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Abstract

Over the last several years, the vision of a Semantic Web has gained support from a vast of different

fields of application. Meanwhile, there is a large number of datasets available with a tendency to

interlink between each other, ready to be analyzed. But RDFS/OWL and SWRL, the standard

languages for representing ontological knowledge and rules in RDF lack because of their limited

expressiveness. Markov logic provides a good solution to this problem by putting weights on

formulas, generalizing first-order logic with a probabilistic approach, allowing also contradictory

rules.

By successfully implementing and evaluating the execution of loopy belief propagation on Markov

networks using the Signal/Collect framework, an elegant, and yet highly efficient solution is ready

to be provided for the use in further applications.





Zusammenfassung

Über die letzten Jahre erhielt die Vision eines Semantischen Webs breite Unterstützung aus einer

Vielzahl von Anwendungsgebieten. Dabei entwickelt sich eine Tendenz, die Datensets untereinan-

der immer mehr zu verlinken. Zur Analyse der Daten exisitieren zwar bereits Standardsprachen

wie RDFS/OWL und SWRL, die ontologisches Wissen und Regeln repräsentieren zu vermögen,

doch ihnen fehlt es oft an Ausdrucksstärke. Markov Logik ist eine ideale Lösung zu diesem Prob-

lem. Sie generalisiert die Prädikatenlogik mit Ansätzen aus der Wahrscheinlichkeitstheorie, und

ermöglicht so auch wiedersprüchliche Regeln in einer Wissensbasis zu vereinen.

Durch die erfolgreiche Implementierung und Evaluierung des Loopy Belief Algorithmus, der mittels

Signal/Collect auf einem Markov Netzwerk ausgeführt wird, steht nun eine elegante und äusserst

effizienze Lösung für die Anwendung in weiteren Systemen bereit.
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1
Introduction

Over the last several years, the vision of the Semantic Web by Berners-Lee et al. (2001) has gained

support from a vast of different fields of application. A peek on the subjacent diagram 1.1 by

Cyganiak and Jentzsch (2009) shows only a part of the large number of datasets available and

their tendency to interlink between each other.

Figure 1.1: Ex t ract o f th e RD F d a tase t s ava ilab le (R ich a rd Cy g an iak , 2009)

The free availability of huge data material led to a number of application for doing inference

on them. However, with the standard languages RDFS/OWL and SWRL the expressiveness is
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rather small compared to first-order logic or even Markov logic that generalizes first-order logic

and combines it with Markov networks in order to add weights to formulas. This gives Markov

logic the power to deal with uncertainty by using probability distributions, and the flexibility to

allow even contradictory rules.

Although Markov logic has already been used in a wide range of AI applications, including

link predication, entity resolution and information extraction (Domingos and Lowd, 2009), the

infrastructure to access Semantic Web data with algorithms and perform them efficiently is miss-

ing. A new scalable programming model for typed graphs called Signal/Collect by Stutz et al.

(2010) promises an improvement in this situation as it eases the development of message passing

algorithms. As a number of inference algorithms like belief propagation use the idea of pass-

ing information (in this case beliefs) from one node over to another node, Signal/Collect seems

well-suited for this kind of task.

1.1 Goal of this thesis
Given the above, this thesis presents on the one hand a solution to the missing infrastructure

problem by providing the Logical Inference System (LISy), a system that enables developers to

integrate efficient logic reasoning into other applications in a straight forward, and easy way. LISy

provides the means to define formulas in first-order and Markov logic and ground them with RDF

data from SPARQL endpoints, as well as an implementation of the loopy belief propagation algo-

rithm based on the Signal/Collect framework as reasoning engine. On the other hand, this thesis

demonstrates a proof of concept to run sophisticated algorithms efficiently on the Signal/Collect

programming model and framework by applying an implementation of belief propagation to it.

1.2 Structure
In order to persue these objectives, the remainder of this thesis is organized as follows: Chapter

2 discusses the general concepts on which this thesis is based on by giving an overview of some

concepts of logic, probabilistic reasoning, Markov logic, knowledge representation in the Semantic

web, as well as an introduction to the Signal/Collect programming model. Chapter 3 then shows

the requirements that have been made for the system followed by the system design for LISy in

chapter 4, describing how the three layers for formulas and groundings, network and algorithms

are conceptually designed and implemented. The evaluation for the system then follows in chapter

5, showing a benchmark test with LISy and Alchemy, as well as a test to evaluate scalability. After

pointing out the limitations of the system in chapter 6, the thesis closes with a discussion of future

work in chapter 7 and the conclusion in chapter 8.



2
General Concepts

Before rushing into system details in the next chapters, the general concepts used in this thesis and

for the later implementation of the system are pointed out first. The starting section 2.1 on logic

shows an overview of the fundamental concepts in logic as well as some important logic representa-

tions including propositional logic and first-order logic. Since these concepts all expect crisp values

(meaning true or false), probabilistic reasoning in the section 2.2 thereafter supplements this view

by introducing probabilistic graphical models as well as reasoning algorithms. Section 2.3 then

presents Markov logic as the combination of both worlds, generalizing first-order logic by applying

Markov networks. Section 2.4 on knowledge representation will focus on data representation in

the Semantic Web. Finally, section 2.5 explains the Signal/Collect programming model in order

to apply it to LISy in the following chapters. If you are already familiar with one concept or the

other, feel free to just skip the section.

2.1 Logic

Logic is a central field in a lot of disciplines like philosophy, mathematics, and computer science.

Whately (1867) defines it as the ”Art and Science of reasoning”, but it has already been studied

long before by several ancient civilizations (Britannica, 2007), including ancient India, China and

Greece (Jowett, 1979). Nowadays, logic usually makes use of formal languages in order to ease

valid inference and knowledge representation (Russell and Norvig, 2003, pages 794-795).

This section briefly covers fundamental concepts in logic in section 2.1.1, propositional logic in

2.1.2 and first-order logic in 2.1.3 in order to deal with Markov logic and inference algorithms later

on.
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2.1.1 Fundamental concepts in logic

As stated by Russell and Norvig (2003) and Genesereth and Nilsson (1987), a knowledge base (KB)

is a set of (well formed) sentences, expressed according to the syntax of the representation language

(as for example in first-order logic). The sentences in the KB are all implicitly conjoint, resulting

in a single large sentence. In other words, the formulated sentences in the KB each define a known

logical fact, together formulating a collection of facts and their relationships among each other.

Since collecting data especially makes sense when there is a way to query what is known there-

after, one main task of the KB is to infer, i.e. derive new sentences from existing. This process of

drawing conclusions is either done by applying heuristics (based on logic, statistics, or others) to

the existing sentences or by interpolating the next logical step in an intuited pattern. With logical

entailment, being the relation between sentences that define if some sentence follows logically from

another sentence, Inference can be defined as the process of finding a specific entailment in a KB

(Russell and Norvig, 2003, pages 194-197).

