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Abstract

Information about the evolution of a software architecture can be found in the
source basis of a project and in the release history data such as modification and
problem reports. Existing approaches deal with these two data sources separately
and do not exploit the integration of their analyses. In this paper, we present an
architecture analysis approach that provides an integration of both kinds of evo-
lution data. The analysis applies fact extraction and generates specific directed
attributed graphs; nodes represent source code entities and edges represent rela-
tionships such as accesses, includes, inherits, invokes, and coupling between certain
architectural elements. The integration of data is then performed on a meta-model
level to enable the generation of architectural views using binary relational alge-
bra. These integrated architectural views show intended and unintended couplings
between architectural elements, hence pointing software engineers to locations in
the system that may be critical for on-going and future maintenance activities. We
demonstrate our analysis approach using a large open source software system.

Key words: software evolution analysis, software architecture,
architectural views

1 Introduction

Higher-level views on the architecture of software systems aid engineers in
evolving and maintaining software systems. Typically, these views are de-
picted as graphs whereas nodes represent the architectural elements and edges
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the relationships between them. In particular, relationships represent depen-
dencies between architectural elements that lead to coupling between these
elements. In theory, strongly coupled architectural elements are more likely
to be modified together than are loosely coupled elements. Therefore, ar-
chitectural designs concentrate on encapsulating common behavior within an
architectural element, consequently increasing cohesion and lower coupling [2].

An architectural element in the context of our work is a software module
that results from the decomposition of a software system into implementation
units. According to Clements et al. [6] we refer to a software module as an
implementation unit of software that provides a coherent unit of functionality.
Modules present a code-based way of considering the system [2].

However, in practice evolution often draws a different picture revealing
couplings between architectural elements that were not intended by the ar-
chitectural design. Reasons for this are manifold: shortcomings in the initial
design; the architecture has not been implemented in the way it was designed;
or architecture drift due to frequent modifications to the implementation.
In fact, these dependencies—for example constant changes crossing module
boundaries—hinder the effective maintenance and evolution of software sys-
tems. Therefore, locating them in the current implementation to facilitate
the application of directed refactorings to resolve these couplings would be
beneficial.

In this paper we focus on analyzing dependencies between architectural
elements and introduce the architecture analysis approach ArchEvo. ArchEvo
enriches source code models extracted from source code and execution traces
with logical coupling data obtained from configuration management systems
[11,12]. We refer to logical coupling as: Two source code entities (e.g. files) are
logically coupled if a modification to the implementation affected both source
code entities over a significant number of releases.

The data sources are integrated into a common directed attributed graph
from which ArchEvo abstracts higher-level views using architecture recov-
ery [15]. In the analysis of the dependencies between architectural elements
ArchEvo correlates both types of abstracted coupling relationships and shows
strongly coupled elements as-implemented but also verifies these couplings
by release history data. Consequently, the architectural views computed by
ArchEvo provide an integrated view on the architecture and its evolution that
points software architects and engineers to shortcomings in the design and
implementation that should undergo directed refactorings.

The remainder of this paper is organized as follows: In Section 2 we in-
troduce the architecture analysis approach ArchEvo and describe the building
of the integrated fact repository and the abstraction of higher-level views.
Section 3 describes our findings concerning the coupling relationships with a
selected set of software modules and features of the open source web browser
Mozilla. In Section 4 we present related work and Section 5 draws some con-
clusions and indicates future work.
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2 ArchEvo Approach

Analyzing the dependencies between architectural elements is a key issue when
analyzing the architecture of software systems. Recent research in analyzing
these dependencies (i.e. coupling) concentrated on information obtained from
source code and the running system. Briand et al. reported on the different
measurements and described a framework of coupling measurements between
classes and objects [3]. In our recent research we concentrated on investigating
configuration management data including version, change, and defect data to
obtain information about logical couplings (i.e. hidden dependencies) between
source code units [10,12].

The ArchEvo approach presented in this paper is a combination of both
approaches mentioned before and extends them by analyzing coupling rela-
tionships on the architectural level. Figure 1 depicts the process followed by
ArchEvo. The process steps are described in the following subsections.
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Fig. 1. ArchEvo architecture evolution analysis process.

