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Abstract

This Thesis describes the Architecture of a highly flexible Triplestore Framework. Its main fea-

tures are: pluggable backend storage facilities, horizontal Scalability, a simple API and the gen-

eration of endless result Streams. Special attention has been paid on easy extensibility. First a

detailed view of the architecture is given, later more details on the actual implementation are

revealed. In the end two possible triplestore setups are benchmarked and profiled. It is shown

that the currently limiting factors do not lie within the architecture but in the library code for the

backends. In the end possible solutions and enhancements to the framework are discussed.





Zusammenfassung

Die vorliegende Arbeit beschreibt und dokumentiert den Tygrstore. Tygrstore ist ein flexibles,

performantes Framework um Tripelstores zu erstellen. Die Hauptmerkmale sind auswechselbare

Backend-Speicherloesungen, eine einfache API und die Möglichkeit endlose Resultate zu strea-

men. Tygrstore ermöglicht ausserdem die horizontale Skalierung. Es wurde ein spezielles Augen-

merk darauf gelegt, alle Module einfach erweitern zu können. Zu Beginn wird die Architektur

besprochen und danach die Einzelheiten der eigentlichen Implementation . Dann werden zwei

mögliche Setups getestet und diese werden dann genauer analysiert. Zum Schluss werden noch

Wege fuer die Weiterentwicklung vorgeschlagen.
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1

Introduction

This Thesis introduces, documents and evaluates a new triplestore called Tygrstore. Besides being

a triplestore which evaluates SPARQL queries, Tygrstore is also designed to serve as a founda-

tion framework for rapid prototyping of new techniques in RDF storage. According to that, the

general focus was on extensibility rather than a specific optimal behavior. Tygrstore is written in

Cython 1 which permits fine grained performance optimization written in c but also enables the

full benefits of Pythons dynamic nature.

Based on the TokyoTyGR triple store (used in [Basca and Bernstein, 2010]), Tygrstore imple-

ments the Hexastore model described in [Weiss et al., 2008] and [Weiss and Bernstein, ]. In Section

1.1 the context of triple stores is briefly discussed as it is the base of the Motivation for this thesis.

The detailed Architecture of Tygrstore is covered throughout Chapter 2. While Tygrstore can be

working in the same way as TokyoTyGR, it can also easily be adapted to other storage facilities

than Tokyo Cabinet. This flexibility is shown in Chapter 3 where the two main backend storage

drivers are explained in detail. Further characteristics of Tygrstore are explored in the Evaluation

in Chapter 4.

1http://cython.org/
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1.1 Context

In the recent years, the semantic web became a vivid topic in research. Especially the commu-

nity of graph databases was revitalized. The characteristics of RDF Schema as graph model and

SPARQL as a query language unfolded new problems. Among these topics the scalability, pro-

cessing speed and optimization of triple stores are still heavily discussed. RDF Storage research

has concentrated on three main areas: join processing [Vidal et al., 2010], [Senn, 2010], [Kim et al.,

2009], query optimization [Schmidt et al., 2010] and data-structures [Weiss and Bernstein, ] , [Senn,

], [Atre and Hendler, ] and [Atre et al., 2010]. The combined question still is, on how these going

to scale. Brewers CAP theorem [Gilbert and Lynch, 2002] clearly reveals that traditional RDBMS

will not solve the problems at hand. Meanwhile the Lean Startup methodology2 and the advance

of the internet on mobile (and other platforms) originated in todays abundance of SaaS and PaaS

offerings3. These systems in turn have also scaling needs beyond the possibilities of ACID con-

form RDBMS. This resulted in a new generation of DBMS, often subsumed as NoSQL stores. This

typology usually includes:

• Key/Value Stores

• Distributed Key/Value Stores

• Graph Oriented Stores

• Column Oriented Stores

• Document Oriented Stores

• Map-Reduce based Systems

• Mixtures of the above

Each of these having at least a hand full of implementations4.

So this business oriented community solves at least similar problems as the semantic web

community. Where they differ is, that while the semantic web works towards a standardization

of each components via the W3C, the interfaces in NoSQL world lack any there of. This leads

to the many proprietary query language in existence and the fallback to (compared to SPARQL)

relatively primitive data retrieval protocols (REST or JSON).

1.2 Motivation

These two communities are solving similar problems and each of these offer methods the other

lacks and needs. In that sense, Tygrstore could provide a framework to help those two worlds

2http://en.wikipedia.org/wiki/Lean_Startup
3this includes social networks, google apps, social games etc
4a list can be found on http://nosql-database.org/

http://en.wikipedia.org/wiki/Lean_Startup
http://nosql-database.org/
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converge, while not changing any of the sides at its core. In this Thesis i show an architecture

which allows us to leverage, the already highly optimized, production ready, NoSQL stores and

supply them with an standardized way to access data therein. Furthermore it should be possible

to rapidly prototype and evaluate new concepts in other areas, especially in query optimization

and join processing.





2
Tygrstore Architecture

2.1 Architecture Overview

The core of Tygrstore consists of five main classes. The Sparql parser, the QueryEngine, the String-

store, the IndexManager and the Index. Put together, these modules allow the execution of SPAQRL

SELECT queries. Figure 2.1 shows the call hierarchy of these classes. TygrstoreServer and the

shell script tygrstore.sh are simple wrapper scripts to make the QueryEngines functionality avail-

able via HTTP, msgpack1 and in a posix console. The Sparql parser is a separate Python package

called cysparql. It contains Cython bindings to Rasqal 0.9.25 2 as well as methods to save data.

This package was kindly provided by Cosmin Basca.

2.1.1 Execution Model

After the query has been parsed, the Query Engine uses the Stringstore to convert the RDF Liter-

als to their internal representation (database ID). As we will see, this database ID is usually a hash

of the RDF Literal in n3 notion. The Query is also being optimized by looking up the selectivities

of each variable used in the WHERE clause. Further query variables are resolved using recursion.

Doing that, the QueryEngine operates on the Index Manager which decides on which of the avail-

able actual indices is being consulted. The IndexManager returns generators for all Triple Patterns

containing the current variable. These generators yield database Ids which then are merge-joined

by the QueryEngine. The resulting intersection defines the space in which the Variables solutions

can possibly reside. For each of these possible solution a recursion step is done and the remaining

variables are solved. This means that results are being generated in a constant manner and can be

streamed from the client.

1http://msgpack.org
2http://librdf.org/rasqal/

http://msgpack.org
http://librdf.org/rasqal/
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Figure 2.1: Tygrstore Architecture Overview.
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2.2 Index Manager

The IndexManager instance provides methods to maintain and lookup indexes. It serves as the

central dispatcher and single point of entry to the indexes. Thus the QueryEngine should never

call on indexes directly but always trough IndexManager.

IndexManager API methods:

General Remark: ttriple means an instance of the Tygrstore Triple class. A natural is one character

of the natural ordering, so usually ‘s’ or ‘p’ or ‘o’.

• selectivity_for_triple(statement_as_tuple) Where statement is a tuple filled with Database

Keys or None in the order of self.naturals . It proxies the request to the correct Indexes and

returns an integer with an estimation on how many triples match the pattern. If multiple

Indexes can be used it returns the minimal value.

• ids_for_triple(statement_as_tuple, searched_natural) returns a generator which yields

database keys matched by the triplepattern in statement_as_tuple . searched_natural is a

single character denoting the position of the unbound variable which should be resolved.

E.g. if the triplepattern (statement_as_tuple ) is (’31337’,None,’38317’,None) and the searched natural

is ‘c’ the generator will yield all contexts which have a triple in which the subject and the

objects correspond to the above keys.

• ids_for_ttriple(ttriple, var) returns a generator which yields database keys matched by

the triplepattern in ttriple. Var is a string with the name of the SPARQL variable but without

the leading ? or $. ids_for_triple should be prefered over this method, since it is more

generic.

• add_to_all_indexes(statement_as_tuple) used to add a statement to the store. This should

only be used for small amounts of statements. Bulk insertion should be done via a special-

ized importer script which talks directly to the backend. See Section 2.8

• close() calls close() on all indexes

• len() returns the total number of statements in the store

IndexManager Internals:

The IndexManager instance keeps a list of all indexes as well as a mapping Dictionary to find

suitable indexes. Initialized in the __init__() function of IndexManager this simple data-structure

is the foundation of the IndexManager:

’’’here we instanciate one index class for every permutatio n of the naturals string.

we also add a (tuple as) key for every sub-tuple (eg. s, and s,p and s,p,o for s,p,o,c

) with the index
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as value. they go into unique_indexes and indexes

’’’

def build_indexes(self):

#build a list of tuples of all permutations of

#e.g. ’spo’ -> (’s’,’p’,’o), (’s’,’o’,’p’) etc.

for p in permutations(self.naturals):

#the name (in the index known as internal_ordering). e.g. (’ s’,’o’,’p’) -> "sop"

index_name = "".join(p)

#instanciate a new index.

