
IfiPipes -
The RDF UI Widget Framework

Clemens Wilding
of Winterthur ZH, Switzerland

Student-ID: 05-709-738
clemens.wilding@gmail.com

Master Thesis February 17, 2011

University of Zurich
Department of Informatics

Advisor: Jonas Tappolet

Prof. Abraham Bernstein, PhD
Department of Informatics
University of Zurich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I would like to thank Professor Abraham Bernstein for offering me the opportunity to write my
Master Thesis at the DDIS group of the University of Zurich and for finding an adequate topic.
Many thanks to Jonas Tappolet for his ideas and support during the time of the thesis. Special
thanks to my office mates Matthias, Marc, Pascal and Yannick for endless discussions, problem
solving and support during coffee breaks. Additionally I would like to thank my parents for
giving me the possibility of studying and my girlfriend Daniela for her great support.

Abstract

This master thesis is about the creation of a semi-automatic data retrieval and visualization frame-
work. The framework describes how semantic data can be retrieved from web services or SPARQL
endpoints. By using Semantic Web technologies like RDF and OWL, the queried data is analyzed
and depending on the type of data, a fitting visualization is displayed. An implementation of
the framework is done by creating a web application in Java by using Google Web Toolkit. The
application allows a user with knowledge of Semantic Web basics to query data sources from web
services and allows him/her to upload new data sets. These can be visualized with little or no
programming skills, which should make it easier for non-engineers to use semantic data. The ap-
plication makes use of the cutting-edge tGraph framework to analyze and display temporal data.
Special visualizations features provided in the web application are the display of information on
a map, the use of temporal sliders to select time intervals and a tabular representation for larger
data.

Zusammenfassung

Diese Masterarbeit handelt von der Erstellung eines halb-automatischen Datenabfragungs- und
visualisierung-Frameworks. Das Framework beschreibt wie semantische Daten von Web Services
oder SPARQL Endpoints geladen werden können. Mit Hilfe von Technologien des Semantischen
Webs, wie RDF oder OWL werden die Daten analysiert und in Abhängigkeit der Art der Daten
wird eine passende Visualisierung dargestellt. Eine Implementation des Frameworks wird durch
das Erstellen einer Web-Applikation mit dem Namen IfiPipes, programmiert in Java mit der Hilfe
des Google Web Toolkits, vorgenommen. Die Applikation erlaubt einem Benutzer mit Grund-
kenntnissen des Semantischen Webs die Abfrage von Datenquellen aus Web Services oder von
hochgeladenen Daten. Dadurch wird dem Benutzer die Möglichkeit gegeben semantische Daten
zu nutzen, ohne dass Programmierkenntnisse verlangt werden. IfiPipes benutzt das innovative
tGraph Framework um temporale Daten zu analysieren und dann zu visualisieren. Die Besonder-
heiten in der Visualisierung sind das Darstellen von geographischen Daten auf einer Weltkarte,
die Benützung von temporalen Schiebern um Zeitintervalle zu selektieren und eine tabellarische
Übersicht, welche selbst für grosse Datensets flüssig läuft.

Table of Contents

Table of Contents ix

1 Introduction 1
1.1 Motivation . 2
1.2 Suggested solution . 2
1.3 Structure . 3

2 Background 5
2.1 The Semantic Web . 5

2.1.1 The Resource Description Framework . 7
2.1.2 SPARQL . 9
2.1.3 Linked Data . 11
2.1.4 Temporal RDF . 13

2.2 Data Combination . 14
2.2.1 Data Aggregation . 14
2.2.2 Data Integration . 15
2.2.3 Semantic Data Integration . 15

2.3 Data Visualisation . 16
2.3.1 Graph Visualization . 16
2.3.2 Types of Information Visualization . 19
2.3.3 Semantic Data Visualization . 20

3 Related Work 23
3.1 Data Aggregation and Data Integration . 23

3.1.1 Enterprise Data Integration . 23
3.1.2 Yahoo! Pipes . 24
3.1.3 DERI Pipes . 25
3.1.4 Google Fusion Tables . 26

3.2 Data Visualization . 27
3.2.1 IBM Many Eyes . 27
3.2.2 Microsoft Pivot . 27
3.2.3 Google Public Data Explorer . 28
3.2.4 Graph Visualization Tools . 28
3.2.5 Fresnel . 29

x TABLE OF CONTENTS

3.2.6 Semantic Data Visualization Tools . 30

4 IfiPipes 33
4.1 Used Software . 33

4.1.1 Google Web Toolkit . 33
4.1.2 Jena . 34
4.1.3 tGraph . 34

4.2 Ontologies . 35
4.2.1 Pipe Ontology . 35
4.2.2 Visualization Ontology . 36

4.3 Architecture . 37
4.4 User Interface Design . 38
4.5 Implementation Details . 40

4.5.1 Loading the Ontologies . 41
4.5.2 User Interface Implementation . 42
4.5.3 Operator Matching . 42
4.5.4 Querying and Analyzing Data Sources . 43
4.5.5 Visualizing Data . 44

4.6 User Guide . 44
4.6.1 List of Operators . 44
4.6.2 Running a Pipe . 45
4.6.3 Uploading a Data Set . 46
4.6.4 Visualizing Capitals of the World . 47

5 Limitations 49
5.1 Framework . 49
5.2 Application . 49
5.3 Used Technology . 50

6 Future Work 51
6.1 Universal Visualization Framework . 51
6.2 IfiPipes . 52

7 Conclusions 53

A Appendix 55
A.1 Contents of the CD-ROM . 55
A.2 The Pipes Ontology . 55
A.3 The Visualization Ontology . 61

List of Figures 65

List of Tables 67

List of Listings 69

Bibliography 71

1
Introduction

Nowadays more and more data is available on the web, therefore data aggregation and integra-
tion1 services are more important than ever [Shadbolt et al., 2006; Berners-Lee, 2010]. The data on
the web faces two big problems, the first one is that many companies provide no or little access to
their data, as they hide the data behind so-called walled gardens. The second problem is the miss-
ing structure of most data, which makes its use and especially its reuse complicated and tiresome.
By applying new technologies one can’t solve the issue of non-accessible data sources, whereas
the lack of structure in data can be fixed. Currently most of the integration services only work
on specific data sources and can’t be reused, because they are using proprietary APIs to access
the data. Also most of the non-engineering people are excluded from using data integration ser-
vices or mash-ups2 as they are complex to build and require a greater knowledge of programming
and/or web technologies [Yu et al., 2008].

The semantic web as a whole and especially the proposition of linked data offers a new so-
lution to the previous stated problems [Berners-Lee et al., 2001]. The technologies behind the
Semantic Web, such as the Resource Description Framework (RDF) and its various serialization
formats, enable the description of data in the data itself [Hayes and McBride, 2004]. Linked data,
is a specific use case of using the semantic web, is the result of using the method of the Tim
Berners-Lee to publish structured (semantic) data [Berners-Lee, 2006]. With the help of linked
data, data integrators can easily interlink the structured information from various sources, thus
rendering the data more useful. So one can say the semantic web tackles the problem of unstruc-
tured data sources and the non-standard retrieval and thus enables reuse of tools and code. But
it fails at solving the issue of overcomplexity, especially for non-engineers, as a fair amount of
knowledge about web technologies is needed to extracting data. In contrast it adds a layer of
complexity as one needs deep knowledge about many specifications like RDF, RDFS and OWL
and the heavy documentation often scares the average web developer [Ankolekar et al., 2007].

Another problem of the semantic web (and most data stores) is the temporal aspect of the data.
Often data stores contain aged or (temporal) inconsistent data, which deteriorates the experience

1The terms data integration and data aggregation are often used in different ways. In this thesis I’ll follow the most
common use: the term data integration depicts the process of combining two or more data sources, while data aggregation
is the application of data mining algorithms to further enrich the information. Both of the terms don’t necessarily result
in the creation of a new integrated respectively aggregated data source.

2[Merrill, 2006] defines mash-ups as web-based data integration applications, which aggregate and combine third-
party data.

2 Chapter 1. Introduction

[Dean and McDermott, 1987]. The concept of specialised temporal data bases is relatively new
compared to the age of conventional data bases3 and even less explored in the semantic space.
There is also not yet a reference implementation4, but some work in adding temporal constraints
to RDF and SPARQL is done [Gutierrez et al., 2005; Tappolet and Bernstein, 2009].

1.1 Motivation
The goal of this thesis is to twofold. The first goal is to create both a framework for describing
the data integration service and the second one to represent the visualization styles depending
on the type of the semantic data. The data integration framework acts as an interface for vari-
ous data sources like SPARQL endpoints, web services returning RDF or files. The visualization
framework describes different types of data visualizations and their relation to the data sources.
It should be possible to extend both frameworks; the data integration framework should be ex-
tendable to create new data integration elements and the visualization framework must provide
the extensibility to allow developers to create new visualizations and define their relation to the
data sources in the framework.

The second goal is to implement these frameworks by mapping them to the application. The
result of the implementation should be a web tool which allows the user to select various data
sources and depending on the returned data, a corresponding visualization is drawn. So if one
selects a data source containing geographical data, a visualization on a map is one possible out-
come, whereas by selecting a temporal data source the application draws a temporal visualization.
This can be solved by creating a visualization where one has a slide to go back and forth in time.
If the data isn’t specific enough for a graphical visualization, there should be a fall-back visual-
ization. This visualization should be as specific as possible and prepared in a human readable
form.

1.2 Suggested solution
The suggested solution for the frameworks is to create two ontologies, one for data integration
and one for graph visualization. These ontologies will be written in OWL, the ontology language
for the Semantic Web. As the application should be easy enough to use by the user who has a basic
knowledge about the concepts of the Semantic Web, but lacks programming skills, the graphical
representation of the data integration will be similar to the UI of Yahoo Pipes5 or similar tools.
It’ll allow the user of the application to use graphical programming to select data sources and
aggregate and manipulate data results fetched from the sources. The visualization ontology will
describe the visualizations and provide mappings to different types of data. This includes at least
temporal and geographical data. As ontologies are easily extendable a developer will be able to
extend the framework to create both new pipe elements and new visualizations.

The web application will do the data analysis and integration on the server side, while the
client side will be responsible for the user interface and the filtering of data. For reading and

3While data bases exist since the 1960s and SQL was developed in the 1970s, the the official temporal extension for
SQL (T-SQL2) was specified in 1994 [Snodgrass et al., 1994]

4Although there exists a W3C working draft for a time ontology: http://www.w3.org/TR/owl-time/
5http://pipes.yahoo.com/pipes/

http://www.w3.org/TR/owl-time/
http://pipes.yahoo.com/pipes/

1.3 Structure 3

parsing RDF a Semantic Web framework like Jena6 will be used and for reading temporal data
the tGraph framework serves the purpose. To focus less on web development and more on de-
livering content, the web framework Google Web Toolkit7 will be used. The application will use
predefined widgets where possible, new widgets will be developed when necessary.

1.3 Structure
The structure of the thesis is derived from [Bernstein, 2005] and includes the following chapters:

Chapter 2 explains the background behind the thesis, thus explaining the concepts of the Se-
mantic Web, data integration and data visualization. Section 2.1 is about the Semantic Web and
covers excursions in the fields Linked Data and temporal semantic data. Section 2.2 briefly de-
scribes the theory of data integration, in the traditional way and extensively in the newer semantic
way. The final section’s topic is data and graph visualization. It consists of a listing of different
types of data and graph visualization and shows benefits and disadvantages of each type.

Chapter 3 highlights related work in the fields data integration and data visualization with
a special focus on Semantic Web applications. There is few related work which combines all
topics covered in this thesis, but each category on its own provides more than enough material.
The chapter shows not only complex web applications, but also recent progress in the research
communities.

Chapter 4 describes IfiPipes, the resulting application. Section 4.1 describes the used software,
both frameworks and libraries are presented. Section 4.2 is one of the most important parts of
the thesis, because it presents the two ontologies which serve as a framework for the application.
In the following sections the architecture and a few details of the implementation are getting a
thorough look. The chapter concludes with a user guide and a selection of use cases, including a
graphical presentation of the application.

Chapter 5 shows the limitations of the framework, the application and also the used technolo-
gies.

Chapter 6 lays out suggestions for future work, including the proposal of an universal visual-
ization framework.

Finally, Chapter 7 draws the conclusion of the thesis and includes a personal recapitulation.

6http://openjena.org/
7http://code.google.com/webtoolkit/

http://openjena.org/
http://code.google.com/webtoolkit/

2
Background

This chapter consists of the theories and concepts behind the thesis. The initial focus is on the
term Semantic Web and its offsprings RDF, SPARQL and Linked Data. As an extension to the
Semantic Web, a temporal framework is presented, which adds a validity to information entries.

Second the terms data aggregation and integration are brought closer to the reader. The the-
sis’s focus is on data integration, especially semantic data integration. But the term data aggrega-
tion is explained shortly especially in the traditional statistical approach.

Third the focus is on data visualizations. This includes a discussion of the use of data and
especially graph visualizations and presents several types of visualizations.

2.1 The Semantic Web
The Semantic Web, a term shaped by Tim Berners-Lee, the inventor of the World Wide Web
(WWW) and director of the World Wide Web Consortium1 (W3C), is a combination of various
concepts and technologies with the goal to enable computer to understand the meaning respec-
tively the semantics of data. The ultimate goal is that computers or agents can do many of our
burdensome tasks, like finding the perfect appointment or the best driving route, as depicted by
Berners-Lee in his influential paper [Berners-Lee et al., 2001]. His paper brought the term and the
concepts behind the Semantic Web to a broader audience and since the publication in 2001 the
Semantic Web is growing steadily. To achieve the goal of intelligent agents the Semantic Web is
based on three concepts and one application:

• Expressive Meaning: by bringing a structure to the content of web pages, data becomes
readable for software agents. This is based on the concept of hyperlinks where ‘anything
can link to anything‘, which results ultimately in the Internet of Things where anything has
a URL [Gershenfeld et al., 2004];

• Knowledge Representation: the Semantic Web was built with compliance to the open
world assumption, which says if contradictory values may exist for a statement[Drummond
and Shearer, 2006]. In contrast the closed world assumption presumes that every statement

1http://www.w3.org/

http://www.w3.org/

6 Chapter 2. Background

which is not known is false. The challenge is therefore to provide an expressive language
and rules for reasoning. The expressive language for the Semantic Web is called Resource
Description Framework (RDF), which uses a natural language-like syntax.

• Ontologies: are collections of information which define classes of objects and relations
among them. There exist many ontologies for different purposes, for example the FOAF
ontology 2 is used to describe people and their social graph.

• Agents: result from applying the techniques of the Semantic Web to software. They are pro-
grams created by web developers which fetch content from various semantic data sources
and process information to exchange them with other agents or present them to the user.
The value of these agents is exponentially higher the more data is available on the web.

The set of standards is designed and developed by the W3C, which has several groups devoted
to improve the Semantic Web3. The efforts concentrate on 5 topics4, these are:

• Linked Data: the new main interest of many Semantic Web researchers, to interconnect data
from various sources. The group concerns itself with working on standards like RDF, RDFa
and GRDDL. Linked data is the main driver of the Semantic Web, as the focus towards
releasing large, interlinked data sets. The more data is available, the more valuable it gets,
as more conclusions can be drawn.

• Vocabularies: the group works on expanding the standards on the web ontology language
(OWL) and the simple knowledge organization system (SKOS).

• Query: to retrieve semantic data the querying language SPARQL Protocol and RDF Query
Language (SPARQL) was created. SPARQL is similar to SQL used for relational databases.

• Inference: the process of inferring or reasoning is the use of higher logic to find new rela-
tions between resources.

• Vertical Applications: the group focuses on building applications in the field Health Care
and eGouvernment. While the first four groups are devoted to drive the technologies behind
the Semantic Web further the last group creates ontologies and real-life applications.

The semantic web is not a replacement for the existing web, but like the Web 2.0, which added
a social layer, the semantic web is an addition. Some people therefore call the semantic web one
of the foundations of the Web 3.0 [Shannon, 2006; Spalding, 2007]. The technology stack of the
Semantic Web is depicted in Figure 2.1, where one can see that the Semantic Web borrows a few
technologies from the original web stack, like the concept of unique identifiers (URIs/IRIs) or the
markup language (XML), which won’t be subject of this thesis. But the next few subsections con-
tain explanations of the fundamentals of the Semantic Web: RDF, SPARQL and OWL, respectively
ontologies in general.

2http://xmlns.com/foaf/spec/
3see http://www.w3.org/2001/sw/#groupsforadetailedoverviewofallgroups
4see http://www.w3.org/standards/semanticweb/ for even more details

http://xmlns.com/foaf/spec/
http://www.w3.org/2001/sw/#groups for a detailed overview of all groups
http://www.w3.org/standards/semanticweb/

2.1 The Semantic Web 7

Figure 2.1: The Semantic Layer Cake or Semantic Web Stack. From [Bratt, 2007], p. 24.

2.1.1 The Resource Description Framework
The Resource Description Framework (RDF) is one of the foundations of the Semantic Web. It acts
as a meta-data model and can also be used to model information. The origins of the framework
go back to 1999, when the W3C published a specification of its data model and the XML-based
syntax as a recommendation5. The specification was revised in 2004 and is stable since then. The
recommendation is split in several parts including the concepts [Klyne et al., 2004], the semantics
[Hayes and McBride, 2004] and the RDF/XML syntax specification [Beckett and McBride, 2004].