The meaning of a sentence is defined by the semantics of the language. Therefore, a truth

value defining the correctness of a sentence in a possible world is applied to every sentence. Usu-

ally this truth value is either true or false, but depending on the language may also be something

in between. As an example, the sentence FatherOf(x, y) is true in a world in first-order logic (see

section 2.1.3) where x is Hugo and y is Stefan, whereas it is not if x is AuntLisy. The process of

giving a meaning to variables is called grounding. In algorithms, this is usually made by establish-

ing connections between the symbols and their meanings (Russell and Norvig, 2003, page 202-204).

In order to choose good inference algorithms, two properties are highly important. If and only if

an inference algorithm derives only from its entailed sentences, it is called sound (i.e. its inference

rules only follow what is valid with respect to the semantic and does not make things up by itself).

The soundness property counts as an initial reason to find a logical system desirable. The other

property that makes it provable is called completeness. An algorithm is complete, if it can derive

any sentence that is entailed (Russell and Norvig, 2003, page 203).

In the following sections, a number of important languages, the simpler propositional logic and

the more complex first order logic, are discussed in further detail.

2.1.2 Propositional logic

Propositional logic (or Boolean logic, named after George Boole) is basically defined by symbols,

sentences, and connectives. Sentences are built recursively by using atomic sentences or by complex

sentences. Atomic sentences can be a symbol or a truth value (true � or false ⊥). Complex sen-
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tences are sentences connected with logical connectives (Russell and Norvig, 2003, page 204-205).

They are listed in the following table 2.1 below sorted from highest the binding (precedence) (’¬’)
to the lowest (’⇔’) (Stärk, 2002, page 14).

Table 2.1: Lo g ica l co n n e ct iv e s

logical connective meaning

¬ Negation (not)
∧ Conjunction (and)
∨ Disjunction (or)
⇒ Implication
⇔ Biconditional

In figure 2.1, the grammar of sentences in propositional logic is shown in Backus-Naur Form

[BNF] (Russell and Norvig, 2003, page 205) (Stärk, 2002, page 14).

Figure 2.1: Pro p o sit io n a l lo g ic BN F (Ru sse ll an d N o rv ig , 2003) (St ä r k , 2002)

Sentence = AtomicSentence |ComplexSentence
AtomicSentence = Proposition |’�’ |’⊥’
ComplexSentence = ’(’ ’¬’ Sentence ’)’ |’(’ Sentence Connective Sentence ’)’
Connective = ’∧’ |’∨’ |’⇒’ |’⇔’
Proposition = Symbol

In order to evaluate the truth value of a sentence in a model, a meaning must be assigned to

the connectives defined in table 2.1. These 2n models can be represented by using truth tables as

demonstrated in the example given by table 2.2 below (Russell and Norvig, 2003, 207).

Table 2.2: Tru th tab le s f o r lo g ica l co n n e ct iv e s (Ru sse ll an d N o rv ig , 2003)

A B ¬A A∧B A∨B A⇒B A⇔B

⊥ ⊥ � ⊥ ⊥ � �
⊥ � � ⊥ � � ⊥
� ⊥ ⊥ ⊥ � ⊥ ⊥
� � ⊥ � � � �

The semantics for the negation is defined as the opposite of the original sentence. A conjunc-

tion is true if all the conjoint sentences are true them selfs. In a disjunction, at least one sentence

of the disjunction has to be true to make the sentence true. This means that the disjunction is

not exclusive. In an implication, only the sentence where the conjunction of the premise and the
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negated conclusion (A∧¬B) remains unsatisfiable (known as reductio ad absurdum) the sentence

evaluates to true. Logical equivalence means that two sentences are true in the same set of models.

In other words, both sides of the equivalence must entail each other ((A ⇒ B) ∧ (B ⇒ A)) as

defined in the deduction theorem. Standard logical equivalences are listed in the table 2.3 below

(Russell and Norvig, 2003, pages 207-214) (Stärk, 2002, pages 18-48):

Table 2.3: Stan d a rd lo g ica l e q u iva le n ce s (Ru sse ll an d N o rv ig , 2003)

description standard equivalence

commutativity for the ∧ (A ∧B) ≡ (B ∧A)
commutativity for the ∨ (A ∨B) ≡ (B ∨A)
associativity for the ∧ ((A ∧B) ∧ C) ≡ (A ∧ (B ∧ C))
associativity for the ∨ ((A ∨B) ∨ C) ≡ (A ∨ (B ∨ C))

double-negation elimination ¬(¬A) ≡ A
contraposition (A ⇒ B) ≡ (¬A ⇒ ¬B)

implication elimination (A ⇒ B) ≡ (¬A ∨B)
biconditional elimination (A ⇔ B) ≡ ((A ⇒ B) ∧ (B ⇒ A))

De Morgan ¬(A ∧B) ≡ (¬A ∨ ¬B) and ¬(A ∨B) ≡ (¬A ∧ ¬B)
distributivity of ∧ over ∨ (A ∧ (B ∨ C)) ≡ ((A ∧B) ∨ (A ∧ C))
distributivity of ∨ over ∧ (A ∨ (B ∧ C)) ≡ ((A ∨B) ∧ (A ∨ C))

To achieve reasoning, inference rules are applied. As described with Modus Ponens (A⇒B,A
B ),

if A implies B and A is given, B can be inferred. Another implication rule, the And-Elimination,

states, that from a conjunction any conjuncts can be inferred (A∧B
A ) (Russell and Norvig, 2003,

page 211).

For inference algorithms, it is useful to utilize the conjunctive normal form [CNF] because

the resolution rule applies to disjunctions of literals. Since every sentence of propositional logic is

equivalent to a conjunction of disjunctions of literals, a CNF is easily built by applying the inference

rules as well as the standard equivalences as stated above (e.g. (x1 ∨ ...∨ xn)∧ ...∧ (xo ∨ ...∨ xz)).

The following procedure converts a sentence into CNF (Russell and Norvig, 2003, page 215):

1. Replace ⇔ by applying the biconditional elimination.

2. Replace ⇒ by applying the implication elimination.

3. Move ¬ inwards by applying the double-negation elimination and De Morgan.

4. Apply distributive law until CNF is reached.

Reasoning algorithms using proof by contradiction can now easily show the unsatisfiability of a

sentence because with one false conjunction, the entire sentence evaluates to false. Often reasoning

algorithms work with Horn clauses (disjunctions with a most one positive literal) (Russell and

Norvig, 2003, page 217), as does the programming language Prolog. But since Horn clauses lack
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of expressiveness and are not very user friendly (i.e. in defining rules for a given problem), they

will not be used in the implementation of LISy.

In many situations, propositional logic lacks expressiveness especially in larger domains. Since,

for example, it is not possible to express that all married couples are happy, a more expressive

language has to be found.

