
CodeCrawler - An Information Visualization Tool for
Program Comprehesion

Michele Lanza
michele.lanza@unisi.ch

Faculty of Informatics
University of Lugano, Switzerland

Stéphane Ducasse
ducasse@iam.unibe.ch

Software Composition Group
University of Bern, Switzerland

Harald Gall, Martin Pinzger
gall,pinzger@ifi.unizh.ch

Department of Informatics
University of Zurich, Switzerland

ABSTRACT
CODECRAWLER is a language independent, interactive, software
visualization tool. It is mainly targeted at visualizing object-oriented
software, and in its newest implementation has become a general
information visualization tool. It has been successfully validated
in several industrial case studies over the past few years. CODE-
CRAWLER strongly adheres to lightweight principles: it imple-
ments and visualizespolymetric views, visualizations of software
enriched with information such as software metrics and other source
code semantics. CODECRAWLER is built on top of Moose, an
extensible language independent reengineering environment that
implements the FAMIX metamodel. In its last implementation,
CODECRAWLER has become a general-purpose information visu-
alization tool.

1. INTRODUCTION
CODECRAWLER is a software and information visualization tool

[11, 12] which implements polymetric views, lightweight 2D- and
3D- visualizations enriched with semantic information such as met-
rics or information extracted from various code analyzers [10].

It relies on the FAMIX metamodel [2] which models object-
oriented languages such as C++, Java, Smalltalk, but also proce-
dural languages like COBOL. FAMIX has been implemented in
the Moose reengineering environment that offers a wide range of
functionalities like metrics, query engines, navigation, etc. [3].

We shortly introduce the principles of polymetric views and then
give some examples of the visualizations that CODECRAWLER en-
ables the user to achieve. The proposed visualizations support both
program comprehension and problem detection, and target three
different aspects of software systems, namely coarse-grained, fine-
grained, and evolutionary aspects. We apply CODECRAWLER on
itself and hightlight some of the implementation characteristics.

2. THE PRINCIPLES OF A POLYMETRIC
VIEW

The visualizations implemented in CODECRAWLER are based
on the polymetric views described by Lanza [7, 10]. The principle
is to represent source code entities as nodes and their relationships

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Color Metric

Entities

Relationship

Width Metric

Height
Metric

Position
Metrics
(x, y)

Edge Width
& Color Metrics

Figure 1: The principles of a polymetric view.

as edges between the nodes, but to use figure shapes to convey se-
mantics about the source code entities they represent.

In Figure 1 we see that, given two-dimensional nodes represent-
ing entities and edges representing relationships, we enrich these
simple visualizations with up to 5 metrics on these node character-
istics:

• Node Size.The width and height of a node can render two
measurements. We follow the convention that the wider and
the higher the node, the bigger the measurements its size is
reflecting.

• Node Color. The color interval between white and black
can display a measurement. Here the convention is that the
higher the measurement the darker the node is. Thus light
gray represents a smaller metric measurement than dark gray.

• Node Position.The X and Y coordinates of the position of
a node can reflect two other measurements. This requires
the presence of an absolute origin within a fixed coordinate
system, therefore not all views can exploit such metrics (for
example in the case of a tree view, the position is intrinsically
given by the tree layout and cannot be set by the user).

In Figure 2 we see CODECRAWLER visualizing itself with a
polymetric view calledSystem Complexity. The metrics used in
this view are the number of attributes for the width, the number
of methods for the height, and the number of lines of code for the
color of the displayed class nodes.

Figure 2: A screenshot ofCODECRAWLER visualizing itself with a System Complexityview. This view uses the following metrics:
Width metric = number of attributes, height metric = number of methods, color metric = number of lines of code.

The polymetric views in CODECRAWLER can be created either
programmatically in Smalltalk by constructing the view objects, or
over an easy-to-use View Editor, where each view can be composed
using drag and drop. In Figure 3 we see CODECRAWLER’s View
Editor with the specification of the System Complexity view: the
user can freely compose and specify the types of items that will be
displayed in a view and also define the way the visualization will
be performed: for every node and edge the user can choose from a
selection of metrics.

Figure 3: CODECRAWLER’s View Editor.

3. EXAMPLE POLYMETRIC VIEWS
CODECRAWLER visualizes polymetric views that address dif-

ferent aspects of the implementation of software systems: coarse-
grained, fine-grained, and evolutionary views.

3.1 Coarse-grained views
Such views are targeted at visualizing very large systems (e.g.,

over 100 kLOC to several MLOC). In Figure 4 we see aSystem
Hotspotsview of 1.2 million lines of C++ code. The view uses the
number of methods for the width and height of the class nodes. We
gather for example from this view that there are classes with several
hundreds of methods (at the bottom), while at the top we see a large
number of structs, identifiable by the fact that most of them do not
implement any methods.