The main concepts behind RDF are:

• Graph Data Model: any statement in RDF is represented as a so-called triple and consists
of a subject, a predicate and an object. This syntax resembles natural language and is more
expressive than the traditional key/value (or in above words subject/object) store. The
statement represented as a graph is depicted in Figure 2.2. It is a directed, unidirectional
graph where the subject points always towards the object. One or more statements together
form a graph, where the subjects and objects are called nodes and the predicates are often
called properties.

• URI-based Vocabulary: nodes can be one of 3 types: URIs, literals or blank nodes, while
properties are always URIs. URIs (Uniform Resource Identifiers) are always unique, so

5The old draft can be found on this page: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

8 Chapter 2. Background

Figure 2.2: A statement consisting of a subject, a predicate and an object

different nodes must have different URIs. This enables the reuse of a URI for different
statements or even different graphs. In contrast different literals may have the same value,
but therefore can’t be reused. While the concept of URIs and literals is easy to understand,
blank nodes are more complex. They are a special type of node, they are unique in their
graph, but they don’t have a URI. The problem with blank nodes is that if several data sets
are merged together the outcome of the merger isn’t clear [Hayes, 2009]. There are many
people regarding the inclusion of blank nodes as one of the biggest mistakes and even Tim
Berners-Lee suggests you should give yourself a URI 6. Also the first rule of publishing
Linked Data is ‘Use URIs as names for things‘ [Berners-Lee, 2009].

• Datatypes and Literals: RDF uses the existing XML datatypes to represent ‘primitive‘ val-
ues, like integers, doubles, dates or strings. The only datatype specific for RDF is used to an-
notate XML in RDF: rdf:XMLLiteral. Literals represent a lexical form of these ‘primitive‘
values and may or may not be restricted by datatypes. While typed literals are annotated
with a datatype URI, plain literals are just strings.

There are several representations of RDF, the most often used is the representation in XML,
called RDF/XML, which is part of the official RDF specification. XML is the main choice because
when the specifications for the Semantic Web was created XML was the state-of-the-art markup
language. The benefits of XML is that it is machine-readable and very expressive. But there is
also some criticism that the syntax is too verbose and overly complex, resulting in less human-
readable code and cumbersome writing [Crockford, 2006]. So there are a few notation formats
that are less expressive, but also less complex and more human-friendly. N-Triples7 or Notation38,
both which are created by the Semantic Web Community, are an example of such notations. Very
popular at the time is Turtle9, the Terse RDF Triple language. Turtle is a subset of N3 and an
extension for N-Triples and resembles the triple syntax used in the SPARQL query language.
Turtle is easy to parse for a computer but nevertheless more readable than RDF/XML so it’s
the preferred alternative to XML. Another non-XML format is RDF/JSON10, which is gaining
popularity in the web-community, as JSON is the preferred way to encode messages in the web
and thus the syntax is already known. JSON is called by its inventor the ‘fat-free alternative to
XML‘ and is easy to parse (especially in the JavaScript) and less ‘bloated‘ than XML [Crockford,
2006; Alexander, 2008].

6As mentioned on his blog: http://dig.csail.mit.edu/breadcrumbs/node/71
7see http://www.w3.org/TR/rdf-testcases/#ntriples
8see http://www.w3.org/DesignIssues/Notation3.html (N3) for the specification of N3
9see http://www.w3.org/TeamSubmission/turtle/forthespecificationofTurtle

10see http://n2.talis.com/wiki/RDF JSON SpecificationforthespecificationofRDF/JSON

http://dig.csail.mit.edu/breadcrumbs/node/71
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TeamSubmission/turtle/ for the specification of Turtle
http://n2.talis.com/wiki/RDF_JSON_Specification for the specification of RDF/JSON

2.1 The Semantic Web 9

2.1.2 SPARQL
The name SPARQL is a recursive acronym and stands for SPARQL Protocol and RDF Query Lan-
guage SPARQL. It can be used for querying RDF graphs and has a SQL-like syntax. The current
W3C recommendation is SPARQL 1.011, while SPARQL 1.1 is a working draft. SPARQL 1.0 bor-
rows the basic clauses from SQL, so users with SQL experience will have no problems switching,
as they know almost all the keywords. A simple SPARQL query is shown below in Listing 2.1:

Listing 2.1: A simple SPARQL SELECT query

SELECT ? a r t i s t ?name
WHERE
{

<http :// ex . com/ s t o r e #cd1> <http :// ex . com/music# a r t i s t > ? a r t i s t .
? a r t i s t <http :// xmlns . com/ f o a f /0.1/name> ?name .

}

The syntax in the WHERE clause is similar to Turtle, as mentioned before. The first part on the
clause gets the object ?artist, which is the subject in the second triple. The results of the query
are the URI and the foaf:name of the artist of the cd1 in the store. The SPARQL query result
encoded in XML is depicted in Listing 2.2:

Listing 2.2: The result of a simple SPARQL SELECT query encoded in SPARQL/XML

<?xml version=” 1 . 0 ” ?>
<sparql xmlns=” h t t p : //www. w3 . org /2005/ sparql−r e s u l t s #”>

<head>
<v a r i a b l e name=” a r t i s t ”/>
<v a r i a b l e name=”name”/>

</head>
<r e s u l t s>

<r e s u l t>
<binding name=” a r t i s t ”>

<u r i>h t t p : //ex . com/ s t o r e # a r t i s t 1</u r i>
</binding>
<binding name=”name”>

< l i t e r a l xml:lang=”en”>Radiohead</ l i t e r a l>
</binding>

</ r e s u l t>
</ r e s u l t s>

</sparql>

There exists also a serialization of SPARQL query results in JSON from the W3C12, which can
be seen in the Listing 2.3.

11see http://www.w3.org/TR/rdf-sparql-query/ for the specification
12see http://www.w3.org/TR/rdf-sparql-json-res/

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-json-res/

10 Chapter 2. Background

Listing 2.3: The result of a simple SPARQL SELECT query encoded in SPARQL/JSON

{
”head ” : { ” vars ” : [” a r t i s t ” , ”name”]
} ,
” r e s u l t s ” : {

” bindings ” : [
{

” a r t i s t ” : { ” type ” : ” u r i ”
, ” value ” : ” ht tp :// ex . com/ s t o r e # a r t i s t 1 ” } ,

”name ” : { ” type ” : ” l i t e r a l ” , ” value ” : ”Radiohead” } }
]

}
}

For web applications developers prefer to use the JSON encoding, especially when working on
the client-side with JavaScript. Another advantage is the lower number of bytes, which can be
crucial for web applications.

SPARQL allows more complex queries as well, for example one can query for literal values
(SELECT ?x WHERE { ?x ?p "cd" }), using the FILTER keyword to use regular expres-
sions to filter results (FILTER regex(?name, "\ˆ{}Radio")) or using OPTIONAL to include
resources which don’t fulfil all criteria (OPTIONAL { ?artist foaf:mbox ?mbox }). An-
other important keyword is CONSTRUCT which allows one to query a graph and return a new
graph according to the used query. A sample query is shown in listing 2.4:

Listing 2.4: A simple SPARQL CONSTRUCT query

CONSTRUCT { ? a r t i s t <http :// xmlns . com/ f o a f /0.1/name> ?name }
WHERE { ? a r t i s t <http :// ex . com/music# artistName> ?name . }

The result of this query in RDF/XML is shown in Listing 2.5:

Listing 2.5: The result of a simple SPARQL CONSTRUCT query

<rdf:RDF
xmlns :rdf=” h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns#”
xmlns : foa f=” h t t p : //xmlns . com/ f o a f /0.1/ ”>

<r d f : D e s c r i p t i o n>
<foaf :name>Radiohead</foaf:name>

</ r d f : D e s c r i p t i o n>
</rdf:RDF>

SPARQL 1.1 provides even more features, which are supposed to be included in the main
specification, while guaranteeing no incompatibilities with the older version. Version 1.1 brings
following new features

• Aggregates: apply expressions over groups of solutions. New clauses are for example
GROUP BY, COUNT or SUM.

• Subqueries: one or multiple SELECT queries in the WHERE clause.

2.1 The Semantic Web 11

• Negation: allows the filtering of results depending on the presence of a graph pattern or not,
by using the NOT EXIST respectively EXISTS clauses. It also allows to subtract solutions
from the results by using MINUS.

• Expressions in the SELECT clause: SPARQL 1.1 allows the creation and reuse of variables
by using the keywork AS to assign them to a value.

Extensions for SPARQL 1.1 include for example federated queries13, which would allow one to
write queries for more than one remote SPARQL endpoint, by using the SERVICE keyword. Fed-
erated queries could give the Linked Data community a huge boost as it allows the integration of
multiple data sources in one query.

2.1.3 Linked Data
Linked Data is about setting guidelines for data to be published on the web and interlinking data
sources. The usefulness of Linked Data is proportional to the availability of Linked Data on the
web. Tim Berners-Lee coined the term in a design note in 2006 [Berners-Lee, 2006], where he set
up simple rules for Linked Data. These four rules are:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF*,
SPARQL).

4. Include links to other URIs. so that they can discover more things.

The rules should be quite intuitive for anyone familiar with a basic understanding of the Se-
mantic Web, but there are some discussions about the implementation of these rules. The first
rule, to give names for things, is there to ensure one can reference them from other data sets. The
second rule, to use HTTP URIs instead of new URI schemes, exists because HTTP is an existing
and widely used standard. The third rule, that information should be on the web and accessible
via a URI, is to ensure that the data can be interlinked, by using existing technologies. The forth
rule, to interlink data sources, exists to create a web of data, where the sum of the value of all
information is greater than the sum of all its parts.

The current state-of-the-art guide to publish Linked Data on the web is explained in [Bizer
et al., 2007], where there are more details on the implementation. An important part of the im-
plementation is to distinguish between information and non-information resources. While infor-
mation resources are resources available on the net, non-information resources point to physical
things or concepts, which are not available on the web14. By accessing an information resource,
the server returns a representation of the information resource and the HTTP response code 200
OK. If one tries to access an non-information resource, which can’t be accessed directly, the server
returns a 303 SEE OTHER message, to redirect the client to an information resource.

13see http://www.w3.org/2009/sparql/docs/fed/service.xml for the draft of the specification
14See [Lewis, 2007] for a more detailed explanation.

http://www.w3.org/2009/sparql/docs/fed/service.xml

12 Chapter 2. Background

Another implementation issue is the problem that raw RDF code isn’t very readable for hu-
mans, so it is suggested to use the HTTP mechanism content negotiation. The technique is en-
abled by creating three resources for each URI in a graph. First a non-information resource is
created with the same URI as the graph, a so-called vocabulary URI. Second a URI pointing to an
information resource is created, which serves raw RDF and third a URI pointing to another in-
formation resource is created, serving data represented in HTML. The client makes use of this by
sending a GET request to the non-information resource. Depending on the accept header (either
Accept: application/rdf+xml or Accept: text/html) the server returns with a 303
SEE OTHER message, including the URI of the requested type of information resource, which the
client resolves. Another important part of the publication of Linked Data are URI aliases, to en-
sure the interlinkage between data sources. The preferred was to tell two resources are the same
is by using the owl:seeAlso keyword. To test if a Linked Data source is published correctly one
can use the Linked Data validator VAPOUR15.

The document also gives hints to avoid a few RDF features, most of them were already crit-
icized by parts of the community. First the researchers discourage the use of blank nodes. Even
older ontologies like FOAF started using URI references instead of blank nodes. Second RDF reifi-
cation is discouraged, because its semantics are unclear and the statements are hard to query with
SPARQL. The third point is SPARQL related as well: RDF collections and containers should be
avoided, as SPARQL queries are cumbersome to write when querying collections or containers. It
is suggested to create several triples using the same predicate, which is almost the same as using
an unordered rdf:list.

The growth of Linked Data can best be seen by comparing the 2010 Linked Data cloud (see Fig-
ure 2.3), which compiles all greater semantic data sources, with versions from previous year. For
example in 2007 there were only twelve data sets, while in the current version there are more than
two hundred data sets and many of them are way bigger then before. The biggest and most im-
portant source is DBpedia16, which extracts the information from Wikipedia and releases them as
semantic data. The data isn’t live data from Wikipedia, but rather there are dumps from previous
Wikipedia versions. The current version of DBPedia, 3.6, uses dumps from October/November
2010. DBPedia is not only the biggest data source, but also very interlinked in the Linked Data
cloud, as many data sets point to DBPedia.

There exists also a rating scheme for linked data, where the data is given one to five stars17:

* make your stuff available on the web (whatever format) under a open license

** make it available as structured data (e.g., Excel instead of image scan of a table)

*** use non-proprietary formats (e.g., CSV instead of Excel)

**** use URIs to identify things, so that people can point at your stuff

***** link your data to other data to provide context

It can be seen, that one to three star data have nothing to do with the Semantic Web, but rather
with traditional web applications and their APIs. Four star data may or may not use semantic

15see http://validator.linkeddata.org/vapour for the validation service.
16http://dbpedia.org/
17A more detailed explanation with examples for each rating can be found on: http://lab.linkeddata.deri.ie/

2010/star-scheme-by-example/.

http://validator.linkeddata.org/vapour
http://dbpedia.org/
h ttp://lab.linkeddata.deri.ie/2010/star-scheme-by-example/
h ttp://lab.linkeddata.deri.ie/2010/star-scheme-by-example/

2.1 The Semantic Web 13

As of September 2010

Music
Brainz

(zitgist)

P20

YAGO

World
Fact-
book
(FUB)

WordNet
(W3C)

WordNet
(VUA)

VIVO UF
VIVO

Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UMBEL

UK Post-
codes

legislation
.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov

.uk

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

The Open
Library
(Talis)

t4gm

Surge
Radio

STW

RAMEAU
SH

statistics
data.gov

.uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

Semantic
Crunch
Base

semantic
web.org

Semantic
XBRL

SW
Dog
Food

rdfabout
US SEC

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS

KISTI
JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints

dotAC

DEPLOY

DBLP
(RKB

Explorer)

Course-
ware

CORDIS

CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov

.uk

reference
data.gov

.uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

PSH

Product
DB

PBAC

Poké-
pédia

Ord-
nance
Survey

Openly
Local

The Open
Library

Open
Cyc

OpenCal
ais

OpenEI

New
York

Times

NTU
Resource

Lists

NDL
subjects

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

The
London
Gazette

LOIUS

lobid
Resources

lobid
Organi-
sations

Linked
MDB

Linked
LCCN

Linked
GeoData

Linked
CT

Linked
Open

Numbers

lingvoj

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Good-
win

Family

Jamendo

iServe

NSZL
Catalog

GovTrack

GESIS

Geo
Species

Geo
Names

Geo
Linked
Data
(es)

GTAA

STITCH
SIDER

Project
Guten-
berg
(FUB)

Medi
Care

Euro-
stat

(FUB)

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

Freebase

flickr
wrappr

Fishes
of Texas

FanHubz

Event-
Media

EUTC
Produc-

tions

Eurostat

EUNIS

ESD
stan-
dards

Popula-
tion (En-
AKTing)

NHS
(EnAKTing)

Mortality
(En-

AKTing)
Energy

(En-
AKTing)

CO2
(En-

AKTing)

education
data.gov

.uk

ECS
South-
ampton

Gem.
Norm-
datei

data
dcs

MySpace
(DBTune)

Music
Brainz

(DBTune)

Magna-
tune

John
Peel
(DB

Tune)

classical
(DB

Tune)

Audio-
scrobbler
(DBTune)

Last.fm
Artists

(DBTune)

DB
Tropes

dbpedia
lite

DBpedia

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Discogs
(Data In-
cubator)

Climbing

Linked Data
for Intervals

Cornetto

Chronic-
ling

America

Chem2
Bio2RDF

biz.
data.

gov.uk

UniSTS

UniRef

Uni
Path-
way

UniParc

Taxo-
nomy

UniProt

SGD

Reactome

PubMed

Pub
Chem

PRO-
SITE

ProDom

Pfam PDB

OMIM

OBO

MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Cpd

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Gen
Bank

ChEBI

CAS

Affy-
metrix

BibBase
BBC

Wildlife
Finder

BBC
Program

mes
BBC

Music

rdfabout
US Census

Figure 2.3: Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/

technology to give things an URI, while only five star data unleashes the full power of the Seman-
tic Web. The state of linked data so far is best described in [Bizer et al., 2009], where the authors
show data sets and tools to use them and also list the current challenges in semantic research.

2.1.4 Temporal RDF
The rise of the Semantic Web resulted in the need for temporal annotated data, as most data isn’t
static, but changes from time to time. There were many suggestions, some tried to model time
with OWL; others suggested to used Description Logic. Another approach was the temporal
extension of RDF, which is an extension for regular RDF. A framework is presented in [Gutierrez
et al., 2005; Gutierrez et al., 2006] and which addresses many issues of temporal information. One
issue is the question of versioning vs labeling: Versioning creates a snapshot for each graph (a
new snapshot is created if the graph is changed), which is a problem for some queries. Labeling
on the other side annotates graphs or single triples with a time. The two versions of adding time
dimensions correspond to the temporal dimensions in databases: Validity, which corresponds to
labeling, ensures that the data is valid in the modeled world; transaction time, corresponding to
versioning, is the time when data is actually stored in the database. Another issue is the question
whether to use time points or time intervals. In [Tappolet and Bernstein, 2009] time intervals are
the preferred choice, but time points can be expressed by setting an equal value for start and end
time. The paper also presents a syntax for graphs, by using named graphs to annotate triples with
a new temporal element, which results in quads. The authors also propose an extension to the
query language SPARQL, called τ -SPARQL, and provide mappings form τ -SPARQL to regular
SPARQL. A simple τ -SPARQL can be seen in Listing 2.6:

14 Chapter 2. Background

Listing 2.6: A simple τ -SPARQL SELECT query

SELECT ? s t a r t ?end ?name
WHERE
{

[? s t a r t , ?end] <http :// ex . com/music# a r t i s t 1 > f o a f : name ?name .
}

The query return the name of the artist and the time in which the artist is valid, in this context
the time during the musician is/was active. To model data which is valid from existence on uses
the keyword EVER; data which is valid until now is annotated with NOW.

