
430 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

ShareMe: Running a Distributed Systems Lab for
600 Students With Three Faculty Members

Clemens Kerer, Student Member, IEEE, Gerald Reif, Student Member, IEEE, Thomas Gschwind, Member, IEEE,
Engin Kirda, Member, IEEE, Roman Kurmanowytsch, and Marek Paralic

Abstract—The goal of the distributed systems (DS) laboratory
is to provide an attractive environment in which students learn
about network programming and apply some fundamental con-
cepts of distributed systems. In the last two years, students had
to implement a fully functional peer-to-peer file sharing system
called ShareMe. This paper presents the approach the authors
used to provide the best possible support and guidance for the
students while keeping up with ever-rising participant numbers
in the laboratory course (approximately 600 last year), as well
as managing budget and personnel constraints. The learning
environment is based on Web and Internet technologies and not
only offers the description of the laboratory tasks but also covers
electronic submission, a discussion forum, automatic grading,
and online access to grading and test results. The authors report
their experiences of using the automated grading system, the
amount of work required to prepare and run the laboratory, and
how they deal with students who submit plagiarized solutions.
Furthermore, the results of student feedback and evaluation
forms are presented, and the overall student course satisfaction
is discussed. Detailed information about the DS laboratory is
available at http://www.dslab.tuwien.ac.at

Index Terms—Automated grading, distributed systems,
e-learning, peer-to-peer, web-based education.

I. INTRODUCTION

THE main teaching responsibility of the Distributed Sys-
tems (DS) group at the Vienna University of Technology,

Vienna, Austria, is to hold an introductory course on distributed
systems for fifth-semester computer science students. The
course consists of a lecture and a laboratory. According to the
curriculum, the learning objectives in the laboratory comprise
deepening the theoretical concepts taught in the lecture (e.g.,
various models of distributed systems, unicast versus multicast,
connection-oriented versus connectionless communication,
concurrency, name services, distributed objects, remote method
invocation, and network security) and applying them in prac-
tice. Because of the popularization of information technology

Manuscript received September 17, 2003; revised January 27, 2005.
C. Kerer was with the Vienna University of Technology, 1040 Vienna,

Austria. He is now with Microsoft, Seattle, WA 98004 USA (e-mail: kerer@
infosys.tuwien.ac.at; reif@infosys.tuwien.ac.at; kirda@infosys.tuwien.ac.at).

G. Reif and E. Kirda are with the Vienna University of Technology, 1040 Vi-
enna, Austria (e-mail: reif@infosys.tuwien.ac.at; kirda@infosys.tuwien.ac.at).

T. Gschwind is with the IBM Zurich Research Laboratory, CH-8803,
Rūschlikon, Zurich, Switzerland, and also with the University Zurich, Switzer-
land (e-mail: gschwind@infosys.tuwien.ac.at).

R. Kurmanowytsch is with Comprendium, 1020 Vienna, Austria (e-mail:
kurmanowytsch@infosys.tuwien.ac.at).

M. Paralic is with the Technical University of Kosice, Slovakia (e-mail:
marek.paralic@tuke.sk).

Digital Object Identifier 10.1109/TE.2005.849740

(IT)-related studies, the number of computer science students
has increased over recent years. With no enrollment limits and
free access to Austrian universities, the number of students
taking the DS laboratory reached more than 500 in 2002 and
almost 600 in 2003.

Consequently, the authors had to think about how to reach
the desired teaching objectives and keep a high level of student
support in light of the continuously growing number of students
and limited human resources (three faculty members and a few
undergraduate laboratory assistants). Thus, one of the goals was
to minimize the workload for grading, while providing high-
quality and timely support to the students.

The space limitations of the DS laboratory was another im-
portant consideration. It consists of about 20 personal computers
and two server machines. Because of the high number of stu-
dents registered for the laboratory, most of whom work shortly
before the laboratory deadlines, support for working outside the
laboratory (e.g., on other machines at the university, at home,
etc.) was crucial. The laboratory assignments were, therefore,
designed in such a way that they could be implemented with
a computer with a Java software development kit 1.4.x. Java is
used as the programming language because the students learn
the language in other courses before they take the DS laboratory.

One of the methods previously used to handle a large number
of students was group assignments. As a result, teams of three or
four students would work together, distribute the various tasks,
and implement the group’s solution in a joint effort. Developing
software in such a small team also mimics the situation in many
companies; the idea was to get an additional benefit for the stu-
dents from this experience. In many cases, however, only one
or two students in the group did all the work, while the rest
of the group just earned the points. Since the goal in the lab-
oratory is to ensure that every single student knows how to do
network programming, this situation was unacceptable, and in-
dividual assignments were introduced. Although necessary, this
decision resulted in three to four times the number of submis-
sions to grade and a heightened temptation for some students to
submit plagiarized solutions.

The remainder of this paper is structured following the
step-by-step approach of instructional design [1]. Section II
discusses the possible instructional strategies to meet the
learning objectives introduced in this section. It further illus-
trates the ShareMe distributed application the students have
to implement in the laboratory. Section III details the course
material and the laboratory environment developed to support
the students. Section IV discusses various grading schemes,
the automatic grading system, and the experiences gained.

