
Adrian Bachmann
Abraham Bernstein

Data Retrieval, Processing and
Linking for Software Process Data

Analysis

December 2009

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-2
00

9.
00

03
b



A. Bachmann
A. Bernstein: Data Retrieval, Processing and Linking for Software Process Data Analysis
Technical Report No. IFI-2009.0003b, December 2009

Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL:



Data Retrieval, Processing and Linking for

Software Process Data Analysis

Adrian Bachmann and Abraham Bernstein

Department of Informatics

University of Zurich

8050 Zurich, Switzerland

{bachmann,bernstein}@ifi.uzh.ch

✦

Abstract—Many projects in the mining software repositories communi-

ties rely on software process data gathered from bug tracking databases

and commit log files of version control systems. These data are then

used to predict defects, gather insight into a project’s life-cycle, and other

tasks. In this technical report we introduce the software systems which

hold such data. Furthermore, we present our approach for retrieving,

processing and linking this data. Specifically, we first introduce the

bug fixing process and the software products used which support this

process. We then present a step by step guidance of our approach

to retrieve, parse, convert and link the data sources. Additionally, we

introduce an improved approach for linking the change log file with the

bug tracking database. Doing that, we achieve a higher linking rate than

with other approaches.

1 INTRODUCTION AND MOTIVATION

In general, software projects make use of a software de-
veloping process. In most cases this process is supported
by tools such as an Integrated Development Environ-
ment (IDE), a software repository used as version control
system, and a bug tracking database for maintenance
purposes.
Because all of these systems store data during the pro-
cess, they are valuable sources of information for the
evolution and history of a software project / system. The
combination of these information sources (e.g., the bug
tracking database and the version control system) pro-
vides even more valuable information about the process
history.
Modern software project management systems like Jazz1

or Telelogic Synergy2 provide full (or at least partially
full) functionality needed to develop and maintain a soft-
ware product in one single system (e.g., a version control
system and a bug tracking database). Additionally, these
systems often only allow a change on the source code

Technical Report. Dynamic and Distributed Information Systems Group,

Department of Informatics, University of Zurich, Switzerland.

Published online in May, 2009.

http://www.ifi.uzh.ch/ddis/people/adrian-bachmann/pdq/

1. http://www-01.ibm.com/software/rational/jazz/
2. http://www.telelogic.com/products/synergy/

in combination with a task, which might be a bug that
should be fixed (i.e., a bug report), a new feature (i.e.,
existing feature request), or another task. As a result,
the process data generated by these systems is well-
integrated as far as these systems are used properly (e.g.,
no changes linked to empty work items).
Unfortunately, these systems — most of them are com-
mercial products — are not widely-used in current soft-
ware projects, and different systems are used to support
the development and maintenance of a software product.
However, the integration of data from these mostly
stand-alone systems cannot be performed automatically,
but has to be maintained manually by the developers.
Conscientious developers, for instance, refer to a given
bug report in the bug tracking database by typing the
bug number in the commit message of the version
control system. They usually do this without any formal
guidelines on how to do so (or do not obey these).
Therefore, the integration between a version control
system and a bug tracking database has to be established
e.g., by scanning through the commit messages for valid
bug report numbers (see [1]) which is indeed an inexact
heuristic.
This integrated process data can be used e.g., to predict
the location and number of future or hidden bugs, which
is one of the challenges in current software engineering
research (e.g., see [2], [3], [4], [5]). Project managers
could use such predictions to identify the critical parts
of a system, limit the gravity of their impact, and allow
a better planning of testing and engineering efforts.
These predictions therefore are valuable information. In
other research areas such data is used, for instance, for
software evolution visualization or process (data) quality
analysis/measurement.
Presenting how to retrieve, process and link this process
data for the previously announced application areas is
one of the goals of this technical report. Our purpose is
to get improve/enhance the quality of process data for
further research, which base on such data.
We shortly introduce some of the most relevant tools



2

used in the software engineering process such as bug
tracking databases and version control systems. Further-
more, we present a procedure for retrieving and process-
ing the process data followed by introducing an adapted
algorithm to integrate the version control system with
the bug tracking database. Using our adapted algorithm,
we achieve a better linking rate than in other data sets
which have been presented and used for instance by
Zimmermann et al. (see [6] or [3]). In the last part of
this report we discuss the related and the future work.