2.2 Data Combination

Data combination covers both approaches data integration and data aggregation. The process
of data integration is the merging of different data sources and combination of them. Data in-
tegration often results in creating a data warehouse, a centralized data storage containing all
information. By using semantic technologies like ontologies, semantic data integration allows the
easier combination of these data sources. Data aggregation is the process of applying data mining
algorithms to enrich the data gained from one or multiple sources. In an ubiquitous Semantic
Web the two data combination methods would approach each other more and more, as the data
mining algorithms could be replaced by semantic metadata.

The field of data combination is growing during recent years. As more and more information
is created, especially on the web, the combination, aggregation and manipulation of data becomes
interesting for companies and individuals. By using APIs, developers create tools which allow
the user to create data mash-ups.

2.2.1 Data Aggregation

The space of data aggregation is mainly dominated by the statistical research of social sciences
[Clark and Avery, 1976]. Through combination and data mining one can know more about single
entries of the data sources. Data aggregation has also raised privacy concerns in recent years,
especially with the rise of the internet [Solove, 2002]. There are several companies competing in
the data aggregation space, not by creating software which can be used for data aggregation, but
rather by having huge databases of aggregated personal data.18.

Data aggregation could be enhanced by using the Semantic Web. First one could use a rea-
soner to enrich the data, by finding new connections or spotting contradictions in the data source.
Second by querying the Semantic Web, respectively linked data sources one can find more infor-
mation about the data entries. This may result in better aggregation results, as more data means
better results from data mining algorithms.

18see http://www.acxiom.com/Pages/Home.aspx or http://www.lexisnexis.com/ for more information on
data aggregator companies

http://www.acxiom.com/Pages/Home.aspx
http://www.lexisnexis.com/

2.2 Data Combination 15

2.2.2 Data Integration

Data integration is currently widely discussed in the enterprise space [Halevy et al., 2006]. The
research in this area is one of the oldest topics in database research, but there is no ‘silver bullet‘
solution, which would work for all kinds of databases and all kinds of data [Ziegler and Dittrich,
2004a]. The traditional approach of data integration is the combination of several data sources in
one central database, a so-called data warehouse. The problem is often that the databases don’t
have the same format. Some data may be stored in a relational data base, while other data is
stored in flat files and other data is encoded in XML. Another problem is that there are many
data entries depicting the same thing, but with a different description. If one has a working
data model, the work is less tiresome, but still can rarely be automated. The structural problem
to connect several databases is rather easy, in comparison to the combination of the data. One
of the biggest problem are data entries with the same name, but totally different meanings. So
the semantics of data integration are much harder to grasp, as the structural problems of having
different databases or the syntactical problem of having different syntax for storing data is.

2.2.3 Semantic Data Integration

The technologies of the Semantic Web can help to facilitate the problem of unclear semantics. If
one applies the practices of linked data, one can use ontologies and by using the owl:sameAs
keyword one can describe the same resources in different data sources [Gardner, 2005]. An-
other problem which is easier to solve by using semantic tools is the combination of data sources
[Ziegler and Dittrich, 2004b]. Even if the data sources aren’t interlinked one can combine them
without a problem and by using reasoning or data mining one may find relations between entries.
The Semantic Web also solves the data of double entries as each triple is unique in the graph. By
using reasoning and ontologies also contradictions in the data sources can be found.

By using the principles of linked data, it isn’t even necessary to combine the data sources to a
data warehouse, but with the upcoming SPARQL 1.1 an federated queries it is possible to make
queries on several data sources. This results in a looser coupling and smaller and more specific
data sources, which results in better maintainability and often faster query results. Another op-
tion would be to add a semantic layer on top of the existing data bases. This option is often the
best approach as there are many legacy systems, which shouldn’t or can’t be touched, as they
are still critical to operate. By adding this semantic integration layer, one can create views of the
data sources, without meddling with the data itself. The semantic layer now allows a few possi-
bilities a traditional layer or wrapper can’t provide: First one can interlink the data entries from
several sources to point out double entries and second one can make links to another linked data
sources. This results in enriched data, for example the address data base can be combined with
geographical data from the GeoNames web service19 [Kobilarov et al., 2009].

19http://www.geonames.org/

http://www.geonames.org/

16 Chapter 2. Background

2.3 Data Visualisation
Data visualization is the science of visual representation of data20. The used data can either be raw
data or be abstract data. The two main categories of data visualization are statistical graphics and
thematic cartography. While the cartographic visualization mostly use geographical data, statis-
tical visualizations can be applied to all data domains. Data visualization is a very old field, there
exist town maps from more then 8000 years ago. In the 17th century statistical visualizations were
born and the scientific use of data visualization began in the 19th century. In the second half on the
twentieth century the visualization science gets a huge boost as the computer progresses rapidly.
With the help of computer programs scientists can finally visualize large data sets and use less ab-
stracted data. Also the computer helps with the analysis of data sources, so new conclusions can
be found and the visualization can be rearranged faster [Spence, 2001]. This is especially helpful
if one doesn’t know what data to expect. The computer age results in two new achievements,
first many new visualizations are created, mainly in the field of 3-dimensional visualizations and
second the ubiquity of visualizations. As nowadays much more data is produced then even five
years ago this can lead to an information overload. With the help of visualizations of the newly
created data humans can process these large sums of data faster. In [Sears and Jacko, 2008] the
author mentions six points how information visualization helps cognition:

1. Increased Resources: offload work from cognitive to perceptual system. Graphics can often
be consumed in parallel, whereas text can only be consumed in serial.

2. Reduced Search: visualization group information together which results in reducing search.
Also visualizations can represent large amounts of data in small spaces.

3. Enhanced Recognition of Patterns: recognition is easier than recall for humans. By orga-
nizing visual data in structures pattern emerge.

4. Perceptual Inference: visual representations make some problems obvious. Also comput-
ers can use their computing power to help with complex visualizations.

5. Perceptual Monitoring: visualization allow the monitoring of large numbers of events in
parallel, if the visualization is organized so that changes stand out.

6. Manipulable Medium: instead of static diagrams visualization can be explored by chang-
ing the parameters leading to the visualization.

The points mentioned above lean towards the field of human-computer-interaction, a inter-
disciplinary field which combines the fields of computer science, design and behavioral sciences.

2.3.1 Graph Visualization
As the concept of the Semantic Web is to store data as a graph it is common sense to create graph
visualizations of data. Unlike data or information visualization the graph visualization science
has its origin in the mathematical graph theory. Graph theory normally uses dots to represent

20There are many definitions of data visualization, information visualization and scientific visualization. In this thesis
I will follow the definitions of [Friendly and Denis, 2001], which are also explained in detail on: http://datavis.ca/
milestones/index.php?page=varieties+of+data+visualization.

http://datavis.ca/milestones/index.php?page=varieties+of+data+visualization
http://datavis.ca/milestones/index.php?page=varieties+of+data+visualization

2.3 Data Visualisation 17

vertices and arcs to display edges between the connected vertices. Depending on the condition if
a graph is directed or not, edges are displayed as arrows pointing in the direction of the vertex.
While the basics of graph visualization are almost always edges and vertices, the layout of these
visualization can change dramatically. The choice of layout is important, as each layout has its
advantages and its problems. A few aesthetics one should apply to a general graph layout are
listed below [Cruz and Tamassia, 1998]:

• Minimize crossings

• Minimize area

• Minimize bends

• Maximize slopes

• Maximize smallest angle

• Maximize display of symmetries

• Keep edge length uniform

• Distribute vertices uniformly

Sometimes it is impossible to apply all the aesthetics, so one should try to maximize a certain
number, in order to draw a good looking layout [Di Battista et al., 1998]. There are many types of
graph layouts, a list of the most important ones can be found in Table 2.1:

18 Chapter 2. Background

Layout Type Description Remarks
General Graph Layout The plain graph representation

with dots and arcs as vertices
and edges.

If possible the aesthetics listed
above should be applied.

Planar Graph Layout A graph is planar if none of its
edges crosses another.

While planar graphs are often
desirable, it isn’t always possi-
ble to create a planar graph, es-
pecially for larger graphs with
many edges. If possible general
graphs are planarized and then a
planar algorithm is applied.

Directed Graph Layout Directed graphs have directed
edges, which means they point
to at least one vertex.

Directed graphs are parted in
acyclic and cyclic graphs. Cyclic
graphs are harder to display, so
it is often tried to cut a few edges
to remove cycles.

Tree Layout Trees are often used to represent
hierarchical graphs. Vertices are
placed on different levels to dis-
play the hierarchy.

The layout is good for hierar-
chical graphs and graphs with a
small width. If the hierarchy is
too deep the clarity of the graph
deteriorates.

Circular Layout The nodes are arranged on a cir-
cle, to emphasise group and tree
structures.

The circular layout is preferred
for ring or star topologies and
works very well for displaying
networks.

Hierarchical Layout The hierarchical layout is similar
to the tree layout, it places the
vertices on layers to display the
hierarchy.

In contrast to the tree lay-
out, where each leaf can only
have one parent, the hierarchi-
cal layout allows the reunion of
branches.

Organic Layout The organic layout displays sim-
ilar nodes together. This results
in organic looking graphics, re-
sembling structures found in na-
ture.

The organic layout is often used
by applying a force-base algo-
rithm21.

Orthogonal Layout The orthogonal layout displays
graphs in rectangular forms.

The orthogonal layout produces
good results for medium sized
graphs and results in compact
drawings with few crossings.

Table 2.1: List of Graph Layouts

2.3 Data Visualisation 19

2.3.2 Types of Information Visualization
There exist an infinite number or visualizations, from simple textual visualization to 3- or more-
dimensional visualizations. Each of this visualizations is best suited for a specific data format.
In [Shneiderman, 2002] the author creates a taxonomy of data types. The seven data types of the
taxonomy are:

• 1-dimensional: linear data types are documents, lists or source code and are arranged in a
sequential manner. Visualization issues are font, color and size usage and scrolling for large
data sources.

• 2-dimensional: data which can be displayed on a map or planar data. Issues are finding
connections between items or filting of data.

• 3-dimensional: data from real-world objects like atoms or animals. Usually created by
computers, the issues of this visualization are navigating in the 3rd dimension and display
of relationships.

• Temporal: temporal data can be displayed as time lines. Shneiderman classifies temporal
data type that is separate from 1-dimensional data, as it is widely used and vital for many
visualizations. Issues are the filtering of events before, after or during a time interval.

• Multi-dimensional: data is often multidimensional (e.g. most data from databases). Issues
are displaying this additional dimensions in a 2- or 3-dimensional space. Solutions are the
omission of dimensions or the enabling / disabling of dimension with additional controls.

• Tree: hierarchical structures where each item has only one parent. Issues of the visualization
are the displaying of too broad or too deep trees.

• Network: network data has often many connections and can’t be arranged in a tree in an
aesthetically pleasing way. Issues are large data sets and nodes with many connections.

Depending on the data types above, there are many types of visualizations. A number is
presented below:

• Tabular Visualization: the tabular visualization is one of the simplest visualizations and
resembles the textual representation. The data is arranged in a table where one row equals
one data entry and one column equals a category. If the data is at least semi-structure the
tabular visualization is one of the easiest visualizations to create. It is good for small to
medium data sizes, for large sets the clarity gets lost.

• Chart Visualization: a chart is a visualization of numerical data a special symbols. There are
many types of chart visualizations, where each one has a special use case. Typical chart vi-
sualizations are bar charts, pie charts or line charts. Charts are less useful for non-numerical
data and show only aggregates.

• Map Visualization: a visualization of data as points on a map. The map visualization works
best for geographical data. It can also be combined with other visualization, for example one
can draws charts on the map. A special type of map visualization is the heat map, where
region of the map are colored according to the data.

20 Chapter 2. Background

• Treemap: is a visualization where data is displayed in nested rectangles. A treemap is a
suitable visualization for hierarchical data. Sometimes colors are applied to the rectangles
to further distinguish them.

• Temporal Visualization: usually on a time- or story line. Interactive visualizations make
often use of a slider to change the time value. One can say temporal visualizations are
a special kind of multi-dimensional visualizations, where the time is another dimension.
Temporal visualizations can be used in addition to one of the other visualizations.

• Mindmap: often visualized in a circle (similar to the organic layout for graph visualiza-
tions), where the most important node of the data is in the middle and there are connections
from there to other nodes. Mindmaps are often used when brainstorming. A computer
visualization seldom uses the mindmap to visualize data.

• Multi-dimensional Visualization: use the power of three or more dimensions to display
more facets about the data. While 3-dimensional visualizations are common nowadays and
often selected to have not only two, but three axis, four- and more-dimensional visualiza-
tions are still in its infancy.

• Website: a mixed form of visualization and can consist of a number of other visualizations.
Semantic data is often displayed on a website. Depending on the data and type of website,
one or more visualizations are selected. The simplest choice for semantic data is often to
visualize it in a tabular form.

• Graph Visualization: the most common layouts are presented in Table 2.1 22.

In [Shneiderman, 2002] the author Ben Shneiderman also presents the Information Visualiza-
tion Seeking Mantra: ‘Overview first, zoom and filter, then details-on-demand‘. Shneiderman
argues that the steps for using an information visualization are always the same. First present the
user with a zoomed out overview of the visualization. Second the user zooms into the visualiza-
tion to the point of his/her interest. Next there are several possibilities, the user may want to use
a filter to remove uninteresting items or he/she might want to select an item or a group to gather
more details about it. Other guidelines for creating visualization information are that one should
allow the user to see relationships between the items on demand and the application should keep
a history of all commands the user is doing, to allow functions like undo or replay. At last the
user should be allowed to extract the data or parts of it in a useful format.

2.3.3 Semantic Data Visualization
One can argue that because the Semantic Web is in its core a graph, it has to be visualized as such
The authors of [Schraefel and Karger, 2006] argue, that it rarely makes sense to display RDF data
as a graph. The strongest argument they provide is that the internet is in it’s core also a graph,
but is rarely depicted as such. The problem with semantic data as graph visualization is mainly
the usability. A list of problems can be found in the paper, the most important are: graphs don’t
make use of our daily used layouts, they don’t scale for large data sets and editing is often hard.

22For more visualization types the reader is referred to an article showing modern approaches in data visualization
(http://www.smashingmagazine.com/2007/08/02/data-visualization-modern-approaches/) and a pe-
riodic table of visualizations (http://www.visual-literacy.org/periodic table/periodic table.html).

http://www.smashingmagazine.com/2007/08/02/data-visualization-modern-approaches/
http://www.visual-literacy.org/periodic_table/periodic_table.html

2.3 Data Visualisation 21

By applying the guidelines of information visualizations one can weaken the problem, but instead
of a rash determination on one type of visualization, one should rethink other possibilities. One
possibility is to display data like on a website, with multiple visualizations depending on the data.
These sites are often single-purpose, they only fit a special data source. The other possibility is to
create a multi-purpose user interface, which is less specified for the data, for example a tabular
representation for RDF data. A vision of the Semantic Web is that one has only to create user
interfaces for most specific tasks and after analysis of the data the best visualization is chosen.

3
Related Work

There is a lot of related work, both in the field of data integration and in the field of data visual-
ization. There are also many web-based applications covering one of these fields, but the novelty
of this application lays in the combination of the two features, which is rather seldom. If one adds
technologies of the semantic web, the number of applications gets even smaller. But the chapter
covers all the fields and shows many applications which influenced IfiPipes.

3.1 Data Aggregation and Data Integration
In the field data aggregation and data integration there are many tools. The focus is on tools
which are influential on the IfiPipes application or are outstanding in research or practice.

3.1.1 Enterprise Data Integration
Data integration tools are mostly used by enterprises. There exist several concepts of data inte-
gration. Enterprise information integration (EII) is the process of providing an abstraction layer
to the company-owned data sources. This integration layer results in a single interface for all
data in an organization. ‘Extract, transform, load‘ (ETL) on the other hand results often in a data
warehouse, where the data is extracted from the single databases, then transformed if needed
and at last loaded into the new target. The advantage of ETL is a much better performance, as the
queries don’t have to query several sources. The advantages of EII is to have an access to ‘live‘
data and that no data warehouse is needed. Summarized the benefit of ETL is speed, while the
benefit of EII is cost. If EII could solve the problem of analyzing queries better, to query only the
needed data sources, it’ll result in a huge performance boost. But even if the problem at query
start is optimally solved, it doesn’t mean it is optimal at run-time. In [Halevy et al., 2005] the
authors point out the two approaches are fundamentally different, thus they can co-exist. So it
is in the hand of the company to decide which approach suits its business better. An unsolved
problem which exists in both approaches is the mapping of semantics in the databases. By using
machine learning and data algorithms one can at least semi-automate the process1.