2.1.3 First-order logic

Russell and Norvig (2003) define first-order logic (or first-order predicate calculus) [FOL] as a

formal logical system, which in contrast to propositional logic uses not only propositions, but also

predicates and quantification. The following figure 2.2 describes how formulas are being created

with the abstract syntax, provided in Backus-Naur Form [BNF] (Russell and Norvig, 2003, page

984).

Figure 2.2: F ir st -o rd e r lo g ic BN F (Ru sse ll an d N o rv ig , 2003, p ag e 247) (St ä r k , 2002, p ag e 83)

Formula = Atom |’(’ Term ’≈’ Term ’)’ |’(’ ’¬’ Formula ’)’ |
’(’ Formula Connective Formula ’)’ |Quantifier Variable Formula

Atom = ’�’ |’⊥’ |Predicate ’(’ TermList ’)’
Term = Variable |Constant |Function ’(’ TermList ’)’
TermList = Term { ’,’ Term }
Connective = ’∧’ |’∨’ |’⇒’ |’⇔’
Quantifier = ’∀’ |’∃’
Variable = ’x’ |’y’ |...
Constant = Identifier (e.g. Carmen, Stefan)
Predicate = Identifier (e.g. Married, IsHappy)
Function = Identifier (e.g. HusbandOf)

As put in writing by Domingos and Lowd (2009), in FOL there are four types of symbols that

will be used for the implementation of formulas in LISy. Constant symbols declare individual

objects in the domain of interest, and variable symbols range over the objects in the domain.

Predicate symbols (e.g. Married) represent relations among objects in the domain or attributes of

objects (e.g. IsHappy), and function symbols represent mappings from tuples of objects to objects.

A term is any expression representing an object in the domain (e.g. Carmen, Married(x,y)) and

an atom is a predicate symbol applied to a tuple of terms, or true (�) and false (⊥).

In order to add meaning to a KB, all formulas have to be grounded with an interpretation.

An interpretation defines which objects, functions, and relations in the domain are represented by

which symbols. By replacing all variables in a term, atom, or predicate by constants, we receive a

ground term, ground atom, or ground predicate respectively. A possible world assigns a truth value
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to each possible ground atom in this interpretation (Domingos and Lowd, 2009, pages 9-10) (Rus-

sell and Norvig, 2003, page 249). An example for such a possible world is given by the grounded

formula Married(Stefan,Carmen) ⇒ IsHappy(Stefan) (which of course has the truth value for

truthness and therefore is satisfiable).

In FOL, there exist two quantifiers, one for the universal ∀ and one for the existential quan-

tification ∃. They are listed in table 2.4 and are used to define the quantity of specimen in the

domain of discourse that satisfy an open formula.

Table 2.4: FO L q u an t ifi e r s

quantifier meaning

∀ Universal quantification (for all)
∃ existentical quantification (exists)

Their meaning can best be explained by an example. The universal quantification in the sen-

tence ∀xMarried(x) ⇒ Happy(x) states, that every married object x is happy. So the universal

quantification makes a statement about every object in the world. In contrast to the universal

quantification, the existential quantification only makes a statement about some objects in the

universe. For example ∃xP lay(x, Poker) ∧ Win(x,Money) states, that there exists at least one

object x, that plays poker and wins money. From the logical point of view, the two quantifiers can

be replaced by each other trough negation, as shown in the following figure 2.3 below. Since the

universal quantifier is a conjunction over the universe of objects, and the existential quantifier is

a disjunction, they both follow De Morgan’s rule too. To show that two expressions refer to the

same object, the equality symbol = respectively �= can be used, e.g. Husband(Carmen) = Stefan

(Russell and Norvig, 2003, pages 249-253).

Figure 2.3: D e M o rg an ru le s f o r q u an t ifi e r s

∀x¬Expression ≡ ¬∃xExpression
¬∀xExpression ≡ ∃x¬Expression
∀xExpression ≡ ¬∃x¬Expression
∃xExpression ≡ ¬∀x¬Expression

Inference in first-order logic can be done by reducing first-order logic to propositional logic,

and then applying the inference rules defined in the previous section 2.1.2. To do so, the quanti-

fiers must be replaced in the sentences. Universal quantifiers can be replaced by substituting the

variables with concrete objects, i.e. by grounding the predicate. The existential quantifier can be

omitted by introducing a Skolem constant (a constant that does not already exist in the knowledge

base) and replacing the variable with it.

Although sound and complete inference can be achieved by using propositionalization and
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unification techniques, the Touring problem about semidecidability still exists, meaning that an

algorithm can only approve the existence of an entailment, but not the non-existance (Russell and

Norvig, 2003, pages 272-278).

2.2 Probabilistic Reasoning
In the sections about logical languages described so far, propositions have always been either true,

false or unknown. But in the real world, this is hardly ever the case. This is where uncertainty

becomes a central aspect in reasoning. Consider the following rule in first-order logic Smokes(x) ⇒
Cancer(x), where smoking causes cancer. In the real world, this may be true to a certain degree,

since smoking need not cause cancer in every case. Our knowledge about this rule can therefore

only provide a degree of belief (Domingos and Lowd, 2009). According to Russell and Norvig

(2003), the reasons for that may be threefold:

1. Laziness: It may be too much work to completely model all aspects of the real world.

2. Theoretical ignorance: There may be no complete theory and thus too little information to

model all aspects of the real world.

3. Practical ignorance: Although the entire theory may be available, the particular information

about the modeled individual may be missing.

One approach in order to handle uncertainty within reasoning is by probability theory, which is

introduced in the following section 2.2.1. After that, probabilistic graphical models which combine

concepts from probability theory and graph theory in a specific data structure (Russell and Norvig,

2003) are introduced in section 2.2.2.

2.2.1 Probability Theory

In probability theory, the way of dealing with uncertainty is to assign a degree of belief, i.e. the

probability which is a real number between 0 and 1 to the knowledge in the domain. The value

0 stands for a 0% chance and 1 for 100% degree of blief, i.e. the expectation that something is

true (not to be mistaken with degree of truth, which is subject of fuzzy logic). If something, i.e. a

proposition, is known with a degree of belief of 100%, this the known fact is evidence (Russell and

Norvig, 2003).

Russell and Norvig (2003) declare the random variable as the basic element in probability

theory, which has an initially unknown state. The domain of a variable is the values it can

take on, e.g. the domain of Hungry might be 〈true, false〉. The domain of random variables

may take three different types: boolean values 〈true, false〉, discreet values 〈happy, sad〉 or con-

tinuous values like X = 5.2 or X ≥ 2.1. Also combinations of propositions are possible, e.g.
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Married = true∧Happy = true or with a slightly different syntax Married∧Happy. By adding

probabilities to propositions, the degree of belief is expressed.

According to Russell and Norvig (2003), the unconditional or prior probability associated with

a proposition is ”the degree of belief accorded to it in the absence of any other information”, e.g.