#equal to e.g.: an_index = KVIndexTC(config_instance, nam e="spo")

an_index = self.index_class(self.config, name=index_na me)

#maintain a list of all indexes in unique_indexes

self.unique_indexes.append(an_index)

#generate the keys for the mapping dict self.indexes and set the index as value

#e.g. for ’spo’ -> (’s’,), (’s’,’p’), (’s’,’p’,’o’) as keys

for i in range(1,len(p)+1):

self.indexes[p[0:i]] = an_index

#for (None), (None,None,...) set any index

for none_tuple_length in range(1,len(p)+1):

none_tuple = (None,) * none_tuple_length

#if we have no given vars it does not matter which index we take

self.indexes[none_tuple] = an_index

When the QueryEngine calls the ids_for_ttriple method, the correct index is internally evalu-

ated with the index_for_ttriple method. This method puts together the already solved variables

and determines which of the unsolved part in the triple-pattern we search for (natural). With that

information at hand it can look up the index in the Dictionary.

’’’return the coresponding index for a statement’’’

@memoized

def index_for_ttriple(self, ttriple, var):

#get all solved naturals in the triple.

idx_name = tuple(i for i in self.compress(self.naturals, ttriple.ids_as_tuple()) )

# add the natural where the variable we are searching for is

idx_name += (self.naturals[ttriple.variables_tuple.in dex(var)],)

#look the index up in the dict

return self.indexes[idx_name]

’’’return the coresponding indexes for a statement’’’

@memoized

def indexes_for_tuple(self, triple):

#generator for all possible key combinations

naturals = self.compress(self.naturals, triple)

#generator for all permutations

all_indexes = permutations(x for x in naturals)

#list of all

return [ self.indexes[i] for i in all_indexes ]
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Instead of caching this method with memoized it should be re-factored and the information

about the naturals should be pushed to the Triple class. This was omitted as the Triple wrapper

class is a later addition to the framework and its interface being still unstable.

All other methods are straight forward implementations of their respective task. Only self.

update_only_one has a slight effect in that it signals that all indexes in self.unique_indexes are

possibly the same instance of a KVIndex. The reasons for this existence are further described in

Section 3.2.2.

2.3 Storage Backends

To store the actual indexes of the the triple store, a storage backend is needed. These Backends

can be anything, from optimized in-memory or on-disk data-structures to network accessible

Databases. The interface to implement such a backend is kept to a bare minimum. This allow

easy and fast development of new Adapters. Described in more detail in 2.3.1, a functional read

only index could be implemented by providing just 3 API methods. Namely the ids_for_triple

,selectivty_for_triple and __init__ . None the less it is recommended to implement the whole

API described below. Currently there are Adapters for Tokyo Cabinet, Kyoto Cabinet, Redis and

MongoDB available. All of them providing unique features not found in the others. This can

be exploited to provide special performance or scaling characteristics to Tygrstore. Changing the

backend Storage is a matter of reloading the database.

Mixing different types of backends have not been tested and is currently not supported by

the configuration subsystem. As the API provides unambiguous methods it should certainly be

possible, since there is absolutely no (self)coupling between different index instances.

2.3.1 Storage Backends

All storage backends need to subclass the KVIndex class. This superclass provides the general

housekeeping functionalities common to all types of backend storage. The order of the index

should not be important in the actual implementation. It is determined or defined at creation

time, where a decorator adjusts the parameters of the API calls to match the current index. This

is the almost ‘magic’ input ordering decorator and its setup function:

def setup_reordering_decorators(self):

self.reordering = []

for i in self.internal_ordering:

self.reordering.append(self.input_ordering.find(i))

self.logger.info("reordering: %s" % str(self.reorderin g))

self.ids_for_triple = self.input_reorder_wrapper(self .ids_for_triple)

self.add_triple = self.input_reorder_wrapper(self.add _triple)

self.selectivity_for_triple = self.input_reorder_wrap per(self.selectivity_for_triple

)
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def input_reorder_wrapper(self, original_func):

def reorder(the_tuple, ** kwargs):

try:

reordered_tuple = []

for x in self.reordering:

reordered_tuple.append(the_tuple[x])

reordered_tuple = tuple(reordered_tuple)

return original_func(reordered_tuple, ** kwargs)

except IndexError:

self.logger.error("defect tuple!")

self.logger.error( the_tuple )

return reorder

setup_reordering_decorators wraps the methods which receive triple-patterns with the input_reorder_wrapper

. For each call made to these methods the incoming tuple is rearanged to match the order of the

receiving index. This is a trick to make the code of the KVIndex implementations much more

concise.

KVIndex API Methods

A KVIndex implementation has to provide the following methods to be able to work:

• __init__

• open

• close

• add_triple

• selectivty_for_triple

• ids_for_triple

__init__(config_file, name="spo")

config_file is an instance of ConfigParser.RawConfigParser and enables direct access

to the tygrstore.cfg configuration file. Each backend type should use a separate section

to read configurations which can not be shared. All other configuration shall be read

from the [index] section. The name parameter is a string that denotes the ordering of

the index and can be read from the property self.internal_ordering . This association

is done in the base class KVIndex. Therefor it is necessary to initialize the Base class by

calling super(KlassName, self).__init__(self.config_file,nam e) where KlassName

is the name of the subclass in which the call is made. Also a call to the open method

should be made to assure that the connection to the actual back end works.
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open() returns: INDEX_OPENall methods needed to initialize the backend(s) should be

made here instead of the init function so backends can be closed and reopened at

runtime. If the backends fails to open an Exception should be thrown. In case the

Index uses different levels they should be stored in the list self.levels

close() returns INDEX_CLOSEDthis function should close the backend in a way that it

can be safely opened by another instance and all network traffic to the backend is

stopped.

add_triple(tuple_of_ids) this method should add a single triple to the index. The

parameter is a tuple which contains Ids in the order described by self.input_ordering

e.g. ‘spo’

__len__() returns: an integer returns the total number of entries in the index

selectivity_for_triple(tuple_of_ids) returns: an integer returns the selectivity es-

timation of the tuple_of_ids triple pattern. In the best case it returns the effective

number of triples matching the input pattern. If this is not possible another algorithm

which mimics these numbers should be implemented or self.selectivity_estimation

should be set to false.

ids_for_triple(tuple_of_ids, num_records=-1, searched _key=-1) returns: a genera-

tor which yields ids for the first key which is none. E.g. if tuple_of_ids is ( ‘id1’ , ‘id2’

, None, None) and we are in a spoc index then the generator should yield keys of type

‘o’ . If num records is positive it should yield Sets of ids, where each set contains the

amount of record this variable has. If searched_key is positive it should contain the

index of the key which should be resolved, thus 2 for the above example or if keys of

type ‘c’ are looked for it should be 3.

Following is a list of properties maintained by the base class:

• self.updateable : if this is set to False the store does not need to accept calls to the

add triple() function.

• self.keylength : the length of the database id in bytes

• self.input_ordering : the ordering in which requests come in. Usually ’spo’ or

’spoc’

• self.internal_ordering : the ordering of the index. E.g. ’ops’

2.4 Sparql Parser

Sparql is parsed by Rasqal3 via its cython bindings cysparql. Since these bindings are

new and not finished I have created wrapper classes for easier prototyping and debug-

3http://librdf.org

http://librdf.org
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ging. The helpers module provides three of these wrapper classes around cysparql:

Triple,BGP and ResultSet. These exist to maintain and aggregate properties needed

to resolve the query. While they could (and eventually should) be moved into the

cysparql module, there are reasons to keep them. First of all they can be seen as a pro-

totype about which functionality Tygrstore expects. Further they help to give a more

detailed view when profiling since they can be run in pure python mode.

The most important class ist ResultSet, it provides the methods on which the QueryEngine

algorithm operates. It has the following properties and methods:

• triples a list of all triples in the Basic Graph Pattern

• variables a list of all variables in those triples

• unsolved_variables a list of all variables that are unsolved in the current recur-

sion step

• solutions a Dictionary with the variables as Key and id’s as Values

• triples_with_var(var) a list of all triples which contain a certain variable

• unsolved_triples() all triples with unsolved variables

• get_most_selective_var() the next variable to solve

• triples_with_var(var) all triples containing the variable supplied

• resolve(var, solution) resolve a variable with an id

• unresolve(var) unresolve a variable

It is important to note, that this API will most certainly change, as the interplay be-

tween cysparql, ResultSet and QueryEngine is not yet optimal. Chapter 6 explains pos-

sible solutions for that.