0018-9359/$20.00 © 2005 IEEE

KERER et al.: SHAREME: RUNNING A DISTRIBUTED SYSTEMS LAB 431

Section V presents the evaluation results and reports on the
overall effort to develop and run the laboratory. Section VI
points out planned changes, and Section VII concludes the
paper.

II. THE SHAREME FILE-SHARING APPLICATION

To address the requirements presented in the previous sec-
tion, the laboratory design combines two models of distributed
systems (peer-to-peer and client–server), demonstrates con-
currency and synchronization issues in several multithreaded
servers, and explains how to secure network communication
using digital signatures and a simple public key infrastructure
(PKI). Furthermore, it covers different communication styles in
distributed systems with the help of programming techniques,
such as sockets, the user datagram protocol (UDP), multicast,
remote method invocation, and the Common Object Request
Broker Architecture (CORBA).

When the authors started developing the laboratory, they first
formulated the instructional strategy [2]. One option was to
structure the laboratory into small, independent assignments,
each demonstrating a separate network technology. Using small
assignments has the advantage that the students concentrate
on the technology at hand without worrying about integration
problems. On the other hand, small assignments are often artifi-
cial and do not serve a practical purpose. The other option was
to use a larger application that combines all the technologies
and shows how they work together. It also allows for a more
interesting application that, in the end, fulfills a useful task. In
addition, incremental development of an application provides
practical experience with a software engineering technique.
The problem in the latter case is that 1) the application has to
be structured in a way that it can be gradually implemented by
the students and 2) the students have to integrate the various
subtasks.

Eventually, the authors decided that the benefits of seeing
multiple technologies working together and implementing a
useful application outweigh potential integration problems.
The laboratory team thus tried to come up with an up-to-date
scenario that not only meets the learning objectives, but also
interests the students. Currently, ubiquitous peer-to-peer file
sharing seems an adequate application domain. In a peer-to-peer
system, each peer is a computing device that serves as a server
and as a client.

The challenge when designing the peer-to-peer application
was twofold. First, the learning objectives introduced in the first
section needed to be met. Second, the system had to be struc-
tured in such a way that the students can incrementally imple-
ment, test, and use their applications.

The following four subsystems make up the final ShareMe
system:

1) the peer-to-peer network infrastructure;
2) the search facility within the peer-to-peer network;
3) a way to secure the communication among peers;
4) the user interface that enables file exchange.

The next sections present the separate tasks in greater detail,
demonstrate how the tasks build on each other, and show how
the learning objectives map onto the tasks.

Fig. 1. (a) Exchange of multicast IAmAlive messages among peer A and the
other peers (messages exchanged among the other peers are omitted for clarity).
(b) Issuing search requests and responding with search.

A. Laboratory 1: The Peer-to-Peer Network Infrastructure

The aim of the first laboratory assignment is to introduce the
peer-to-peer model, work with connectionless communication
(UDP unicasts and multicasts), and demonstrate synchroniza-
tion issues in multithreaded servers. First, the students create
their own “peer” that participates in the peer-to-peer infrastruc-
ture. Each “peer” is a multithreaded server with threads for
stopping the peer upon receiving an UDP shutdown message,
making the peer known in the network, finding other peers, and
reacting to changes in the network topology.

To maintain a list of active peers in the peer-to-peer net-
work, every peer periodically sends an IAmAlive UDP data-
gram packet to a common multicast address. All peers that listen
on the multicast address then know what other peers are cur-
rently active in the network. The design choice of using mul-
ticast communication obviously limits the system’s scalability
to local area networks. While this restriction is not severe for
teaching purposes and does give the students a chance to use
multicast communication in their programs, the design choice
provides a good exercise for students to think about the advan-
tages and disadvantages of using multicast communication for
file sharing and discussing alternatives.

In Fig. 1(a), first, peer A sends multicast UDP IAmAlive mes-
sages to all other peers in the local network. Peers B and D re-
ceive the message and know that peer A is still available; peer C
is currently not active. Second, at the same time, the other avail-
able peers (B and D) also send IAmAlive messages, which are
received by peer A which, in turn, knows that apart from itself,
two other peers are running.

B. Laboratory 2: Searching for Files

After the students have established connectivity in the
peer-to-peer network, the next task is to search for files.
In general, search criteria in peer-to-peer networks can be
complex meta data queries. In the ShareMe system, simple
filename-based queries are used. Thus, if the name of a file
matches or contains the entered search string, the file is added
to the search result. This task covers remote method invocation,
the client–server model, and naming services from the learning
objectives.

Searching is done by iteratively querying all peers that are
currently in the list of active peers. Search queries are imple-
mented as remote method invocations (Java RMI). Hence, every

432 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

peer implements an RMI server (to answer incoming search
queries) and an RMI client (to issue search requests to other
peers). Accessing RMI servers requires some sort of naming ser-
vice being available to look up the server implementation (i.e.,
stubs for remote method invocations). Java RMI uses a registry
for this purpose. Instead of running a central RMI registry that
the students could use, the students had to concern themselves
with naming services since the task description requires them to
run their own registry and register their server implementation
with it.