P (Mood = bored) = 0.2. For different probabilities of the possible values, the probability can

be written as a vector, e.g. for P (Mood = bored) = 0.2, P (Mood = tired) = 0.3, P (Mood =

excited) = 0.5 there is a probability distribution P (Mood) = 〈0.2, 0.3, 0.5〉. Probability distribu-

tions like P(Mood, Activity) are called joint probability distributions.

The conditional probability in P (x|y) is the degree of belief of x given y, e.g. P (Work =

false|Mood = bored). This can also be transformed into terms of unconditional probability

(Russell and Norvig, 2003):

P (x|y) = P (x ∧ y)

P (y)
(2.1)

P (x ∧ y) = P (x, y) = P (x|y)P (y) (2.2)

Another way to define a conditional probability is by making use of the commutativity of the

conjunction in P (x ∧ y) = P (x|y)P (y) and P (x ∧ y) = P (y|x)P (x). Equating the two formulas,

the following more general equation 2.3 results, called the Bayes’ rule (Russell and Norvig, 2003).

P (Y |X) =
P (X |Y )P (Y )

P (X)
(2.3)

A joint probability distribution with the complete set of random variables is called a full joint

probability distribution (Russell and Norvig, 2003). The resulting NxM table for the married/hap-

piness example looks as in table 2.5, with all probabilities adding up to 1.

Table 2.5: Fu ll jo in t p ro b ab il it y d ist r ib u t io n e xam p le

married ¬ married

happy 0.4 0.3
¬ happy 0.25 0.05

The marginal probability is the distribution over a subset of variables, e.g. for the proposi-

tion happy it is P (happy) = 0.4+0.3. The process for this is called marginalization or summing out.

Although the full joint probability distribution is able to answer any question about the do-

main, the problem becomes exponentially large as the number of variables grows. Probabilistic

graphical models, as discussed in the following section 2.2.2, provide a systematic way in order to

represent probabilistic relationships explicitly (Russell and Norvig, 2003).



2.2 Pro b ab il ist ic Re aso n in g 11

2.2.2 Probabilistic graphical models

Probabilistic graphical models provide a mechanism for exploiting structure in complex joint dis-

tributions in a graph based representation (Koller and Friedman, 2009). With the help of these

representations, there exist effective methods to build and utilize complex distributions over a

high-dimensional space.

The probabilistic graphical models in this thesis consist of nodes (also known as vertices) and

edges (also called links or arches). Each node represents a random variable (or a group of ran-

dom variables). The edges define probabilistic relationships between the variables. Thanks to the

graphical representation, ”the joint distributions over all of the random variables can be decom-

posed into a product of factors each depending only on a subset of the variables” (Bishop et al.,

2006).

The following sections describe the two types of representations, Bayesian networks (see 2.2.2)

and Markov networks (see 2.2.2), with their different perspectives.

Bayesian Netw orks

In Bayesian networks (also called directed graphs) the links of the graphs are arrows, indicating

the directionality with a source and a target (Koller and Friedman, 2009).

As an example by Bishop et al. (2006), given a joint probability distribution P (a, b, c) and

applying the product rule will result in P (a, b, c) = P (c|a, b)P (a, b). Applying the product rule a

second time leads to equation 2.4.

P (a, b, c) = P (c|a, b)P (b|a)P (a) (2.4)

The right hand side of the equation 2.4 can now be shown as a simple graph as in the example

given in figure 2.4, in which each node represents the variable and the edges represent the factors

(e.g. P (c|a, b) represents the edges from a and b to c).

a

b

c

Figure 2.4: Bay e s n e tw o rk
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In the general case, the joint probability distribution of the random variables X = X1, ..., Xn is

given by equation 2.5. Bishop et al. (2006) and Russell and Norvig (2003) express in this equation

the factorization property of the joint probability distribution.

P (X = x) =

K∏
k=1

P (xk|parentk) (2.5)

This shows, that ”each entry in the joint distribution is represented by the product of the

appropriate elements of the conditional probability tables in the Bayesian network” (Russell and

Norvig, 2003).

Although Bayesian networks are easier to understand, they do not allow cycles and the inde-

pendence between variables is difficult to determine. In order to run inference algorithms on the

network, the Bayesian networks are usually converted to Markov networks, as they are a special

case of Bayesian networks (in which the partition function Z = 1) (Domingos and Lowd, 2009)

(Bishop et al., 2006).

Markov netw orks

Pearl (1988) describes a Markov network (originally known as Markov random field (Kindermann

et al., 1980)) as a ”model for the joint distribution of a set of variables X = (X1, X2, ..., Xn) ∈ χ”.

It is represented by an undirected graph G with a node for each variable and a potential functions

φ for each edge. The following figure 2.5 shows an example of a simple Markov network, which is

a joint distribution for watered, withered and perennial plants.

watered withered perennial

Figure 2.5: Exam p le o f M ark o v n e tw o rk

The joint distribution represented by the Markov network is given by equation 2.6, as stated

by Domingos and Lowd (2009).

P (X = x) =
1

Z

∏
k

φk(x{k}) (2.6)

Here, x{k} represents the state of the variable in kth clique. Z is the partition function,

Z =
∑

x∈χ

∏
k φk(x{k}). The two tables 2.6 and 2.7 summarize possible potential functions for

the example given above. These potential functions denote the affinity between two values. The
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higher the value, the more compatible the two values are. These values are not normalized and do

not even have to be between 0 and 1 (Koller and Friedman, 2009).

Table 2.6: Po te n t ia l f u n ct io n f o r e xam p le w ith ran d o m var iab le s w ate re d an d w ith e re d p lan t

watered withered φ(watered, withered)

1 1 4.5
1 0 2.7
0 1 4.5
0 0 4.5

Table 2.7: Po te n t ia l f u n ct io n f o r e xam p le w ith ran d o m var iab le s w ith e re d an d p e re n n ia l

withered perennial φ(withered, perennial)

1 1 4.5
1 0 2.7
0 1 4.5
0 0 4.5

To find the joint probability distribution for the plant, that is watered, withered but not peren-

nial, the calculation is P (watered = true, withered = true, perennial = false) = 1
Z (4.5 ∗ 2.7) =

12.15
Z .

In order to reduce calculation effort, Markov networks are usually represented as log-linear

models as described by Domingos and Lowd (2009) and Koller and Friedman (2009), in which

each clique potential is replaced by an exponentiated weighted sum of features of the state (see

equation 2.7).

P (X = x) =
1

Z
exp(

∑
j

wjfj(x)) (2.7)

According to Roth (1996), inference in Markov networks is #P-complete. Therefore approxi-

mate inference algorithms like Markov chain Monte Carlo (MCMC) (e.g. Gibbs sampling) (Gilks

et al., 1996) or belief propagation (Yedidia et al., 2005) are often used. The belief propagation

algorithm will be discussed in this thesis later on.