1A list of data and entreprise integration research projects can be found on http://www.ifi.uzh.ch/∼pziegler/
IntegrationProjects.html

http://www.ifi.uzh.ch/~pziegler/IntegrationProjects.html
http://www.ifi.uzh.ch/~pziegler/IntegrationProjects.html

24 Chapter 3. Related Work

3.1.2 Yahoo! Pipes
Yahoo Pipes2 is a traditional web application created by Yahoo! in 2007. Yahoo Pipes allows the
aggregation and manipulation of web feeds, internet sites and other sorts of contents on the web.
One of the biggest advantages of Yahoo Pipes is its graphical interface, which allows graphical
programming of these data mash-ups, as it can be seen in Figure 3.1.

Figure 3.1: A screenshot of a Pipe fetching and combining three feeds in Yahoo! Pipes3

The user interface of Yahoo! Pipes consists of three parts. On the left side there is the Library
pane, which is a list of all possible Modules [Inc, 2011; Trevor, 2008]. The Library is parted in sev-
eral groups, where the Modules are grouped by functionality. The different groups have different
Modules, the most important ones are listed below4:

• Sources: Sources are Modules which encapsulate a data source (i.e. an RSS feed).

• Operators: Operators enable data manipulation functions like sort or filter and aggregation
functions like count.

• User Inputs: User Input Modules act as input fields for the users of a Pipe and can be filled
before running the Pipe.

2http://pipes.yahoo.com/pipes/
4The full list of Modules can be found on http://pipes.yahoo.com/pipes/docs?doc=modules.

http://pipes.yahoo.com/pipes/
http://pipes.yahoo.com/pipes/docs?doc=modules

3.1 Data Aggregation and Data Integration 25

• Data Types: There are several groups for different data types, like String, Data or Url.

The Canvas is the main area of the Pipe in the center of the application. By dragging an entry
from the Library to the Canvas it creates a Module. It also acts as the workspace to assemble
Pipes and allows the dragging of Modules on the whole workspace. After the creation of Pipes
the most important thing is the drawing of connections between the Modules. The wiring of the
connections is the heart of the Pipes application, by connecting Modules one creates a data mash-
up. Each output of a Module is also the input of another Module, so the data streams are passed
from Module to Module. It is even possible to use a previous create Pipe which acts as a normal
Module and connect this Pipe to other Modules.

The third part of the application is the Debugger pane in the bottom of the page and shows
the output, depending on the selected Module (shown in orange in Figure 3.1. To finish a Pipe
one has to connect the final Module to the Output Module. Not shown is the Menu, which allows
the user to save a Pipe, change its name or create a new Pipe.

The concept behind Yahoo! Pipes resembles the Unix pipes and filters architecture [Baker,
1987]. Pipes had some success in mash-up development, especially because of its graphical pro-
gramming paradigm, which enabled user with little programming abilities to create data mash-
ups. Users who want to use Pipes without a graphical interface can use YQL5, a SQL-like query
language for the web.

Missing features of Yahoo! Pipes are the fact, that they don’t allow to pipe semantic data and
the lack of an integrated visualization, to display the selected data. The output can be fetched
as RSS or JSON and then visualized by the developer, but an automatic solution to visualize the
outcome is missing.

3.1.3 DERI Pipes
DERI Pipes6 is the answer of the Digital Enterprise Research Institute (DERI) to Yahoo! Pipes.
DERI is a research institute with focus on the Semantic Web, which consits of three groups local-
ized in Europe, Asia and the USA. With DERI Pipes one can create data mash-ups using semantic
technologies as RDF and SPARQL. The user interface, as shown in Figure 3.2 is very similar to the
UI of Yahoo! Pipes.

The left pane consists as of the Operators (analogue to the Modules in Yahoo! Pipes). Many of
the Operators have the same or at least a similar function8. But instead of fetching RSS feeds or
HTML data, Operators can fetch complex queries with the help of SPARQL or even whole data
sources by getting RDF. As the power of the Semantic Web to combine and interlink data sources
is higher, the value of the semantic Pipes is higher [Le-Phuoc et al., 2009]. The application allows
the user to get the output of a Pipe as RDF data or as raw data (depending on the type of output).
It also provides a webpage with the results displayed in a faceted browser style, by using Exhibit9

to display the data.
DERI Pipes is an open-source project written in Java and is using the web framework ZK10.

The problem with further development of DERI Pipes is that it isn’t actively developed at the

5http://developer.yahoo.com/yql/
6http://pipes.deri.org/
8A list of all Operators can be found on http://pipes.deri.org:8080/pipes/doc/operators.html
9http://www.simile-widgets.org/exhibit/

10http://www.zkoss.org/

http://developer.yahoo.com/yql/
http://pipes.deri.org/
http://pipes.deri.org:8080/pipes/doc/operators.html
http://www.simile-widgets.org/exhibit/
http://www.zkoss.org/

26 Chapter 3. Related Work

Figure 3.2: A screenshot of a pipe fetching and combining two data sources about Tim Berners-Lee in Deri Pipes7

time. While the mailing-list is still active, there isn’t much activity ongoing and the development
stopped in 2009. Another problem is the Draw2D-port in ZK, which isn’t documented very well
and the development of it has stalled as well. All the problems result in the fact, that DERI Pipes
lacks usability in modern browsers.

3.1.4 Google Fusion Tables
Google Fusion Tables11 is the product of Alon Halevy, a well-known researcher in the field of
data integration. Fusion Table allows the user to upload tabular data from CSV or Excel-files to
the web application. The uploaded data can then be merged, aggregated and filtered. One can
also merge data with data from the web or with another table. Fusion Table further provides
visualizations of data sources by using the Google Visualization API. Visualizations include table
visualization, visualizations on Google Maps or visualization in a timeline, depending on what
data is available. Fusion Tables lacks the functionality using data sources stored in semantic
formats and also doesn’t allow to interlink to existing data.

A solution for using semantic data in Fusion Tables would be to use another tool created by
Google, Refine12. Refine is a desktop application that allows the import of various data sources
and the clean up, transformation and extension of the imported data. By exporting the data
as CSV one can import it into Fusion Tables. Refine has some semantic capabilities, as it’s the
successor of a product created by Freebase, a company working in the semantic space, which was
acquired by Google. So the data can be connected with data from Freebase13, which is now a large

11http://www.google.com/fusiontables/Home
12http://code.google.com/p/google-refine/
13http://www.freebase.com/

http://www.google.com/fusiontables/Home
http://code.google.com/p/google-refine/
http://www.freebase.com/

3.2 Data Visualization 27

graph of things on the Semantic Web. One can even export data as RDF, with an extension14.

3.2 Data Visualization

Data visualization software is often used in the fields of statistics and medical sciences, as they
deal with large numbers of data entries. In recent time enterprises started to use information
visualization to display large data sets. Semantic data visualization is still in it’s infancy, but there
are a few tools and applications. Another trend is to create visualizations, which can be changed
and then shared or that visualization can be even ‘forked‘ [Gorman, 2010]. As the data is freely
available others can take the same data to create different visualizations.

3.2.1 IBM Many Eyes

Many Eyes15 is a web site created by IBM, where people can upload data sets and choose visual-
izations for their data. The visualizations have to be chosen by the user, there is no data analysis.
All data sets and all visualization are public and other people can play with the visualization or
even create new visualization based on existing data sets. Users can also comment on both data
sets and visualizations and share them with others. Many Eyes supports a number of visual-
izations, from statistical visualizations and charts, to tag clouds and maps. There are also a few
faceted browsing options to filter data from the visualization and a text search to highlight single
items.

3.2.2 Microsoft Pivot

Pivot is a software application from Microsoft Live Labs for visualizing massive amounts of data.
As the research group was discontinued, the desktop application was removed from the home-
page, but the web viewer called PivotViewer16 is still online, as it is one of the show cases of
Microsofts programming language Silverlight. Pivot uses a faceted browsing approach to filter
data categories and uses a AJAX-enabled search to find specific data entries. Pivot allows the user
to arrange the data in a tile view or in columns, where similar items are grouped together. The ap-
plication uses high-resolution images and with the help of Microsofts Deep Zoom, the application
can be zoomed very smoothly. Pivot’s user interface can be seen in Figure 3.3.

Pivot can’t visualize semantic data directly, the data has to be transformed to special XML
templates. The Virtuoso Quad Store, a semantic data store developed by OpenLink Software, has
a built-in visualization engine based on faceted browsing and Pivot18.

14The homepage of the Google Refine RDF extension cat be found at: http://lab.linkeddata.deri.ie/2010/
grefine-rdf-extension/

15http://www-958.ibm.com/software/data/cognos/manyeyes/
16http://www.microsoft.com/silverlight/pivotviewer/
18Kingsley Idehen, a proponent of the Semantic Web and CEO of OpenLink Software, creates many visualizations

using semantic with Pivot. A list of collections can be found in his delicios account: http://www.delicious.com/
kidehen/pivot collection app

http://lab.linkeddata.deri.ie/2010/grefine-rdf-extension/
http://lab.linkeddata.deri.ie/2010/grefine-rdf-extension/
http://www-958.ibm.com/software/data/cognos/manyeyes/
http://www.microsoft.com/silverlight/pivotviewer/
http://www.delicious.com/kidehen/pivot_collection_app
http://www.delicious.com/kidehen/pivot_collection_app

28 Chapter 3. Related Work

Figure 3.3: The user interface of Microsoft PivotViewer showing the leaders of the world, categorized by continen-
t/region.17

3.2.3 Google Public Data Explorer
Google Public Data Explorer19 is the newest web application for information visualization. The
Public Data Explorer has a few predefined data sets and provides four visualizations for each set.
These visualizations are Line chart, Bar chart, Map chart and Bubble chart. The application uses
features from Trendalyzer, an application created by well-known statistician Hans Rosling20. The
Public Data Explorer allows the user to upload his/her own data set, which can be previewed,
published and shared. To upload data, a user has to describe their data sets using the Dataset
Publishing Language (DSPL), which is an open, XML-based format. Although the format is open,
one still has to learn a new language in order to use their own data sets. The user interface of the
application feels really great. One can go back and forth in time and even press a play button
to automatically advance in time. Also the filtering is very expressive and many visual clues are
provided to find the right data. The user interface of the Public Data Explorer is depicted in Figure

3.2.4 Graph Visualization Tools
prefuse21 is a visualization toolkit for creating rich interactive data visualizations [Heer et al.,
2005]. prefuse is open-source and implemented in Java. There exists also a Flash implementation,
called prefuse flare. While prefuse is mainly a graph visualization toolkit, it can also visualize
non-graph data.

Jung22 is also a visualization library, implemented in Java and is open-sourced. Jung contains

19http://www.google.com/publicdata/home
20For an overview of Hans Rosling’s greatest talks the reader is referred to http://www.economist.com/node/

21013330
21http://prefuse.org/
22http://jung.sourceforge.net/

http://www.google.com/publicdata/home
http://www.economist.com/node/21013330
http://www.economist.com/node/21013330
http://prefuse.org/
http://jung.sourceforge.net/

3.2 Data Visualization 29

Figure 3.4: The user interface of Google Public Data Explorer showing the total population of the countries of the
world.

various implementations of graph and network algorithms. Jung also allows the user to inter-
act with the visualizations to change the layout or to move nodes. Also the framework enables
filtering, which declutters the visualization.

Processing23 is a programming language and environment and can be used to create interac-
tive and static images and animations. Processing runs in the Java Virtual Machine and can be
extended with Java. There is a sister project which implements Processing in Javascript, called
Processing.js. Processing was developed as a teaching language within a visual context, but it
developed into a whole toolkit.

Tulip24 is a data and graph visualization framework implemented in C++. Tulip is very strong
for large data sets and is able to visualize graphs having up tp 1’000’000 elements [Auber, 2003].
Tulip allows the user to interact with the visualization and follows Ben Shneiderman’s mantra:
‘Overview first, zoom and filters, then details on demand‘25. Tulip is mainly used in bioinformat-
ics and other research fields which work with large data sets.

3.2.5 Fresnel
Fresnel26 is a vocabulary for specifying how RDF graphs are presented27. Fresnel wants to stop
the practice that developers have to determine for each application and tool which information
is shown and how it is presented. This is done by using concepts of lenses and formats. Lenses
determine which properties of an RDF graph or resource are shown and how these properties are
ordered. Formats define how resources and properties are displayed and provides relationships
to styling languages like CSS [Bizer et al., 2005]. Fresnel allows the selection of resources with
SPARQL and its own selector language, FSL.

23http://www.processing.org/
24http://tulip.labri.fr/TulipDrupal/
25See Subsection 2.3.2 for more information about Shneiderman’s guidelines for information visualization.
26http://www.w3.org/2005/04/fresnel-info
27The specification for Fresnel can be found on: http://www.w3.org/2005/04/fresnel-info/manual/

http://www.processing.org/
http://tulip.labri.fr/TulipDrupal/
http://www.w3.org/2005/04/fresnel-info
http://www.w3.org/2005/04/fresnel-info/manual/

30 Chapter 3. Related Work

While Fresnel is a good approach to display data in tabular or textual form, Fresnel’s use for
more sophisticated visualizations is currently small. The problem is, that most visualizations rely
on more then pure CSS. The problem could be alleviated when every browser supports vector
graphics like SVG or more powerful style languages. A first step in this direction is done with
CSS3, which allows animations without using JavaScript. Fresnel is used in a few applications,
but most of them seem to be discontinued or not working. Also there is little activity in the
Fresnel working community, their mailing list28 is updated scarcely. One member proposes a
new format, called SPARQL Web Pages29, which allows user to use HTML snippets that contain
SPARQL queries, which is like a stripped variant of Fresnel.

3.2.6 Semantic Data Visualization Tools
One of the earliest graph visualization tools for the Semantic Web is RDF Gravity 30. RDF Gravity
enables the import of RDF data or OWL ontologies and visualizes them as a graph. One can filter
data by applying global and local filters and the application includes a full-text search. For more
filtering the application allows to create SPARQL queries for additional filtering. RDF Gravity is
implemented as a Java web application and created using the JUNG framework for the visual-
ization and the Jena framework as semantic API. A screenshot of the interface is shown in Figure
3.5.

Figure 3.5: The user interface of RDF Gravity. The loaded ontology is the Pipes ontology of the thesis.

One can see that the visualization doesn’t provide much clarity. By applying filters the visual-
ization gets better, but the problem of displaying RDF data as a graph is clearly visible.

28https://sympa-roc.inria.fr/wws/arc/fresnel
29http://uispin.org/
30http://semweb.salzburgresearch.at/apps/rdf-gravity/index.html

https://sympa-roc.inria.fr/wws/arc/fresnel
http://uispin.org/
http://semweb.salzburgresearch.at/apps/rdf-gravity/index.html

3.2 Data Visualization 31

mSpace31 uses a totally different approach, they use semantic data and display it in a iTunes-
like column UI, to explore and select data. Depending on the selection in the columns the content
changes. This is a more website like approach, which makes the selection much easier. Optional
there is also a full-text search in place.

Exhibit32 is a publishing framework for web pages. Exhibit is implemented in JavaScript and
enables developers to create views of their data. The data is loaded in templates and visualized
in a faceted browsing manner. Views include maps or tabular visualizations and are defined by
special data templates. While Simile doesn’t allow the import of RDF data, there exists a web
service called Babel33, which can convert the data from various formats, including RDF/XML to
Exhibit JSON. Exhibit is used by Deri Pipes to visualize the queried data in a faceted web page.

A similar tool is Longwell, which visualizes RDF data in a faceted browser. Unlike Exhibit,
Longwell isn’t a web application, but a desktop application written in Java. All three tools, Ex-
hibit, Babel and Longwell are created by teams from the Simile research project34, which is a joint
project run by the W3C and the computer science group of the MIT. Simile focuses strongly on
semantic technologies and is one of the leading Semantic Web research groups.

There exist several semantic web browser, which allow the traversing of certain data set.
ThinkBase35 for example allows to browse through the Freebase data set, while ThinkPedia36

allows a user to browse through Wikipedia articles [Hirsch et al., 2009]. DBpedia37, the seman-
tic clone of Wikipedia, has also a faceted browsing visualization, where it allows the filtering of
results.

Tabulator38 on the other hand is a generic data browser for the Semantic Web [Berners-Lee
et al., 2006]. Tabulator is both a web application and a browser add-on. Tabulator uses faceted
browsing to display data about Semantic Web data sources. If data is annotated as temporal or
geographical data, it can be displayed on a timeline respectively on a map. While Tabulator is an
interesting proof of concept the user interface is bulky and the querying is pretty slow.

31http://www.mspace.fm/
32http://simile-widgets.org/exhibit/
33http://service.simile-widgets.org/babel/
34http://simile.mit.edu/
35http://thinkbase.cs.auckland.ac.nz
36http://thinkpedia.cs.auckland.ac.nz/
37http://dbpedia.neofonie.de/browse/
38http://www.w3.org/2005/ajar/tab

http://www.mspace.fm/
http://simile-widgets.org/exhibit/
http://service.simile-widgets.org/babel/
http://simile.mit.edu/
http://thinkbase.cs.auckland.ac.nz
http://thinkpedia.cs.auckland.ac.nz/
http://dbpedia.neofonie.de/browse/
http://www.w3.org/2005/ajar/tab

4
IfiPipes

This chapter explains the application of the learned theory in previous chapters. In includes an
overview of the software used in the application, presents roughly the architecture and points at
details of the implementation. Furthermore the user interface is shown, both as sketch and as
application. The chapter concludes with a user guide and a few selected use cases.