2.5 String Store

The Stringstore Instance maintains the mappings from database IDs to all RDF literals

(URIs and string literals) in the store. The base class Stringstore provides the function

get_new_id(any_string) which returns a new ID. If a Hash-function is used then this

function is just an alias to the hash-function. Else it uses the API methods of String-

store which must be implemented.

Stringstore API Methods:

id2s(an_id): returns: a string in n3 notation. This is used when the Database ID gets

converted back to a result for a variable.
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s2id(a_string): returns: a database id. Used when the triple patterns are encoded

to database ids. If self.numeric_ids: is false this function can be either an alias or a

wrapper to get_new_id(any_string) . In case the String is not in the database the func-

tion should raise a LookupError . This can be exploited to abort the query if necessary

triple patterns will not match at all.

contains_string(a_string): returns: Boolean. Should return true if the RDF Term is

already in the database

add_string(a_string): returns: The new ID. This will add a String to the Database. It

should use get_new_id(any_string) to get a new string.

next_id(self): this is us used only if numeric ids in [general] is set to true/yes in

tygrstore.cfg. It should return the next free Database id which can be used for a new

entry

get_or_add_string(a_string): returns: an ID. This will add a String to the Database

or return the ID if the String is already in the Store. This is provided by the base class

but can be overridden for performance reasons.

2.6 QueryEngine

The QueryEngine orchestrates the process of resolving the provided SPARQL query

string. It does so in three stages:

• Parsing the SPARQL Query and preparing its Data-structure

• Conversion between RDF Terms and Database keys and vice versa

• Recursive resolving of the Variables

QueryEngine API methods:

• execute(query) Query is a SPARQL query as string. The method returns a gener-

ator which yields hashes with the variables as keys and their solutions as values.

2.6.1 Query Engine Architecture

Currently the Engine only supports select Queries with one BGP (Basic Graph Pat-

tern). Let us look at the steps from Section 2.6 in more detail:

The Query is parsed by instantiating a cysparql.Query(query_as_string) with the query

in SPARQL notation. In the current Tygrstore version, only the top most Basic Graph

Pattern is selected. Each contained RDF Statement in the WHERE clause is wrapped
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within a Triple object. These are kept in a separate list. Each of these statements is also

enriched with the corresponding database keys and a selectivity estimate. It does so

by first using the Stringstore instances get_ids_from_tuple method. After that a valid

tuple can be sent to IndexManager ’s selectivity_for_tuple method.

Then an (empty) ResultSet is instantiated with the list of all statements and a list of all

variables within these. Now the first recursive step of variable resolving is entered by

a call to evaluate(empty_result_set, firstvar) . The first variable given by ResultSets

get_most_selective_var() method. The evaluate method then merge-joins all State-

ments in which the Variable being resolved is contained. For each of the Keys yielded

by the join operation, the current variable is set as resolved. There after, a new recur-

sion step is taken, to solve the next most selective variable. If the recursion returns, the

variable is reset as unresolved again. The depth of the recursion is limited by the num-

ber of variables present in the BGP. If all variables are solved the property solutions

of the ResultSet is yielded and the recursion depth decreases.

Using python generators, the merge join can actually merge multiple generators in a

chain. multi_merge_join takes a list of generators (such as those provided by Index-

Manager’s ids_for_ttriple method) and merges them with the merge_join_with_jump

(left_generator, right_generator) method. As the name suggests, this merge-join

implementation provides the possibility to jump within the index by using the send()

method of generators. The bigger the difference of the merging sets’ size is, the higher

the chance that this jump operation has a huge impact on the performance. Of course

the jumping needs to be possible in the backend, if not, it can be emulated as shown

in section 3.2.2.

The actual merge join operation uses three methods to build up the generator chain:

The first step is the multi_merge_join method. It just collects the different generators

and passes them on.

def mergejoin_ids(self,triples_with_var, var):

id_generators = []

if len(triples_with_var) == 1:

return self.index_manager.ids_for_ttriple(triples_with_var [0], var)

for triple in triples_with_var:

id_generators.insert(0,self.index_manager.ids_for_t triple(triple, var)

)

#self.logger.debug( "joining %s generators" % len(id_gen erators))

return self.multi_merge_join(id_generators)

For each triple pattern we add a generator (that generates matching results) a list. This

list is sent to multi_merge_join which returns the generator for that keyspace:

def multi_merge_join(self, generators):

#generators = list(generators)

result = generators.pop()
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Figure 2.2: Tygrstore Query Processing.
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if self.jump_btree:

while len(generators) > 0:

result = self.merge_join_with_jump(result, generators. pop())

else:

while len(generators) > 0:

result = self.merge_join(result, generators.pop())

return result

multi_merge_join chains the different generators in that it always calls merge_join_with_jump

for two generators. One of them being the generator returned from merge_join_with_jump

. This is where the actual merging happens. It uses the standard identity comparator.

The only special thing here is, that it sends the next possible lowest database id to the

generator. Of course this approach needs the input to be sorted. The whole process is

drawn by example in Figure 2.2

def merge_join_with_jump(self, left_generator, right_gene rator):

left = left_generator.next()

right = right_generator.next()

while left_generator and right_generator:

comparison = cmp(right, left)

if comparison == 0:

yield left

left = left_generator.next()

right = right_generator.next()

elif comparison > 0:

left = left_generator.send(right)

else:

right = right_generator.send(left)

2.7 Installation and Configuration

2.7.1 Dependencies

The following Libraries and Applications should be present

• Raptor ≥ 2.0

• Rasqal ≥ 0.9.24

• git (for cython, not needed for pure python mode)

• python = 2.6

• kyoto cabinet, tokyo cabinet or mongodb

The following Python packages should be present

• cysparql (provided)
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• cython (a version which supports generators, see below)

• kyotocabinet4

• tc5

• pymongo6

Currently the released cython version 0.14 does not support generators. But a branch

exists on github7. It can be installed by the following commands:

git clone https://github.com/vitek/cython.git

cd cython

sudo python setup.py install

after that, the libraries from the lib dir should be installed:

cd Tygrstore/libs/cysparql

sudo python setup.py install

If all prerequisites are met, Tygrstore can be used either in pure python mode or as

compiled cython module. To switch between the modes the bash scripts tocython.sh

and topython.sh can be used. It just renames the Tygrstore files from .pyx to .py and

vice versa. To compile the pyx files the standard script setup.py can be used or the

build.sh file. Assuming a database and the configuration files are present, Tygrstore

can be used within python in the following way:

import ConfigParser

from kyoto_cabinet_stringstore import *
import index_manager as im

import query_engine

LOG_FILENAME = ’logs/test.log’

logging.basicConfig(filename=LOG_FILENAME,level=log ging.DEBUG)

config = ConfigParser.RawConfigParser()

config.read("cfgs/benchmark1-kc-kc.cfg")

logging.debug("starting stringstore")

stringstore = KyotoCabinetStringstore(config)

logging.debug("starting index_manager")

iman = im.IndexManager(config)

logging.debug("starting QueryEngine")

qe = query_engine.QueryEngine(stringstore, iman, config )

for result in qe.execute(query):

print str(result)

4http://fallabs.com/kyotocabinet/pythonlegacypkg/
5http://pypi.python.org/pypi/tc
6http://api.mongodb.org/python/1.9/index.html
7https://github.com/vitek/cython

http://fallabs.com/kyotocabinet/pythonlegacypkg/
http://pypi.python.org/pypi/tc
http://api.mongodb.org/python/1.9/index.html
https://github.com/vitek/cython
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2.8 Importer

To import RDF Statements into Tygrstore in a efficient way, it is best to save them into

the used backend store directly and without any overhead. A set of scripts reside in the

importer directory of the Project to accomplish this. They follow the Unix philosophy:

each script does only one specific task, but they can be connected with pipes. To parse

ntriples files a regular expression that just separates the properties of each Statement

is feasible. To parse RdfXML and other formats, the Python module RDF is used. This

module includes bindings to raptor. Since importing into a B+Tree can be achieved in

constant time if the input is sorted, this should be preferred. The general approach is

a three step operation:

1. parse the ntriples file with nt2hxid.py. This generates the output for one hxid

index file.

