base. A traditional TFIDF-
based information retrieval algorithm [1] is applied to com-
pute the similarity between a query document and an an-
other document of the corpus.

The Jensen-Shannon information divergence based simi-
larity measure (JSD) is based on the Kullback-Leibler dis-
tance dkl [12] which measures the relative entropy of p with
respect to q where p and q are probability distributions of
some random variable X. The Kullback-Leibler distance is
not symmetric because of dkl(p, q) 6= dkl(q, p). To obtain a
symmetric, non-negative, and additive measure, the Jensen-
Shannon information divergence is given, as defined in [10],
by

simjsd(p, q) =
1

2 log 2

X
x∈X

h(p(x))+h(q(x))−h(p(x)+ q(x))

(3)
where h(x) is the entropy loss function h(x) = −x log x.
Like TFIDF, this measure makes use of the same corpus

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80

 10 20 30 40

P
re

c
is

io
n

,
R

e
c

a
ll,

 F
-M

e
a

su
re

Service Ranking

Average Precision, Recall, and F-Measure (iPM vs. iP)

avg recall (iPM)

avg recall (iP)

avg precision (iPM)

avg precision (iP)

avg f-measure (iPM)

avg f-measure (iP)

avg precision (iPM)
avg precison (iP)

avg recall (iPM)
avg recall (iP)

avg f-measure (iPM)
avg f-measure (iP)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80

Average and Variance of Precision, Recall, and F-Measure (iPM)

Figure 3: Precision, recall, and f-measure for all
queries averaged for both query styles (iP vs. iPM)

of documents and corresponding term-by-document proba-
bility matrix containing a term’s probability of occurrence
(p(x) and q(x) in Equation 3) in any document of the col-
lection to compute the similarity of two documents. In the
next section, we evaluate the results obtained with iRDQL
in combination with all four similarity measures and a par-
ticular semantic web service test collection.

3. EXPERIMENTAL EVALUATION
To evaluate the performance of iRDQL, we have chosen

the OWL-S-TC-v1 [9] semantic web service retrieval test col-
lection as the knowledge domain for our experiments. This
collection specifies a set of 406 OWL-S services of six differ-
ent domains (i.e., communication, economy, education, food,
medical, and travel). The collection is intended to support
the evaluation of the performance of OWL-S semantic web
service matchmaking algorithms. For each domain, the col-
lection specifies a number of queries along with a set of rel-
evant answers.

Inspecting the test collection, we found that both the ser-
vice profiles (what the service does) and the service process
models (how the service works) capture a suitable amount of
information to run our evaluation with the chosen similarity
measures. We, therefore, generated two iRDQL statements
for each query of the test collection: one applying the sim-
ilarity join to the service profile (called iP) and a second
one applying it to the service profile as well as the service’s
process model (called iPM). This allowed us to compare the
retrieval/matchmaking performance with varying numbers
of similarity joins: none in the benchmark setup finding ex-
actly one correct result, one in the case of iP, and two in
the case of iPM.

3.1 Different Types of Similarity Joins
To compare the performance of different types of simi-

larity joins, we used the similarity algorithms introduced
in Section 2. Figure 3 shows average precision, recall, and
f-measure for both query styles (iP vs. iPM) using the
Levenshtein similarity measure. The numbers on the x-axis
express the ranking of the services in the query’s result set.
The services within the result set are ranked in descending
order of similarity to the query service (highest ranking indi-
cating most similar). We graphed the retrieval performance
for a maximum of 80 retrieved services, thus focusing on the
most interesting range of the result set. The precision of the
iRDQL query is 1.0 for a result set of size one indicating
that, on average, all of the services inside this result set are
correct answers. The overall trend of precision is decreasing
since the result set is constantly growing until its size reaches
the total number of services of the test collection. The re-
call of the iRDQL query constantly increases as additional
(relevant) services are added to the result set.

The behavior observed in Figure 3 illustrates the useful-
ness of our approach. In each of the domains, an exact query
(i.e., an RDQL query with no similarity extension) yields ex-
actly one result: the only perfect match. While this result
has 100% precision it has a rather poor recall. The use of the
imprecision extension for RDQL allowed us to simply extend
the reach of the query and find additional correct matches
without (at least initially) overly sacrificing precision. Ac-
tually, as a comparison of both query styles shows, an in-
creased use of similarity operators leads to better retrieval
performance: iPM that has two similarity joins significantly
outperforms iP (only one similarity join) on all measures as
shown by a t-test (precision: 1.4e−19, recall: 9.8e−21, f-
measure: 5.7e−19). These results are consistent across all
four similarity measures (cosine: precision: 0.2e−3, recall:
7.9e−23, f-measure: 1.1e−5; TFIDF: precision: 1.1e−44, re-
call: 1.1e−58, f-measure: 8.1e−60; JSD: precision: 3.6e−48,
recall: 2.3.e−61, f-measure: 7.4e−62). We omitted the graphs
for the other three measures due to space constraints.