4.1 Used Software
IfiPipes, the application resulting from this thesis uses various free and open-source software. It
is written in Java Version 6 and the author used Eclipse Helios with the GWT Plug-In as devel-
opment environment. For the ontology development the ontology editor Protégé was used. The
application is designed for the Mozilla Firefox browser and runs with a few quirks also in Google
Chrome. The application is deployed on a server running an Apache Tomcat instance. More
software is listed in the next few subsections below.

4.1.1 Google Web Toolkit
Google Web Toolkit1 (GWT) is an open-source development toolkit created by Google and al-
lows the development of complex web applications. Contrary to traditional web development, in
which the client side is often done in HTML, CSS and extensive JavaScript, the toolkit enables the
developer to write browser-based applications only in Java, without the need to write JavaScript.
The Java source code is compiled to JavaScript and is compatible with almost all browsers and
browser versions. It also relieves the developer with the sometimes tedious work to write AJAX
(Asynchronous JavaScript and XML) calls, by using its own optimised Remote Procedure Call
(RPC) system, which every Java developer already knows. Furthermore GWT includes various
Swing-like UI components and allows the user to create more widgets.

In opposition to similar Java toolkits like ZK2 or Vaadin3, GWT distinguishes between client-
side and server-side programming. This results in faster client-side only operation, but leaves the

1http://code.google.com/webtoolkit/
2See http://www.zkoss.org/ for more information. Deri Pipes (see Related Work) uses the ZK toolkit.
3http://vaadin.com/home. Vaadin uses GWT widgets to display webpages.

http://code.google.com/webtoolkit/
http://www.zkoss.org/
http://vaadin.com/home

34 Chapter 4. IfiPipes

developer with more work. GWT allows only few selected libraries on the client-side and restricts
the datatypes used in RPCs to mostly primitive types. On the server-side every programming
language can be used, although it makes sense to use Java or at least a language running on the
Java Virtual Machine (JVM). Google itself uses GWT in a few of it’s own projects, in particular
Adwords, Moderator and the now discontinued Wave. The version used in the application is
GWT 2.1, as version 2.2 was released in the last days of writing. The new version brings support
for HTML 5 functionality like canvas, audio or video, which provide currently no benefit for the
application and even introduces a bug when Google Maps for GWT is uses4.

There are several other frameworks or libraries extending GWT and adding features not pro-
vided by the basic version. This project made use of following extensions or libraries:

• SmartGWT5 for more information on SmartGWT.: SmartGWT is a framework on top of
GWT and includes a large set of widgets. It is geared towards larger, JavaScript-heavier
applications, as it consists of a huge codebase and the initial loading time is therefore slow.
SmartGWT is release under two licence; there is a free LGPL version and and a commercial
professional edition, which includes more features on the server-side, like data binding or
advanced security functions.

• GWTUpload6: GWTUpload is a small library, consisting of a UI widget and a servlet to
upload files to the server. Like GWT it is written in Java, but compiles into JavaScript.

• Google Maps for GWT7: The Google Maps Library for GWT allows one to access the Maps
API via Java instead of JavaScript.

4.1.2 Jena
Jena8 is an open-source framework for developing Semantic Web applications written in Java.
Jena originated from HP and is one of the biggest Semantic Web-related frameworks. It includes
a triple store, an easy-to-use programming API for both RDF and OWL and a SPARQL query
engine. It is also one of the very few frameworks which has not only a RDFS reasoner, but also an
OWL reasoner is included.

The heart of the Jena API is the Model, which is a set of statements and another representation
of the semantic graph. To fill a Model one can either add statements in Java or parse them from a
file or the web. Jena supports the import of various RDF formats like RDF/XML, N3 or OWL.

4.1.3 tGraph
The tGraph framework created by Jonas Tappolet is based on Jena and NG4J - Named Graphs
API for Jena and enables the querying of temporal semantic data. Data can either by retrieved by

4As mentioned in a GWT forum thread: http://groups.google.com/group/google-web-toolkit/browse
thread/thread/65f1184b6e5f4f95

5See http://code.google.com/p/smartgwt/ respectively http://www.smartclient.com/product/
6http://code.google.com/p/gwtupload/
7http://code.google.com/p/gwt-google-apis/
8http://openjena.org/ provides many resources about Jena and the Semantic Web, including an comprehensive

tutorial on RDF and the Jena API.

http://groups.google.com/group/google-web-toolkit/browse_thread/thread/65f1184b6e5f4f95
http://groups.google.com/group/google-web-toolkit/browse_thread/thread/65f1184b6e5f4f95
http://code.google.com/p/smartgwt/
http://www.smartclient.com/product/
http://code.google.com/p/gwtupload/
http://code.google.com/p/gwt-google-apis/
http://openjena.org/

4.2 Ontologies 35

using Java or tSparql9 queries. Like Jena the tGraph framework also provides both, an in-memory
and a persistent storage, by using the Virtuoso Quad Store10.

4.2 Ontologies
IfiPipes makes great use of the two ontologies created for the application. The goal was to describe
both the operators to query data sources and the visualization corresponding to the queried data.

4.2.1 Pipe Ontology
The ontology describing the pipes, the main element of the application, is implemented in OWL.
The structure of the ontology is as follows:

• Pipe: Pipe is the superclass of all concrete Pipes. Each subclass of a Pipe must have a
name represented as a String.

– Builder: Builder are elements that can be used to create URLs.

– Fetcher: a Fetcher queries data from a data source. If a Fetcher follows after a
Builder the output from the Builder is used by the Fetcher.

– Condition: a Condition is an element which allows the add conditions to Pipes.

– Filter: Filter can be used to manipulate the output of elements by combining
elements or replacing text.

• Stream: a Stream is the output or the input of a Pipe. A Stream has a value which is
used to serialize Pipes.

– Query: a Query is a representation of a Sparql Query.

– Results: Results come in several types and result mostly of a fetch operation.

– URL: a URL is mainly created by a Builder.

Each of the four subclasses of Pipes has more subclasses which are mapped to Java classes in
the source code. For example the OWL class SPARQLEndpointBuilder points to the Java class
SPARQLEndpointBuilder.java. Like its siblings the class SPARQLEndpointBuilder has
not only it’s hierarchical parent as super class, but also various property restrictions, modelled in
OWL. One of the restrictions is the name, modelled with a data property called name. The restric-
tion is of type owl:hasValue. This is a workaround to the fact that OWL doesn’t allow default
values for properties [Quirolgico et al., 2004].11 Each Pipe has also at least one hasInput restric-
tion and exactly one hasOutput restriction. In the case of the SPARQLEndpointBuilder the in-
put can either be a Query or a URL, so is has two hasInput restrictions, and the output is a special
type of URL, a EndpointURL. One can see that the Pipes are not regular, ‘dumb‘ pipes according
to the Pipes and Filter architecture [Baker, 1987; Meunier, 1995], which have the same output as

9tSparql is a temporal extension to SPARQL.
10http://virtuoso.openlinksw.com/rdf-quad-store/
11The workaround is described in detail on SemanticOverflow, a Q&A site for the Semantic Web: http://www.

semanticoverflow.com/questions/807/expressing-default-values-in-owl.

http://virtuoso.openlinksw.com/rdf-quad-store/
http://www.semanticoverflow.com/questions/807/expressing-default-values-in-owl
http://www.semanticoverflow.com/questions/807/expressing-default-values-in-owl

36 Chapter 4. IfiPipes

the input and thus allowing all combinations of pipes. In contrast the application uses ‘intelligent‘
pipes which restrict the combination of pipes by matching the output of the first pipe with the in-
put of the next pipe. The OWL/XML representation of the SPARQLEndpointBuilder, which is
one of the more complex classes, can be seen in Listing 4.1.

Listing 4.1: The OWL class SPARQLEndpointBuilder represented in OWL/XML

<o w l : C l a s s r d f : a b o u t=”#SPARQLEndpointBuilder”>
<rdfs : subClassOf r d f : r e s o u r c e =”# Bui lder ”/>
<rdfs : subClassOf>

<o w l : R e s t r i c t i o n>
<owl:onProperty r d f : r e s o u r c e =”# hasInput ”/>
<owl:someValuesFrom r d f : r e s o u r c e =”#Query”/>

</ o w l : R e s t r i c t i o n>
</rdfs : subClassOf>
<rdfs : subClassOf>

<o w l : R e s t r i c t i o n>
<owl:onProperty r d f : r e s o u r c e =”#name”/>
<owl:hasValue>SPARQL Endpoint Bui lder</owl:hasValue>

</ o w l : R e s t r i c t i o n>
</rdfs : subClassOf>
<rdfs : subClassOf>

<o w l : R e s t r i c t i o n>
<owl:onProperty r d f : r e s o u r c e =”#hasOutput”/>
<owl:someValuesFrom r d f : r e s o u r c e =”#EndpointURL”/>

</ o w l : R e s t r i c t i o n>
</rdfs : subClassOf>
<rdfs : subClassOf>

<o w l : R e s t r i c t i o n>
<owl:onProperty r d f : r e s o u r c e =”# hasInput ”/>
<owl:someValuesFrom r d f : r e s o u r c e =”#URL”/>

</ o w l : R e s t r i c t i o n>
</rdfs : subClassOf>

</owl :Class>

4.2.2 Visualization Ontology
The ontology describing the visualizations is implemented in OWL as well. The ontology is split
in two parts, where one part describes the data source, respectively the results from a query and
the other part defines the visualization. The ontology imports the Geo Vocabulary12 from the
W3C, which is used to describe the visualizations. The part of the ontology which is used to
describe the queried data source can be seen in following list:

12http://www.w3.org/2003/01/geo/

http://www.w3.org/2003/01/geo/

4.3 Architecture 37

• QueryResult: super class of all query results.

– RDF: represents query results in the RDF format.

∗ GeoRDF: RDF with annotated geographical data. Has geo:lat and geo:long as
value for its keywords property.

∗ TemporalRDF: RDF with annotated temporal data. Has the String ‘isQuad‘ as
value for its keywords property.

– SparqlResults: represent query results in the SPARQL results format

∗ GeoSparqlResults: results from a SPARQL query with annotated geographical
data. Has the comma separated String ‘lat,long,geo,latitude,longitude‘ as value for
its keywords property.

∗ TemporalSparqlResults: results from a SPARQL query with annotated tem-
poral data. Has the comma separated String ‘time,from,to,until,now‘ as value for
its keywords property.

The hack to use only one data property to store multiple values is ugly and should be changed
in the future. This part of the ontology is loaded as soon as the user runs a Pipe and the query
results are analyzed. The part of the ontology which describes the visualization is displayed in
the following list:

• Visualization: super class of all visualizations

– MapsViz: used for displaying data on a map. MapsViz needs GeoProperties to get
selected.

– PlainTextViz: used as a fallback visualization or if a user wants to see raw JSON /
XML code.

– TableViz: used to visualize unspecific data in tabular form. Also a fallback visualiza-
tion as all semantic data can be presented in tables.

– TempViz: used to display temporal controls. TempViz needs TempProperties to
get selected.

• Property: super class for all properties.

– GeoProperty: property with annotated geographical data.

– TempProperty: property with annotated temporal data.

This part of the ontologies describes the visualizations. Although the description might be
valuable for either the user or the program, the application makes currently no use of it. It is
suggested to implement the part of the ontology further, maybe even create a new ontology for it.

4.3 Architecture
IfiPipes is built as a classical client-server application. The client-side of the application is written
in Java and with the help of GWT compiled in JavaScript. It manages mostly the user interface

38 Chapter 4. IfiPipes

of the application, but also sends requests to query data sources and matches Operators. The
main class of the application is IfiPipes which implements the EntryPoint interface and
the method onModuleLoad(). In this specific case the application calls draw() on the class
ApplicationWindow, which contains all graphical modules of the application and is imple-
mented as a a Singleton. By looking at the class one can see the architecture of IfiPipes has some
weaknesses, as the class acts both as controller and as view. The same flaw can be found in other
classes too, for example the class Menu contains business logic as well. A UML class diagram of
the application is shown in Figure 4.1.

The server-side is written in Java as well and the resulting WAR-file after compilation can be
loaded in an Apache Tomcat instance. Communication between the server and the client works
via remote procedure calls (RPC), these are translated in AJAX calls during the compilation. A
GWT RPC consists of three components as seen in the example below:

• An interface (DataFetcherService) which extends RemoteService and declares the
method signature of all RPC methods.

• An asynchronous interface (DataFetcherServiceAsync) declare to the service that will
be called from the client-side.

• An implementation of the DataFetcherService (DataFetcherServiceImpl) that ex-
tends RemoteServiceServlet.

Furthermore one has to include the servlets in the web application deployment descriptor
(web.xml in the war/WEB-INF/ folder) and add <servlet> and <servlet-mapping> ele-
ments. The servlet configuration can be seen in listing 4.2.

Listing 4.2: Snippet showing the servlet configuration for the DataFetcherService from web.xml

<s e r v l e t>
<s e r v l e t −name>dataFetcher</ s e r v l e t−name>
<s e r v l e t −c l a s s>

ch . uzh . i f i . ddis . pipes . server . DataFetcherServiceImpl
</ s e r v l e t−c l a s s>

</ s e r v l e t>
<s e r v l e t−mapping>

<s e r v l e t −name>dataFetcher</ s e r v l e t−name>
<url−pat te rn>/ i f i p i p e s /dataFetcher</url−pat te rn>

</ s e r v l e t−mapping>

In addition to the three classes and the servlet configuration, one has to annotate the ser-
vice with @RemoteServiceRelativePath("dataFetcher"), else the servlet container Jetty
throws an exception when running.

4.4 User Interface Design
The user interface of IfiPipes is sketched in Figure 4.2. The idea follows the general user interface
standard for western culture to have the controls on the left side and the menu on top.

4.4 User Interface Design 39

Figure 4.1: A stripped UML class diagram of IfiPipes13

40 Chapter 4. IfiPipes

Figure 4.2: The sketched user interface of IfiPipes

One can see that the ApplicationWindow (1) class contains all other graphical modules
of the application. It extends the class HLayout, a container from the SmartGWT framework.
The ApplicationWindow has two direct subelements, one is the OperatorRibbon (2) and the
other is a simple VLayout (3). The OperatorRibbon extends the class TabSet and consists
of three Tab. The three Tabs are called ‘Operators‘, ‘Pipes‘ and ‘Data‘ and all Tabs contain a
ListGrid that displays the contents of each tab in a tabular form. The VLayout contains two
other panes, on the top there is the Menu (4), which extends the HStack class and the middle
and bottom part are occupied by the MainView (5) which extends TabSet as well. The Menu

consists of three Buttons: ‘New Pipe‘, ‘Save Pipe‘ and ‘Run Pipe‘. The MainView contains three
Tabs: The PipeEditor, the source pane and the visualization TabSet. The implemented user
interface can be seen in Figure 4.3.

4.5 Implementation Details

This section shows a few details of the implementation, which are essential for the understanding
of the application. For more information the reader is referred to the source code, which accom-
panies the thesis.

4.5 Implementation Details 41

Figure 4.3: The user interface of IfiPipes.

4.5.1 Loading the Ontologies
The Pipes ontology is loaded asynchronously with an AJAX call when the application is started.
On slower computer it is visible, that the Operator ribbon isn’t filled from beginning, but the grid
is populated when the ontology is finally parsed and written in an XML document, which is the
data source for the grid. This XML is overwritten each time when the user starts the application,
to automatically push changes in the ontology. The parsing of the ontology makes use of Jena’s
frame API14. At first the names of the Operators need to be loaded from the ontology, these are
stored as value restrictions, as explained in Subsection 4.2.1. First the ontology is loaded in a
Jena OntModel, which extends the basic graph with a few OWL-specific methods. Second the
OntProperty name is got from the graph and all of its restrictions are stored in a iterator. Third
the iterator is used to iterate over all restrictions and if there are owl:hasValue restrictions they
are written to XML. A Java code snippet for this procedure can be found below:

Listing 4.3: Snippet from the fillOperatorGridXML method in the OntologyConverter class

I t e r a t o r <R e s t r i c t i o n > i = nameProp . l i s t R e f e r r i n g R e s t r i c t i o n s () ;
while (i . hasNext ()) {

R e s t r i c t i o n r = i . next () ;
i f (r . i s Ha sV a lu eR e s t r i c t i o n ()) {

name = r . asHasValueRestr ic t ion () . getHasValue ()
. a s L i t e r a l () . getLexicalForm () ;

. . .
}

}

14See http://jena.sourceforge.net/how-to/rdf-frames.html for a tutorial on RDF frames and the Jena
frame API.

http://jena.sourceforge.net/how-to/rdf-frames.html

42 Chapter 4. IfiPipes

The loading of the XML into the Operator ribbon is fairly straightforward and uses Smart-
GWT’s DataSource implementation, which automatically loads the XML and creates the desired
fields. The possible inputs and the possible output of each Operator aren’t loaded at start, but
rather when the user drops an Operator on the Editor, they are loaded on demand. Again an AJAX
call is used, which parses the ontology on the server and returns a the results to the client. The
possible inputs and the output are also stored as restriction, this time as a owl:someValuesFrom
restriction. The extraction of these restriction works in a similar fashion, but it slightly different,
as the following code snippet shows:

Listing 4.4: Snippet from the loadOutput method in the OntologyConverter class

I t e r a t o r <OntClass> superClasses =
model . getOntClass (PIPES NS + elementName) . l i s t S u p e r C l a s s e s (t rue) ;

while (superClasses . hasNext ()) {
f i n a l OntClass c l = superClasses . next () ;
i f (c l . i s R e s t r i c t i o n ()) {

i f (c l . a s R e s t r i c t i o n () . getOnProperty () . equals (outputProp)
&& c l . a s R e s t r i c t i o n () . isSomeValuesFromRestrict ion ()) {
return c l . a s R e s t r i c t i o n () . asSomeValuesFromRestriction ()

. getSomeValuesFrom () . getLocalName () ;
}

}
}

The Visualization ontology isn’t loaded at start time, but rather when the user runs a Pipe for
the first time. The

4.5.2 User Interface Implementation
The PipeEditor, which contains the Pipes created by the user, extends the SmartGWT container
HStack. When a user drops an Operator from the grid onto the Editor, an instance of the class
PipeElement is drawn and is added to the As all Operators share some visual features, like
the header with the name of the element and or the remove button15, these are implemented in
the super class. The class provides a few other methods, which throw an exception in the base
class and thus have to be implemented by its children. Two methods are used to get either the
configuration to serialize a element or the output of an Operator to pass it to the next one, a third
is used to set the fields of a PipeElement, if the output and the possible input of two adjacent
Operators match.