2.1 Fact Extraction

Implementation specific data (i.e. facts) is obtained by applying static and
dynamic analysis techniques including parsing and profiling. Parsing delivers
static source code models that contain the source code specific entities such as
files, packages, classes, methods, and attributes and the dependencies between
them. Dependencies are file includes, class inherits and aggregates, method
calls and overrides, and variable accesses. Profiling delivers run-time data
(i.e. method call sequences) for an executed scenario and complements static
source code models.

Release history data of a software project is obtained from configuration
management systems in the form of modification reports. They are generated
by versioning systems such as cvs [5] or Subversion [7] and deliver data about
changes made to source files. These reports are parsed for relevant data used
to identify logical coupling relationships. Following our definition of logical
coupling we establish a logical coupling relationship between two entities if
there is a modification report that references both entities [11]. Currently,
logical coupling is detected on the level of source files which is sufficient for
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our current approach. However, the integration of logical coupling on a more
fine-grained level would be beneficial and is subject to future work.

As mentioned before different tools are used to obtain facts from a software
system each using its own output format. For instance, static source code
models and execution traces are stored in an ASCII file as directed attributed
graphs (fact graphs in Figure 1). ArchEvo uses the Rigi Standard Format
(RSF) for storing these graphs. Nodes represent extracted source code entities
(e.g. files, classes, methods, attributes) and edges represent the relationships
between them (e.g. includes, inherits, invokes, accesses).

Facts obtained from configuration management systems are stored to a
relational database. To facilitate a common access of both data sources they
have to be integrated into a common repository which is the ArchEvoDB. Be-
cause the ArchEvo abstraction approach needs directed attributed graphs the
configuration management data stored in the relational database is converted
to a fact graph. Nodes of this graph represent source files and modification
reports and edges represent established couples relationships between source
files. Next, these fact graphs are integrated into the ArchEvoDB that is a fact
graph containing the source code, run-time and logical coupling data.

2.2 Data Integration

The two basic requirements for integrating the extracted heterogeneous fact
graphs are: (a) facilities for extending the meta model to integrate new entity
and relationship types; and (b) algorithms to map local to unique identifiers.
Concerning the first requirement we use the FAMIX meta model for object-
oriented programming languages [1] and extend it towards the inclusion of
configuration management data, architectural views and metric data. Latter
data is computed by the ArchEvo view abstraction algorithm described in the
next subsection. The second requirement is fulfilled by our integration tool
that maps locally unique identifiers (within a data file) to identifiers unique
within the repository (ArchEvoDB).

Each fact graph is read by the integration tool that for each entity and
relationship contained in the fact graph finds out about its identifier in the
repository and if not exists computes a new one. Using the unique identi-
fiers the new facts (nodes, edges, and attribute records) are added to the
ArchEvoDB. The result is a common repository containing the integrated fact
graph that forms the basis for the on-going abstraction and analysis tasks.

2.3 View Abstraction

In this step architectural views are abstracted from the integrated fact graph.
ArchEvo supports abstraction to different levels of abstraction whereas the
level is specified by the user. The abstraction algorithm used by ArchEvo
is based on the approach presented by Holt et al. in [13], but extends it by
computing measures for abstracted elements and relationships. An approach
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similar to Holt’s also has been described by Feijs et al. in [9].

Relationships between architectural elements and abstraction measures are
computed using binary relational algebra. Currently, we use the grok tool [8]
for calculating the binary relations because grok is able to handle extracted
and integrated fact graphs in RSF format. However, the abstraction of at-
tributes of relationships is not straight forward with grok, hence we imple-
mented a workaround to handle this problem: For instance, the attribute
values of lower-level relationships that form an abstracted relationship are
summed up. Ongoing work is concerned with storing fact graphs in a rela-
tional database and use the standard query language SQL instead of grok.

Algorithm 1 defines the ArchEvo abstraction algorithm that is applied to
the directed attributed fact graph.

Algorithm 1 ArchEvo abstraction algorithm

1: foreach entity pair (A,B) do
2: setA := entities contained by A
3: setB := entities contained by B
4: relsAB := relationships of type T between setA and setB
5: if #relsAB >0 then
6: rel := create relationship of type T between A and B
7: measures := compute abstraction measures of rel
8: end if
9: end foreach

Having selected a relationship type to be abstracted the algorithm processes
each pair of higher-level entities and first computes the two sets of entities (e.g.
methods) contained in A and B (line 2,3). Next, the relationships of type T

between the entities of set A and set B are queried (line 4) from the graph. If
there is at least one relationship between any two lower-level entities of set
A and B then an abstracted relationship between A and B is established (line
6). Measures concerning the number of affected lower-level relationships and
entities are computed and stored in attributes of the new relationship (line 7).
For instance, the number of modification reports making up a logical coupling
is summed up and stored in the refcount attribute of the abstracted coupling
relationship. Table 1 lists the measures computed for abstracted relationships
(these measures also apply to other levels of abstraction).