3.2 iRDQL vs. OWLS-M4
Figures 4(a) through 4(c) compare precision, recall, and

f-measure of the iPM queries for the four similarity mea-
sures together with the best performing matchmaking al-
gorithm OWLS-M4 of the OWLS-MX hybrid semantic web
service matchmaker [10].3 This matchmaker uses both logic-
based as well as information-retrieval-based matching cri-
teria to identify services which match with a given query
service. The main focus of the matcher lies on a service
profile’s input and output parameters. OWLS-MX uses
five different matching filters: Exact match, Plug-in match,
Subsumes match, Subsumed-by match, and Nearest-neighbor
match. We depicted the results of the best performing al-
gorithm Nearest-neighbor match (also called OWLS-M4) as
a benchmark for iRDQL in Figures 4(a) to 4(c). OWLS-
M4 combines logic-based features with the Jenson-Shannon
information divergence based similarity measure that is ap-
plied to terminologically unfolded service profile input and
output concepts.

As Figure 4(a) shows, both Levenshtein and TFIDF start
with highest precision (except for OWLS-M4) with few re-

3OWLS-MX is available as open source at http://www.
dfki.de/∼klusch/owls-mx/

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

Number of services in result set

Cosine
Levenshtein

TFIDF
JSD

OWLS-M4

(a) Average precision of the cosine, Levenshtein,
TFIDF, and JSD measure (iPM)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

Number of services in result set

Cosine
Levenshtein

TFIDF
JSD

OWLS-M4

(b) Average recall of the cosine, Levenshtein, TFIDF,
and JSD measure (iPM)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

Number of services in result set

Cosine
Levenshtein

TFIDF
JSD

OWLS-M4

(c) Average f-measure of the cosine, Levenshtein,
TFIDF, and JSD measure (iPM)

Figure 4: Comparison of the iPM-results and the
specialized OWLS-MX algorithm

turned services but then TFIDF significantly outperforms
Levenshtein and all other measures. When focusing on re-
call (Figure 4(b)), however, the cosine measure dominates
both TFIDF and Levenshtein with a very small number of
returned services. The combined f-measure (Figure 4(c)) re-
flects these observations allowing for a lead of TFIDF and
the Levenshtein measure until about 8 returned services fol-

lowed by a clear dominance of TFIDF thereafter.
As shown by the Figures 4(a) to 4(c), OWLS-M4 outper-

forms all iRDQL queries in terms of precision, recall, and f-
measure. However, the difference in performance compared
to the TFIDF-based iRDQL statement is small. This is
a success for iRDQL. OWLS-M4 is an algorithm that was
build with a lot of domain knowledge regarding OWL-S and
the matchmaking task. To that end it combines logic-based
features and a focus on the services’ input and output con-
cepts boosting its precision. In contrast, iRDQL implements
a generic retrieval approach; for the matchmaking task, all
we used were at most two similarity joins. Hence, it is sur-
prising that it performed so well compared to this specialized
algorithm.

Obviously, this evaluation of iRDQL can only serve as
an illustration. A thorough evaluation will have to (1) ex-
plore different combination approaches for multiple simi-
larity measures, (2) investigate the computational conse-
quences of using similarity joins over precise joins, (3) use
additional test collections besides OWL-S-TC-v1, and (4) in-
vestigate the quality of queries constructed by developers in
the light of these new constructs.

4. RELATED AND FUTURE WORK
Our iRDQL implementation was inspired by Cohen’s ap-

proach [7] of using similarity joins to solve the problem of
combining information from different databases. He uses a
standard TFIDF scheme [1] to compute the similarity be-
tween columns from different tables. The main difference
to our approach is that we are not dealing with flat tables
(i.e., data in first normal form) but with complex (ontolo-
gized) objects (i.e., data stored in NF 2—non first normal
form [18]).