2. sort the hxid files with gnusort

3. import the hxid file to the database with hxid2kc or hxid2mongo.

nt2hxid.py reads a ntriples file from stdin and outputs one hxid file. The hxid file

contains the concatenated hexvalues of the hashed RDF Terms in a Statement. The

script needs to know which hashing function should be used (md5/sha1), which order

the output should have (spo,sop,osp...) and the name of the output file. You can also

supply the number of total triples you want to insert,this will yield in status updates

while the process goes on. While this data-format uses double the space of its binary

representation, it can leverage the sorting speed of gnusort. Note: the regexp in the

ntriples parser is incomplete, it does not recognize blank nodes correctly.

hxid2kc.py reads a sorted hxid file from stdin and writes into Kyoto Cabinet B+Trees.

It generates all levels of the index and updates the selectivity estimates as it goes along.

The needed parameters are: the bnum for the btree, the name of the index (e.g SPO

will result in the files SPO0.kct, SPO1.kct, SPO2.kct) and the total number of keys

(line-count of the input file) for status updates.

hxid2mongo.py does the same as hxid2kc but for mongodb. It needs the hostname,

database and collection as parameters instead of the bnum and name.

nt2sskc.py imports ntriples file into the stringstore hash-table. Parameters are: the

bnum, the name of the output file and the total keys to expect. This script implements

a caching strategy. The maximal cache-size parameter denotes how many keys should

be read until the keys are written to the btree and the cache is cleared.
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There is another prototype of an importer script for Kyoto Cabinet. The script nt2kc.py

writes the input stream to a number of small trees. These can then be joined into a

final big file by the merge operation of the Kyoto Cabinet API. Overall this is slightly

faster than the above approach but it does not produce reusable hxid files. I also tried

to implement a fan-out approach with the python multiprocessing tools. The use of

queues (i.e. the serialization) slowed down the process more than what was gained

from multi-core computing power. Instead the above scripts could be slightly adapted

to read/write to stdout and the processes can work via standard unix pipes and tee to

named pipes. This will also work to read RDFXml with librdf’s rapper.





3

Example Implementations

3.1 Kyoto Cabinet Backend

Kyoto Cabinet is the successor to Tokyo Cabinet. Both of these DBM Libraries of-

fer different Types of data-structures. Most notably both support Hash-tables and

B+Trees. For the main Tygrstore implementation Kyoto Cabinet was chosen, since it

offers a cleaner API and is actively developed. It also features more data-structures

such as in-memory versions of the Disk based B+Tree/Hash-table. The configuration

and the library allows easy switching between the different data-structures, mainly by

supplying an alternative filename extension.
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3.1.1 Data-model

To save the RDF Statements on disk we use the File Tree Database, Kyoto Cabinet’s on-

disk B+Tree implementation. Each index gets as many trees as there are components

in the Statement. Thus normal triples are stored in 3 trees, to which we will refer

as levels. Figure 3.1 shows which information the different levels maintain in a ’spo’

type index. The database Ids are saved as fixed length binary strings within the b+tree.

Each level consists of one more concatenated key as its parent level. This leverages the

possibility that we can jump to prefixes of keys. The lower levels also act as storage

for the selectivity estimation. If we increment the occurrence of each key combination

while filling the tree, we have the exact numbers for the query optimizer. The deepest

level does not save any information in its value fields. That value can be used to store

information associated with a triple - to preserve disk space, only one index can be

chosen i.e.: ’spoc’.”

spo.0.kct

spo.1.kct

spo.2.kct

<SUBJECT_KEY> 

<SUBJECT_KEY><PREDICATE_KEY> 

<SUBJECT_KEY><PREDICATE_KEY><OBJECT_KEY>

<int Number of 

Triples>

<int Number of 

Triples>

KEY VALUE
B+Tree

Level/Files

empty

Figure 3.1: Index structure on different B+Trees..

3.1.2 KVIndexKC Implementation

The Kyoto Cabinet Index Backend resides in the KVIndexKC class. There is also a

similar implementation for Tokyo Cabinet ( KVIndexTC) which mainly differs in the

names of the library calls. All parameters can be set within the [KC] (respectively

[TC] for Tokyo Cabinet) section of tygrstore.cfg. The option indexconfig is the Kyoto

Cabinet config string which is appended after the filename1. The bnum refers to the

number of buckets and should roughly be 2-4x the actual number of statements who

will be inserted into the tree.

1http://fallabs.com/kyotocabinet/pythonlegacydoc/kyo tocabinet.DB-class.html#open

 http://fallabs.com/kyotocabinet/pythonlegacydoc/kyotocabinet.DB-class.html#open
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The actual generator for the keys requested by a triple pattern via ids_for_triple is

the method generator_for_searchstring_with_jump . The parameter search-string is

the actual prefix in the B+Tree and loffset and roffset define where the searched

database ID lies within the tree (in bytes). It is actually just from the end of the search-

string up to one key-length (length of a hash) to the right.

def generator_for_searchstring_with_jump(self,searchstr ing,loffset=0,roffset

=16):

#select the deepest level

cur = self.levels[-1].cursor()

#jump to the lowest possible key

cur.jump(searchstring)

while 1:

try:

next = cur.next()

#check if we are still within the correct keyspace

if next[0:loffset] == (searchstring):

#yield the key and receive the next possible lowest key (

jumpto)

jumpto = yield(next[loffset:roffset])

if jumpto:

#advance the cursor

cur.jump("".join((searchstring, jumpto)))

else:

#keyspace is exhausted

raise StopIteration

except KeyError:

self.logger.error("key error for: %s" % str(searchstring ))

cur = self.levels[-1].cursor()

cur.jump(next)

The selectivity estimation is just a lookup in one of the levels (besides the topmost):

’’’get the selectivity count’’’

def selectivity_for_triple(self, triple):

if triple == (None,) * len(triple):

return len(self)

else:

key_prefix = "".join( filter( lambda x: x != None, triple) )

long_big_endian = self.levels[len(triple_without_none )-1][key_prefix]

return struct.unpack_from(">q", long_big_endian)[0]

Note the clumsy retrieval of the integer. This is actually a limitation of the Kyoto Cab-

inet library (Same goes for Tokyo Cabinet, there the function is called addint). The

api foresees the increment method to retrieve ints. This has the severe sideffect that it

needs the database to be opened with the DBOWRITER flag. Whenever the applica-

tion crashes and the file is opened in DBOWRITER mode the b+tree is being repaired

automatically by the Kyotocabinet Library. Unfortunately this copies the whole file,



24 Chapter 3. Example Implementations

while blocking all access to the b+tree. The above procedure converts the binary string

(which contains the 8byte signed integer in big endian) to a python long.
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3.2 MongoDB Backend

3.2.1 About MongoDB

MongoDB 2 is a relatively new, schema-free document oriented database which gained

a strong community in the recent months. It is Open Source3 but backed up by a

VC financed Startup named 10gen. It is designed as a scalable distributed database

with extensive query capabilities. By reducing transactional semantics it gains per-

formance and horizontal scalability in comparison to tradition RDBMS. Queries are

being written in Javascript and evaluated in the database with the built in Spider-

monkey Javascript engine. Besides document matching and altering, MongoDB also

supports aggregation functions such as MapReduce or grouping.

MongoDB works over the network and provides libraries for the most common pro-

gramming languages.

MongoDB is already widely used in large scale production systems4. Among many

others the New York Times 5, CERN [Kuznetsov et al., 2010], and Springer6 use it. The

most impressive documented setup is currently at wordnik. They host over 12 Billion

records (3TB data) within their mongodb cluster 7 8.

Two important features make it specially suitable as a Tygrstore backend: Cursors for

query results and compound secondary indexes. The Cursor allows us to seamlessly

stream the result set and also propagates operations such as distinctness and sorting

directly back to the store. The indices internally are implemented as B-Trees 9. Thus

MongoDB gives us a scalable btree and even does the maintenance of the indices for

us.

A mongod server can host multiple databases. Each databases can contain any num-

ber of so called Collections (Think tables in RDBMS world), within these you can store

Documents. These Documents are stored in BSON10 format and usually processed

as JSON within the client library. It supports the most common datatypes but allows

also custom datatypes, which are stored as binary strings. For our purpose the types

ObjectID and Binary are relevant. The former is a 12 byte GUID (4 byte timestamp,

3 byte machine id, 2byte process id and 3 byte counter) and the later can save binary

2https://mongodb.org
3GNU AFFERO GENERAL PUBLIC LICENSE Version 3.0
4http://www.mongodb.org/display/DOCS/Production+Depl oyments
5http://hackshackers.com/2010/07/28/a-behind-the-sce nes-look-at-the-new-york-times-moment-in-time-proje ct/
6http://realtime.springer.com/
7http://blog.wordnik.com/b-is-for-billion
8http://blog.wordnik.com/12-months-with-mongodb
9http://www.mongodb.org/display/DOCS/Indexes

10http://www.bsonspec.org/

https://mongodb.org
http://www.mongodb.org/display/DOCS/Production+Deployments
http://hackshackers.com/2010/07/28/a-behind-the-scenes-look-at-the-new-york-times-moment-in-time-project/
http://realtime.springer.com/
http://blog.wordnik.com/b-is-for-billion
http://blog.wordnik.com/12-months-with-mongodb
http://www.mongodb.org/display/DOCS/Indexes
http://www.bsonspec.org/
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data of arbitrary length. For Binary there are also subtypes, we use the MD5_SUBTYPE

for md5 keys, this uses exactely 16 bytes within the db.