2.2.3 Inference in probabilistic graphical models

In the previous sections, the main goal was to give the reader a complete representation of the

respective joint probability distributions. In this section the question will be how to infer from this

knowledge, as the implementation of an efficient inference algorithm will be the main challenge of
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this thesis.

For many networks, exact inference performs efficiently. But because the computational and

space complexity growth exponentially with the size of the network Koller and Friedman (2009),

the exact methods may not deliver adequate results. Therefore, following the suggestion of Koller

and Friedman (2009), the use of approximate algorithms become interesting as they may perform

much better on large networks. The trick is to define simpler distributions as the most efficient

approximation of the target distribution. Thus, the inference task becomes a constraint optimiza-

tion problem. The most used method for solving this type of problems within graphical models is

based on the use of Lagrange multipliers, which produces a set of equations that characterize the

optima of the objective. Luckily, the set of equations are fixed-point equations that define each

variables in terms of others and hence derive from the constrained energy optimization.

Since the constrained energy optimization can be viewed as passing messages over a graph

object, all the corresponding inference approximations like sum-product algorithms and many

more can be solved by the same procedure. In the section 2.5, the Signal/Collect framework,

which will be utilized for the implementation, is described to simplify exactly this task even more.

Exact Algorithms

One example of an exact probabilistic inference is enumerate-joint-ask which enumerates the entries

in a full joint distribution. It then adds up the probabilities from the joint table and normalizes the

results (Russell and Norvig, 2003). Mathematically speaking, the formula with the query variable

X, the evidence variable E (e being the observed values) and Y the unobserved variables is as

follows:

P (X |e) = αP (X, e) = α
∑
y

P (X, e, y) (2.8)

In practice however, this algorithm does not scale well because in the worst case, almost all

the hidden variables have to be summed out. With a growing number of Boolean variables, it

requires exponential space and time O(n2n). By moving constant terms out of the summations

and using depth-first recursion of the enumeration-ask algorithm (Russell and Norvig, 2003, see

pages 505-506), the space complexity can be reduced to linear and the time complexity to O(2n).

The problem is, that the products are computed once for each evidence variable. This can be

avoided by making use of the variable elimination algorithm that saves the calculations for later

use. For singly connected networks or polytrees, this reduces time and space complexity to linear.

For multiply connected networks, this still takes exponential time and space O(n2) (Russell and

Norvig, 2003).

The most commonly used exact inference algorithms are clustering algorithms (also known as
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clique tree or join tree algorithms) (Russell and Norvig, 2003) (Watthayu, 2009). Clustering algo-

rithms join individual nodes into a cluster in order to receive a polytree as in the example given

by Russell and Norvig (2003) in figure 2.6.

cloudy

sprinkler rain

wet grass

cloudy

sprinkler + rain

wet grass

Figure 2.6: Exam p le o f a p o ly t re e (r ig h t ) b u ilt f ro m a m u lt ip ly co n n e cte d n e tw o rk (le f t )

With help of a constraint propagation algorithm on the polytree the query time can be reduced

to O(n). Although the problem remains NP-hard, because the construction of the network, vari-

able elimination may still need exponential time and space, as stated by Russell and Norvig (2003).

One famous constraint propagation algorithm, named belief propagation, is a special case of the

sum-product algorithm (see 2.2.4), introduced by Pearl (1982). By moralization and triangulation,

the clique tree is constructed of a Bayesian network. Inference is computed by passing messages

from each node of the tree to the other. The message sent is always based on the internal state as

well as on the messages received (Watthayu, 2009) (Jensen et al., 1990). For the purpose of this

thesis that is dealing with Markov Logic (see section 2.3), multiply connected graphs are used in

which belief propagation only delivers approximate results.

Approximate Algorithms

Before going into detail with belief propagation as discussed in the next section 2.2.4, another

important class of approximate inference algorithms is briefly presented in order to give a com-

plete overview on the subject. The prominent Markov logic system Alchemy use this category of

algorithms as the default for inference in the Markov network.

Markov chain Monte Carlo (MCMC) is probably the most widely used category of ap-

proximate inference algorithm for Bayes networks as well as Markov networks (Gilks et al., 1996).

MCMC algorithms use the idea of Markov chains in order to start from a sample and sample closer

and closer to the desired target distribution.

Gibbs Sampling is a popular candidate of MCMC or more precisely random walk algorithms.

Generally speaking, it generates a sample by forward sampling and then corrects itself by resam-
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pling all of the unobserved variables and calculating the marginal probability distribution. The

following code presents the Gibbs sampling algorithm (Koller and Friedman, 2009, pages 505-506).

1 f unc t i on GibbsSample (

2 X /∗ s e t o f v a r i a b l e s to be sampled ∗/
3 φ /∗ s e t o f f a c t o r s de f i n i n g f ac t o r d i s t r i b u t i o n ∗/
4 P (0)(X) /∗ i n i t i a l s t a t e d i s t r i b u t i o n ∗/
5 T /∗ number o f t ime s t e p s ∗/
6 ) {
7 Sample x(0) from P (0)(X)

8 for (t ⇐ 1, ..., T )

9 x(t) = x(t−1)

10 for (Xi ⇐ X )

11 Sample x
(t)
i from Pφ(Xi|x−i)

12 Change Xi i n x(t)

13 return x(0), ..., x(T )

14 }

Listing 2.1: G ib b s Sam p le

In a Markov network, it randomly samples each variable given its Markov blanket1) which in

a node are the neighbors of the graph. By counting over the samples, the marginal probabilities

are calculated (Domingos and Lowd, 2009).

As already stated for exact inference, belief propagation is another powerful and efficient al-

gorithm if used in multiply connected networks like Markov networks. In the following section, a

detailed insight to this algorithm is given.

2.2.4 A detailed look on Belief Propagation

Belief propagation is a highly efficient message-passing algorithm that performs exact inference on

tree-structures Markov networks (Pearl, 1988). In loopy graphs, it may only return approximate

results and may also not converge. In practice however, this convergence problem seldom occurs

(Domingos and Lowd, 2009) (Bishop et al., 2006) (Yedidia et al., 2001). The more general category

of belief propagation is called sum-product algorithms, which can most efficiently be implemented

on factor graphs.

Factor graphs As pointed out earlier, Bayesian networks can be converted to Markov networks.

In order to receive a graph that corresponds to the factorization as described in section 2.2.2, a

factor graph is built representing the same directed or undirected graph as showed in figure 2.7

(example given by Bishop et al. (2006)). In addition to the variable nodes that are familiar from

Bayesian and Markov networks, the factor graph also contains factor nodes.