Basically, ArchEvo distinguishes between direct and indirect dependencies
whereas indirect stands for transitive. For both kinds of dependencies the
number of involved source code entities are computed. Resulting measures
reflect the weight of abstracted relationships and consequently quantify the
coupling between architectural elements. They are used in the analysis of the
dependencies between architectural elements.
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Table 1. Measures computed for relationships abstracted to the module-level.

Measurement Description

nrRelsDirect # of abstracted direct lower-level relationships

nrRelsIndirect # of abstracted indirect lower-level relationships

nrAdirectB # of source code entities of direct relationships in module A

nrAindirectB # of source code entities of indirect relationships in module A

nrBdirectByA # of source code entities of direct relationships in module B

nrBindirectByA # of source code entities of indirect relationships in module B

refcount # of modification reports of a logical coupling relationship

2.4 Analysis

The goal of the analysis step is to indicate strongly coupled elements and
to provide clues why these elements have such a strong coupling. The data
used for this analysis is stored in the abstracted views. They contain the
architectural elements (nodes), the coupling relationships (edges), and the
coupling measures (attributes).

Coupling measures are stored in attributes of (abstracted) relationships.
For instance, the number of method calls is stored in the nrRelsDirect at-
tribute of an abstracted invokes relationship. For an abstracted couples

relationship the number of modification reports is stored in the refcount at-
tribute. Based on these attributes ArchEvo uses graph queries to determine
the relationships of interest and the corresponding architectural elements.

Graph queries are implemented using a combination of binary relational
algebra and Perl scripts. For example, to determine the elements with the
strongest logical coupling ArchEvo applies a query to the refcount attribute
of couples relationships that have a value greater than a given threshold.

For the correlation of source code coupling with logical coupling relation-
ships ArchEvo ranks each relationship with respect to the computed average
or maximum of a given relationship attribute (e.g. refcount). The ranking
values are represented in matrices one per attribute. Using statistical methods
on the matrices the correlation between the different relationships is computed
providing users with quantitative measures about the dependencies.

The result of the quantitative analysis are refined architectural views that
facilitate an assessment of the current architecture and its evolution, as well
as the identification of design shortcomings. They also provide good starting
points for a more detailed analysis of architectural dependencies, for instance,
by selecting two modules that are strongly coupled.

The detailed analysis that qualifies and verifies quantitative measures is
performed on a finer-grained level of abstraction such as the file-level. Consid-
ering the reduced set of files of the selected higher-level entities (i.e. modules)
the logical coupling relationships are qualified with respect to the source code
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coupling that caused it. Next the results of the qualification are reflected back
to the higher-level views to enrich them with more details. They direct to lo-
cations of design shortcomings that should be resolved to smoothen evolution
and maintenance.

In the next section we describe our analysis of the open source web browser
Mozilla [18].

3 ArchEvo Views

The outcome of the ArchEvo architecture analysis process are views that can
be used by the user to identify starting points for minor changes on lower
level or major re-design phases. To demonstrate our ArchEvo approach we
applied it to the open source web browser Mozilla version 1.3a (released De-
cember 2002). At this time the Mozilla application suite comprised more than
10.400 source files in C/C++ containing about 3.700.000 source text lines dis-
tributed over 2.500 directories and more than 90 software modules. Starting
from Mozilla’s design documentation we focused our analysis on a selected
set of software modules as architectural elements that implement the internal
representation (i.e. content) and the layout of web pages. Table 2 lists the
selected software modules together with corresponding source code directories
containing their implementation. The mapping between modules and source
code directories has been taken from Mozilla’s design documentation.