The literature on service matching is too elaborate for
a complete discussion in addition to the elaborations on
OWLS-MX [10]. Most notably, Di Noia and colleagues [15]
discuss a purely logic-based approach that matches service
demands and supplies based on their explicit normal form,
i.e., demands and supplies are terminologically unfolded into
their names, number restrictions, and universal role quan-
tifications. The Classic-based [4] matchmaking algorithm
then distinguishes between potential and partial matches of
demands and supplies, i.e., matches with no conflicts and
matches with conflicting properties of demands and supplies.
This approach differs from ours in its strong reliance on rea-
soning rather than similarity measures. In the future, we in-
tend to investigate whether we can capture the algorithm’s
functionality with a preprocessing of iRDQL queries which
includes logical reasoning elements. More generally, we plan
to investigate different approaches of improving iRDQL’s
performance with both logical reasoning and domain knowl-
edge. This might, among other things, allow iRDQL to meet
OWLS-MX on equal footing.

We know of two projects that focus on the implementa-
tion of similarity measures: SecondString4 that implements
a set of approximate string-matching algorithms, and the
SimMetrics5 project that presents a large set of similar-
ity/distance metrics for information integration tasks. We

4More information about SecondString can be found at
http://secondstring.sourceforge.net/
5SimMetrics can be found at http://www.dcs.shef.ac.uk/
∼sam/simmetrics.html

intend to integrate those libraries into SimPack, our own
Java library of similarity measures for the use in ontolo-
gies [3], making them available in iRDQL. This is especially
pressing as our findings were not as conclusive about which
measure was best reflecting the findings of [2, 8] and calling
for further research to find the best performing similarity
measures in different task domains.

Last but not least, the current syntax of an iRDQL query
is rather cryptic. Therefore, we plan to further simplify its
syntax and also switch to SPARQL [16], the new proposed
w3c standard, setting the stage for future iSPARQL.

5. CONCLUSIONS
In this paper we presented our approach of extending

RDQL with similarity joins to find not only precise matches
to a query but also similar ones. Inspired by the work of
Cohen [7], we extended normal RDQL with similarity joins,
thus, using traditional information-retrieval-based similarity
measures in combination with RDQL to improve a query’s
precision and recall. We found that an increased usage of
similarity operators leads to better, overall retrieval perfor-
mance. We showed that our generic IR-based approach is
outperformed only to a very small extend by OWLS-MX
[10], a matchmaker for OWL-S services, that uses domain
knowledge and extensive logical reasoning. Using iRDQL
with a test collection of OWL-S services [9], we found that
TFIDF and the Levenshtein string edit distance were best
performing. In accordance to Cohen’s work we claim that
the approach presented in iRDQL provides the basis for
combining the strengths of logic-based precise querying and
similarity-based retrieval.

6. REFERENCES
[1] R. Baeza-Yates and B. d. A. Ribeiro-Neto. Modern

Information Retrieval. ACM Press, 1999.

[2] A. Bernstein, E. Kaufmann, C. Bürki, and M. Klein.
How Similar Is It? Towards Personalized Similarity
Measures in Ontologies. In 7. Internationale Tagung
Wirtschaftsinformatik, February 2005.

[3] A. Bernstein, E. Kaufmann, and C. Kiefer. SimPack:
A Generic Java Library for Similarity Measures in
Ontologies. Technical report, University of Zurich,
Department of Informatics.
http://www.ifi.unizh.ch/ddis/staff/goehring/

btw/files/ddis-2005.01.pdf, 2005.

[4] A. Borgida, R. J. Brachman, D. L. McGuinness, and
L. A. Resnick. CLASSIC: A Structural Data Model
for Objects. In SIGMOD ’89: Proceedings of the 1989
ACM SIGMOD International Conference on
Management of Data, pages 58–67, New York, NY,
USA, 1989. ACM Press.

[5] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[6] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: Implementing
the Semantic Web Recommendations. Technical
report, HP Labs, 2003.

[7] W. W. Cohen. Data Integration Using Similarity Joins
and a Word-Based Information Representation
Language. ACM Transactions on Information
Systems, 18(3):288–321, 2000.

[8] D. Gentner and J. Medina. Similarity and the
Development of Rules. Cognition, 65:263–297, 1998.

[9] M. Klusch. OWLS-TC-v1: OWL-S Service Retrieval
Test Collection. http:
//projects.semwebcentral.org/projects/owls-tc/,
2005.

[10] M. Klusch, B. Fries, M. Khalid, and K. Sycara.
OWLS-MX: Hybrid Semantic Web Service Retrieval.
Arlington, VA, USA, 2005.

[11] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics
Doklady, 10:707–710, 1966.

[12] J. Lin. Divergence Measures Based on the Shannon
Entropy. IEEE Transactions on Information Theory,
37(1):145–151, 1991.