1Pearl (1988) defines a Markov blanket as the minimal set of nodes that are sufficient for forming it independent
of the remaining network (Pearl, 1988, pages 120-121).
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Figure 2.7: Co n ve r sio n f ro m d ire cte d p o ly t re e to u n d ire cte d g rap h to f acto r g rap h

As an example, if there is an undirected graph with nodes say x1, x2, x3 which is fully con-

nected, a factor graph has a factor for the joint distribution p(x) = f(x1, x2, x3) or more specific

factors p(x) = fa(x1, x2)fb(x1, x3)fc(x2, x3).

In this context, factor graphs are used to perform efficient inference algorithms for finding

marginals and computation sharing. Having this in mind, the sum-product algorithm can be

introduced.

The sum-product algorithm Bishop et al. (2006) explains, that calculating the marginal p(x)

for a specific variable node is done by summing the joint distribution over all variables except x

leading to the following equation 2.9 where the variable x of the set of variables x is omitted.

p(x) =
∑
x\x

p(x) (2.9)

Substituting p(x) using the factor expression p(x) =
∏

s fs(xs) and interchanging summations

and products, the joint distribution can be written as as a product of the neighboring factor nodes

ne(x) with Xs being the set of all variables in the subtree connected to the variable x via the factor

node fs. Fs(x,Xs) is the product of all factors that are associated with factor fs.

p(x) =
∏

s∈ne(x)

Fs(x,Xs) (2.10)

By substituting the two equations 2.9 and 2.10 to p(x) =
∏

s∈ne(x)

[∑
Xs

Fs(x,Xs)
]
, resulting in∏

s∈ne(x) μfs→x(x) where equation 2.11 defines the message from the factor node fs to the variable

node x, and p(x) is the product of all incoming messages at variable node x.

μfs→x(x) ≡
∑
Xs

Fs(x,Xs) (2.11)

Because each factor Fs(x,Xs) is itself described by a factor graph, it can again be factorized

and substituted into the message from the factor to the variable, receiving the following equation

(that gives the algorithm its name).
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μfs→x(x) =
∑
x1

...
∑
xM

fs(x, x1, ..., xM )
∏

m∈ne(fs)\x
μxm→fs(xm) (2.12)

Now the message from variable nodes to factor nodes can be defined by equation 2.13 where

Gm(xm, Xsm is a subfactor of Fs(x,Xs).

μxm→fs(xm) ≡
∑
Xsm

Gm(xm, Xsm) (2.13)

After having sent a message from a variable node to a factor node, it in turn sends a message it-

self to a variable node. So by substituting the factorization ofGm(xm, Xsm) =
∏

l∈ne(xm)\fs Fl(xm, Xml),

the message from the variable node can be defined in terms of messages of the factor nodes.

μxm→fs(xm) =
∏

l∈ne(xm)\fs

[∑
Xml

Fl(xm, Xml)

]
=

∏
l∈ne(xm)\fs

μfl→xm(xm) (2.14)

This recursive calculation of the marginal for the variable node x is initialized with either a

message value μx→f (x) = 1 for the variable node or a message value μf→x(x) = f(x) for a factor

node, depending on what kind of node the node is. The marginal for a distribution p(xs) is finally

given by equation 2.15.

p(xs) = fs(xs)
∏

i∈ne(fs)

μxi→fs(xi) (2.15)

Since only in directed graphs the joint distribution is already correctly normalized, for undi-

rected graphs this has to be done using an unknown normalization constant 1/Z. To do so,

sum-product is run in the unnormalized version of the joint probability distribution. In the end,

the normalization constant is easily calculated by normalizing one of the marginals (Bishop et al.,

2006, pages 399-411).

The idea behind belief propagation as introduced by Pearl (1982) was that it is only run on

tree-like networks. Surprisingly, it also works well also on networks with loops and cycles where it

is called loopy belief propagation and converges quickly (Murphy et al., 1999). However, in some

cases it may also fail to converge (Yedidia et al., 2001).

Until now, all the reasoning methods used either a logic or probabilistic perspective. In the

next section, Markov logic tries to unify both ideas.
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2.3 Markov logic

This section deals with Markov Logic as a joint language between first-order logic and graphical

models. In the first subsection, the general concept is described. After that, some inference systems

that operate on Markov logic are presented.

2.3.1 The M arkov Logic Language

Markov logic is an attempt to combine first-order logic and probability graphical models, in this

case Markov networks, into a single probabilistic logic representation, called Markov logic networks

[MLN]. For that purpose, formulas from first-order logic are taken and a weight (a real number)

is assigned to every one of them (Richardson and Domingos, 2006, page 1). The definition of a

Markov logic network (MLN) by Richardson and Domingos (2006) is ”a set of pairs (Fi, wi), where

Fi is a formula in first-order logic and wi is a real number”, like for example:

Friends(x, y) ∧ Friends(y, z) ⇒ Friends(x, z) 0.7 (2.16)

Friends(x, y) ⇔ Smokes(x) ∧ Smokes(y) 1.1 (2.17)

Smokes(x) ⇒ HasCancer(x) 1.5 (2.18)

In these formulas 2.16, 2.17 and 2.18 friends of friends are friends with a weight of 0.7, friends

have similar smoking habits with a weight of 1.1, and smoking may cause cancer with a weight

of 1.5. In contrast to first-order logic, the intuition in Markov Logic is that states that violate a

weighted formula are not completely impossible but only less probable. Also the weights behind

the formulas are not necessarily between 0.0 and 1.0 as they would be intuitively when coming

from probabilistic reasoning. Here, a weight describes the relevance of a formula. In the words of

Richardson and Domingos (2006), ”the higher the weight, the greater the difference in log prob-

ability between a world that satisfies the formula and one that does not, other things beeing equal”.

In order to evaluate the truth value of a weighted formula in Markov logic, the Markov logic net-

work needs to be grounded with constants as an interpretation of the used variables to a grounded

Markov network. For every grounded predicate (e.g. Smokes(Fritzli) and HasCancer(Fritzli))

and every grounded formula (e.g. Smokes(Fritzli) ⇒ HasCancer(Fritzli)) a node, that can

either be true or false in the Markov network, exists. The graph in figure 2.8 shows the grounded

Markov network for the example given by Domingos and Lowd (2009) with the formulas 2.17 and

2.18 and the the constants Anna and Bob.

The probability distribution over possible worlds x is specified by the groundedMarkov network.

To handle the product in the joint distribution more conveniently, the Markov network can be

stated as in the following equation 2.19 given by Domingos (2006). Here, F stands for the number
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Cancer(Anna) Cancer(Bob)

Smokes(Anna) Smokes(Bob)Friends(Anna,Anna)

Friends(Anna,Bob)

Friends(Bob,Anna)

Friends(Bob,Bob)

Figure 2.8: G ro u n d M ark o v n e tw o rk f o r sm o k e s e xam p le

of formulas in the MLN and ni(x) for the number of true groundings of Fi in x.