2 SOFTWARE ENGINEERING PROCESS DATA

State-of-the-art software engineering models incorporate
the following process steps (simplified):

• System Requirement Engineering
• Software Requirements Specification
• Software Design
• Software Implementation
• Software Integration; Formal Machine Testing
• Operation and Maintenance

Other development processes such as the prototyping
approach, the spiral model, the iterative process etc. have
different process steps but in all models we have at least
an implementation and maintenance part which is more
or less common. Therefore, the remainder part of this
report focuses on these two process steps.
The fundament for software process data analysis is
provided by data from systems in-process used in these
two process steps. We will introduce these systems in
detail in the following subsections.

2.1 Integrated Development Environments

Usually, a piece of software is coded in a Integrated De-
velopment Environment (IDE) which provides features
such as syntax highlighting, in-program compiling, and
debugging. Depending on the programming language,
a number of IDEs are available3. But an IDE is only
the environment for writing the code. Besides of the
source code and its documentation, there is no more
information available about the development process or
the evolution of a project.
Thus, an IDE is no data provider for our research but
can be used to provide enhanced functionality (based on
process analysis) to the developer which allows a faster,
better, or less defective coding in future. Hence, we do
not discuss these systems further in this report.

2.2 Version Control Systems

As soon a project exceeds the number of one active
developer, a version control system is needed to store
the changes on the source code, and allowing concurring
implementing activities. Such systems like the Concur-
rent Versions System (CVS)4 or Subversion (SVN)5 are

3. See for instance http://en.wikipedia.org/wiki/Comparison of
integrated development environments

4. http://www.nongnu.org/cvs/
5. http://subversion.tigris.org/

widely-used in open as well as closed source projects and
store the whole history of a software product including
all changes.
Several developers may work on the same project con-
currently, each one editing files within their own ”work-
ing copy“ of the project, and sending (or commit) their
modifications to the version control system. If the com-
mit operation succeeds (no conflicts), the version control
systems updates all files involved, writes a user-supplied
description line, the date, and the login name to its log
files.
Based on this functionality, it is possible to obtain a
change log file, which contains the following information
for each commit / committed file:

• author,
• date and time,
• changed files,
• and an optional log message.

Because CVS and SVN are different in the way how they
store the data (see Section 2.2.1), we use the following
definition of a commit in the context of this report: ”A
commit refers to submitting the latest changes of the
source code to the repository.” Or in other words: a
commit accords a transaction.
Because these change log files contain all the information
about the history and evolution of a software project,
they are a very valuable source of information for the
development process.

2.2.1 File Based (CVS) vs. Transactional Based (SVN)
CVS and SVN are both widely used version control
systems in open source software (OSS) projects as well in
closed source software (CSS) projects and are therefore
in many cases our data providers. Thus, it is important
to know how common these two systems are, especially
in the way how they store the version controlled data.
Both systems provide a state of the art functionality of
a version control system, but they differ each other sig-
nificantly in how they versioning the project repository
data. Whereas CVS firstly addresses the data by location
(L) and secondly by time (T), SVN goes the other way.
Summarized, we have the following data versioning
techniques:

• CVS: (1) project, (2) location, (3) time → (P:L.T)
• SVN: (1) project, (2) time, (3) location → (P:T.L)

Based on the versioning technique, SVN handles the
changes transaction oriented by building a new ver-
sion/revision on the whole project with every commit
(see Figure 1), whereas CVS has an independently ver-
sion/revision on each single file (see Figure 2).

2.3 Bug Tracking Databases

Even a project team realizes a software product very
carefully and spent much time on testing, the chance
to have defects in the software product is nevertheless



3

Fig. 2. CVS change log file (example of Eclipse IDE)

Fig. 1. SVN change log file (verbose; non-XML; example

of Apache HTTP Server)

high. Withrow showed in [7] for instance that the defect
density6 in modules written in Ada7 lies in average
between 0.5 and 1.9 - depending on the module size.
Such defects (or bugs) are normally reported in a bug
tracking database, which supports the whole bug fixing
process (as a part of the software maintenance pro-
cesses).
For a better understanding of the data held in such
bug tracking databases and its interpretation, we shortly
introduce a classical bug fixing process followed by a
deeper view to often used bug tracking databases.