Fig. 1(b) illustrates a typical search request. First, based on
the list of known (and active) peers, peer A iteratively issues
search requests to peers B and D. Second, the contacted peers
search their file base, and each responds with a list of matching
filenames.

C. Laboratory 3: Making Searches Secure

Laboratory 3 addresses securing the communication between
peers using digital signatures and a key server as trusted third
party. More precisely, the goal is to sign search requests and re-
sponses digitally to make sure that no fake queries and/or fake
responses can occur within the system. The signatures are based
on MD5 (Message Digest 4, one-way hash function) hash sums
and the Rivest, Shamir, and Adleman (RSA) public key encryp-
tion algorithm, which requires the creation and administration
of a public–private key pair.

The private key of a peer is only stored locally on the peer
machine. The public key, however, has to be exchanged with
the other peers in order to allow them to verify signed search
requests. For this purpose, the laboratory team runs a central
key server where the public keys of peers are registered and
can be retrieved by other peers. This server is implemented as
a CORBA service. The students implement the corresponding
CORBA client to register public keys and retrieve keys of other
peers.

Eventually, the Laboratory 2 implementation is extended to
sign and verify search requests and results. Fig. 2(a) illustrates
this extended behavior. First peer B creates and signs a search
request and sends it to peer A. Second, peer A contacts the key
server KS to retrieve the public key of peer B and verifies the
signature of the search request. Third, in the next step, peer A
searches its file base, constructs a search result, and signs it.
Finally, it sends the response back to peer B, where the digital
signature is verified once again before the result is processed.

D. Laboratory 4: Adding an HTML User Interface

In the previous laboratory assignments, the students create
the core functionality of the ShareMe system but do not in-
clude a user interface (other than the command line) or a pos-
sibility to actually exchange (download) files. In Laboratory 4,
the students implement their own multithreaded Web server and,
in doing so, get to know the internals of the HTTP protocol,
the difference between static and dynamically generated Web
pages, and the remaining technology from the learning objec-
tives—TCP sockets.

The Web server provides user interface (HTML) pages, pro-
cesses search requests submitted via HTML forms, and supports
HTTP downloads. Search requests are forwarded to the existing

Fig. 2. (a) Exchanging secure search requests and responses using digital
signatures. (b) Searching and downloading files using an HTTP server and a
Web browser.

infrastructure, and the search results are converted back into
HTML pages and displayed in the browser. Each file included in
the search result is rendered as a hyperlink that supports the di-
rect download of the file to the local machine. The students can
then use any Web browser to interact with the ShareMe system.

Fig. 2(b) shows the integration of the HTTP component into
the existing infrastructure.

1) From a Web browser, a search request is sent to a peer.
2) The Web server component decodes the search request

and forwards it to the search component.
3) The same process as before is then executed. The request

is created and signed and sent to all known peers in the
network; the responses are collected and verified.

4) An HTML page is created to display the search result in
the browser.

5) If the user clicks a file in the search result, it is downloaded
directly from the peer that provides it (since that peer also
has an integrated Web server).

III. SUPPORTING THE STUDENTS

One of the biggest problems in the distributed systems labo-
ratory is coping with up to 600 students registered for the labo-
ratory. With so many students, one of the key requirements is to
fully support working remotely, be it online or offline.

A first measure for people with permanent Internet connec-
tions (e.g., other machines at the university or machines with
broadband access) is to grant remote access to the laboratory
machines via secure shell (SSH). Furthermore, the laboratory
Website (http://www.dslab.tuwien.ac.at) provides access to all
the documentation and required software.

Many students also opt for working offline at home. The
laboratory team provides them with a CD-ROM containing all
the documentation, software packages, the key server, tuto-
rials, and API references. Thus, they can fully implement the
laboratory assignments without being online. The laboratory
Website is designed and implemented in a similar way to a
distributed interactive learning (DIL) environment as described
in [3] using the MyXML technology. MyXML [4] is a Web
content management and generation application based on XML

KERER et al.: SHAREME: RUNNING A DISTRIBUTED SYSTEMS LAB 433

(extensible markup language) and XSL (extensible stylesheet
language) technologies. Using MyXML for building and main-
taining the Website also facilitates the automated generation of
a PDF version of all the documentation, which is offered for
download and easy printing.

When several hundred students work on an application such
as the ShareMe system, problems and questions are inevitable.
Having ensured that the students could work in the laboratory
on machines connected to the Internet, and even offline at any
reasonable personal computer, the next issue is how to handle
the problems and questions raised by the students. A frequently
asked questions (FAQ) document covers the most likely ones
and is included in the Website. A laboratory newsgroup where
faculty members answer questions and where students can help
each other is another major source of information. Finally, a
group of graduate laboratory assistants are present in the lab-
oratory for two to four hours per day to solve problems that are
difficult to discuss electronically. As a last resort, the faculty
members also offer e-mail support if the laboratory assistants
cannot solve the problem.