4.5.3 Operator Matching
The matching code of the Operators can be found in the Menu and is done by String matching. In
Subsection 4.5.1 the loading and parsing of the ontologies is explained. The parsed output and
inputs are stored in the PipeElementDO, the data object of each Operator. The actual matching

15The header and the remove button should be on the same row. Although the implementation is correct, and I filed a
bug report (http://forums.smartclient.com/showthread.php?t=14645), the outcome is not the expected one.

http://forums.smartclient.com/showthread.php?t=14645

4.5 Implementation Details 43

takes places when the user runs a Pipe. It is done by String matching and a snippet can be found
in Listing 4.5.

Listing 4.5: Snippet of the onClick method from the Menu.RunPipeClickHandler class

i f (! c h e c k I f P o s s i b l e P i p e ()) {
return ;

}
PipeElement [] members = ApplicationWindow . g e t I n s t a n c e () . getMainView ()

. g e t E d i to r () . getMembers () ;
i f (members . length > 1){

for (i n t i = 0 ; i < members . length−i ; i ++) {
PipeElement i thElement = members [i] ;
PipeElement ithPlusOneElement = members [i + 1] ;
ithPlusOneElement . setParameter (i thElement . getOutput () ,

i thElement . getDataObject () . getOutputType ()) ;
}

}
/ / e x e c u t e t h e l a s t e l e m e n t
members [members . length −1] . getDataObject ()

. execute (members [members . length −1] . getOutput ()) ;

The snippet shows the method checks at beginning if the Pipe is possible, which means all outputs
and outputs match. If it is valid, the code iterates over all Operators and uses the parameter of
the selected element to set the value of the matching field of the next element. Finally the last
PipeElement is executed, which is often a Fetcher. The execution of the Pipe leads to a request
to a data source.

4.5.4 Querying and Analyzing Data Sources

There are three ways to query data sources in IfiPipes. The first is to use a SPARQL endpoint,
which return SPARQL results encoded in JSON. As most web services uses JSONP, which allows
one to circumvent the single-origin policy, the approach uses GWT’s JsonpRequestBuilder.
The object is requested by calling requestObject(url, callback) and if the request is re-
turned the callback method will run. The second way queries a SPARQL endpoint as well, but
this time the SPARQL results are encoded in XML. Therefore GWT’s RequestBuilder is used
to send a GET request to the server, ba calling sendRequest(data, callback). If the request
to the SPARQL endpoint is successful and the result, either JSON or XML, is returned, the data
is sent to the server, where it is analyzed. The third approach fetches RDF encoded in various
formats. Unlike the other two methods which are called on the client-side, the RDF fetching hap-
pens on the server-side and make use of Jena’s Model.read(url) functionality. As the data is
already on the server it is analyzed.

The analysis for all formats is done in the QueryResultAnalyzeServiceImpl class. The
class loads the Visualization ontology the first time a user runs a pipe, more exactly in its con-
structor. The analysis is pretty simple, for SPARQL results keywords describing a the ontology
are compared with the requested data. If the keywords match, the visualization is added to the

44 Chapter 4. IfiPipes

pool of possible visualizations. After finishing the matching the list of visualizations are returned
to the client, where it is are presented to the user in dialog.

4.5.5 Visualizing Data
The visualizations of the data happens in created in the ApplicationWindow.The display of
the data depends greatly on which visualization is used, which format are the results in and is
the data temporal or not. As there are three different formats and four visualizations, there are
unfortunately many cloned lines of code and a lot of condition. One example of a visualization
can be found in Listing 4.6.

Listing 4.6: Snippet of the getCorrespondingSparqlVisualization method from the ApplicationWindow class

for (i n t i = 0 ; i < j sonData . s i z e () ; i ++) {
f i n a l JSONObject bindingObject = jsonData . get (i) . i s O b j e c t () ;
double l a t = Double . parseDouble (bindingObject

. get (” l a t ”) . i s S t r i n g () . s t r ingValue ()) ;
double lng = Double . parseDouble (bindingObject

. get (” long ”) . i s S t r i n g () . s t r ingValue ()) ;
LatLng point = LatLng . newInstance (l a t , lng) ;
f i n a l Marker marker = new Marker (point) ;
marker . addMarkerClickHandler (new MarkerClickHandler () {

. . .
}) ;
map . addOverlay (marker) ;

}

The snippet shows the creation of a the geographic visualization for SPARQL results encoded in
JSON. The map is already loaded asynchronously at beginning and the method adds Marker to
the map to display the results. The other visualization are similar, but slightly less complex.

4.6 User Guide
The design of IfiPipes is pretty intuitive, but nevertheless a user guide for the application is pro-
vided. IfiPipes allows the combination of so-called Operators to create Pipes. Pipes consist of at
least one Operator which fetches a data source. All Operators can be dragged from the Oper-
ators grid in the left side of the application. As soon as the dragged Operator is dropped onto
the Editor, the graphical representation of the Operator is drawn. The Operators can be freely
arranged on the Editor, to change the order. An explanation of all Operators can be found below
in Subsection 4.6.1.

4.6.1 List of Operators
There are four types of Operators: Builder, Fetcher, Filter and Conditions. Builder are graphical
helpers to create URLs, endpoint URL or SPARQL queries. The URL Builder accepts a base URL

4.6 User Guide 45

and a variable number of parameters. The inputs for the SPARQL Endpoint Builder are fixed, it
accept the URL of the SPARQL endpoint, the URI of the default graph and the SPARQL query.
Depending on the endpoint SPARQL 1.1 may or may not be supported. The two implementations
for URL Builder (a) and SPARQL Endpoint Builder (b) can be seen in Figure 4.4.

(a) URL Builder (b) SPARQL Endpoint Builder

Figure 4.4: Builder Operators

Fetcher are Operators which accept a URL as input and fetch data from a local or remote
source. While the RDF Fetcher (a) loads RDF data in different formats, the SPARQL Result Fetcher
(b) sends a SPARQL query to a SPARQL endpoint and receives SPARQL results, either encoded
in XML or JSON. The two Fetcher Operators are depicted in Figure 4.5.

4.6.2 Running a Pipe
By combining a Builder with a Fetcher one creates a runnable Pipe. By clicking on the Run Pipe
button in the menu the Pipe is analyzed and the program decides if its a valid Pipe or not. The
validity check compares input and output of all the Operators and if they match, the combination
is valid. A Pipe is only valid im all combinations are valid. If the Pipe is not executable a warning
pops up and the user is prompted to fix the Pipe setup. If the Pipe is executable the selected data
source is queried. As soon as the response from the data source is there, the requested data is
analyzed by the application and a window pops up, as seen in Figure 4.6.

The window allows the user to choose various visualizations. Depending on the analyzed
data one or more visualizations are selected. If the user is unhappy with the selection, he or she
can change the selection and the program tries to fit the data in the selected visualizations nev-

46 Chapter 4. IfiPipes

(a) RDF Fetcher (b) SPARQL Result Fetcher

Figure 4.5: Fetcher Operators

Figure 4.6: The Visualization Selection Screen

ertheless. After selecting at least one visualization from the visualization picker the application
switches to the visualization tab and displays the selected visualizations in tabs.

4.6.3 Uploading a Data Set
The application allows the user to upload data sets, which aren’t already accessible via HTTP. To
upload a data source, the data tab in the controls on the left has to be selected, which can be seen
in Figure 4.7.

There one can find already existing data sets or upload new ones. To upload a data set the
user has to click on the upload button and a dialog to choose a file is displayed. The application
supports data sets up to ten MB and the following file types: .xml, .rdf, .owl, .n3 and .trig. The
file is uploaded in the background and as soon as the upload is finished, it is displayed on top of

4.6 User Guide 47

Figure 4.7: The data tab of IfiPipes

the list. The name of the data set is appended a timestamp, so the data sets won’t be overwritten
by equal named file. To use a file as a data source, one can drag the file from the list into the URL
of an RDF Fetcher and run the Pipe like normal.

4.6.4 Visualizing Capitals of the World
The section will present a use case for IfiPipes, to show the reader what the application is capable
of. The use case has the goal to visualize all capitals of the world on a map. As there is plenty of
data available on the web describing countries and political data, the data will be fetched from a
web service. In this concrete case a SPARQL endpoint will be queried, this use case concentrates
on the DBPedia endpoint. DBPedia is the semantic clone of Wikipedia and the largest linked data
source. On DBPedia one can find an almost unlimited resources, especially when looking for
facts.

The first action of the user is to start the application and wait for the Operators to load. When
the grid with the Operators appears on the left side, the application is fully loaded and ready for
use. At beginning the Editor remains empty, a state which is going to change soon. To start with
the Pipe, a SPARQL Endpoint Builder is selected on the Operators grid and dropped onto the edi-
tor, the main area with a grey background. After the Operator drew itself, the user starts filling in
the fields. The URL for the DBPedia endpoint (http://dbpedia.org/sparql) and the default
graph URI (http://dbpedia.org) can both be found on their homepage, the user copies and
pastes the values in the respective fields. The SPARQL query has to be filled in manually, for the
brevity of the use case it is provided in Listing 4.7.

Listing 4.7: SPARQL Query to list all capitals of the world

SELECT DISTINCT ? c i t y ? l a b e l ? country ? l a t ? long
WHERE {

? c i t y rdf : type dbpedia−owl : City .
? c i t y r d f s : l a b e l ? l a b e l .
? country dbpedia−owl : c a p i t a l ? c i t y .
? country rdf : type dbpedia−owl : Country .

48 Chapter 4. IfiPipes

? country dbpprop : sovereigntyType ? type .
? c i t y geo : l a t ? l a t .
? c i t y geo : long ? long .
FILTER (LANG(? l a b e l) = ’ en ’) .
LIMIT 100 .

}

After filling in the values, the user selects a Sparql Endpoint Fetch and drop it right next to
the Builder. This completes a simple runnable Pipe. As DBPedia supports both SPARQL/JSON
and SPARQL/XML formats, the user leaves the default value to SPARQL/JSON. To run the Pipe
the user clicks on the ‘Run Pipe‘ button on top. After a short waiting period, the visualization
picker is shown. The user selects the desired visualizations and waits for the application to draw
them. When the application has finished with the task, the user may switch tabs to see different
visualizations and play with them. A possible outcome of this result can be seen in Figure 4.8.

Figure 4.8: The Map Visualization of IfiPipes

If one sees the figure and thinks this isn’t right, there aren’t that many capitals, they are right.
The problem is that DBPedia thinks even states or regions are capitals and therefore they are
shown as well.

5
Limitations

It is almost impossible to write a thesis and apply the learned knowledge without limitations
in ones work, especially if the task has to be done in a relatively short time. This chapter shows
limitations in both the framework, respectively the ontologies, and the resulting application. Also
limitations in the used technologies are displayed, which have mostly an effect of the speed and
the snappiness of the application.

5.1 Framework
The framework, which consists of the two ontologies is pretty straightforward. The Pipes on-
tology is rather small and simple, which works fine for the requirements of the application. Al-
though it probably could be extended, it would at the same time increase the complexity and re-
duce both flexibility and extensibility. The Visualization ontology is also lightweight, but would
probably need some redesign. The keywords which describe a data source are stored in a single
value as a comma separated String, instead of modelling each keyword as a data property and
reusing existing ontologies. This design leads to a very simple mapping between the keywords
from the ontology and the keywords extracted from the queried data. While this String compar-
ison is working, it doesn’t use the power of the Semantic Web, which could enforce the mapping
by using reasoning.

Another issue with the Visualization ontology is the description of the visualization. Whereas
the ontology includes a brief description of the visualization, is isn’t used in the application. The
reason for this is the fact, that it is hard to map the description of the visualization to the actual
visualization. The task is even more tiresome when using a framework like GWT, where most
libraries and even reflection can’t be used on the client, where to visualization is created.

5.2 Application
At the time of writing IfiPipes hasn’t an option to save created Pipes. A procedure to serialize and
store Pipes or single Operators could enable the reuse of Pipes. As it is a Semantic Web application
it would be obvious to store the Pipes in RDF, but the implementation is open, one could use a

50 Chapter 5. Limitations

data base or store them as flat files. If one would choose to serialize the Pipes in XML, it would
be nice if other users could import their serialized Pipes, created in Deri Pipes.

IfiPipes implements four visualizations: two of them are textual representations and the other
two are graphic visualizations. One is a geographical visualization on a map and the other dis-
plays temporal data. The temporal visualization isn’t a stand-alone visualization, but rather an
extension to one of the other visualizations. As the visualizations are the most important part
for the user, it would be great, if one could create more visualizations. Similarly the users could
benefit from a larger number of Operators. Some of these are defined, but not yet implemented,
while some developers might have ideas for completely new Operators.

If the application is used by multiple users, it would be important to implement some sort
of caching. This is especially true, if the user makes extensive use of the temporal visualization.
Temporal changes aren’t filtered on the client side, but rather an AJAX request is sent each time
the time slider is changed. For large data sets this results in long waiting times for the user and
deteriorates the user experience.

5.3 Used Technology
One of the biggest limitations of the application is the absence of one feature in the frameworks.
Whereas it would have been nice to have a Microsoft Visio like editor, which allows the wiring of
elements and the total rearrangement of them, none of the investigated frameworks provides this
ability well enough. Draw2D1, which is a JavaScript library devoted to the task to create these
Visio-like drawings, could have been used, but the bindings to the frameworks are either very
old or still in pre-alpha state2.

Another quirk with GWT is that the architecture is split in client- and server-side. This results
in snappier client-side interactions, but has the problem that only very few Java libraries can be
used. Unfortunately there is no Semantic Web or RDF library, so all client-side code must be
implemented using mostly primitive data types and almost no libraries. The other option is to
always send data back and forth between client and server. This results in a similar architecture if
one would use a server-side framework, but one has to write the all the requests. The application
uses both approaches, all work using the ontologies is done on the server side, while the client-
side parses the returned data from a request to prepare the data for the visualizations.

Another limitation is the speed of the temporal framework, which takes quite long to load a
file into memory. This is especially crucial in web applications, where time is an important factor.
Generally all semantic stores aren’t on par with modern relational data bases, if only speed is
measured, so it isn’t the fault of the tGraph implementation. The fact that SmartGWT is primary
an enterprise framework and therefore has a huge code base increases the load time. While most
speed restrictions can’t easily be solved, the result is nevertheless that the application has a long
loading time and the response times are sometimes slow.

1http://www.draw2d.org/draw2d/
2ZK has a repository devoted to a Draw2D implementation, is hasn’t been updated in more then two years:

http://thinkcap.svn.sourceforge.net/viewvc/thinkcap/plugins/ZKDiagram/ and for GWT there exists
a project page for a similar project, but most of the bindings aren’t implemented yet: http://code.google.com/p/
gwt-draw2d/

http://www.draw2d.org/draw2d/
http://thinkcap.svn.sourceforge.net/viewvc/thinkcap/plugins/ZKDiagram/
http://code.google.com/p/gwt-draw2d/
http://code.google.com/p/gwt-draw2d/

6
Future Work

The future work chapter is divided in two sections. The first part presents a vision of a universal
visualization framework, whereas the second part shows where future work can be done regard-
ing the ontologies and the application.

6.1 Universal Visualization Framework
The thought-provoking Universal Visualization Framework (UVF) is a framework used to de-
scribe all kinds of data. Depending on how fine-granular the data set is and of course on the
nature of the data itself, the application which implements the UVF displays a different visual-
ization. The visualization would be as specific as possible and the application would let the user
interact with it and provide controls for filtering and searching, as proposed in [Shneiderman,
2002]. If the user is unsatisfied, he/she could select another visualization. These other visualiza-
tions would be ranked by the application as well and would be displayed in a list or tile view,
sorted by their ranking. The application should be able to find out if a visualization is frequently
rejected and by using machine learning algorithms the framework should be improved. The ap-
plication should allow the user to switch between broader and more fine-granular visualizations.
While the UVF sounds like a daydream of most information visualization researchers, which it
is nowadays, it could become real in the future. Like Tim Berners-Lee vision of the Semantic
Web [Berners-Lee et al., 2001], the vision of the UVF is similarly futuristic, but nevertheless both
desirable and necessary. Rather than creating one framework to rule them all, it would be more
convenient to create a number of frameworks, each for a specific use case. Similar to linked data,
frameworks are uploaded on the web, where they can be accessed without restrictions and are
interlinked with each other. This results in a few improvements to the current state of visualiza-
tions. First, it is increasingly easier to use a visualization for non-engineers. Second, the concept
of visualization ‘forking‘1 is born. As both frameworks and data are open, everyone can either
reuse an existing visualization with a new, fitting data set or can create a new visualization with
already existing data sets.