The Mongo wire protocol11 directly contains the data in the same format as it is writ-

ten on disk. It is especially designed to minimze overhead. The on-disk Fileformat

consists of a .ns namespace file and a sequence of files prefixed with the database

name. Their size is doubled on each new file created (starting with 256MiB). Each new

document is stored after the next, but a padding factor leaves empty space, so that

documents can have growth without the need to move its physical location.

Limitations

Currently it is not possible to jump with a cursor. This means, that we either have

to throw away intermediate results or create a new cursor to model jumping. The

later can be done by adding a conditional operator for the space we are searching.

Effectively setting a minimal value for the searched keyspace. While this works in

practice, it brings a certain amount of overhead, which slows down the merge join

operation considerably.

3.2.2 KVIndexMongo Backend

The MongoDB Index Backend is implemented in the Class KVIndexMongo. The main

difference to the Tokyo/Kyoto store is, that indices are handled by the database and

the selectivity estimation is also retrieved from there. While this simplifies mainte-

nance, it needed some tweaking of the initial architecture. But it also proved the archi-

tecture decisions to be right, as the api changes where minimal.They would have been

even fully avoidable, although with some performance hits. The details are discussed

within the following description of the triple store datamodel used by KVIndexMongo

implementation

Datamodel

Each triple is stored as one Document, with a node id ( _id ) and one key for all natu-

rals (e.g. s,p,o or spoc). As values for the Keys we define a class name in tygrstore.cfg.

Currently supported classes are bson.ObjectID, bson.binary.Binary and long. Note

however that the ObjectID datatype only makes sense if you use the provided Mon-

goDB Stringstore [ see 3.2.3]. You can also define custom classes which serialize to

binary. To plug into our MongoDB adapter, a custom Type would need an instance

11http://www.mongodb.org/display/DOCS/Mongo+Wire+Prot ocol

http://www.mongodb.org/display/DOCS/Mongo+Wire+Protocol
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property called binary which provides the key as string. Also the standard compar-

ison method __cmp__(self, other) . Using Binary as key type, an example document

would look like the following in JSON notation:

{

’_id’: ObjectId(’133700000000000000038317’),

’s’: Binary(’13371b5a421405f522000815’,2),

’p’: Binary(’13371b5a421405f522000815’,2),

’o’: Binary(’13371b5a421405f522000815’,2)

}

Each mongodb document needs an unique id key of any datatype. It needs to be

unique within the collection and it is also used for sharding by default. Another

aproach would have been to store the whole triple as a custom datatype and use mon-

godb as sharded btree only. This would have resulted in the same aproach used by

the Kyoto/Tokyo implementation. This has not been followed because i wanted to

push the maintenance of the compound indexes and the selectivity estimation down

to the database. As we now have no need to define the indices ourselves, there would

be no need that the IndexManager holds all 6 (for a fully indexed triple store) KVIndex

instances. Reordering the triples before entering an KVIndex instance is made unnec-

essary by the searched_natural parameter.

Indexing

To archieve fast lookups we want 6 way indexing as used with the Kyoto Cabinet

backend. This needs to be done manually by indexing the collection by compound

keys. If our triples are stored in a collection named ‘spo’ in the ‘tygrstore’ database the

following commands start the creation of the indexes in a mongo shell:

use tygrstore

db.spo.ensureIndex({s:1, p:1, o:1});

db.spo.ensureIndex({s:1, o:1, p:1});

db.spo.ensureIndex({o:1, p:1, s:1});

db.spo.ensureIndex({o:1, s:1, p:1});

db.spo.ensureIndex({p:1, o:1, o:1});

db.spo.ensureIndex({p:1, s:1, s:1});

Note that these operations are blocking, unless the optional parameter {background:

true} is suplied. The creation of an index for 130mio triples takes about 20 minutes.

API Changes

Maintaining the Indexes directly within the database required some adaption of the

way the Kyoto/Toyko adapters worked. Thus the following KVIndex api changes

where introduced:
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• The property update_only_one (configured via tygrstore.cfg) can be set to true. If

this is the case, a call to add_to_all_indexes(triple) will insert the triple only

into the first index. Note also, that the IndexManager still maintains 6 different

KVIndexMongoDB instances within unique_indexes . This can be exploited to provide

paralellism to different mongo routing servers. A configuration option to define

hosts/ports per server would need to be introduced for that.

• The superclass KVIndex is initialized with a new optional parameter reorder=

False which disables the reordering decorator.

• The function ids_for_triple got an optional parameter named searched_natural

. This is a single character (e.g. ’s’ or ’p’ or ’o’) which describes the key being

searching for. This was done because that information was easily accessible in the

IndexManager class but would have been cumbersome to reconstruct on the KVIn-

dex level. It would have been possible trough the use of the internal_ordering

property and enabled reordering.

Implementation

The actual implementation of KVIndexMongo then was very straight forward. Still the

internals shall briefly be discussed to hint to the (current) limitations:

To save or search a MongoDB document the find function needs to be provided with

a json object including the relevant properties. The IndexManager (with disabled re-

ordering) delivers us a tuple of the form ( ’keyS’, ’keyP’, ’keyO’) each of these keys

can be None. To generate the needed JSON structure the function to_mongo_hash is

provided:

def to_mongo_hash(self, triple):

mongo_hash = {}

for i in range(len(self.input_ordering)):

if triple[i]:

mongo_hash[self.input_ordering[i]] = self.id_class(tr iple[i])

return mongo_hash

self.id_class here contains a reference to the Class of which type the keys are (e.g.

Binary, ObjectId). Thus each key of the input tuple is wraped in an object needed for

MongoDB.

The second noteworthy function is generator_for_searchstring_with_jump . It is the

generator which is returned by ids_for_triple .

def generator_for_searchstring_with_jump(self, mongo_has h,searched_natural,

num_records=-1):

cursor = self.collection.find(mongo_hash, {searched_na tural:1})

#we can inform mongodb with a hint about the compund index it s hould

choose
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#cursor.hint( [ (self.internal_ordering[0],1), (self.i nternal_ordering

[1],1), (self.internal_ordering[2],1)] )

cursor.sort(searched_natural)

nextid = None

result = None

while 1:

mongo_doc = cursor.next()

result = mongo_doc[searched_natural]

#primitive jump emulation!

if nextid and nextid > result.binary:

mongo_hash.update({searched_natural:{"$gte":Binary( nextid, bson.

binary.MD5_SUBTYPE)}})

#jump emulation by creating a new cursor. slow!

cursor = self.collection.find(mongo_hash, {searched_na tural:1})

#cursor.hint( [ (self.internal_ordering[0],1), (self.

internal_ordering[1],1), (self.internal_ordering[2], 1)] )

cursor.sort(searched_natural)

if type(result) == long: nextid = yield(result)

nextid = yield( result.binary )

The sort operation on the cursor allows mongodb to use the correct index, it is only

costly if such an index is not present. Since the cursor does not suport forward jump-

ing this is emulated. This is a severe preformance limitation. The solution is to start a

new query with the $gt (greater than) parameter set for the key12.

3.2.3 MongoDB Stringstore

The class MongoDBStringstore implements a Stringstore model to save the id to string

conversion and vice versa. Each RDF Term is saved as a Document like the following:

{

’_id’: ObjectId(’13371b5a421405f522038317’),

’n3’: ’<http://www.w3.org/1999/02/22-rdf-syntax-ns#t ype>’

}

or with custom ids

{

’_id’: Binary(’13371b5a421405f522000815’,2),

’n3’: ’<http://www.w3.org/1999/02/22-rdf-syntax-ns#t ype>’

}

12a ticket in the mongdb bugtracker has been opened
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MongoDB Scaling

MongoDB can be set up as a cluster. Each such cluster consists of 3 types of nodes:

shard servers (mongod) , config servers (mongod) and routing processes (mongos).