2.3.1 Bug Fixing Process

Ideally, each software project has a well defined bug
fixing process which is supported by a bug tracking
database. Crowston (see [8]) defined the following main
activities in a bug fixing process (actors in brackets):

• Find a problem while using system (Customer)
• Attempt to resolve problem (Response Center)
• Attempt to find workaround (Marketing Engineer)
• Diagnose the problem (Software Developer)
• Design a fix for the bug (Software Developer)
• Write the code for the fix (Software Developer)
• Recompile the module and link it with the rest of

the system (Integrator)

6. The defect density is defined as the number of defects per
1’000 lines of code (KLOC).

7. See e.g., http://www.adahome.com/ for more information to the
Ada programming language.

If we focus more on the data part, we can describe the
activities as follows (systems in brackets):

• Report a problem (Bug Tracking Database)
• Dispatch the problem-report to a developer (Bug

Tracking Database)
• Check-out the current software version (Version

Control System)
• Analyze and fix the problem (Integrated Develop-

ment Environment)
• Check-in the fixed software version (Version Control

System)
• Verify the fixed software version against the prob-

lem report (Bug Tracking Database)
Modern bug tracking databases support this process by
providing a bug report status model. In the next subsec-
tion we describe common used bug tracking database
systems in more detail.

2.3.2 Used Systems
Non-Commercial (”free”) open source bug tracking
databases such as Bugzilla8 or IssueZilla9 are very pop-
ular in OSS projects, whereas in CSS projects likely com-
mercial bug tracking and testing suites such as Quality
Center10 are used.
All these bug tracking databases support the bug fixing
process with a status model, possibilities to discuss an
issue, and track the fixing progress. As a common set of
attributes, a bug report basically contain the following
information:

• Bug ID (unique identification number)
• Summary and description of the bug
• Reporter name and/or email address
• Assignee name and/or email address
• Current status of the bug (e.g., New, Verified, As-

signed, Closed, etc.)
• Resolution of the bug report (e.g., Fixed, Duplicate,

etc.)
• Priority of the bug
• Date of reporting the bug
• Further product specific attributes such as operating

system, hardware, web browser etc.

8. http://www.bugzilla.org/
9. IssueZilla is no longer available for download.
10. https://h10078.www1.hp.com/cda/hpms/display/main/

hpms content.jsp?zn=bto&cp=1-11-127-24ˆ1131 4000 100



4

• Attachments such as screen-shots, stack-traces, etc.
• Bug report related comments (discussion)

Additionally, changes on the bug report are tracked in a
so called activity log.
Depending on the bug tracking database product, there
are additional attributes such as severity or issue type.
Because, these systems store information to the whole
bug fixing process (and sometimes about implement-
ing new features), they are a very valuable source of
information to analyze at least part of the software
engineering process.

2.3.3 Public Available Bug Tracking Databases

Especially in open source projects, the bug reports main-
tained by bug tracking databases are open to everyone.
In some cases a registration is needed, but there are
typically no limitations on who is allowed to report a
bug. Only security relevant bug reports are limited in
their access to certain users.
Thus, the quality of these data may vary as the databases
can contain spam bug reports, duplicates, and feature
requests camouflaged as reported bugs (see [9] for more
information about the quality of bug reports).

3 DATA RETRIEVAL, PROCESSING AND LINK-

ING

As the data sources are identified and well-known, we
present in this section how to prepare the software
engineering process data for further analysis purposes.
We decided to store all the process data in a relational
database system (e.g., MySQL11) which easily allows
further analysis, because we can extract, combine and
select the data in any desired format.
First, we describe the exact procedure to retrieve, parse
and convert the data, and afterwards introduce our
improved linking approach.

3.1 Data Retrieval

First, we have to fetch the data out of the original sys-
tems. To get the process data (change log) from version
control systems, the procedure is straight-forward, if we
have direct read access to the repository. The procedure
for getting the process data from bug tracking databases
requires more effort, depending on the access possibil-
ities. In the optimum case, we can directly access to
the underlying database and perform a database dump.
Retrieve the bug data without database access, is more
complicate. In this case, we have to fetch the data over
the web interface followed by further data processing
steps like parsing etc..
In the following subchapters, we describe these data
retrieval methods in more detail.