Further services offered on the laboratory Website include the
grading service, the laboratory status overview, and a Web inter-
face to the public key server. With the grading service, students
can query the number of points they have earned so far. The
laboratory status overview shows all the peers currently active
in the laboratory, including their names and the registry infor-
mation. To ensure that at least some peers are running in the lab-
oratory at all times, the laboratory team provides several peers
that the students can use to test their implementations. The Web
interface of the public key server lists the set of keys currently
registered at the server and offers a possibility to revoke the reg-
istration after giving the correct password (set when registering
the key earlier).

IV. GRADING STUDENT PERFORMANCE

The method used to grade students is always controversial
since it requires taking several conflicting factors into account.
The government that finances the university tries to keep the
costs for the laboratory low. The university has to teach the stu-
dents the principles of a distributed system and should ensure
that it passes only those students who have mastered the subject
and are able to apply it in practice as set forth in the curriculum.
Some students, however, try to pass the lectures with minimal
effort, resulting in a number of plagiarized solutions. From col-
leagues around the world, the authors know that the situation is
similar at other universities.

The distributed systems course has already been offered for
ten years at the Vienna University of Technology (albeit with
adaptations because of new developments), and during that time
the laboratory team experimented with different ways to grade
student performance.

A. Automated Grading System

Korhonen et al. state in [5] that no significant difference ex-
ists between Web-based and classroom learning environments
as long as 1) the training material is of high quality and 2) the
feedback is timely and accurate. Building on these results, the

DS laboratory provides extensive information on the Website
and—to provide timely feedback—the whole management
of deadlines, submissions, e-mail feedback, and grading of
submissions is automated and does not require manual in-
teraction. The submission system packs all the student files
into an archive; sends it via e-mail to the test environment;
and unpacks, compiles, and checks it there. Immediately after
submitting a solution, the student receives a feedback e-mail
with details on the files submitted, the time of the submission,
whether it could be successfully compiled, and all necessary
files included. In theory, the laboratory environment would
provide a fully automated submission and grading system ful-
filling the requirements listed in [6]. In the first year, however,
5%–10% of the students still managed to produce code that
could not be graded automatically (e.g., because it crashed,
hung, did not obey interfaces, or blocked the test engine). These
cases were used to improve the submission system. The number
of manually corrected submissions has dropped to less than 2%
since then.

B. Group Versus Individual Assignments

Until 2001, about 350 students were registered for the labo-
ratory, and the assignments were still solved in groups. Group
assignments can become troublesome if the groups are required
to manage themselves. The supervisors had frequent discus-
sions with groups that failed because some of the group mem-
bers did not implement their part, or copied the solution from
other groups, or failed to show up to group meetings. These fail-
ures resulted in some students ending up on the losing side even
though they had fulfilled their part.

In 2002, the ShareMe system was developed, and the labo-
ratory team abandoned the idea of letting students solve assign-
ments within groups since the additional benefit of team work is
also the focus of a separate course in the curriculum. This deci-
sion resulted in four times as many submissions and led to about
eight times as many plagiarized solutions.

C. Dealing With Cheaters

Plagiarized submissions are another major source of effort as
also reported in [7]. Typically, students do not submit an exact
copy of another solution but change it in a variety of ways. In
most submissions containing plagiarism, at least the source code
comments and the order of the Java import statements have
been changed. Also renaming variables and parameter names,
changing the order of variable declarations and/or methods, or
changing the spacing of the source code are popular among stu-
dents. In order to be able to detect and handle cheaters, a cheater
detection system is used in the DS laboratory that first builds
the abstract syntax trees of the students’ code and then applies
a proximity measure to estimate the probability that a specific
submission was copied. Similar systems for detecting software
plagiarism such as Moss [8], Plague [9], and JPlag [10] exist.
The technique used in the laboratory is similar to that described
in the literature ([11]) to identify code that has been “cloned”
(i.e., copied) in mainframe systems. In older systems, software
developers often cloned code so as not to have to write code
from scratch. The software maintenance research that has been

434 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

done to identify cloned code has also proven to be useful in iden-
tifying students who cheat.

If the laboratory team suspects that a submission is directly
copied or derived from another submission, the involved stu-
dents are invited to a private hearing to resolve the issue. Even
though comparing the submitted solutions with each other
is done automatically, the preparation and execution of the
hearings consumes considerable time and is equally unpopular
among faculty and students.

D. Open Versus Closed Book Tests

For their final grade, the students can earn points for the
programming assignments and the mandatory written test. The
assignments and the test each contribute 50% of the points,
and the students have to succeed in both parts. The written test
usually consists of conceptual questions about the ShareMe
system (e.g., to discuss scalability or fault tolerance issues of
the system) and small programming assignments.