Table 2. Selected Mozilla modules and their source code directories

Module Source Directories

MathML layout/mathml

New Layout Engine layout/base, layout/build, layout/html

XPToolkit content/xul, layout/xul

Document Object Model
(DOM)

content/base, content/events, content/html/content,
content/html/document, dom

New HTML Style System content/html/style, content/shared

XML content/xml, expat, extensions/xmlextras

XSLT content/xsl, extensions/transformiix

Subgoals in our analysis were: (a) abstraction from the low-level infor-
mation to the level of software modules; and (b) correlating the abstracted
implementation specific relationships with the modification specific ones. The
objective was to obtain measurements (sizes, weights) of different coupling de-
pendencies between the selected software modules including source code but
also logical couplings as listed in Table 1

Based on these views and measurements we analyzed the as-implemented
architecture of these modules with respect to their maintainability and evolv-
ability. These two related quality attributes of software systems are influenced

7



Pinzger, Gall, Fischer

by the coupling between software modules. Basically, the stronger the coupling
is the more effort has to be spent for maintaining and evolving the system [3].

The following sections report on our findings about the selected modules
listed in Table 2.

3.1 Module View

The module view reflects the as-implemented design together with the release
history information. The elements of the representation are software modules,
their source code and logical coupling relationships.

The resulting graphs—different types of relationships can be selected for
the graph generation—gives a first quantitative feedback about inter-module
coupling. Figure 2 depicts invocations—represented as red/solid arcs—between
the selected modules which are represented as gray boxes. Width and height
of the boxes indicate the size of software modules in terms of number of global
functions and methods (width) and global variables and attributes (height) of
a module. The distance between two modules is determined by the number of
logical couplings (i.e., pairwise changes) between these modules and indicated
as straight, cyan/solid line. Since all modules are coupled with each other
through “administrative noise”, weaker couplings are omitted. As threshold
we used 10% of the maxium coupling (DOM – New Layout Engine) which in
turn comprises more than 48.000 pairwise modifications. The “administrative
noise” mentioned above typically involves several hundred files. Messages left
in the description field of these administrative modifications are for instance
“license foo” (with 7.961 referenced files), “printfs and console window info
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needs to be boiled away for release builds” (1.135 files), or “Clean up SDK
includes” (888 files).

With this view one can easily spot the strong coupling between the three
modules in the center of the graph (New Layout Engine, DOM, XPToolkit).
Interesting to see is the high number of mutual calls between these modules.
Consequently, when modifying one of these modules it is very likely that the
other modules have to be touched.

The two small graphs in Figure 2 on the right side show the same coupling
graph but the inherits and aggregates relationships. The strongest edges in-
dicate a high correlation with the strong couplings between the modules. In
both views the mutual dependencies can be observed as well.

As a result, abstracted module views pointed out locations of strong cou-
plings that caused pairwise modifications of software modules. Directed refac-
torings can be applied to these locations to improve the design and reduce the
pairwise modifications in the future. However, module views are abstract rep-
resentations of underlying source code data. Therefore, deeper insights into
the coupling dependencies are mandatory to refactor them.

3.2 A Detailed Module View

For a detailed evaluation of the coupling between software modules we selected
the modules New Layout Engine and XPToolkit. The focus was on the source
files of both modules that have the strongest coupling. These files represent
the design critical source code entities. The resulting graph comprises six files
and is depicted in Figure 3. It shows method invocations (red/solid arcs)
gathered from the runtime data and the logical couplings between source files
(straight cyan/solid lines).

The layout, i.e., the relative position of the boxes to each other, is defined
by the number of logical couplings found between files. Actually, the highest
coupling crossing the module boundaries exists between nsPresShell.cpp and
nsXULDocument.cpp with 81 problem reports. The flags with the numbers
of invocations attached to the arcs are always pointing from the caller and
indicate the actual number of dynamic invokes found. For example, there are
4 calls from nsXULElement.cpp to nsPresShell.cpp and 3 calls in the other
direction.

The central position of nsCSSFrameConstructor.cpp indicates a high de-
gree of coupling with other files. This strong logical coupling is further
strengthened by the method invoke relationships which cover all other files
in this view. Therefore, this file is the most critical entity concerning evolving
or maintaining the two modules.

Summarized, the case study showed the bottom-up abstraction of lower-
level information to architectural views (i.e. module view). These views
are mandatory to point out the modules that are most involved in pairwise
changes. Next going top-down from architectural views to lower-level views
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the details making up and causing these logical couplings in the implementa-
tion are revealed. Knowing the critical source code entities the user can direct
his refactoring activities to these entities to improve the as-implemented de-
sign of the system under study.