11. http://www.mysql.com/

3.1.1 Version Control Systems
Version Control Systems such as CVS or SVN allow
to get a change log file of all revisions/files by using
one command. Additionally, SVN allows to retrieve the
whole change log (including all changed files) in an XML
format:

svn log --xml --verbose

Thus, we can simply export the change log data into a
text or XML file. Note again, that there are differences in
the change log files between CVS and SVN (see Section
2.2.1). We will cover the handling of these differences
later in this section.

3.1.2 Bug Tracking Databases: Database Access
Having direct access to the underlying database system
of a bug tracking database simplifies things: We can
perform a database dump and fetch all the data needed.
Unfortunately, in most cases we do not have direct access
to the database system, unless we have an agreement
with the operator of the bug tracking database (which is
mostly the case in CSS projects).

3.1.3 Bug Tracking Databases: Web Interface
In OSS projects, the bug tracking databases are mainly
available on the internet and readable to the public —
often even without registration (see Section 2.3.3). Thus,
we can fetch the bug data over the web user interface, al-
though we do not have access to the underlying database
system, which stores all the bug tracking information.
Luckily, Bugzilla and IssueZilla provide the bug report
data, in addition to HTML, in an XML format. Thus,
we can download a XML file of every bug report. To
download all information, we used a wget12 based shell
script.
IssueZilla provides all the information including the
activity log in these XML files. Bugzilla, depending on
the version, does not include the activity log in the
XML file. Thus, we have to download the activity log
separately as HTML file.
Finally, we have one XML file and optionally one HTML
file for each bug report.

3.2 Data Parsing

After retrieving the data files, the raw data has to be
parsed into a relational database. To do this job, we have
written several XML and HTML parsers.
In the following subsections, we describe the procedure
to parse the data in more detail.

3.2.1 Version Control Systems: Change Log File
As already mentioned in Section 3.1.1, SVN provides
the change log file optionally in an XML format, which
can be parsed quite easily with an XML parser/parser

12. http://www.gnu.org/software/wget/



5

library13 or any XML editor.
In contrast, CVS does not provide the change log file in
an XML file format. Thus, we wrote a simple text parser
which extracts all the relevant attributes for each revision
out of the CVS change log file (Figure 2 shows an extract
of a CVS change log file).
Note again, that the CVS and SVN change log file do
not contain the same level of information (see Section
2.2.1). The CVS change log is file based whereas the SVN
change log file is transactional oriented.

3.2.2 Bug Tracking Databases: Database Dump
In case we were able to extract the bug tracking data di-
rectly from a database system, we can load this database
dump directly back into our relational database without
any additional parsing effort.

3.2.3 Bug Tracking Databases: Bug Report Files
Having the data stored in XML and HTML files, needs
additional effort, whereas parsing these files is quite
similar to the version control system change log file. We
wrote a parsing tool, which runs through all the files and
uses the SAX XML parser to get the needed data out of
the XML files. The HTML files were parsed with simple
text parsing techniques, again (similar to the CVS change
log file). Because the Bugzilla activity log is stored in a
HTML table, the text parsing algorithm is simple.

3.3 Data Conversion

For our research, we are interested in a process oriented
view on the data of the software engineering process.
Therefore, we need to obtain a transaction-oriented view
of the data, that maintains its temporal flow. By trans-
action we mean the concept, what information was
produced by whom in a single commit (see Section 2.2).
Fortunately, bug tracking databases such as Bugzilla or
IssueZilla provide the data already in this form. Analyz-
ing the change logs can be a bit more involved.
SVN has a transactional change log file (see Section 2.2
and Figure 1) per default, which only needs to be con-
densed. CVS, in contrast, maintains a file-level change
log, which allows not a transactional view on the data
by default (Figure 2 shows a small extract of a file-based
CVS change log file). Thus, we have to reconstruct a
transactional change log file to get a process oriented
view on the data.
The reconstruction of a CVS change log file into a
transactional change log file is not a huge effort, because
the developer typically checked-in all changed files into
the repository with one single commit. Therefore, the
developer and the commit message of one transaction
(commit) are the same (see [10]). The date and time
information can be (slightly) different, as every single
file is uploaded separately and gets therefore its own
time stamp. If a developer commits two large files, for

13. e.g., http://www.saxproject.org/

example, the files may not have the same commit time
information in the change log entries.
Consequently, we take the complete CVS change log
file of a project and sort the entries by author, commit
message and date/time. Next, we combine the change
log elements with the same author and commit message
and a given maximum time difference to one transaction
(sliding window approach) similar to a SVN change log
file (see Figure 3). A maximum time difference (time
window) of up to five seconds between the change
log entries turned out to be an optimal value. Finally,
we assign a transaction number to all reconstructed
transactions ordered by date and time to get an unique
identification number for each transaction/commit.