1The term fork comes is used in software development and describes the process of copying the source code of a
software, to work independently on it.

52 Chapter 6. Future Work

It would make sense to implement these frameworks as OWL ontologies. The concept is
already known from linked data, so little learning is necessary. Furthermore OWL is a perfect
solution to create meta-ontologies, as the import of external ontologies is straightforward. The
mapping between the data and the data description could be realized by probabilistic reasoning,
like suggested in [Gilson et al., 2008].

6.2 IfiPipes
There are a few limitations in the application, as mentioned in Chapter 5. Future work could
include a developer fixing these limitations. First, one could implement the saving functionality,
which enables the reuse of Pipes and the sharing of Pipes with other users. Second, it is always
nice to have more features or in this case visualizations. While as the map, the temporal and
the textual/tabular visualization are pretty straightforward and aren’t very specific, one could
create visualization exactly for very specific data sets. An example would be the specification
for a politician visualization, depending on the agenda of their party and the actual political
profile. Third, the mentioned caching would improve the speed of the application and make
the visualizations more interactive. Speed, especially for web applications, is almost always the
biggest issue of users. Forth, the architecture of the application could be redesigned and the
Model View Presenter pattern could be applied more strictly. Fifth, the user interface could be
beautified by an interaction designer. Instead of using predefined widgets of SmartGWT it would
be nice to have custom designed modules, which look less ‘enterprisey‘. While this isn’t a needed
for an academical application, it would be needed if one has the goal to gain non-researcher as
users. An extreme approach of this redesign would be the scrapping of the whole application and
only use the framework, to build a new implementation.

The ontologies and especially the mapping between ontology and data could be improved
as well. Whereas the Pipes ontology is useful for the task, the Visualization ontology is less ad-
vanced. Instead of using keywords stored as owl:hasValue restrictions it would be better if the
ontology made use of existing resources and their URIs. For example the map visualization could
be described using already defined properties and classes from the W3C geo vocabulary2. To
further improved the mapping between the data and its description, one could use probabilistic
reasoning as it is done by [Gilson et al., 2008] and the hypothetical UVF.

2www.w3.org/2003/01/geo/wgs84 pos

www.w3.org/2003/01/geo/wgs84_pos

7
Conclusions

This Master Thesis was about the creation of a framework for information visualization. The re-
sulting IfiPipes framework consists of two ontologies, the Pipes ontology defines data retrieval
and aggregation and the Visualization ontology is about the description of data sources and the
actual visualizations. IfiPipes implements these ontologies to create a web application which al-
lows the user to select information from data sources distributed all over the web. Furthermore
one can query these data sources and to visualize the queried results. The queries can be sent
by using web services or even SPARQL endpoints. Although there are a few similar solutions
in the same space, none of them implements all features of IfiPipes. Most data aggregation and
visualization services provide either a full set of visualizations, but don’t use semantic data or
they focus on semantic data, but provide no or very few visualizations.

The Master Thesis also likes to solve the issue that there is almost no reuse in visualizations.
Like conditional mash-ups, visualizations are created for one use only and break if the API, re-
spectively the data changes. By using the technologies of the Semantic Web it would allow devel-
opers to reuse visualizations, if they are fed with similar data. Therefore the concept of visualiza-
tion taxonomies and even higher-level visualization ontologies should gain more traction in the
future. Eventually this results in the creation of the Universal Visualization Framework presented
in Section 6.1. Similar to the vision of the Semantic Web, the Universal Visualization Framework
brings structure and thus reuse for visualizations, which leads to ubiquitous visualization options
in the daily life.

A
Appendix

A.1 Contents of the CD-ROM
The CD-ROM which accompanies the master thesis contains following data:

• The Folder ‘IfiPipes‘ contains the Eclipse project of IfiPipes including the source code, the
ontologies, the used libraries and all graphics.

• The Zip file ‘IfiPipes.zip‘ contains the same files as the folder ‘IfiPipes‘, but is compressed.

• The PDF file ‘MasterThesis.pdf‘ contains the written part of this thesis

• The PDF file ‘Zusfsg.pdf‘ contains the abstract in German

• The PDF file ‘Abstract.pdf‘ contains the abstract in English

A.2 The Pipes Ontology

Listing A.1: The Pipes Ontology encoded in N3

@prefix r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>.
@pref ix owl2xml : <http ://www. w3 . org /2006/12/owl2−xml#>.
@pref ix xsd : <http ://www. w3 . org /2001/XMLSchema#>.
@pref ix pipes : <http ://www. i f i . uzh . ch/ddis/rdf−widget/pipes . owl#>.
@pref ix owl : <http ://www. w3 . org /2002/07/owl#>.
@pref ix rdf : <http ://www. w3 . org/1999/02/22− rdf−syntax−ns#>.
<http ://www. i f i . uzh . ch/ddis/rdf−widget/&owl ; Thing> a owl : Class .
pipes : AndCondition a owl : Class ;

r d f s : subClassOf pipes : Condition .
pipes : BooleanCondition a owl : Class ;

r d f s : subClassOf pipes : Condition .
pipes : Bui lder a owl : Class ;

56 Appendix A. Appendix

r d f s : subClassOf pipes : Pipe .
pipes : Combine a owl : Class ;

r d f s : subClassOf pipes : F i l t e r ,
: bnode109643136 ,
: bnode927796992 .

pipes : CompareCondition a owl : Class ;
r d f s : subClassOf pipes : Condition .

pipes : Condition a owl : Class ;
r d f s : subClassOf pipes : Pipe .

pipes : Construct a owl : Class ;
r d f s : subClassOf pipes : F i l t e r ,

: bnode1811010112 .
pipes : ConstructQuery a owl : Class ;

r d f s : subClassOf pipes : Query .
pipes : EmptyInput a owl : Class ;

r d f s : subClassOf pipes : Condition .
pipes : EndpointURL a owl : Class ;

r d f s : subClassOf pipes :URL.
pipes : Fetcher a owl : Class ;

r d f s : subClassOf pipes : Pipe .
pipes : F i l t e r a owl : Class ;

r d f s : subClassOf pipes : Pipe .
pipes : hasInput a owl : ObjectProperty ;

r d f s : domain pipes : Pipe .
pipes : hasOutput a owl : ObjectProperty ;

r d f s : domain pipes : Pipe .
pipes : HTMLFetch a owl : Class ;

r d f s : subClassOf pipes : Fetcher ,
: bnode773569984 ,
: bnode263870144 .

pipes : HTMLResults a owl : Class ;
r d f s : subClassOf pipes : Resul t s .

pipes : imgURL a owl : DatatypeProperty .
pipes : MatchCondition a owl : Class ;

r d f s : subClassOf pipes : Condition .
pipes : name a owl : DatatypeProperty .
pipes : NotCondition a owl : Class ;

r d f s : subClassOf pipes : Condition .
pipes : OrCondition a owl : Class ;

r d f s : subClassOf pipes : Condition .
pipes : Pipe a owl : Class ;

r d f s : subClassOf <http ://www. i f i . uzh . ch/ddis/rdf−widget/&owl ; Thing> ,
: bnode1956216896 ,
: bnode1301310272 .

pipes : PipeCal l a owl : Class ;

A.2 The Pipes Ontology 57

r d f s : subClassOf pipes : F i l t e r ,
: bnode918776768 ,
: bnode118663360 .

pipes : Query a owl : Class ;
r d f s : subClassOf pipes : Stream .

pipes : RDFExtract a owl : Class ;
r d f s : subClassOf pipes : F i l t e r ,

: bnode2101423680 ,
: bnode1156103488 .

pipes : RDFFetch a owl : Class ;
r d f s : subClassOf pipes : Fetcher ,

: bnode1727910400 ,
: bnode1063983552 ,
: bnode492176640 ,
: bnode1529616768 .

pipes : RDFXMLResults a owl : Class ;
r d f s : subClassOf pipes : Resul t s .

pipes : ReplaceText a owl : Class ;
r d f s : subClassOf pipes : F i l t e r ,

: bnode171750208 ,
: bnode865689920 .

pipes : Resul t s a owl : Class ;
r d f s : subClassOf pipes : Stream .

pipes : S e l e c t a owl : Class ;
r d f s : subClassOf pipes : F i l t e r ,

: bnode628255744 .
pipes : SelectQuery a owl : Class ;

r d f s : subClassOf pipes : Query .
pipes : Smoosher a owl : Class ;

r d f s : subClassOf pipes : F i l t e r ,
: bnode409184384 ,
: bnode1965344576 .

pipes : SPARQLEndpointBuilder a owl : Class ;
r d f s : subClassOf pipes : Builder ,

: bnode1894002368 ,
: bnode326084672 ,
: bnode1363524800 ,
: bnode1903130048 .

pipes : SPARQLJSONResults a owl : Class ;
r d f s : subClassOf pipes : Resul t s .

pipes : SPARQLQueryBuilder a owl : Class ;
r d f s : subClassOf pipes : Builder ,

: bnode856562240 ,
: bnode699597952 .

pipes : SPARQLResultFetch a owl : Class ;

58 Appendix A. Appendix

r d f s : subClassOf pipes : Fetcher ,
: bnode1665695872 ,
: bnode1520489088 ,
: bnode483048960 ,
: bnode1073111232 ,
: bnode1737038080 .

pipes : SPARQLXMLResults a owl : Class ;
r d f s : subClassOf pipes : Resul t s .

pipes : Stream a owl : Class ;
r d f s : subClassOf : bnode1292182592 .

pipes : S u b s t r a c t a owl : Class ;
r d f s : subClassOf pipes : F i l t e r ,

: bnode254742464 ,
: bnode1301417728 .

pipes :URL a owl : Class ;
r d f s : subClassOf pipes : Stream .

pipes : URLBuilder a owl : Class ;
r d f s : subClassOf pipes : Builder ,

: bnode1956109440 ,
: bnode399949248 ,
: bnode637490880 .

pipes : value a owl : DatatypeProperty .
pipes : XMLFetch a owl : Class ;

r d f s : subClassOf pipes : Fetcher ,
: bnode1582596160 ,
: bnode1674931008 .

pipes : XMLResults a owl : Class ;
r d f s : subClassOf pipes : Resul t s .

<http ://www. i f i . uzh . ch/ddis/rdf−widget/pipes . owl> a owl : Ontology .
: bnode1063983552 a owl : R e s t r i c t i o n ;
owl : hasValue ”RDF Fetch ” ;
owl : onProperty pipes : name .

: bnode1073111232 a owl : R e s t r i c t i o n ;
owl : hasValue ”images/SPARQLResultFetch . png ” ;
owl : onProperty pipes : imgURL .

: bnode109643136 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : RDFXMLResults .

: bnode1156103488 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : RDFXMLResults .

: bnode118663360 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : Stream .

: bnode1292182592 a owl : R e s t r i c t i o n ;

A.2 The Pipes Ontology 59

owl : onProperty pipes : value ;
owl : someValuesFrom <http ://www. i f i . uzh . ch/ddis/rdf−widget/&xsd ; s t r i n g >.

: bnode1301310272 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : name ;
owl : someValuesFrom <http ://www. i f i . uzh . ch/ddis/rdf−widget/&xsd ; s t r i n g >.

: bnode1301417728 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : RDFXMLResults .

: bnode1363524800 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;
owl : someValuesFrom pipes :URL.

: bnode1520489088 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;
owl : someValuesFrom pipes : EndpointURL .

: bnode1529616768 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : RDFXMLResults .

: bnode1582596160 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;
owl : someValuesFrom pipes :URL.

: bnode1665695872 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : SPARQLJSONResults .

: bnode1674931008 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : XMLResults .

: bnode171750208 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;
owl : someValuesFrom pipes : Stream .

: bnode1727910400 a owl : R e s t r i c t i o n ;
owl : hasValue ”images/RDFFetch . png ” ;
owl : onProperty pipes : imgURL .

: bnode1737038080 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : SPARQLXMLResults .

: bnode1811010112 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : ConstructQuery .

: bnode1894002368 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : EndpointURL .

: bnode1903130048 a owl : R e s t r i c t i o n ;
owl : hasValue ”SPARQL Endpoint Bui lder ” ;
owl : onProperty pipes : name .

: bnode1956109440 a owl : R e s t r i c t i o n ;

60 Appendix A. Appendix

owl : hasValue ”URL Bui lder ” ;
owl : onProperty pipes : name .

: bnode1956216896 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : imgURL ;
owl : someValuesFrom <http ://www. i f i . uzh . ch/ddis/rdf−widget/&xsd ; s t r i n g >.

: bnode1965344576 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : RDFXMLResults .

: bnode2101423680 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;
owl : someValuesFrom pipes : Resul t s .

: bnode254742464 a owl : R e s t r i c t i o n ;
owl : minQual i f iedCardinal i ty ”2”ˆˆ<&xsd ; nonNegativeInteger >;
owl : onClass pipes : RDFXMLResults ;
owl : onProperty pipes : hasInput .

: bnode263870144 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : HTMLResults .

: bnode326084672 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;
owl : someValuesFrom pipes : Query .

: bnode399949248 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes :URL.

: bnode409184384 a owl : R e s t r i c t i o n ;
owl : minQual i f iedCardinal i ty ”2”ˆˆ<&xsd ; nonNegativeInteger >;
owl : onClass pipes : RDFXMLResults ;
owl : onProperty pipes : hasInput .

: bnode483048960 a owl : R e s t r i c t i o n ;
owl : hasValue ” Sparql Resul t Fetch ” ;
owl : onProperty pipes : name .

: bnode492176640 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;
owl : someValuesFrom pipes :URL.

: bnode628255744 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : SelectQuery .

: bnode637490880 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;
owl : someValuesFrom pipes :URL.

: bnode699597952 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : Query .

: bnode773569984 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;

A.3 The Visualization Ontology 61

owl : someValuesFrom pipes :URL.
: bnode856562240 a owl : R e s t r i c t i o n ;
owl : hasValue ”SPARQL Query Bui lder ” ;
owl : onProperty pipes : name .

: bnode865689920 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasOutput ;
owl : someValuesFrom pipes : Stream .

: bnode918776768 a owl : R e s t r i c t i o n ;
owl : onProperty pipes : hasInput ;
owl : someValuesFrom pipes : Pipe .

: bnode927796992 a owl : R e s t r i c t i o n ;
owl : minQual i f iedCardinal i ty ”2”ˆˆ<&xsd ; nonNegativeInteger >;
owl : onClass pipes : RDFXMLResults ;
owl : onProperty pipes : hasInput .

A.3 The Visualization Ontology

Listing A.2: The Visualization Ontology encoded in N3

@prefix r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>.
@pref ix v i s u a l i z a t i o n :
<http ://www. i f i . uzh . ch/ddis/rdf−widget/ v i s u a l i z a t i o n . owl#>.

@pref ix xsd : <http ://www. w3 . org /2001/XMLSchema#>.
@pref ix wgs84 pos : <http ://www. w3 . org /2003/01/geo/wgs84 pos#>.
@pref ix owl2xml : <http ://www. w3 . org /2006/12/owl2−xml#>.
@pref ix owl : <http ://www. w3 . org /2002/07/owl#>.
@pref ix rdf : <http ://www. w3 . org/1999/02/22− rdf−syntax−ns#>.
<http ://www. i f i . uzh . ch/ddis/rdf−widget/&owl ; Thing> a owl : Class .
<http ://www. i f i . uzh . ch/ddis/rdf−widget/&wgs84 pos ; Point> a owl : Class .
v i s u a l i z a t i o n : basedOn a owl : ObjectProperty ;

r d f s : domain v i s u a l i z a t i o n : V i s u a l i z a t i o n .
v i s u a l i z a t i o n : GeoProperty a owl : Class ;

r d f s : subClassOf <http ://www. i f i . uzh . ch/ddis/rdf−widget/&wgs84 pos ; Point > ,
v i s u a l i z a t i o n : Property .

v i s u a l i z a t i o n : GeoRDF a owl : Class ;
r d f s : subClassOf v i s u a l i z a t i o n : RDF,

: bnode1446542208 .
v i s u a l i z a t i o n : GeoSparqlResults a owl : Class ;

r d f s : subClassOf v i s u a l i z a t i o n : SparqlResul ts ,
: bnode109617984 ,
: bnode1665778176 .

v i s u a l i z a t i o n : keywords a owl : DatatypeProperty ;
r d f s : comment ”add keywords as a comma−seperated l i s t ” ;
r d f s : domain v i s u a l i z a t i o n : Sparq lResul t s ;
r d f s : range <http ://www. i f i . uzh . ch/ddis/rdf−widget/&xsd ; s t r i n g >.