Figure 3.2 visualizes such a setup. A shard can in fact consist of multiple replicated

servers to quarantee availability. Each shard saves chunks of a sharded collection. A

chunk is defined as all elements within a range of the sharding key. This informa-

tion and other central metadata is kept in the config servers. Routing servers act as a

gateway to split requests to the shards and merge their results. From the client there

is no distinction wheter he is talking to a mongod server or to a routing server. All

this is absolutely hidden from the client, he sees no difference what so ever between a

sharded setup and just one single mongod instance.

mongos

shard 1
mongod --shardsvr

mongod --configsvr

mongod --configsvr
mongos

client

shard 2
mongod --shardsvr

shard n
mongod --shardsvr

...

...

...

Figure 3.2: MongoDB sharding concept.
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Evaluation

In this chapter we will explore performance characteristics of Tygrstore. First Tygr-

store is benchmarked against ttlite (a TokyoTygr version with cython bindings) which

is nearly entirely written in c. in section 4.1 Tygrstore with both backends is profiled

to get more insight into where time is lost.

4.0.4 Dataset

As primary benchmark the Lehigh University Benchmark (LUBM) [Guo et al., 2005]

has been chosen. Two Datasets have been prepared and converted into the ntriples1

format. Generating data for 1000 University resulted in 138’318’414 Statements and

100 Universities generated 1’273’248 Statements. The current performance limitations

of the importer scripts would have made larger datasets a time consuming task to

import.

4.0.5 Hardware

The hardware platform was a standard PC with an Intel Core2Quad Q8400@2.66GHz

cpu and 8GB of main memory. The operating System was Archlinux 2 running a stan-

dard 2.6.37-ARCH Kernel. If not noted otherwise the data was stored on a RAID 0

disk array of two Corsair CSSD-F120GB2 120GB SSD Drives.

4.0.6 Software

Kyoto Cabinet 1.2.34 Mongodb: v1.9.0-pre from git a6105a2855132288324 Python Mod-

ules: kyotocabinet-python-legacy-1.13, tc 0.7.2, pymongo 1.9+

1http://www.w3.org/2001/sw/RDFCore/ntriples/
2http://www.archlinux.org/

http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.archlinux.org/
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4.0.7 Benchmarking

The first Benchmark Setup does a list of LUBM Queries each of them six times, for a

maximum of 1, 10, 100 and 1000, 10’000 and 50’000 results. The detailed Results can be

found on page 48. Tygrstore is compared against ttlite (cython bindings to TokyoTygr).

This peer was chosen because Tygrstores Query Engine was constructed in a similar

manner to TokyoTygr. So we can obtain relation to what the added flexibility (more

dynamic code) and modularization (pluggable backend) cost us.

Each query has been made twice and in advance to the first query the disk cache was

cleared with echo 3 > /proc/sys/vm/drop_caches .

Figure 4.1: Warm and Cold runs in milliseconds

We see that ttlite is still much faster with small queries. As the result set gets bigger,

Tygrstore runs up and is even faster sometimes in Query 3 and 4. This is probably due

to the fact, that the current parsed query has not an optimal structure but the python

generators and the comparison of ids is quite efficient. As that data-structure is only

heavily used in the beginning it has less effect the longer the query takes.

Some optimizations have already been added by reformulating certain code but the

biggest impact was caused by caching the index_for_ttriple method from the Index-

Manager class. For that the @memoizeddecorator has been added to the method. This

resulted in performance gains up to 75%. The minimum gain measured was 16%, the

details can be read from Table 4.1. Still some optimizations are not done yet or should
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only be done for specific reasons when prototyping. Chapter 6 explains some of them.

Tygrstore vs. ttlite

Query Number of

Results

Tygrstore Tygrstore with

@memoized

gain ttlite

lq1 10 1.28 0.91 41% 0.40

lq1 100 6.47 3.9 66% 1.25

lq1 1000 59.11 33.78 75% 11.30

lq2 10 4.90 3.19 54% 1.77002

lq2 100 42.41 25.14 69% 14.89

lq2 1000 399.73 245.30 63% 158.55

lq3 10 3.76 2.72 38% 2.70

lq3 100 30.62 18.41 66% 13.32

lq3 1000 282.32 175.54 61% 88.12

lq4 10 199.79 172.41 16% 4.71

lq4 100 238.45 198.02 20% 25.75

lq4 1000 620.10 466.78 33% 146.68

Table 4.1: Queries LQ1 - LQ4 on the LUBM Dataset with 100 Universities. Query Time in milliseconds

Figure 4.2 shows the results from Query 4 on the 138 Million triple dataset. We see

that the result rate per time is constantly around 2000 to 2500 results per second. Only

for less than 1000 results this is not the case, probably due to the setup costs.

Figure 4.2: Query Time and requests/s on the 138 Mio. Dataset (Warm/Cold)
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4.1 Profiling

The mixed numbers from the benchmarks suggest that there would be some work

needed to get on par with ttlite. With the following profiling it should be explored

which the driving factors behind the lack of performance are. Let us start the Story a

bit earlier tough:

The first attempt to Profile Tygrstore brought really strange Results. Running Query

LQ5 on the 100 Universities Benchmark trough cprofile resulted in the profile shown

in Table 4.4.

12285534 function calls (9551702 primitive calls) in 17.104 CPU seconds

ncalls tottime % cumtime p/c filename :lineno(function)

3248172 9.314 54.57% 11.188 0.000 indexkc.py:109(generator for searchstring with jump)

1528290/28122 3.383 19.77% 15.780 0.001 query engine.py:171(merge join with jump)

608494 1.651 9.65% 1.651 0.000 method ‘jump’of ‘kyotocabinet.Cursor’objects

3191901 0.755 4.41% 0.755 0.000 cmp

1677670/458118 0.474 2.77% 14.958 0.000 method ‘send’of ‘generator’objects

28137 0.184 1.07% 0.365 0.000 index manager.py:80(index for ttriple)

608500 0.150 0.87% 0.150 0.000 method ‘join’of ‘str’objects

14120/8 0.136 0.79% 17.101 2.138 query engine.py:74(evaluate)

28143 0.097 0.56% 0.243 0.000 index.py:38(reorder)

Table 4.2: Profile of Query LQ5

selectivity subject predicate object

411501 ?student ub:advisor ?advisor

72302 ?advisor ub:worksFor ?department

32043 ?department ub:subOrganizationOf ?university

2148830 ?student ub:name ?name

1120834 ?student ub:telephone ?tel

7 ?student ub:takesCourse GraduateCourse33

Table 4.3: Selectivities of Query LQ5

15 seconds and 608’494 jumps in the btree to generate just 7 results, that was bad.

After some time in the debugger it was clear, that path of the most selective variable

was not followed. Table 4.3 shows the selectivities and the triples. The QueryEngine

chose to resolve university as the second variable, because it the selectivity estimation

was not updated. After changing that, the order in which the variables where resolved

was correct. But query time only went down to about 14 Seconds. The first result set

was delivered after some milliseconds and then there were 10 seconds without results.
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The reason was subtle: the order of the merge join generator chain does matter! After

the first result set was generated a new generator was appended to the chain, but there

where still unexhausted generators before that. So then the chaining was changed so

that new generators where inserted into the front of the list.

Table 4.4 shows the same cprofile benchmark with the now corrected QueryEngine.

This looks like a reasonable result.

6789 function calls (6703 primitive calls) in 76 CPU milliseconds

ncalls tottime % cumtime filename :lineno(function)

95 036 036 method ’increment’of ’kyotocabinet.DB’objects

88 028 028 method ’jump’of ’kyotocabinet.Cursor’objects

8 001 076 query_engine.py:26(execute)

179 001 029 indexkc.py:110(generator_for_searchstring_with_jump )

78/8 001 072 query_engine.py:75(evaluate)

95 001 001 index_manager.py:67(index_for_tuple)

148 001 037 index.py:38(reorder)

Table 4.4: Profile of Query LQ5

So let us analyze a slower Query, to get a more detailed view on the scene. For that

Query LQ4 was chosen, since it is the slowest. The detailed Profile is shown in table

4.5. It took 1044 milliseconds in pure python cprofile mode. Compiled with cython

the same code took 540ms. This is nearly 50% slower than same code dynamically

interpreted.