3.4 Linking the Data Sources

The analysis of process data requires linking the version
control system information with the bug tracking infor-
mation. Modern software project management systems
like Jazz or Telelogic Synergy only allow a commit in
combination with a task, which can be a bug that should
be fixed (i.e., a bug report), a new feature (i.e., existing
feature request), or another task. As a result, the data
generated by these systems is already well-linked.
Unfortunately, these systems are not widely-used in
current software projects, however, this linking is not
established automatically but has to be manually main-
tained by the developers. Conscientious developers refer
to a given bug report by typing the bug number in the
commit message. They mostly do this without any for-
mal guidelines on how to do so (or there are guidelines,
but nobody keeps them).
We establish the links between the version control sys-
tem information with the bug tracking database infor-
mation in a procedure comparable to Fischer et al. [1]
by scanning trough the log messages for potential bug
report IDs. Additionally, we improved this approach to
get a better linking rate and verified links at the same
time.
In the following subsections we define what fixed bug re-
ports are and introduce our improved linking approach.
We close this section with a view to the censored data
issue.

3.4.1 Fixed Bug Reports
With our improved linking approach, we verify the
potential bug report links based on the chance of its cor-
rectness. As already mentioned in Section 2.3.3, the bug
tracking database contains not only fixed bug reports,
for which a bug fix could be implemented, rather than
duplicates, feature requests, etc..
We assume that only numbers in the change log which
refer to resolved, verified or closed bug reports, which
have a reported fixing activity, could be valid. We call
these bug reports “fixed” bug reports with the following
definition: Fixed bug reports are bug reports that have at
least one associated fixing activity within the considered
time period.



6

Fig. 3. Reconstruction of the transactional change log file (simplified example of Eclipse IDE)

3.4.2 Improved Linking Approach

To establish the links between a commit/transaction
and a bug report, we have to scan through the com-
mit/transaction messages for valid bug report numbers
(see [1]) which is an inexact heuristic. To improve this
process, we adapted the original algorithm (1) and built
in verification steps (2-4):

1) Scan through the commit/transaction messages for
numbers in a given format (e.g., “PR: 112233”),
or numbers in combination with a given set of
keywords (e.g., “fixed”, “bug”, etc.).

2) Exclude all false-positive numbers (e.g., release
numbers, year dates, etc.), which have a defined
format.

3) Check, if the potential bug number exists in the
bug database.

4) Check, if the linked bug report is a fixed bug report
and whether it has a fixing activity 7 days before
or 7 days after the commit date (see Figure 4).

The process tries to match numbers used in com-
mit/transaction messages with bug numbers. For all pos-
itive matches it then established if the corresponding bug
was fixed in the period of 7 days before or 7 days after
the relevant commit – a time period that seemed optimal
for the projects we investigated (see Section 3.4.3).
Our linking approach differs from previously used ap-
proaches (e.g., [6], [3], [1], [11]) in that it is less re-
stricted to potential numbers but verifies them in the
steps 3 and 4.

Fig. 4. Valid time period for bug report links (existence of

a fixing activity in this time period)

3.4.3 Bug Report Links: Valid or Not?

A difficult question in this context is the following: In
which cases ia a link valid and in which cases not?
To discuss this issue, first we recall the bug fixing process
(see Section 2.3.1). Assuming we have a bug tracking
database such as Bugzilla or IssueZilla and a version
control system such as CVS or SVN. A developer would
use these systems in the bug fixing process as follows:

1) Read the bug report and analyze the problem
(status = assigned)

2) Get the current version of source code, fix the prob-
lem and commit the changed version by declaring
the bug report id in the commit message

3) Change the status of the bug report to resolved
(status = resolved; resolution = fixed)