Figure 4: A System Hotspotsview on 1.2 MLOC of C++ code.
This view uses the following metrics: Width metric = height
metric = number of methods, color metric = hierarchy nesting
level (i.e.,how deep within a hiearchy a class resides).

3.2 Fine-grained views
The most prominent view is theClass Blueprintview, a visual-

ization of the internal structure of classes and class hierarchies [8].

Figure 5: A Class Blueprint view on a small hierarchy of 4
classes written in Smalltalk.

In Figure 5 we see a class blueprint view of a small hierarchy
of 4 classes. The class blueprint view helped to develop a pattern
language [7]. In the present example we see the following patterns:

• Pure overrider: The three subclasses implement only over-
riding methods (denoted by the brown color).

• Siamese twin: The two subclasses on the left and the right
are structurally identical, not only do they implement exactly
the same methods (the methods differ within their body, of
course), their static invocation structure is also the same.

• Template method: The method node in the superclass anno-
tated asA is a concrete method which only invokes abstract
methods (denoted by their cyan color). This is known as the
template methoddesign pattern [6].

• Inconsistent accessor use: The superclass defines only two
accessors (positioned in the second layer from the right),
while it defines three attributes (last layer to the right). More-
over, these two accessors do not have ingoing edges, which
means that at least in the context of this small hierarchy they
are not used at all.

• Direct attribute access: We see that the attribute nodes of the
superclass are directly accessed by several methods.

• The methods annotated asB andC seem to play an impor-
tant role in these classes: They are invoked by many methods
(several ingoing edges) and they invoke several methods (nu-
merous outgoing edges).

Please refer to [7] for a more in-depth discussion.

3.3 Evolutionary views
The most prominent view is theevolution matrixview, a visual-

ization of the evolution of complete software systems [9].
In Figure 6 we see an example of such a visualization, which

again allows us to develop a pattern language applicable in the con-
text of software evolution. We can recognize the following patterns:

• The number of classes which survived the complete evolu-
tion of the system since the beginning is annotated aspersis-
tent classes.

• Thedayfly classesdenote classes which have existed during
one version of the system and have then be removed. Prob-
ably the developer tried out something implementation-wise
and removed this ’experiment’ right away.

• Thepulsar classdenotes a class whose size in terms of num-
ber of methods and attributes varies, making it thus an ex-
pensive class of this system.

• A long stagnation phase where the system did not grow in
terms of number of classes, and two major leaps where the
system rapidly grew between two versions.

Please refer to [9] for a more in-depth discussion of the evolu-
tionary views.

3.4 Coupling Views
Recent work on CODECRAWLER was concerned with extend-

ing it to visualize abstract polymetrics views of several releases
of a software system. The objective of these views is to highlight
the coupling dependencies between modules of a software system.
Couplings arise from structural dependencies between source code
entities, such as file includes, class inheritance, or method calls,
and further from pairwise changes, so called logical couplings.
Latter coupling is obtained from release history data as described
in [5],[4].

Lower-level information of source code entities and their cou-
pling dependencies is condensed to different metrics that are mapped
to graphical attributes in the graph. Figure 7 depicts an example of
an abstracted view of 7 Mozilla modules of two releases (0.92 on
the left, 1.7 on the right) of Mozilla.

Figure 7: A comparison of 7 Mozilla modules between release
0.92 (on the left) and release 1.7 (on the right).

The nodes represent modules with the number of classes for the
width, number of files for the height, and number of directories for
the color. The edges represent abstracted invocation relationships
between the modules (the width of the edges represents the weight,
i.e., the number of grouped function calls). Views clearly highlight
large modules and strong coupling dependencies between modules.

Figure 6: An Evolution Matrix view on 38 versions of an application written in Smalltalk.

However, differences between abstracted views are not straight
forward to grasp with these graphs. Basically, because subsequent
releases often lead to similar graphs. For example, try to compare
the two graphs of Figure 7. CODECRAWLER handles this prob-
lem by computing the difference between graphs of two selected
releases on the basis of metric values. Basically, the differences be-
tween metric values of each node and edge attribute are computed.
Figure 8 depicts the diff-graph computed for the two Mozilla re-
lease graphs presented before.

Figure 8: Diff-graph of 7 Mozilla modules between releases
0.92 and 1.7.