P (X = x) =
1

Z
exp

(
F∑
i=1

wini(x)

)
(2.19)

In case of equal weights or if they tend to infinite, the MLN equals a traditional logic KB,

generalizing first-order logic. Since contradictions between formulas are allowed, Domingos (2006)

emphasizes, that Markov logic is extremely helpful in merging KBs. This problem is resolved by

weighting the evidence on both sides.

Unfortunately as one can see, the ground Markov logic network for a domain with many con-

stants can grow extremely large. However, the size can be significantly reduced by using typed

constants and filtering the wrong types while grounding. But often, even this does not help. Some

approaches to reduce this size are discussed later on in this thesis.

2.3.2 Inference in M arkov Logic

Since Markov logic builds on Markov networks, the same algorithms can be used for inference. In

the previous section 2.2.3, two prominent candidates for were presented, the MCMC algorithms

like Gibbs sampling, or the class of sum-product algorithms including loopy belief propagation.

These are also part of the implemenation of the following inference systems.
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2.3.3 M arkov Logic inference systems

For Markov logic, there are already several applications implementing inference or learning. This

section presents the two most popular inference engines as well as another system using them for

weight learning in the Semantic Web. Alchemy, which is described first, is where all the Markov

logic started. This system is later used in the benchmark evaluation of this thesis to measure the

overall performance of LISy, the inference system presented in thesis.

Alchemy

Alchemy is an open-source Unix command-line system written in C++ that provides a collection

of different Markov logic based algorithms for learning and inference. Its was developed by Kok

et al. (2007) from the University of Washington. The available beta version covers discrimina-

tive weight learning (voted perceptron, conjugate gradient, newton’s method), generative weight

learning, structure learning, MAP/MPE inference and probabilistic inference (MC-SAT, Gibbs

sampling, simulated tempering, belief propagation, lifted belief propagation).

In order to run inference or do learning, the Markov logic network is provided as predicates and

functions with weights, types and constants in .mln files as in the example provided by Domingos

and Lowd (2009) in listing 2.2.

1 // pr ed i c a t e de c l a ra t i on s

2 Fr iends ( person , person )

3 Smokes ( person )

4 Cancer ( person )

5

6 // I f you smoke , you ge t cancer

7 1 .5 Smokes (x ) => Cancer ( x )

8

9 // Friends have s im i l a r smoking ha b i t s

10 0 . 8 Fr iends (x , y ) => ( Smokes ( x ) <=> Smokes ( y ) )

Listing 2.2: Exam p le M LN fi le f o r f r ie n d s an d sm o k e r s d o m a in

Ground atoms are defined in .db (see example by Domingos and Lowd (2009) in listing 2.3) files

and can be defined as evidence (true, false) or unknown. The default is a closed world assumption,

but also open world can be specified during inference.
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1 Fr iends (Anna , Bob)

2 Fr iends (Bob , Anna)

3 Fr iends (Anna , Edward)

4 Fr iends (Edward , Anna)

5 Fr iends (Bob , Chr i s )

6 Fr iends ( Chris , Bob)

7 Fr iends ( Chris , Danie l )

8 Fr iends ( Daniel , Chr i s )

9 Smokes (Anna)

10 Smokes (Bob)

11 Smokes (Edward )

12 Cancer (Anna)

13 Cancer (Edward )

Listing 2.3: Exam p le .d b fi le

To run inference on the system, the parameterized command is entered in the command line

as for example in listing 2.4.

ALCHDIR/bin / i n f e r − i smoking . mln −e smoking . db −r . smoking . r e s u l t s −q Smokes −ms −
maxSteps 20000

Listing 2.4: Ru n in f e re n ce e xe cu tab le

The result in the output file then looks as in listing 2.5.

1 Smokes ( Chr i s ) 0 .238926

2 Smokes ( Danie l ) 0 .141286

Listing 2.5: In f e re n ce .re su lt fi le

Alchemy also supports a lazy execution of most algorithms or a lifted version to avoid ground-

ing the entire domain (Domingos and Lowd, 2009, pages 125-130). Thanks to the execution times

it displays with every run, it can be easily used for benchmarking, as this will be done in the

evaluation of this thesis.

PyMLN

PyMLN is a software package by Beetz and Jain (2010c) of the Intelligence Autonomous Systems

(IAS) group TU München written in Python. It contains graphical tools for performing inference

in MLNs and learning the parameters of MLNs, using the included PyMLN engine or the Alchemy

system as underlying engine. It supports exact inference, MC-SAT as well as Gibbs sampling.

Parameter learning works with several variants of maximum likelihood based on log-likelihood and

pseudo-log-likelihood. A screen shot in figure 2.9 shows the MLN query tool of the PyMLN system,

just to give an idea how other tools may look like.
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Figure 2.9: Scre e n sh o t o f Py M LN q u e ry to o l

The PyMLN package has been moved into the ProbCog Project by Beetz and Jain (2010a)

where serveral graphical as well as inference and learning tools have been added, most of them

written in Java. It now contains tools for Markov Logic that support MC-SAT, MaxWalkSAT,

Toulbar2 Branch & Bound, as well as tools for Bayesian Logic Networks (BLN) with support

for likelihood weighting, backward simulation, iterative join-graph propagation, SampleSearch,

enumeration-ask. Also, graphical tools like a network editor in figure 2.10 are included (Beetz and

Jain, 2010b).

Figure 2.10: Scre e n sh o t o f BN J, a g rap h ica l e d ito r f o r Bay sian an d Bay sian lo g ic n e tw o rk s
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Incerto

Incerto is a probabilistic reasoner for the Semantic Web by de Oliveira and de Sousa Gomes (2009)

and is written in Java. It uses the capabilities of Markov logic to learn and reason about uncer-

tainty in OWL2 ontologies. As an underlying reasoning engine, both Alchemy and PyMLN are

supported by Oliveira (2009).

The features declared on the Incerto website cover automatic weight learning of axioms un-

certainty through analysis of ontology individuals, exact and approximate inference in weight-

annotated ontologies and support for Alchemy and PyMLNs Markov logic engines. Further, In-

certo supports OWL2, SWRL rules and first-order logic rules. Incerto comes with programmatic,

graphical, and command line interfaces.
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2.4 Know ledge representation

With the Internet as the largest representative of a knowledge base (KB) and the increasing

possibilities in logical and probabilistic reasoning, the question how to handle the masses of data

and how to make knowledge explicit and usable emerges. One of the key concepts to solve this

issue is to make use of the Semantic Web.