To check the validity of a link, we now use the time
difference between step 2 and 3. Normally, a developer
commits the fixed version of the source code and min-
utes to hours later, he also changes the status of the
corresponding bug report. If we scan trough the change
log and get links to fixed bugs which were marked
as fixed e.g., 180 days after the commit, we have to
assume, that this is not a valid link. It is possible that
the developer misspelled the number or the number is
simply no bug report id in this context (false-positive
bug ID).
On the other hand, developers tend to mark a bug as
fixed and commit more source code changed hours to
days later, which are linked to the already ”fixed” bug.
Particularly in CSS projects this is a common practice
due to deadline/service level agreement restrictions.
Thus, the definition of a time period for valid links
is always a trade off between more links (less false-
negatives) and a higher chance of invalid links (more
false-positives). We can check even whether a linked bug
report exists and the link makes sense, we are never
sure, if this linking is really valid or not. In other words:
We do not know if the source code change which was
committed to fix a reported bug, really fixed the problem



7

TABLE 1

Time Difference between Commit and Bug Report Status

Change (Eclipse)

Time diff (days) Proportion of data

<-7d 0.11%

-7d 0.21%

-6d 0.21%

-5d 0.17%

-4d 0.26%

-3d 0.41%

-2d 0.38%

-1d 1.54%

0d 74.36%

1d 4.42%

2d 1.62%

3d 1.61%

4d 1.24%

5d 1.14%

6d 1.04%

7d 0.85%

8d 0.62%

9d 0.37%

10d 0.37%

11d 0.39%

12d 0.30%

13d 0.35%

14d 0.56%

15d 0.40%

16d 0.20%

17d 0.21%

18d 0.20%

19d 0.18%

20d 0.22%

>20d 6.07%

which was reported in the linked bug report. The only
way to do that, is source code inspection for every bug
report, which needs plenty of time.
To get an optimal value for the valid time period, we
analyzed the time difference between the commit and
the status change (resolution=fixed) in the bug report
without any time constraint (leave step 4 presented in
Section 3.4.2).
The results for the Eclipse project are shown in Table 1.
Defining a valid time window of ±7 days (see Figure 4),

we considered almost 92% of all potential bug report
links. Almost 75% of bug report links have a status
change on the bug tracking database prior 24 hours (0d)
after the commit. A verification by manual inspection of
the data for false-positives or false-negatives approved
this time range.
Similar results could be obtained for other — OSS and
CSS — projects.

3.4.4 Censored Data
One important issue to keep in mind when discussing
fixed bugs or verified links is censored data. Every data
set that only uses a subset of the overall original data
or uses continuous data will have missing information
due to incomplete data (famous boundary problem). For
example, if we employ a data set ranging from 2008-
01-01 to 2008-12-31 for all entries and look at a bug
report entered on December 30th, 2008 then a commit
by a developer on December 31th, 2008 and bug status
change to “fixed” on January 1st, 2009 will appear to be
a data quality issue: In the above example data set we
do not know anything about the commit and the status
change and would, therefore, assume that the bug report
link is wrong, due to missing fixing activity. Whilst this
problem may appear artificial, we will always have to
consider the boundaries.
To limit the error introduced by this censoring, we
should purposefully employ data sets including very
long periods of time (many years).

4 EVALUATION

Many research areas such as bug prediction, software
visualisation, process quality measurement/analysis etc.
need to have proper software engineering process data.
Otherwise the respecting results could be false, mislead-
ing or incomplete.
In this technical report, we presented an improved ap-
proach to retrieve, process and link this software engi-
neering process data. But how qualitative is this data?
To get an indication about that, we checked the quality
of our resulting process data in different ways.
For that reason, we gathered the data of five CSS projects
and one OSS project:

• Apache HTTP Server14

• Eclipse IDE15

• GNOME Desktop Project16

• NetBeans IDE17

• OpenOffice productivity suite18

• Banking System (CSS)19

14. http://httpd.apache.org/
15. http://www.eclipse.org/
16. http://www.gnome.org/
17. http://www.netbeans.org/
18. http://www.openoffice.org/
19. Due to security and confidentiality considerations we are not

allowed to publish more information about this project.



8

4.1 Retrieving, Parsing and Conversion Quality

Our approach to retrieve, parse and convert the data
is quite similar to previous approaches (see Chapter 5).
Thus, we focused the quality assurance on double check-
ing the original data with the parsed data. Since we have
no manipulation on the data, we can simply compare
the original with the parsed and converted data. After
checking our procedures and algorithms without any
problem issues, we assume to have no quality issue in
this point.