In real-world situations, programmers frequently use ex-
ample code and look up API documentation. Therefore, the
written exam was held as an open-book test. The students
were allowed to bring their code to the exam. Some students,
however, simply copied code (including parts that were not
relevant to the problem) instead of using the code to get hints
to solve the test questions. This situation was a signal that these
students were not able to solve simple network programming
tasks and, therefore, failed the teaching goal. It turned out that
most of these students did not study for the exam but relied on
the code they were allowed to use.

As a consequence, the exam was changed to be a closed-book
test in the fall term 2003 and handed out the API documenta-
tion needed to solve the programming questions. In addition,
the focus of the exam was the intent of the code and not the cor-
rect syntax. This was still a realistic test environment, since the
students were able to look up the API if in doubt (e.g., to find
out the name of a function or the order of its arguments). Hence,
the students were forced to come better prepared to the exam,
which resulted in more students meeting the teaching goals.

E. Required Versus Optional Assignments

In 2003, the distributed systems course was moved from the
spring term to the fall term. The course was therefore offered
in two consecutive terms, resulting in fewer students registering
for the laboratory in the fall 2003 term, which allowed the au-
thors to do some more experiments. The laboratory assignments
were changed to be voluntary except for the first one. Conse-
quently, the grades are only given on the basis of the written
exam held at the end of the course, and students are encour-
aged to solve the laboratory exercises as preparation for the
exam. Copied submissions are not an issue in this case, since
the submitted laboratory assignments do not earn any points,
and only the performance in the written exam determines the
grade. The advantage is that it allows students to learn the sub-
ject in whichever form is suitable for them (alone or in groups)
in a similar way to long-distance learning courses. Ragan et al.
state in [12] that this change encourages the students to take per-
sonal responsibility for their learning.

The laboratory team conducted an online survey among the
students in 2003 that asked them for their opinion as to whether
the laboratory assignments should be mandatory. In contrast to
Ragan et al.’s results, the survey showed that 109 out of 158
students are against the new setup while only 49 are in favor
of the change. The students against optional laboratory assign-
ments argue that this change would require them to take more
responsibility in preparing for the test and that they do not be-
lieve that students would implement the laboratory if they are
not forced to do so. They believe that one consequence of this
change might be considerably poorer test results. The students
in favor of the change say that questions and problems can be
discussed more openly (e.g., source code could be posted to the
forum) and that they would not have to implement the laborato-
ries if they already knew the technologies.

F. Discussion

The authors have to stress that none of the above choices is
a particularly bad one. With each choice, most of the students
managed to acquire the skills set forth in the curriculum. The
only difference is how the laboratory team deals with the rela-
tively small number of students who are disinterested and only
want to pass the laboratory without any effort on their part. Un-
fortunately, these students require the most time and work from
the laboratory team members.

Based on the fall 2003 laboratory, the authors came to the
conclusion that optional laboratory assignments in combination
with a closed book test that determines the students’ grades is a
good tradeoff. On the one hand, the optional laboratory assign-
ments allow students to solve the laboratory exercises alone or in
groups. On the other hand, the written exam tests programming
skills, conceptual understanding, and an assurance that each stu-
dent’s individual performance is graded.

V. EXPERIENCES WITH THE SHAREME LABORATORY

The distributed systems laboratory has been running in the
described setup for two years and has had more than 1000 stu-
dents participating in it. This section gives more information on
the experiences of running the laboratory and presents an anal-
ysis of e-mail feedback and student evaluations. Since the feed-
back and overall rating was basically the same in both years, this
section focuses on the data from the 2003 laboratory with 597
registrations.

One clear trend is that students increasingly prefer to work
at home rather than in the laboratory. This observation is sup-
ported not only by the number of downloads from the Website
or the number of CD-ROMs distributed (i.e., downloaded from
the Website or sold) but also by analyzing the usage of the lab-
oratory computers. Most of the students who did not work of-
fline at home connected remotely to the two server machines
(labsrv01 and labsrv02). The personal computers in the labora-
tory (labpc01 to labpc19) were hardly used. Note that all figures
refer to the time the students were logged in on the laboratory
machines; no information was collected on the time they worked
offline at home.

KERER et al.: SHAREME: RUNNING A DISTRIBUTED SYSTEMS LAB 435

TABLE I
USAGE OF THE LABORATORY EQUIPMENT PER MONTH

In total, the laboratory computers were used for approxi-
mately 30 000 hours from March to June 2003. This figure
reflects the time that students were logged in on any of the
laboratory servers or personal computers. Table I shows the
usage of the laboratory machines. Obviously, the server ma-
chines were used most, whereas the 19 personal computers
together (labpcXX) are responsible for a mere 15%–17% of
the utilization. In other words, people were logged in on the
server machines six times as much as on all the laboratory
PCs together. Furthermore, labsrv01 was used much more
than labsrv02, which has no technical reason since both ma-
chines are identical. It seems that the students just preferred
the number 01 over 02. As a consequence, the servers were
renamed to “pizza” and “pasta,” which solved this discrepancy
in the following term.