This graph clearly highlights the major changes made to selected
modules. For instance, the DOM module on the the right side in-
creased by 150 classes and 95 source files. In contrast, the coupling
dependencies (i.e. number of method calls) from the XML module

in the upper left corner to the DOM module decreased by 142.

4. REFERENCES
[1] G. Arévalo. X-Ray views on a class using concept analysis.

In Proceedings of WOOR 2003 (4th International Workshop
on Object-Oriented Reengineering), pages 76–80. University
of Antwerp, July 2003.

[2] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — the
FAMOOS information exchange model. Technical report,
University of Bern, 2001.

[3] S. Ducasse, T. Ĝırba, M. Lanza, and S. Demeyer. Moose: a
collaborative and extensible reengineering environment. In
Reengineering Environments. tba, 2004. to appear.

[4] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. InProceedings of the International Conference on
Software Maintenance (ICSM 2003), pages 23–32, Sept.
2003.

[5] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. InProceedings of
the International Conference on Software Maintenance 1998
(ICSM ’98), pages 190–198, 1998.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[7] M. Lanza.Object-Oriented Reverse Engineering —
Coarse-grained, Fine-grained, and Evolutionary Software
Visualization. PhD thesis, University of Berne, May 2003.

[8] M. Lanza and S. Ducasse. A categorization of classes based
on the visualization of their internal structure: the class
blueprint. InProceedings of OOPSLA 2001 (International
Conference on Object-Oriented Programming Systems,
Languages and Applications), pages 300–311, 2001.

[9] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software

Figure 9: A Polymetric View of a 200-classes hiearchy from an industrial C++ system.

metrics. InProceedings of LMO 2002 (Langages et Modèles
à Objets, pages 135–149, 2002.

[10] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering.IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[11] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
editors.Software Visualization — Programming as a
Multimedia Experience. The MIT Press, 1998.

[12] C. Ware.Information Visualization. Morgan Kaufmann,
2000.

[13] C. Wysseier. CCJun – polymetric views in three-dimensional
space. Informatikprojekt, University of Berne, June 2004.

APPENDIX

A. PRESENTATION DESCRIPTION
We are going to use CODECRAWLER to reverse engineer a soft-

ware system on-the-fly. The system in question will be a large Java
or Smalltalk system (> 100 kLOC). We are convinced this is the
best way to show the capabilities of the tool and could give us im-
portant feedback on aspects that the audience likes or dislikes about
the tool.

We start by using coarse-grained polymetric views (such as the
one displayed in Figure 9) to get a first general impression about the
system and use a combination of coloring and selection to tear the
system apart in front of the audience, before diving into specifics
with the more fine-grained views (such as the one displayed in Fig-
ure 5).

Thereafter we focus on evolution and show evoluationary views
of the system pointing candidates of the different evolution pat-
terns.

Finally, we present recent results we obtained from the case study
we did with the Mozilla open source software project. We use
CODECRAWLER to compute and present abstracted views on se-
lected Mozilla modules and their coupling dependencies. Further,
we demonstrate the diff-graphs to highlight the changes between
different Mozilla releases.

Disclaimer. We are aware that this description is very short.
However, our experience has shown that usually the audience catches
on the process and gives its own suggestions about which parts
of the system to explore, leading to an interesting and improvised
demo session.

B. TOOL INFORMATION
CODECRAWLER’s implementation started in 1998 as part of the

Master and Ph.D. work of Michele Lanza, in the context of the Eu-
ropean FAMOOS ESPRIT Project. It has been used for various
industrial consultancy projects since its first implementation and
has been re-implemented 4 times since then. In its newest imple-
mentation it has become a general information visualization tool
(e.g., visualization of concept lattices [1] and websites) and also

supports 3D-Visualizations [13]. CODECRAWLER uses the Hot-
Draw framework for the 2D visual output and the Jun framework
for the 3D visual output. It uses the Moose reengineering environ-
ment for the data input. In Figure 10 we see a schematic description
of CODECRAWLER s general architecture.

Figure 10: The general architecture ofCODECRAWLER, com-
posed of 3 main subsystems: the core, the metamodel, and the
visualization engine.

B.1 Tool Availability
CODECRAWLER is implemented in Smalltalk under the BSD li-

cense: it is free and open source software. It runs on every major
platform (Windows, Mac OS, Linux, Unix) and is freely available
for download. Currently the webpage is located at:
http://www.iam.unibe.ch/ ∼scg/Research/CodeCrawler/

Moreover, CODECRAWLER is also available as free goodie on
the Visual-Works Smalltalk CD, a professional, commercial de-
velopment environment developed and sold by the company Cin-
com which however also exists in a non-commercial version freely
available for download at:
http://www.cincomsmalltalk.com/