Figure 4.3: Distribution of calls milliseconds

About 1/3 (340 ms) of overall time is lost in the Kyoto Cabinet driver. The same per-

centage applied to the compiled version, is less than it took ttlite for the very same
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564954 function calls (560292 primitive calls) in 1044 milliseconds

ncalls tottime cumtime filename:lineno(function)

52843 245 499 indexkc.py:110(generator for searchstring with jump)

46521 206 206 method ’jump’ of ’kyotocabinet.Cursor’ objects

3576 103 103 method ’increment’ of ’kyotocabinet.DB’ objects

5663/1001 053 1.005 query engine.py:79(evaluate)

3691 048 572 query engine.py:187(merge join with jump)

96402 036 036 cmp

6901 026 180 index.py:38(reorder)

9048 023 208 helpers.py:15( call )

43196 019 447 method ’send’ of ’generator’ objects

4000 018 018 method ’get’ of ’kyotocabinet.DB’ objects

3576 017 032 index manager.py:67(index for tuple)

50097 016 016 method ’join’ of ’str’ objects

3576 014 129 indexkc.py:92(selectivity for triple)

10632 014 021 helpers.py:129(unresolve)

3325 013 056 index manager.py:101(ids for ttriple)

3325 012 012 method ’cursor’ of ’kyotocabinet.DB’ objects

6901 012 018 filter

4691 010 016 helpers.py:123(resolve)

Table 4.5: Profile of Query LQ4, 1000 Results, Pure Python

Figure 4.4: Time spent in and below a method in seconds

query. This suggests, that the current cpython kyoto cabinet driver is a limiting factor.

Here we also see, that the cost of the reordering decorator is less than 3%. With op-

timized bindings also the generator_for_searchstring_with_jump function would be

optimized. All non Kyoto Cabinet adapter method calls add up to 210 milliseconds.

Subtracting about 50% performance hit by profiling and pure python mode we are

around 15% below the time of ttlite. Albeit proof of this has to be made, it shows

roughly the dimensions of the loss by the kyotocabinet python module.
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MongoDB Backend Profile

The MongoDB backend adapter was even much slower than the Kyoto Cabinet one.

The profile in table 4.6 shows a pretty clear picture. Note that a dashed lines represents

omitted lines. Significant time is spent on Serialization of the Json hashes. This is

absolutely unnecessary in theory as an optimal backend for Tygrstore could work with

binary data. Figure 4.5 shows a rough overview over Table 4.6. To achieve decent

query times a new mongodb adapter would be needed. I did not run much more

Benchmarks with the MongoDB adapter since the results where too skewed by the

serialization. Besides the aggregates are not being cached, thus looking up selectivities

took also very long. A setup with 4 shards, one config server and one routing server

has been set up and queries did run as expected.

28058548 function calls (28053889 primitive calls) in 46.382 seconds

ncalls tottime cumtime per call filename:lineno(function)

60068 13.282 13.282 0.000 method ’recv’ of ’ socket.socket’ objects

30029 8.035 22.879 0.001 bson. cbson.decode all

2541899 4.140 6.614 0.000 binary.py:83( new )

2503005 3.502 6.342 0.000 objectid.py:140( validate)

10570444 3.345 3.345 0.000 isinstance

2503005 2.018 8.360 0.000 objectid.py:54( init )

2541899 1.656 1.656 0.000 built-in method new of type object at 0x7fb55131d9a0

75755 1.382 41.850 0.001 indexmongo.py:118(generator for searchstring with jump)

30029 0.326 37.978 0.001 cursor.py:511( send message)

77667 0.318 41.008 0.001 cursor.py:597(next)

31653 0.198 40.397 0.001 cursor.py:549( refresh)

30029 0.171 13.681 0.000 connection.py:662( receive message on socket)

5660/1001 0.170 44.108 0.044 query engine.py:79(evaluate)

60058 0.158 13.470 0.000 connection.py:648( receive data on socket)

30029 0.117 14.168 0.000 connection.py:676( send and receive)

3688 0.107 41.578 0.011 query engine.py:187(merge join with jump)

30029 0.084 14.424 0.000 connection.py:685( send message with response)

66120 0.042 37.840 0.001 method ’send’ of ’generator’ objects

1001 0.004 46.380 0.046 query engine.py:28(execute)

1 0.002 46.382 46.382 benchmark2mongo.py:40(testrun)

Table 4.6: Profile of Query LQ4, 1000 Results, MongoDB Backend, Pure Python
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Figure 4.5: MongoDB Adapter Times spent in second



5
Limitations

5.1 Architectural Limitations

The Limits of the proposed architecture lays within the layering of the different mod-

ules. While this gives us the needed flexibility to have pluggable backend stores it

abstracts the later. It further forces some decision to be made by the IndexManager

which could be pushed down to the store. We saw that with the MongoDB imple-

mentation. There we actually have to fake the existence of multiple indexes. While

in this case it has no side effect, it is strictly spoken not necessary. Choosing genera-

tors to stream the results limits the performance as it will not be possible to rewrite

or optimize this streaming. But python/cython generators have very effective imple-

mentations so this should be the last concern, given the beauty and ease of use they

give to the architecture.

5.2 Functional Limitations

Most of the missing features will be discussed in section 6.1 where also possible so-

lutions will be presented. In general, the QueryEngine has the most severe limitations

over the other components. Currently only one Basic Graph Patterns can be resolved.

Albeit the Query is correctly parsed by cysparql, it is not yet transformed in a clear,

concise data-structure. Since this data-structure (and a more universal algebra to solve

it), will cost performance, it should be pluggable and the very basic approach in exis-

tence should still be possible. Any more advanced SPARQL operations such as filter-

ing or aggregates will have some impact on the architecture and the internal API’s.

Another function that is missing is the awareness of Datatypes/RDF Types. Tygrstore

currently stores the Statements as strings in their n3 notation only.
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Loading databases is currently slow and the regex based parser can not detect RDF

Types.

5.3 Limits caused by Evolution

The biggest limit in the current implementation is probably the fact, that the author

was new to Python. As Python coders have their very specific way of implementing

patterns, some of them may have been violated. The domain of Triple stores was also

new and the exact interaction of the different modules was unclear at the beginning.

Despite several near complete rewrites some artifacts of previous iterations persist in

the codebase
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Future Work

As we have seen in the previous chapters there is still a lot room for improvements.

The current Tygrstore implementation can be seen as a MVP (Minimal viable Prod-

uct). Or in other words a proof that the architecture can work without unsolvable

limitations.

In this Chapter some ideas of future enhancements within and around Tygrstore

are shown. The next section shows where Tygrstore internally could be optimized.

This can be regarded as an unordered Roadmap for further Development. Section 6.2

expands the view and shows some broader solutions and ideas in which Tygrstore

could be a part of.

6.1 Internal Enhancements

There are mainly three areas where Tygrstore could be improved internally: perfor-

mance optimizations, feature implementations and backend adapters.

Performance Optimizations

A lot of performance is lost in the current backend implementations. The cpython Ky-

oto Cabinet driver has some overhead. Thus rewriting it and using cython bindings

would probably speed up the jump operations considerably. This would also lead the

way to a custom key type with custom comparison function. Database IDs consisting

of bigger hash functions could be factorized. If a hash function with uniform distribu-

tion is used, the key could be decomposed into integers which fit into registers. Then

also a hash-table implementation with pluggable hashing function should be used for

the Stringstore, so hashes will not get computed twice.
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On the other side the SPARQL Processing and the Variable updating mechanism is

not optimal. It could go further away from cysparql by enhancing the python classes

for query processing. This is slower, but would allow faster prototyping of Query

Optimization strategies. On the other hand the query processing could be pushed

down to cysparql and a more defined interface will emerge, where other SPARQL

parsing libraries could be plugged in.

Then there are different layers where concurrency could be added. Different graph

patterns and especially Unions could be resolved in parallel. The Hash joins or vari-

ants there of could used when different Variable paths are explored in parallel.

Importing, conversion and exporting currently is too slow and involves too many

tasks. This could be optimized by writing a custom cython adaptor to raptor (the

provided python bindings are too slow) to reformat and sort the triples directly there

and achieve maximum throughput.

Missing features

Feature-wise there is is also much work to be done to support more of SPARQL. E.g. an

specialized Full-text engine such as Apache Lucene 1 could be used to support regex

filtering. Maintaining knowledge about the RDF Type would be needed for that.

Regarding the MongoDB Backend, an extensive study on the true scalability of

MongoDB for triple stores should be made. After that the jumping (and even the

merge joining) could be implemented directly within a MongoDB node. Also selec-

tivity estimation should get faster, either by maintaining a sharded Key-value store

or by implementing a heuristic function for QueryEngine. After that a cython driver

for the simple bson based MongoDB protocol should be written to minimize network

overhead. This would also give the possibility to work directly on binary bson data

and all serialization could be kept aside.

As for the Server, various caching techniques could be implemented. Especially keep-

ing unexhausted generators or storing variable offsets for SPARQL queries with an

OFFSET parameter would reduce overhead of such an operation. Adding a web-

socket based client with live streams should be fairly trivial, but would bring the idea

of an ‘infinite stream’ out to the client side.

Last but not least there should be more backend adapters. Especially Riak 2 (it uses

Erlangs GB Tree implementation) could be an interesting candidate.