The students also made heavy use of the offered support ser-
vices, such as the newsgroup or e-mail messages. During the
2003 spring term, the laboratory team received a total of 960
e-mail inquiries and ended up with 1532 postings in the news-
group. A total of 494 (32.2%) of the postings (which is about
seven per day) were replies from the faculty members. One se-
rious problem with supporting the students via the newsgroup
was that they apparently got feedback and replies to their ques-
tions too quickly. Soon, several students abused the newsgroup
as a remote debugger; instead of thinking about a solution first,
they just posted their problem (or even error message, stack
trace, etc.) and waited for an answer. This resulted in an ex-
plosion of messages, which meant that many students could not
keep up with the number of postings/threads in the newsgroup.
As a consequence, the students kept asking the same questions
that had already been answered.

Another source of feedback is an evaluation study that is con-
ducted by the university. This survey usually does not have high
participation. In the 2003 spring term, 51 students participated
in this study. Table II shows the most important results of the
study where a 1 means total agreement and a 6 means total
disagreement.

At the end of the study’s questionnaire, the students had the
possibility anonymously to give positive and negative comments
that were not covered by the prepared questions. On the positive
side, the students appreciated the selected topic (peer-to-peer
file sharing) and that they built a useful application as opposed to
simple programs such as quote-of-the-day or echo servers. They
also commended the good laboratory organization and liked the
automatic submission/grading system. Some students, however,

requested more extensive test reports. According to them, the
information in the test reports was not detailed enough to un-
derstand easily what caused a problem in some test cases. In
summary, the study shows that the students are satisfied with
the laboratory overall.

While the laboratory team received many positive reviews
saying that the documentation and task descriptions were de-
tailed and extensive, some students criticized this fact and ar-
gued that the assignments were less of a challenge because ev-
erything was exactly specified. The problem here is that less
experienced students need the detailed specification to be able
to implement the laboratory; more experienced programmers,
however, would prefer more flexibility in implementing their so-
lutions. Another reason for the elaborateness of the specification
is that the submissions were automatically tested and graded.
This automation is only possible if the design of the application
is well specified and the interfaces are fixed.

Another area of improvement pointed out by student feed-
back was the handling of updates of the documentation. When
the documentation was updated to clarify the specification or
fix a bug, a new version of the online and offline Websites and
the PDF documentation was generated. Although the updates
were indicated on the Website, the students requested some sort
of change notification (e.g., via e-mail and in the newsgroup)
that would inform them about the update and the changes. For
the next year’s laboratory, an e-mail notification service will be
integrated.

From the authors’ point of view, the major effort of running
the laboratory falls into three categories: the student support,
the grading effort, and the time spent handling cheaters. The
one-time effort of developing and creating the laboratory assign-
ments, the laboratory infrastructure, and the test environment is
not considered here. The authors estimate that the total prepara-
tion effort amounts to approximately five to six person-months.

The effort going into student support (e-mail, newsgroup, per-
sonal meetings) inevitably comes with running such a labora-
tory and, while being considerable, seems to be within tolerable
bounds. The grading effort is reduced significantly by automat-
ically grading the submissions. What remains is to check man-
ually the submissions that cause a problem during automatic
grading and to grade the written laboratory test. Again, much
work is required, but it can hardly be done more efficiently if the
written test is not completely abandoned. Working with students
who cheated, however, is the area where the laboratory team
is not willing to spend so much time. In the 2003 spring term
laboratory, the abstract syntax tree comparisons identified 76
submissions of the first laboratory assignment (out of 507, i.e.,
15%) as potential copies. After manually rechecking the suspi-
cious submissions to avoid wrong accusations, the students were
invited to a private hearing. Of the 76 students who were in-
terviewed, 65 were consequently excluded from the laboratory.
The remaining 11 students were allowed to continue the labora-
tory since one could not conclusively prove that they cheated (al-
though several clues existed). In total, the laboratory team spent
more than a person-month on all the aspects in conjunction with
copied submissions for the first laboratory. This excessive time
is clearly unacceptable.

436 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 3, AUGUST 2005

TABLE II
RESULT OF THE UNIVERSITY’S STUDY ON THE 2003 DISTRIBUTED SYSTEMS LABORATORY

VI. FUTURE PLANS

For the next year’s distributed systems laboratory, some short
tutorials at the start of the semester are planned to reduce the
amount of trivial questions in the newsgroup at the beginning of
the laboratory. As mentioned, a notification service for updates
to the documentation or download packages will also be inte-
grated in the laboratory environment.

Another planned modification is to replace the popular news-
group with a moderated Web forum. In such a forum, the mes-
sages can be better structured by topic or laboratory assignment,
and the moderator has the capability of removing trivial, per-
sonal, or outdated postings. As a result, only questions relevant
to many people should stay in the forum, and all students should
be able to follow the discussions without being overwhelmed by
the sheer amount of postings in the newsgroup.