4.2 Linking Quality

Checking the quality of the links between the change
log and the bug tracking database can be a bit more
involved.
Our linking approach differs from previously used ap-
proaches (e.g., [6], [3], [1], [11]) in that it is less restricted
to potential bug reference numbers but verifies them
(see Chapter 3.4.2). The result is a better linking rate (e.g.,
43.7% compared to 24.3% for Eclipse20).
But is this better linking rate a result of a higher false-
positive rate and, what about false-negatives?
We checked our data sets by manual inspection for false-
positives e.g., whether there are identified bug report
numbers which can not be truly a bug report link.
Finally, we got a false-positive rate for all data sets which
is far below 1%. Thus, our better linking rate is not a
result of a much higher-false positive rate.
Additionally, we checked the data sets for false-negatives
which is more difficult (see Chapter 3.4.3). Keep our
restriction of ±7 days for valid bug report links, we got
a false-negative rate which is far below 1% (e.g., bug
report numbers which are written with separators e.g.,
”Bug #223’344 fixed” or ”Bug #22 33-44 fixed”).

4.3 Overall Quality

Based on our manual inspection results on false-positives
and false-negatives, we assume that we find virtually
all bug report links which the developers established by
linking a bug report numbers in the commit message.
Nevertheless, the linking rate in all analyzed data sets
(except of Apache HTTP Server) is far below 50%. This
low rate is not a result of a poor linking algorithm,
but a result of missing bug report link information in
the change log. Unfortunately, these very low rates can
influence the results of research/applications which base
on such process data. We addressed this problem already
in [12].
In our future work, we plan to analyze this impact and
the general quality of software engineering process data
more in detail (see Chapter 6).

20. Based on the data set provided on http://www.st.cs.
uni-saarland.de/softevo/bug-data/eclipse/

5 RELATED WORK

Mining software engineering process data (also known
as mining software repositories) got very popular in the
last few years. Thus, much literature exists about this
topic.
First of all, analyzing these process data requires the
knowledge of the bug fixing process. Koru and Tian [13]
give a good introduction to the bug fixing process. At
the same time, they analyzed the details of this process
in several OSS projects.
Fischer et al. [1] presented a Release History Database
(RHDB) which contains the CVS change log and the
bug report information (excluding the activity log)
of all bug reports which are linked in the change
log. To link the change log and the bug track-
ing database, Fischer et al. searched for change log
messages which match to a given regular expres-
sion (e.g., bugi?d?:?=?\s*#?\s*(\d\d\d+)(.*) or
b=(\d\d\d\d+)(.*). In this first version of the algo-
rithm, no verification step was done. Later, they im-
proved the algorithm by checking for changed files or
modules in the bug tracking database [14].
A similar approach to link the change log with the bug
tracking database was chosen by other researchers. All
of them used regular expressions to find bug report link
candidates in the change log file. Čubranić and Gail
[11] verified the link candidates by checking whether
any activity occurred on the linked bug report within
a small time frame around the commit, which is quite
similar to our approach. Śliwerski et al. [3] verified the
candidates with a semantic analysis (e.g., the linked
bug report has been resolved as fixed at least once)
whereas Schröter et al. [15] and Zimmermann et al. [6]
checked whether a candidate log message contains key-
words such as ”fixed” or ”bug” or matches patterns like
”# and a number”.
Finally, a similar approach to reconstruct the transac-
tional change log file from a CVS change log was pre-
sented by Zimmermann and Weissgerber [10].

6 FUTURE WORK

Our work provides approved and enhanced software
engineering process data, which can be used for appli-
cations such as defect prediction, software engineering
quality analysis etc. which rely on such process data.
In order to make our findings actionable, we intend to
investigate what factors influence bad software process
data quality, and if the data contains any systematic bias
(see [12]).
We would also like to further analyze the quality of
the software engineering process data. Thus, we plan to
define several data quality and project measures which
specify the (data) characteristics of a software project.
With such measures, we should be able to better un-
derstand and classify the data. This could also help to
parameterize future applications project specific.
Furthermore, we plan to provide a case study based



9

on these quality and characteristics measures to get a
comprehensive view on the data quality and the project
characteristics of several OSS and CSS projects.