[13] P. W. Lord, R. D. Stevens, A. Brass, and C. A. Goble.
Investigating semantic similarity measures across the
gene ontology: the relationship between sequence and
annotation. Bioinformatics, 19(10):1275–83, 2003.

[14] D. Martin, M. Burstein, J. Hobbs, O. Lassila,
D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara. OWL-S: Semantic
Markup for Web Services.
http://www.w3.org/Submission/OWL-S/, November
2004.

[15] T. D. Noia, E. D. Sciascio, F. M. Donini, and
M. Mongiello. A System for Principled Matchmaking
in an Electronic Marketplace. In WWW ’03:
Proceedings of the 12th International Conference on
World Wide Web, pages 321–330, New York, NY,
USA, 2003. ACM Press.

[16] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2005.

[17] RDF Core Working Group. RDF Primer.
http://www.w3.org/TR/rdf-primer/, 2004.

[18] H. J. Schek and M. H. Scholl. The Relational Model
With Relation-Valued Attributes. Information
Systems, 11(2):137–147, 1986.

[19] A. Seaborne. Jena Tutorial–A Programmer’s
Introduction to RDQL.
http://jena.sourceforge.net/tutorial/RDQL/,
2004.

[20] A. Seaborne. RDQL–A Query Language for RDF.
http://www.w3.org/Submission/RDQL/, 2004.

[21] E. M. Voorhees. Query Expansion Using
Lexical-Semantic Relations. In SIGIR ’94: Proceedings
of the 17th Annual International ACM SIGIR
conference on Research and Development in
Information Retrieval, pages 61–69, New York, NY,
USA, 1994. Springer-Verlag New York, Inc.

APPENDIX

A. COMPLETE iRDQL QUERY

SELECT ?s, ?p, ?p1, ?m, ?m1
WHERE (?s rdf:type service:Service)

(?s service:supports ?g)
(?g rdf:type grounding:WsdlGrounding)
(?g service:supportedBy ?s)

(?s service:presents ?p1)
(?p1 rdf:type profile:Profile)
(?p1 service:isPresentedBy ?s)
(?s service:describedBy ?m1)
(?m1 rdf:type processmodel:ProcessModel)
(?m1 service:describes ?s)
(?p rdf:type profile:Profile)
(?p service:isPresentedBy ?s1)
(?s1 rdf:type service:Service)
(?p profile:serviceName ?sn)
(?p profile:textDescription ?sd)
(?p profile:hasInput ?in1)
(?p profile:hasOutput ?out1)
(?in1 processmodel:parameterType ?in1PT)
(?in1 rdfs:label ?in1L)
(?out1 processmodel:parameterType ?out1PT)
(?out1 rdfs:label ?out1L)
(?m rdf:type processmodel:ProcessModel)
(?m service:describes ?s2)
(?s2 rdf:type service:Service)
(?m processmodel:hasProcess ?x)
(?x rdf:type processmodel:AtomicProcess)
(?x processmodel:hasInput ?in2)
(?x processmodel:hasOutput ?out2)
(?in2 processmodel:parameterType ?in2PT)
(?in2 rdfs:label ?in2L)
(?out2 processmodel:parameterType ?out2PT)
(?out2 rdfs:label ?out2L)

AND ?sn =~ /beach surfing/i
AND ?sd =~ /It returns information.../i
AND ?in1 =~ /_BEACH/
AND ?out1 =~ /_SURFING/

USING
service for <http://Service.owl#>
profile for <http://Profile.owl#>
processmodel for <http://Process.owl#>
grounding for <http://Grounding.owl#>

IMPRECISE ?p, ?p1
IMPRECISE ?m, ?m1

SIMMEASURE Levenshtein
OPTIONS IGNORECASE false THRESHOLD 0.7;

Abraham Bernstein is Associate Professor and heads the
Dynamic and Distributed Information Systems Group in
the Department of Informatics at the University of Zurich,
Switzerland. Before joining the University of Zurich he was
Assistant Professor in the Department of Information, Oper-
ations and Management Sciences at New York University’s
Leonard N. Stern School of Business and received a Ph.D.
from MIT’s Sloan School of Management. His research in-
terests include the various aspects of supporting dynamic
(intra- and inter-) organizational processes with a special
focus on machine learning, the semantic web, and pervasive
computing.

Christoph Kiefer is a PhD. candidate at the Dynamic
and Distributed Information Systems Group in the Depart-
ment of Informatics at the University of Zurich, Switzerland.
He holds a master’s degree in computer science obtained at
ETH Zurich, Switzerland. His research interests include the
exploration and application of similarity measures to vari-
ous application domains including the semantic web, query
formulation, and software clone detection.