To help the students focus on the programming tasks at hand,
the laboratory team is currently evaluating the use of Eclipse
[13] as a development environment. The advantage of such a
system would be the automation of common tasks (compilation
and execution of code, the submission of deliverables, etc.) and
the benefits of a full Java integrated development environment
(IDE) (syntax highlighting, autocompletion, code assist, source
code refactoring, etc.). A prototype that extends the Eclipse plat-
form with functionality convenient for the purposes of the DS
laboratory has been well accepted by beta testers. This system
will be installed on the machines in the laboratory and can also
be downloaded and installed by the students at home.

Beyond the scope of the Vienna University of Technology,
the laboratory environment is deployed at the Technical Uni-
versity of Kosice, Slovakia. The laboratory team also intends
to submit the material for use by the ECET consortium [14]
of which they are a member. The ECET group is a European-
funded Europe-wide network defining a common curriculum in
computer science for European universities. Further, the authors
were contacted by a company that would like to use the labo-
ratory environment to train their programmers internally. The
future goal, thus, is to create a ready-to-install and well-doc-
umented package of the laboratory environment including the
Website, all the source code, the test and grading environment,
and the additional scripts (e.g., for cheater detection).

VII. CONCLUSION

Taking into account the growing number of students and the
limited resources available at the Vienna University of Tech-
nology, personal support of each student is no longer possible.
Nevertheless, to reach the teaching objectives, the laboratory
team must ensure that each student receives adequate experi-
ence with the topics and technologies of network programming.
To enable students to do so in the most flexible way, the labo-
ratory environment not only provides the online Website with
its services but also fully supports offline working at home. The
submission and the grading of laboratory assignments is auto-
mated, and the students immediately get e-mail feedback. Fur-
ther support with problems and questions is provided via the
newsgroup which is much appreciated by the students and of-
fers the opportunity for students to benefit from each other.

Although most students found the topic of the laboratory in-
teresting, the number of copied submissions caused a major
workload in the last two years. As explained in Section IV, op-
tional assignments with a closed-book exam are a good way to
support group work while filtering cheaters.

Based on discussions with colleagues from other universities,
the authors expect the concepts and experiences reported in this
paper to be useful for other educational organizations that have
high numbers of students and budget and personnel constraints.

The student feedback that the authors have received so far
shows that the ShareMe peer-to-peer scenario is appreciated and
encourages the laboratory team to further improve the labora-
tory organization and environment.

REFERENCES

[1] Reference Guide for Instructional Design (2001, Sep.). [Online].
Available: http://www.ieee.org/organizations/eab/tutorials/refguide/
mms01.htm

[2] W. Dick, L. Carey, and J. O. Carey, The Systematic Design of Instruc-
tion. Boston, MA: Pearson Allyn & Bacon, 2000.

[3] M. Khalifa and R. Lam, “Web-based learning: Effects on learning
process and outcome,” IEEE Trans. Educ., vol. 45, no. 4, pp. 350–356,
Nov. 2002.

[4] C. Kerer and E. Kirda, “Layout, content, and logic separation in Web en-
gineering,” in Proc. 9th Int. World Wide Web Conf., 3rd Web Engineering
Workshop, Amsterdam, The Netherlands, 2001, pp. 135–147.

[5] A. Korhonen, L. Malmi, P. Myllyzelk, and P. Scheinin, “Does it make a
difference if students exercise on the Web or in the classroom?,” in Proc.
7th Annu. Conf. Innovation Technology Computer Science Education,
2002, pp. 121–124.

KERER et al.: SHAREME: RUNNING A DISTRIBUTED SYSTEMS LAB 437

[6] D. G. Kay, T. Scott, P. Isaacson, and K. A. Reek, “Automated grading
assistance for student programs,” in Proc. 25th SIGCSE Symp. Computer
Science Education, 1994, pp. 381–382.

[7] B. Cheang, A. Kurnia, A. Lim, and W. Oon, “On automated grading
of programming assignments in an academic institution,” in Comput.
Educ., 2003, vol. 41, pp. 121–131.

[8] (2004, Aug.) Moss home page. Moss: A System for Detecting Soft-
ware Plagiarism. [Online]. Available: http://www.cs.berkeley.edu/aiken/
moss.html

[9] Plague home page (2004, Aug.). [Online]. Available: http://www.csse.
monash.edu/projects/plague/software.shtml

[10] JPlag home page (2004, Aug.). [Online]. Available: http://www.jplag.de/
[11] I. D. Baxter, A. Yahin, L. M. D. Moura, M. Sant’Anna, and L. Bier,

“Clone detection using abstract syntax trees,” in Proc. Int. Conf. Soft-
ware Maintenance, 1998, pp. 368–377.

[12] P. Ragan, A. Lacey, and R. Nagy, “Web-based learning and teacher
preparation: Lessons learned,” in Proc. Int. Conf. Computers Education.
Green Bay, WI, 2002, pp. 1179–1180.

[13] The Eclipse Project home page (2004, Aug.). [Online]. Available:
http://www.eclipse.org/

[14] (2004, Aug.) ECET home page. European Computing Education and
Training (ECET). [Online]. Available: http://ecet.ecs.ru.acad.bg/

Clemens Kerer (S’03) received the M.S. and Ph.D. degrees in computer science
from the Distributed Systems Group at the Vienna University of Technology,
Vienna, Austria, in 1999 and 2003, respectively.