62 Appendix A. Appendix

v i s u a l i z a t i o n : MapsViz a owl : Class ;
r d f s : subClassOf v i s u a l i z a t i o n : V i s u a l i z a t i o n ,

: bnode1073028928 .
v i s u a l i z a t i o n : Pla inTextViz a owl : Class ;

r d f s : comment ”a t e x t u a l v i s u a l i z a t i o n of the returned values ”ˆˆ<&xsd ; s t r i n g >;
r d f s : subClassOf v i s u a l i z a t i o n : V i s u a l i z a t i o n .

v i s u a l i z a t i o n : poss ib leDatatypes a owl : DatatypeProperty ;
r d f s : comment ”add datatypes as a comma−seperated l i s t ” ;
r d f s : domain v i s u a l i z a t i o n : Sparq lResul t s ;
r d f s : range <http ://www. i f i . uzh . ch/ddis/rdf−widget/&xsd ; s t r i n g >.

v i s u a l i z a t i o n : Property a owl : Class .
v i s u a l i z a t i o n : QueryResult a owl : Class ;

r d f s : subClassOf <http ://www. i f i . uzh . ch/ddis/rdf−widget/&owl ; Thing>.
v i s u a l i z a t i o n : RDF a owl : Class ;

r d f s : subClassOf v i s u a l i z a t i o n : QueryResult .
v i s u a l i z a t i o n : Sparq lResul t s a owl : Class ;

r d f s : subClassOf v i s u a l i z a t i o n : QueryResult .
v i s u a l i z a t i o n : TableViz a owl : Class ;

r d f s : subClassOf v i s u a l i z a t i o n : V i s u a l i z a t i o n .
v i s u a l i z a t i o n : TemporalRDF a owl : Class ;

r d f s : subClassOf v i s u a l i z a t i o n : RDF,
: bnode483131264 .

v i s u a l i z a t i o n : TemporalSparqlResults a owl : Class ;
r d f s : subClassOf v i s u a l i z a t i o n : SparqlResul ts ,

: bnode699515648 ,
: bnode2039291456 .

v i s u a l i z a t i o n : TempProperty a owl : Class ;
r d f s : subClassOf v i s u a l i z a t i o n : Property .

v i s u a l i z a t i o n : TempViz a owl : Class ;
r d f s : subClassOf v i s u a l i z a t i o n : V i s u a l i z a t i o n .

v i s u a l i z a t i o n : V i s u a l i z a t i o n a owl : Class .
<http ://www. i f i . uzh . ch/ddis/rdf−widget/ v i s u a l i z a t i o n . owl> a owl : Ontology ;

owl : imports <http ://www. w3 . org /2003/01/geo/wgs84 pos>.
: bnode1073028928 a owl : R e s t r i c t i o n ;
owl : onProperty v i s u a l i z a t i o n : basedOn ;
owl : someValuesFrom v i s u a l i z a t i o n : GeoProperty .

: bnode109617984 a owl : R e s t r i c t i o n ;
owl : hasValue ” f l o a t , double ” ;
owl : onProperty v i s u a l i z a t i o n : poss ib leDatatypes .

: bnode1446542208 a owl : R e s t r i c t i o n ;
owl : hasValue ” http ://www. w3 . org /2003/01/geo/wgs84 pos# l a t ,

ht tp ://www. w3 . org /2003/01/geo/wgs84 pos# long ” ;
owl : onProperty v i s u a l i z a t i o n : keywords .

: bnode1665778176 a owl : R e s t r i c t i o n ;
owl : hasValue ” l a t , long , geo , l a t i t u d e , longi tude ” ;

A.3 The Visualization Ontology 63

owl : onProperty v i s u a l i z a t i o n : keywords .
: bnode2039291456 a owl : R e s t r i c t i o n ;
owl : hasValue ” int , f l o a t , double ” ;
owl : onProperty v i s u a l i z a t i o n : poss ib leDatatypes .

: bnode483131264 a owl : R e s t r i c t i o n ;
owl : hasValue ”isQuad ” ;
owl : onProperty v i s u a l i z a t i o n : keywords .

: bnode699515648 a owl : R e s t r i c t i o n ;
owl : hasValue ”time , from , to , u n t i l , now” ;
owl : onProperty v i s u a l i z a t i o n : keywords .

List of Figures

2.1 The Semantic Web Layer Cake . 7
2.2 A simple RDF statement . 8
2.3 Linking Open Data cloud diagram . 13

3.1 The user interface of Yahoo! Pipes . 24
3.2 The user interface of Deri Pipes . 26
3.3 The user interface of Microsoft PivotViewer . 28
3.4 The user interface of Google Public Data Explorer 29
3.5 The user interface of RDF Gravity . 30

4.1 UML class diagram of IfiPipes . 39
4.2 The sketched user interface of IfiPipes . 40
4.3 The user interface of IfiPipes . 41
4.4 Builder Operators . 45
4.5 Fetcher Operators . 46
4.6 Visualization Picker Window . 46
4.7 The Data Tab of IfiPipes . 47
4.8 The Map Visualization of IfiPipes . 48

List of Tables

2.1 List of Graph Layouts . 18

List of Listings

2.1 A simple SPARQL SELECT query . 9
2.2 The result of a simple SPARQL SELECT query encoded in SPARQL/XML 9
2.3 The result of a simple SPARQL SELECT query encoded in SPARQL/JSON 10
2.4 A simple SPARQL CONSTRUCT query . 10
2.5 The result of a simple SPARQL CONSTRUCT query 10
2.6 A simple τ -SPARQL SELECT query . 14

4.1 The OWL class SPARQLEndpointBuilder represented in OWL/XML 36
4.2 Snippet showing the servlet configuration for the DataFetcherService from web.xml 38
4.3 Snippet from the fillOperatorGridXML method in the OntologyConverter class . . 41
4.4 Snippet from the loadOutput method in the OntologyConverter class 42
4.5 Snippet of the onClick method from the Menu.RunPipeClickHandler class 43
4.6 Snippet of the getCorrespondingSparqlVisualization method from the Application-

Window class . 44
4.7 SPARQL Query to list all capitals of the world . 47

A.1 The Pipes Ontology encoded in N3 . 55
A.2 The Visualization Ontology encoded in N3 . 61

Bibliography

[Alexander, 2008] Alexander, K. (2008). RDF/JSON: A Specification for serialising RDF in JSON.
In Workshop on Scripting for the Semantic Web. Citeseer.

[Ankolekar et al., 2007] Ankolekar, A., Krötzsch, M., Tran, T., and Vrandecic, D. (2007). The two
cultures: Mashing up Web 2.0 and the Semantic Web. In Proceedings of the 16th international
conference on World Wide Web, pages 825–834. ACM.

[Auber, 2003] Auber, D. (2003). Tulip-a huge graph visualization framework. Graph Drawing
Software.

[Baker, 1987] Baker, P. (1987). Pipes and filters. Byte, 12(12):215–217.

[Beckett and McBride, 2004] Beckett, D. and McBride, B. (2004). RDF/XML syntax specification
(revised). W3C recommendation, 10.

[Berners-Lee, 2006] Berners-Lee, T. (2006). Linked data. International Journal on Semantic Web and
Information Systems, 4(2).

[Berners-Lee, 2009] Berners-Lee, T. (2009). Linked data - design issues. http://www.w3.org/
DesignIssues/LinkedData.html.

[Berners-Lee, 2010] Berners-Lee, T. (2010). Long Live the Web. Scientific American Magazine,
303(6):80–85.

[Berners-Lee et al., 2006] Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hol-
lenbach, J., Lerer, A., and Sheets, D. (2006). Tabulator: Exploring and analyzing linked data on
the semantic web. In Proceedings of the 3rd International Semantic Web User Interaction Workshop,
volume 2006. Citeseer.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web.
Scientific American, 284(5):34–43.

[Bernstein, 2005] Bernstein, A. (2005). So what is a (diploma) thesis? a few thoughts for first-
timers. Technical report, Dynamic and Distributed Information Systems Group, Univerity of
Zurich, Switzerland.

[Bizer et al., 2007] Bizer, C., Cyganiak, R., and Heath, T. (2007). How to publish linked data on
the web. Retrieved June, 20:2008.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

72 BIBLIOGRAPHY

[Bizer et al., 2009] Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data-the story so far.
International Journal on Semantic Web and Information Systems, 5(3):1–22.

[Bizer et al., 2005] Bizer, C., Lee, R., and Pietriga, E. (2005). Fresnel-a browser-independent pre-
sentation vocabulary for rdf. In Proceedings of the Second International Workshop on Interaction
Design and the Semantic Web, Galway, Ireland. Citeseer.

[Bratt, 2007] Bratt, S. (2007). Semantic web, and other technologies to watch. http://www.w3.
org/2007/Talks/0130-sb-W3CTechSemWeb.

[Clark and Avery, 1976] Clark, W. and Avery, K. (1976). The effects of data aggregation in statis-
tical analysis. Geographical Analysis, 8(4):428–438.

[Crockford, 2006] Crockford, D. (2006). JSON: The fat-free alternative to XML. In Proc. of XML,
volume 2006.

[Cruz and Tamassia, 1998] Cruz, I. and Tamassia, R. (1998). Graph drawing tutorial. http://

www.cs.brown.edu/∼rt/papers/gd-tutorial/gd-constraints.pdf.

[Dean and McDermott, 1987] Dean, T. and McDermott, D. (1987). Temporal data base manage-
ment. ARTIFICIAL INTELLIG., 32(1):1–55.

[Di Battista et al., 1998] Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. (1998). Graph drawing:
algorithms for the visualization of graphs. Prentice Hall PTR Upper Saddle River, NJ, USA.

[Drummond and Shearer, 2006] Drummond, N. and Shearer, R. (2006). The open world assump-
tion. Presentation, The Univ. of Manchester.

[Friendly and Denis, 2001] Friendly, M. and Denis, D. (2001). Milestones in the history of the-
matic cartography, statistical graphics, and data visualization. web document, available at
http://www. math. yorku. ca/SCS/Gallery/milestone, 174.

[Gardner, 2005] Gardner, S. (2005). Ontologies and semantic data integration. Drug Discovery
Today, 10(14):1001–1007.

[Gershenfeld et al., 2004] Gershenfeld, N., Krikorian, R., and Cohen, D. (2004). The Internet of
Things. Scientific American, 291(4):76–81.

[Gilson et al., 2008] Gilson, O., Silva, N., Grant, P., and Chen, M. (2008). From web data to visu-
alization via ontology mapping. In Computer Graphics Forum, volume 27, pages 959–966. Wiley
Online Library.

[Gorman, 2010] Gorman, S. (2010). Open Data: Why the Crowd Can Be Your Best Analytics Tool.
http://mashable.com/2010/12/30/crowd-data-analytics/.

[Gutierrez et al., 2005] Gutierrez, C., Hurtado, C., and Vaisman, A. (2005). Temporal rdf. The
Semantic Web: Research and Applications, pages 93–107.

[Gutierrez et al., 2006] Gutierrez, C., Hurtado, C., and Vaisman, A. (2006). Introducing time into
RDF. Knowledge and Data Engineering, IEEE Transactions on, 19(2):207–218.

http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb
http://www.cs.brown.edu/~rt/papers/gd-tutorial/gd-constraints.pdf
http://www.cs.brown.edu/~rt/papers/gd-tutorial/gd-constraints.pdf
http://mashable.com/2010/12/30/crowd-data-analytics/

BIBLIOGRAPHY 73

[Halevy et al., 2005] Halevy, A., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosen-
thal, A., and Sikka, V. (2005). Enterprise information integration: successes, challenges and
controversies. In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data, pages 778–787. ACM.

[Halevy et al., 2006] Halevy, A., Rajaraman, A., and Ordille, J. (2006). Data integration: The
teenage years. In Proceedings of the 32nd international conference on Very large data bases, pages
9–16. VLDB Endowment.

[Hayes, 2009] Hayes, P. (2009). Blogic or now what’s in a link? http://videolectures.net/

iswc09 hayes blogic/.

[Hayes and McBride, 2004] Hayes, P. and McBride, B. (2004). RDF semantics. W3C recommenda-
tion, 10:38–45.

[Heer et al., 2005] Heer, J., Card, S., and Landay, J. (2005). Prefuse: a toolkit for interactive in-
formation visualization. In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 421–430. ACM.

[Hirsch et al., 2009] Hirsch, C., Hosking, J., and Grundy, J. (2009). Interactive visualization tools
for exploring the semantic graph of large knowledge spaces. In Workshop on Visual Interfaces to
the Social and the Semantic Web (VISSW2009). Citeseer.

[Inc, 2011] Inc, Y. (2011). Yahoo! pipes - documentation. http://pipes.yahoo.com/pipes/
docs.

[Klyne et al., 2004] Klyne, G., Carroll, J., and McBride, B. (2004). Resource description framework
(RDF): Concepts and abstract syntax. Changes.

[Kobilarov et al., 2009] Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst,
M., Bizer, C., and Lee, R. (2009). Media meets semantic web–how the BBC uses DBpedia and
linked data to make connections. The Semantic Web: Research and Applications, pages 723–737.

[Le-Phuoc et al., 2009] Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., and Mor-
bidoni, C. (2009). Rapid prototyping of semantic mash-ups through semantic web pipes. In
Proceedings of the 18th international conference on World wide web, pages 581–590. ACM.

[Lewis, 2007] Lewis, R. (2007). Dereferencing http uris. Draft Tag Finding, 31:2007–05.

[Merrill, 2006] Merrill, D. (2006). Mashups: The new breed of Web app. IBM Web Architecture
Technical Library.

[Meunier, 1995] Meunier, R. (1995). The pipes and filters architecture. In Pattern languages of
program design, page 440. ACM Press/Addison-Wesley Publishing Co.

[Quirolgico et al., 2004] Quirolgico, S., Assis, P., Westerinen, A., Baskey, M., and Stokes, E. (2004).
Toward a formal common information model ontology. In Web Information Systems–WISE 2004
Workshops, pages 11–21. Springer.

[Schraefel and Karger, 2006] Schraefel, M. and Karger, D. (2006). The pathetic fallacy of rdf. In
International Workshop on the Semantic Web and User Interaction (SWUI), volume 2006.

http://videolectures.net/iswc09_hayes_blogic/
http://videolectures.net/iswc09_hayes_blogic/
http://pipes.yahoo.com/pipes/docs
http://pipes.yahoo.com/pipes/docs

74 BIBLIOGRAPHY

[Sears and Jacko, 2008] Sears, A. and Jacko, J., editors (2008). Information Visualization, chapter 26,
pages 509–543. Lawrence Erlbaum Associates.

[Shadbolt et al., 2006] Shadbolt, N., Hall, W., and Berners-Lee, T. (2006). The semantic web revis-
ited. Intelligent Systems, IEEE, 21(3):96–101.

[Shannon, 2006] Shannon, V. (2006). A ’more revolutionary’ web. The New York Times.

[Shneiderman, 2002] Shneiderman, B. (2002). The eyes have it: A task by data type taxonomy for
information visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages
336–343. IEEE.

[Snodgrass et al., 1994] Snodgrass, R., Ahn, I., Ariav, G., Batory, D., Clifford, J., Dyreson, C., El-
masri, R., Grandi, F., Jensen, C., K
”afer, W., et al. (1994). TSQL2 language specification. ACM SIGMOD Record, 23(1):65–86.

[Solove, 2002] Solove, D. (2002). Access and Aggregation: Privacy, Public Records, and the Con-
stitution. Minnesota Law Review, 86(6).

[Spalding, 2007] Spalding, S. (2007). How to define web 3.0. http://howtosplitanatom.

com/news/how-to-define-web-30-2/.

[Spence, 2001] Spence, R. (2001). Information visualization. Addison-Wesley Reading, MA.

[Tappolet and Bernstein, 2009] Tappolet, J. and Bernstein, A. (2009). Applied temporal rdf: Effi-
cient temporal querying of rdf data with sparql. The Semantic Web: Research and Applications,
pages 308–322.

[Trevor, 2008] Trevor, J. (2008). Doing the mobile mash. Computer, 41(2):104–106.

[Yu et al., 2008] Yu, J., Benatallah, B., Casati, F., and Daniel, F. (2008). Understanding mashup
development. IEEE Internet Computing, pages 44–52.

[Ziegler and Dittrich, 2004a] Ziegler, P. and Dittrich, K. (2004a). Three Decades of Data Intecra-
tionall Problems Solved? Building the Information Society, pages 3–12.

[Ziegler and Dittrich, 2004b] Ziegler, P. and Dittrich, K. (2004b). User-specific semantic integra-
tion of heterogeneous data: The sirup approach. Semantics of a Networked World, pages 44–64.

http://howtosplitanatom.com/news/how-to-define-web-30-2/
http://howtosplitanatom.com/news/how-to-define-web-30-2/

	Table of Contents
	Introduction
	Motivation
	Suggested solution
	Structure

	Background
	The Semantic Web
	The Resource Description Framework
	SPARQL
	Linked Data
	Temporal RDF

	Data Combination
	Data Aggregation
	Data Integration
	Semantic Data Integration

	Data Visualisation
	Graph Visualization
	Types of Information Visualization
	Semantic Data Visualization

	Related Work
	Data Aggregation and Data Integration
	Enterprise Data Integration
	Yahoo! Pipes
	DERI Pipes
	Google Fusion Tables

	Data Visualization
	IBM Many Eyes
	Microsoft Pivot
	Google Public Data Explorer
	Graph Visualization Tools
	Fresnel
	Semantic Data Visualization Tools

	IfiPipes
	Used Software
	Google Web Toolkit
	Jena
	tGraph

	Ontologies
	Pipe Ontology
	Visualization Ontology

	Architecture
	User Interface Design
	Implementation Details
	Loading the Ontologies
	User Interface Implementation
	Operator Matching
	Querying and Analyzing Data Sources
	Visualizing Data

	User Guide
	List of Operators
	Running a Pipe
	Uploading a Data Set
	Visualizing Capitals of the World

	Limitations
	Framework
	Application
	Used Technology

	Future Work
	Universal Visualization Framework
	IfiPipes

	Conclusions
	Appendix
	Contents of the CD-ROM
	The Pipes Ontology
	The Visualization Ontology

	List of Figures
	List of Tables
	List of Listings
	Bibliography