4 Related Work

Related work ranges from evolution analysis to architecture recovery and cou-
pling analysis approaches. Concerning evolution analysis Zimmermann et al.
inspected release history data of several software systems for logical coupling
between source code entities [20]. They drew the conclusion that augmen-
tation of architectural data with evolutionary information could reveal new
otherwise hidden dependencies between source code entities. Even though a
number of other work used release history data as well, a detailed evaluation
of the correlation between source model entities and the properties of logical
coupling is still missing.

Hsi and Potts [14] studied the evolution of user-level structures and oper-
ations of a large commercial text processing software package over three re-
leases. Based on user interface observations they derived three primary views
describing the user interface elements (morphological view), the operations a
user can call (functional view), and the static relationships between objects
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in the problem domain (object view). As this approach does not consider a
thorough code analysis, user interface issues are usually not taken into ac-
count during code analysis, a fusion with methods regarding code and release
history data would yield good results in feature evolution analysis.

In [12] we examined the structure of a Telecommunications Switching Soft-
ware (TSS) over more than 20 releases to identify logical coupling between
system and subsystems. As step towards combination of abstract concepts
such as feature information and logical coupling we investigated in [10] the
reflection of qualified release history data onto different source code model
entities. Release history data comprised modification report plus problem
tracking data. The source code model data representing different features
were derived from source code using runtime information. The verification of
properties of the underlying source code model such as aggregation etc. were
beyond the scope of this work.

In [3] Briand et al. discussed a unified framework for coupling measure-
ment in object-oriented systems based on source model entities. Based on
this metrics they verified in [4] the coupling measurements on file level using
statistical methods and logical coupling information based on “ripple effects”
[19]. A classification of logical coupling information to verify the properties of
coupling measurement has been omitted. In our approach we go further and
use file level information to abstract onto higher architectural views such as
module view as well.

Wilkie and Kitchenham investigated the correlation of coupling between
objects (CBO) and change ripples of a C++ application [16,17]. Their work
was focused on class level properties in contrast to our work which is primarily
focused on higher, more abstract architectural views.

Concerning architecture recovery several related approaches exists such
as, for example, described by Holt et al. in [13] and Feijs et al. in [9].
Both approaches deal with abstracting lower-level source code information.
The abstraction algorithm used by ArchEvo is based on them. However, in
extension to these approaches ArchEvo takes into account modification and
problem report data. Further, ArchEvo concentrates on the computation of
measures for abstracted elements and relationships.

5 Conclusions and Future Work

The ArchEvo approach combines information gained from static and dynamic
analyses of the source code with release history data into specific views on
different abstraction levels. The analysis applies fact extraction and gener-
ates specific directed attributed graphs; nodes represent source code entities
and edges represent relationships such as accesses, includes, inherits, invokes,
and coupling between certain architectural elements. The integration of data
is then performed on a meta-model level to enable the generation of archi-
tectural views using binary relational algebra. These integrated architectural
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views show intended and unintended couplings between architectural elements,
hence pointing software architects to locations in the system that may be
critical for on-going and future maintenance activities. Thus, ArchEvo’s con-
tribution is the abstraction of detailed source code model data and evolu-
tionary information onto more abstract levels. This supports the reflection
of the concrete implementation at its design level with focus on the coupling
dependencies between architectural elements. Details of selected coupling de-
pendencies are obtained by decreasing the level of abstraction. Consequently,
the benefits of ArchEvo are in (1) graphically highlighting locations of design
erosion in the as-implemented architecture that led to logical couplings; and
(2) revealing the implementation details potentially causing them.

Further benefits of the ArchEvo approach are: (a) compact graphical rep-
resentation of architectural data together with evolutionary information; (b)
location of areas with frequent modifications; (c) providing good views onto
dependencies between different elements of the source code model; (d) support
for different views on arbitrary abstraction levels such as file-, component-, or
module-level; and (e) quick identification of tightly coupled files or modules
through their placement in the graphical representation. Finally, our approach
has been validated using the large open source software project of Mozilla.

Interesting areas for future work are qualitative and quantitative analy-
sis of the properties of logical and architectural coupling such as inter- and
intra-module coupling, evaluation of properties of transitive dependencies,
i.e., logical coupling but no direct architectural dependency between different
source code model entities, extending this methodology to support change im-
pact analysis of large scale software, integration of source code model deltas
between different releases to automatically classify the type of modification
such as interface changes, add/remove invocation relationship, aggregation
etc. (statement level analysis). Another perspective is the integration of
problem report data into the analysis process to deliver further hints for the
search of error prone entities within the abstracted views.
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