He is currently with Microsoft, Seattle, WA. His interests include distributed
systems, Web-based education, Web engineering, and software components.

Gerald Reif (S’03) received the M.Sc. degree in computer science from the
University of Technology Graz, Graz, Austria, in March 2000. He received the
Ph.D. degree from the Technical University of Vienna, Vienna, Austria.

After working as a Master’s student at the Institute for Information Processing
and Computer-Supported New Media at the University of Technology Graz, he
worked at the Distributed System Group, Institute for Information Systems, Vi-
enna, Austria, as a Research Assistant for the European Union IST project MO-
TION (MObile Teamwork Infrastructure for Organizations Networking). He is
currently an Assistant Professor at the Technical University of Vienna.

Thomas Gschwind (M’03) received the M.S. and Ph.D. degrees in computer
science from the Vienna University of Technology, Vienna, Austria, in 1997 and
2002, respectively, where he was working on the composition and adaptation of
software components.

He was an Assistant Professor at Vienna University of Technology. In 2004,
he joined the IBM Zurich Research Laboratory, Switzerland, where he is
working on event correlation with IBM’s Security Group. He is also affiliated
with the University Zurich, Switzerland.

Engin Kirda (M’03) received the M.Sc. and Ph.D. degrees in computer science
from the Vienna University of Technology, Vienna, Austria, in 1999 and 2002,
respectively.

He is an Assistant Professor at the Distributed Systems Group, Vienna Uni-
versity of Technology. His interests include software, network, and Web appli-
cation security; device-independent Web engineering; and distributed systems.

Roman Kurmanowytsch received the M.S. and Ph.D. degrees in computer sci-
ence from the Vienna University of Technology, Vienna, Austria, in 1999 and
2004, respectively.

After working as a Visiting Researcher at HP Laboratories and as an Assis-
tant of the Department of Distributed Systems of the Vienna University of Tech-
nology, he joined the software company Comprendium, Vienna, Austria, where
he works as a Software Architect.

Marek Paralic received the Master’s degree in informatics and Ph.D. degree in
programming and information systems from the Technical University of Kosice,
Slovakia, in 1995 and 2002, respectively.

His research currently focuses on distributed systems, especially mo-
bile-agent-based systems and multiagent systems. He is an Assistant Professor
at the Department of Computers and Informatics at the Technical University
of Kosice, where he heads the Software Engineering Group. He teaches
undergraduate course in programming and graduate course in distributed
programming.

	toc
	ShareMe: Running a Distributed Systems Lab for 600 Students With
	Clemens Kerer, Student Member, IEEE, Gerald Reif, Student Member
	I. I NTRODUCTION
	II. T HE S HARE M E F ILE -S HARING A PPLICATION

	Fig.€1. (a) Exchange of multicast IAmAlive messages among peer A
	A. Laboratory 1: The Peer-to-Peer Network Infrastructure
	B. Laboratory 2: Searching for Files
	C. Laboratory 3: Making Searches Secure
	D. Laboratory 4: Adding an HTML User Interface

	Fig.€2. (a) Exchanging secure search requests and responses usin
	III. S UPPORTING THE S TUDENTS
	IV. G RADING S TUDENT P ERFORMANCE
	A. Automated Grading System
	B. Group Versus Individual Assignments
	C. Dealing With Cheaters
	D. Open Versus Closed Book Tests
	E. Required Versus Optional Assignments
	F. Discussion

	V. E XPERIENCES W ITH THE S HARE M E L ABORATORY

	TABLE I U SAGE OF THE L ABORATORY E QUIPMENT P ER M ONTH
	TABLE II R ESULT OF THE U NIVERSITY'S S TUDY ON THE 2003 D ISTRI
	VI. F UTURE P LANS
	VII. C ONCLUSION

	Reference Guide for Instructional Design (2001, Sep.). [Online]
	W. Dick, L. Carey, and J. O. Carey, The Systematic Design of Ins
	M. Khalifa and R. Lam, Web-based learning: Effects on learning p
	C. Kerer and E. Kirda, Layout, content, and logic separation in
	A. Korhonen, L. Malmi, P. Myllyzelk, and P. Scheinin, Does it ma
	D. G. Kay, T. Scott, P. Isaacson, and K. A. Reek, Automated grad
	B. Cheang, A. Kurnia, A. Lim, and W. Oon, On automated grading o

	(2004, Aug.) Moss home page . Moss: A System for Detecting Softw
	Plague home page (2004, Aug.). [Online] . Available: http://www.
	JPlag home page (2004, Aug.). [Online] . Available: http://www.j
	I. D. Baxter, A. Yahin, L. M. D. Moura, M. Sant'Anna, and L. Bie
	P. Ragan, A. Lacey, and R. Nagy, Web-based learning and teacher

	The Eclipse Project home page (2004, Aug.). [Online] . Available
	(2004, Aug.) ECET home page . European Computing Education and T