7 CONCLUSION

In the first part of this paper we introduced some details
to the software engineering process including the bug
fixing process in detail. Additionally, we showed in
which software systems process data is held.
Later, we presented our approach for data retrieval,
processing and linking in detail. Particularly we showed
our approach to reconstruct the transactional change log
from CVS change log data and introduced our adapted
algorithm to link the change log data with the bug
tracking database data. At the same time, we dealt with
the question, which bug report links are valid and which
are not.
In the evaluation part, we could successfully show the
better linking rate of our approach compared to other
linking approaches. We also showed just how badly bug
reports are linked in commit log messages and pointed
to the problem of this poor data quality.
In summary, we presented an approach to retrieve,
process and link software engineering process data on
a approved high level of quality. The resulting process
data can be used for further analysis and applications
which base on such data.
Most important, even with our adapted linking ap-
proach, only a fraction of the fixed bugs do have links
to the change log file. Thus, our analysis provided a
basis for future work to draw upon the consequences
other application areas might have when relying on such
software process data.

ACKNOWLEDGMENTS

This work was partly funded by the Zurich Cantonal
Bank. Many thanks to Tom Scharrenbach and other DDIS
group members for reviewing this technical report.

REFERENCES

[1] M. Fischer, M. Pinzger, and H. C. Gall, “Populating a release
history database from version control and bug tracking systems,”
in Proceedings of the International Conference on Software Mainte-

nance. Amsterdam, Netherlands: IEEE Computer Society Press,
September 2003, pp. 23–32.

[2] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving defect
prediction using temporal features and non linear models,” in
Proceedings of the International Workshop on Principles of Software

Evolution. Dubrovnik, Croatia: IEEE Computer Society Press,
September 2007, pp. 11–18.

[3] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” in MSR ’05: Proceedings of the 2005 international

workshop on Mining software repositories. New York, NY, USA:
ACM, 2005, pp. 1–5.

[4] H. Joshi, C. Zhang, S. Ramaswamy, and C. Bayrak, “Local and
global recency weighting approach to bug prediction,” in MSR

’07: Proceedings of the Fourth International Workshop on Mining

Software Repositories. Washington, DC, USA: IEEE Computer
Society, 2007, p. 33.

[5] M.-T. J. Ostrand, F.-E. J. Weyuker, and R. M. Bell, “Predicting the
location and number of faults in large software systems,” IEEE

Trans. Softw. Eng., vol. 31, no. 4, pp. 340–355, 2005.

[6] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects
for eclipse,” in PROMISE ’07: Proceedings of the Third International

Workshop on Predictor Models in Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2007, p. 9.

[7] C. Withrow, “Error density and size in ada software,” IEEE Softw.,
vol. 7, no. 1, pp. 26–30, 1990.

[8] K. Crowston, “A coordination theory approach to organizational
process design,” Organization Science, vol. 8, no. 2, pp. 157–175,
1997.

[9] N. Bettenburg, S. Just, A. Schroeter, C. Weiss, R. Premraj, and
T. Zimmermann, “Quality of bug reports in eclipse,” in In Proceed-

ings of the 2007 OOPSLA Workshop on Eclipse Technology eXchange

(eTX 2007), Montreal, Quebec, Canada, October 2007, pp. 21–25.
[10] T. Zimmermann and P. Weissgerber, “Preprocessing cvs data for

fine-grained analysis,” in MSR ’04: Proceeding of the 1st Interna-

tional Workshop on Mining Software Repositories (MSR), Edinburgh,
UK, 2004, p. 5.

[11] D. Čubranić and G. C. Murphy, “Hipikat: recommending perti-
nent software development artifacts,” in ICSE ’03: Proceedings of

the 25th International Conference on Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2003, pp. 408–418.

[12] E. Aune, A. Bachmann, A. Bernstein, C. Bird, and P. Devanbu,
“Looking back on prediction: A retrospective evaluation of bug-
prediction techniques,” Student Research Forum at SIGSOFT
2008/FSE 16, November 2008.

[13] A. G. Koru and J. Tian, “Defect handling in medium and large
open source projects,” IEEE Softw., vol. 21, no. 4, pp. 54–61, 2004.

[14] M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug
report data for feature tracking,” in Proceedings of the 10th Working

Conference on Reverse Engineering. Victoria, B.C., Canada: IEEE
Computer Society Press, November 2003, pp. 90–99.

[15] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller, “If your
bug database could talk...” in Proceedings of the 5th International

Symposium on Empirical Software Engineering. Volume II: Short

Papers and Posters, Rio de Janeiro, Brazil, September 2006, pp. 18–
20.