1http://lucene.apache.org/
2http://wiki.basho.com/An-Introduction-to-Riak.html

http://lucene.apache.org/
http://wiki.basho.com/An-Introduction-to-Riak.html
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Then the inter-mixing of different KVIndex implementations within one IndexMan-

ager could result in new performance characteristics. Alternatively a Hybrid KVIndex

implementation could be done e.g. maintaing Level 0 and 1 within Kyoto Cabinet and

Level 2 within MongoDB.

6.2 Ecosystem

As the real word use cases for RDF will often need to rely on data already stored in

existing databases, there should be a way to minimize the overhead. The obvious way

would be to just export the data into a triple store according to some Ontology. If

the non RDF Storage system is a Document oriented store, the Ontology lies already

partly within the document structure. Hence (generic) algorithms that generate ad-hoc

RDF Statements on top of Documents are conceivable. Possibly with a map/reduce

approach the RDF data would adapt to the flexible structure of Documents.

Next, the map/reduce functionality of MongoDB could be exploited on the data model

described in Section 3.2. Work in this area has been done in [Myung et al., 2010].

As more and more computing power is on the client side it would make sense to dis-

tribute the most costly operations to where data is actually consumed. With todays

fast Ecma Script interpreters and WebCL3 (OpenCL for the Browser) being drafted, it

could be possible to move the query engine to the client side. Tygrstore would then

only serve to maintain and deliver the generators and abstract the backend storage .

Together with a security model that narrows or widens the ‘open world’, this would

give true, standardized data accessibility. Even better that it cuts costs for operators

while acting as a driver for client-side hardware sales. It also would simplify the cre-

ation of mashups enormously. To accomplish this, a SPARQL parser in Javascript,

a port of the QueryEngine and a WebSocket server for the IndexManager would be

needed.

3http://www.khronos.org/news/press/releases/khronos- releases-final-webgl-1.0-specification

http://www.khronos.org/news/press/releases/khronos-releases-final-webgl-1.0-specification
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Conclusions

In this Thesis i have shown that a flexible architecture for RDF Storage is actually

possible and imposes only modest concessions in regards to performance. Further it

was sketched a way on which it is possible to horizontally scale a triplestore given

that architecture. To become a truly usable solution some work is needed. That be

refinements of the API and especially faster backend adapters. There is no clean sparql

parser interface and no universal algebra / plan to solve a query.

I was very astonished about how simple the solution was in the end. Being able

to resolve Basic Graph Patterns in less than a millisecond with my own code was

inconceivable for me until i did it. Python with cython was a very good fit for this

project since it is one of the few dynamic languages able to seamlessly go from highly

expressive, duck typed code to routines written in c. This opens up the possibility

to improve code in regards to performance when necessary. But before that happens,

prototyping can happen very comfortably. On top of that it is fast and painless to

interfere with already written c code.

I Truly hope that the Tygrstore framework can serve as a base for some further

research. Personally i am wondering, how an elegant but still performant algebra for

the QueryEngine looks like.





A
Appendix

A.1 Glossary

• Statement: A RDF Statement as defined by [Brickley, 2004] but including the Con-

text for Named Graph relations.

• Triple: Same as Statement if not highlighted otherwise.

• Tuple: A python tuple

• Natural: A component of a Statement, thus a Subject, Predicate, Object or Con-

text. Or one character out of the natural ordering.
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A.2 Detailed Benchmark Results

Tygrstore: LUBM Benchmark Details

q ms no. results time/result result/second QueryEngine setup time warm/cold

lq1 1.794100 1 1.794100 557.382591 0.512123 c

lq1 0.988007 1 0.988007 1012.138996 0.324965 w

lq1 1.790047 10 0.179005 5586.446457 0.331879 c

lq1 1.276970 10 0.127697 7831.038088 0.332832 w

lq1 11.554956 100 0.115550 8654.294852 0.303030 c

lq1 6.438017 100 0.064380 15532.733400 0.352859 w

lq1 100.844145 1000 0.100844 9916.292134 0.336170 c

lq1 58.902979 1000 0.058903 16977.070069 0.355005 w

lq1 108.805895 1514 0.071867 13914.687270 0.342846 c

lq1 86.724997 1514 0.057282 17457.481233 0.398874 w

lq2 11.681080 1 11.681080 85.608523 1.173019 c

lq2 1.261950 1 1.261950 792.424712 0.489950 w

lq2 31.748056 10 3.174806 314.979912 0.488043 c

lq2 4.919052 10 0.491905 2032.911981 0.515223 w

lq2 313.961983 100 3.139620 318.509901 0.496149 c

lq2 42.371035 100 0.423710 2360.102860 0.550032 w

lq2 2923.185825 1000 2.923186 342.092518 0.507116 c

lq2 402.168989 1000 0.402169 2486.516929 0.521183 w

lq2 3397.074938 2007 1.692613 590.802392 0.504971 c

lq2 803.925037 2007 0.400561 2496.501423 0.524044 w

lq3 11.338949 1 11.338949 88.191594 1.721144 c

lq3 1.219988 1 1.219988 819.680281 0.451088 w

lq3 29.592991 10 2.959299 337.917855 0.482082 c

lq3 3.762007 10 0.376201 2658.155777 0.509977 w

lq3 189.826965 100 1.898270 526.795547 0.521183 c

lq3 30.470848 100 0.304708 3281.825295 0.519037 w

lq3 1144.536018 1000 1.144536 873.716496 0.502110 c

lq3 281.628847 1000 0.281629 3550.772622 0.513077 w

lq3 747.119904 1434 0.521004 1919.370630 0.504017 c

lq3 399.667025 1434 0.278708 3587.986778 0.505924 w

lq4 443.204165 1 443.204165 2.256296 0.691175 c

lq4 197.706938 1 197.706938 5.057991 0.476837 w

lq4 290.827036 10 29.082704 34.384699 0.537157 c

lq4 200.902939 10 20.090294 49.775280 0.522137 w

lq4 704.112053 100 7.041121 142.022849 0.513077 c

lq4 239.194870 100 2.391949 418.069167 0.526905 w

lq4 2263.238907 1000 2.263239 441.844649 0.545025 c

lq4 624.146938 1000 0.624147 1602.186823 0.526905 w

lq4 4455.750942 10000 0.445575 2244.290610 0.514030 c

lq4 4439.900160 10000 0.443990 2252.302899 0.516891 w

lq4 47754.329920 100000 0.477543 2094.050951 0.513077 c

lq4 42808.356047 100000 0.428084 2335.992531 0.524998 w

lq5 10.285854 1 10.285854 97.220898 1.472950 c

lq5 1.781940 1 1.781940 561.185978 0.658989 w

lq5 24.019003 7 3.431286 291.435911 0.658989 c

lq5 6.473064 7 0.924723 1081.404346 0.673056 w

Table A.1: Queries LQ1 - LQ4 on the LUBM Dataset with 100 Universities
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A.2.1 Results

A.3 LUBM Queries

queries = {}

prefix = """

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax- ns#>

PREFIX ub: <http://www.lehigh.edu/˜zhp2/2004/0401/uni v-bench.owl#>

"""

queries["lq1"] = ’’’

SELECT ?department WHERE

{

?researchGroups ub:subOrganizationOf ?department .

?department ub:name ’"Department1"’ . } LIMIT 100’’’

queries["lq2"] = ’’’

SELECT ?mail ?phone ?doctor WHERE

{

?professor ub:name ’"FullProfessor1"’ .

?professor ub:emailAddress ?mail .

?professor ub:telephone ?phone .

?professor ub:doctoralDegreeFrom ?doctor .

}’’’

queries["lq3"] = ’’’

SELECT ?studentName ?courseName WHERE {

?student ub:takesCourse ?course .

?course ub:name ?courseName .

?student ub:name ?studentName .

?student ub:memberOf <http://www.Department1.Universi ty0.edu> . }’’’

queries["lq4"] = ’’’

SELECT ?publication ?author ?department ?university

WHERE {

?publication ub:name ’"Publication0"’ .

?publication ub:publicationAuthor ?author .

?author ub:worksFor ?department .

?department ub:subOrganizationOf ?university .

} LIMIT 100 ’’’

queries["lq5"] = ’’’

SELECT ?university ?name ?tel WHERE {

?student ub:advisor ?advisor .

?advisor ub:worksFor ?department .

?department ub:subOrganizationOf ?university .

?student ub:name ?name .
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?student ub:telephone ?tel .

?student ub:takesCourse <http://www.Department1.Unive rsity0.edu/

GraduateCourse33> .

}LIMIT 100’’’
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