Assessing Changeability by Investigating the Propagation of Change Types

Beat Fluri
s.e.a.l. — software architecture and evolution lab
Department of Informatics

University of Zurich, Switzerland
fluri @ifi.unizh.ch

Abstract

We propose an approach to build a changeability assess-
ment model for source code entities. Based on this model,
we will assess the changeability of evolving software sys-
tems. The changeability assessment is based on a taxon-
omy of more than 30 change types and a classifation of
these in terms of change significance levels for consecu-
tive versions of software entities. We consider change type
propagation on different levels of granularity ranging from
method changes to interface and class changes. We claim
that this kind of assessment is effective in pointing to poten-
tial causes of maintainability problems in evolving software
systems.

1. Motivation

Assessing the maintainability of software systems is a
crucial task in software engineering. Most of the existing
approaches in this research area are limited to software mea-
surement. Since traditional software measurement does not
take the evolution of software systems into account, it does
not put the change in the center of the investigated develop-
ment process.

Research in the area of software evolution analyzes the
change history of software systems to obtain deeper insights
in their changeability and discover maintainability prob-
lems. These approaches rely on information provided by
versioning systems such as CVS [2,7]. They usually track
changes of files on a fext basis and are unable to enrich
changes with structural source code information such as
the method declaration. That means, when using changes
gained from CVS, the corresponding source code entities
have to be reconstructed as done by [7]. Such approaches
neither extract the kind of changes, e.g., condition expres-
sion change of an if-statement, nor their significance.

2. Proposed Solution

Our vision is to build a changeability assessment model
for source code entities to assess the changeability of evolv-
ing software systems. In particular, this consists of three
contributions: (i) A taxonomy of source code changes that
defines change types according to tree edit operations in the
abstract syntax tree. In addition, we provide a change ex-
traction benchmark for assessing fine-grained change detec-
tion. (ii) A catalogue of changeability criteria to enable the
changeability assessment of source code entities and soft-
ware systems as a whole. (iii) A changeability assessment
model for source code entities to assess the changeability of
evolving software systems based on changeability criteria
and the analysis of change patterns.

Building a taxonomy of source code changes. In [4] we
showed that it is worthwhile to extract fine-grained source
code changes for investigating hidden dependencies that
lead to increasing maintenance effort. To provide an elab-
orate set of fine-grained source code changes and their ex-
traction for further analysis, we have built a taxonomy of
source code changes in [3].

Extracting change patterns. For a source code entity E
(class or method) we obtain the entities from the source
code model that depend on F (dependency set Dg) in a
particular release. Since the data stored in our release his-
tory database (RHDB) [2] provide the information which
entities have built a transaction (change coupling), we get
the part of the dependent entities with which E has formed
transaction ¢. Combining this information with the change
type data for each entity we can build the particular change
pattern for the whole transaction ¢.

We aim at extracting such change patterns automatically
as well as cluster and filter them to analyze the change pat-
terns with the changeability criteria.

A catalogue of changeability criteria. Currently we fo-
cus our research on a catalogue of changeability criteria to
enable the changeability assessment of source code entities



and software systems. We start with criteria for methods
and continue to collect criteria for classes and packages un-
til we reach the system level. A possible criterion can be:
Changes in the pre- and postcondition of a method must not
occur frequently. We claim, that violations of such a cri-
terium lead to extra change effort in the callers of a method.

A changeability assessment model. Based on change-
ability criteria and the analysis of change patterns, we define
a changeability assessment model of source code entities to
assess the changeability of evolving software systems. To
build the model we address questions such as the follow-
ing: Does the dependency set D of an entity for a change
pattern also repeat when the change pattern repeats?

Assume the entity dependency set comprises the callers
of the public method M. By investigating the research ques-
tion above, a possible result assessing the changeability of
method M can be: Whenever only the body of M changed,
the same set of callers has also changed. Based on the fre-
quency of such changes and how many caller the method
has, changes in the body of the method lead to extra change
effort.

With this model we claim to be able to classify the
changeability of a source code entity as low, medium, or
high. Using such a classification a software architect is
able to decide which parts of a software system have to
be adapted to reduce or limit further maintainability effort.
With the integration of our approach in a development en-
vironment, the developer gets feedback about the possible
impact of a change. The feedback may be used as indica-
tor for other source code entities one has to consider when
applying a certain change.

3. Evaluation

We split the evaluation of our changeability assessment
approach into two parts. The first part evaluates our source
code change extraction algorithm. We have built an elab-
orate benchmark for which we have manually classified
1,056 changes from open source projects. With our bench-
mark, we are able to show that our source code change ex-
traction algorithm achieves the minimal set of source code
changes with an accuracy of 77%.

The second part, the evaluation of the model for as-
sessing changeability, will comprise a set of case studies
on open source software projects. We plan to validate the
changeability classification of entities by manually inspect-
ing the entities, their dependencies, and the changes among
them to determine the correctness of the classification. We
interpret the results of both the automatic and the manual
classification and discuss differences between them. In ad-
dition, we intend to use defect tracking data to validate
whether or not those entities characterized as problematic
also have defects.

4. Related Work

The field of software evolution analysis research encour-
aged various researches to contribute to the detection of
maintainability hot-spots. For instance, Fischer et al. [2]
analyzed the history of changes in software systems to de-
tect the hidden dependencies between modules. Such ap-
proaches do not take fine-grained changes into account, but
rely on the insufficient information that a change happend.

In the area of change propagation analysis, researchers
focus on the prediction of change propagation and on pro-
viding recommendation for change tasks [1,7]. Neither of
the change propagation analysis approach focuses on the
investigation how fine-grained changes propagate, nor are
they use to assess the changeability of a software system.

In the area of change impact analysis Stoerzer et al. de-
veloped an approach to aid developer by finding changes
that induce failures in test cases [6]. Change impact data
can be generated using approaches such as [5]. In contrast
to our approach, which also uses change impact data, they
focus on a particular development task. We want to assess
the changeability of source code entities in general.

Acknowledgment. I would like to thank Michael Wiirsch
for his support in developing the change extraction bench-
mark, Martin Pinzger for his valuable feedbacks, and my
advisor Harald C. Gall.

References

[1] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth.
Hipikat: A project memory for software development. /EEE
Trans. Software Eng., 31(6):446—465, June 2005.

[2] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proc. Int’l Conf. Software Maintenance, pages 23—
32, September 2003.

[3] B. Fluri and H. C. Gall. Classifying change types for qualify-
ing change couplings. In Proc. Int’l Conf. Program Compre-
hension, pages 35-45, June 2006.

[4] B. Fluri, H. C. Gall, and M. Pinzger. Fine-grained analysis
of change couplings. In Proc. Int’l Workshop Source Code
Analysis and Manipulation, September 2005.

[5] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging
field data for impact analysis and regression testing. In Proc.
European Software Eng. Conf. and Symposium Foundations
Software Eng., pages 128—137, September 2003.

[6] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. Finding failure-
inducing changes in java programs using change classifica-
tion. In Proc. Symposium Foundations Software Eng., pages
57-68, November 2006.

[7] T.Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller. Min-
ing version histories to guide software changes. IEEE Trans.
Software Eng., 31(6):429-445, June 2005.