2.4.1 The Semantic W eb

The Semantic Web describes methods and technologies to allow machines to deal with the seman-

tics of the World Wide Web (Berners-Lee et al., 2001), i.e. to infer meaning of objects. In order to

describe concepts, terms and relationships within a knowledge domain, technologies like the Re-

source Description Framework (RDF), formats like RDF/XML or N3 as well as notations like the

RDF Schema (RDFS), and most important for this thesis the Web Ontology language (OWL and

OWL2) (Boris Motik, 2009, W3C), the Rule Interchange Format (RIF) (Axel Polleres, 2010, W3C)

and the RDF query language SPARQL (Eric Prud’hommeaux, 2008, W3C) have been proposed by

the W3C (Hitzler et al., 2007) (Herman, 2010, W3C). All of these are consistent, open standards,

which is important for the success of this concept. Figure 2.11 captured from W3C website shows

an overview the layered architecture of the Semantic Web (Berners-Lee et al., 2001).

Figure 2.11: Lay e re d a rch ite ctu re o f th e Se m an t ic W e b
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In its lowest layer, Uniform Resource Identifiers (URI) represents the name or resource that

is used, and consists of the Uniform Resource Locator (URL) and the Uniform Resource Name

(URN) (URI Planning Interest Group, 2001).

2.4.2 Resource Description Framew ork RDF

In the second layer, RDF describes Information in a structured manner. The idea of RDF is to

describe a directed graph from in which both nodes and edges (representing relations) use an URI

each as an unique identifier.2 This is best shown in an example as in figure 2.12.

http://x.org/Zurich http://x.org/Switzerland
http : //x.org/locatedIn

Figure 2.12: Exam p le o f a sim p le RD F g rap h th a t d e scr ib e s th e lo ca t io n o f Zu r ich

The three objects are called subject, predicate and object, describing an RDF triple. For se-

rialization a number of different formats have been introduced like N3, N-triples, or RDF/XML

(Hitzler et al., 2007), as for example in listing 2.6.

1 <?xml version=” 1.0 ” encoding=”utf−8”?>

2 <rdf:RDF xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

3 xmlns :ex =” ht tp : //x . org /”>

4

5 <r d f :D e s c r i p t i o n rd f : abou t=” ht tp : //x . org /Zur ich”>

6 <ex : l o ca t ed I n>

7 <r d f :D e s c r i p t i o n rd f : abou t ” h t tp : //x . org / Swi tzer l and”>

8 </ r d f :D e s c r i p t i o n>

9 </ ex : l o ca t ed I n>

10 </ r d f :D e s c r i p t i o n>

11 </rdf:RDF>

Listing 2.6: Exam p le o f an RD F se r ia l iz a t io n in RD F/X M L

As seen above, document type and namespaces are declared first. Then, to describe statements,

the tag rdf:Description, and for resources, the tag rdf:about is applied (Hitzler et al., 2007).

To add values (literals) directly to RDF, datatypes are used, as for instance "Springer-Verlag"̂̂

xsd:string as declared in the XML schema (Sperberg-McQueen and Thompson, 2000).

2Note that not every node needs to use an URI as there can also be blank nodes, or nodes with literals. But
since these cases are not relevant for us at the moment, they will not be discussed here in further detail.
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2.4.3 RDF Schema RDFS

In addition to the few defined properties in RDF, like rdf:type, there exists an extension to RDF

called RDF Schema (RDFS) which can be found on top of the RDF layer. This additional vocab-

ulary that is completely specified in RDF, can be used to declare the terminological knowledge

like classes rdf:class, class relations rdf:subClassOf, properties rdf:property and property

relations rdf:subPropertyOf. Other often used properties are literals rdf:literal, annotations

rdf:comment and rdf:label, property restrictions rdf:range and rdf:domain. These RDFS

properties can be used to build an ontology with individuals and class hierarchies, where an on-

tology is simply a knowledge base that models a domain (Hitzler et al., 2007), or, as defined by

Gruber et al. (1993), ”a formal specification of a shared conceptualization”. An example of an

ontology in RDFS is given by the following listing 2.7, in which Stefan and Carmen are individuals,

belonging to the classes male respectively female.

1 <?xml version=” 1.0 ” encoding=”utf−8”?>

2 <rdf:RDF xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

3 xm ln s : r d f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”

4 xmlns :ex =” ht tp : //x . org /”>

5

6 <r d f s : C l a s s r d f : abou t=” ht tp : //x . org /person”>

7 <r d f s : l a b e l xml:lang=”en”>person</ r d f s : l a b e l>

8 </ r d f s : C l a s s>

9

10 <r d f s : C l a s s r d f : abou t=” ht tp : //x . org /male”>

11 <r d f s : l a b e l xml:lang=”en”>male</ r d f s : l a b e l>

12 <r d f s : s ubC l a s sO f r d f s : r e s o u r c e=” ht tp : //x . org /person”>

13 </ r d f s : C l a s s>

14

15 <r d f s : C l a s s r d f : abou t=” ht tp : //x . org / female ”>

16 <r d f s : l a b e l xml:lang=”en”>f emale</ r d f s : l a b e l>

17 <r d f s : s ubC l a s sO f r d f s : r e s o u r c e=” ht tp : //x . org /person”>

18 </ r d f s : C l a s s>

19

20 <ex:male r d f : abou t=” ht tp : //x . org / s t e f an ”>

21 <ex : f emal e r d f : abou t=” ht tp : //x . org /carmen”>

22

23 </rdf:RDF>

Listing 2.7: Exam p le o f an O n to lo g y in RD FS

2.4.4 W eb Ontology Language OW L

Because of the limited expressiveness of RDFS, the W3C introduced OWL in 2004 and later in

2008 OWL2 (Boris Motik, 2009, W3C) as a standard ontology language. Meanwhile OWL has

become quite popular with a large number of users and tools. OWL is a language with a large
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expressiveness as well as efficient and scaling reasoning possibilities, and is based on predicate logic.

To reduce complexity for the user, three sublanguages of OWL are defined: OWL Full, OWL DL

and OWL Light (Hitzler et al., 2007).

1. OWL Full includes both OWL DL and OWL Lite as well as the entire RDFS. Therefore, it is

highly expressive. The counter side is that the high expressiveness makes the language more

complex. OWL Full is undecidable and also has some semantic aspects, that are problematic

from the logical point of view.

2. OWL DL includes OWL Lite and is a sublanguage of OWL Full. In contrast to OWL Full,

it is decidable and is therefore supported in many tools.

3. OWL Lite is a sublanguage of both OWL DL as well as OWL Full. It is decidable and less

complex, but not as expressive as the other two.

Now with OWL, properties like the following examples can be expressed (Hitzler et al., 2007).

1 <owl :ObjectProperty r d f : abou t=”membership”>

2 <rd f s :domain r d f : r e s o u r c e=”person”/>

3 <r d f s : r a n g e r d f : r e s o u r c e=” o r gan i za t i on ”/>

4 </ owl :ObjectProperty>

5

6 <owl :DatatypeProperty r d f : abou t=”prename”>

7 <rd f s :domain r d f : r e s o u r c e=”person”/>

8 <r d f s : r a n g e r d f : r e s o u r c e=”&xsd ; s t r i n g ”/>

9 </ owl :DatatypeProperty>

Listing 2.8: Exam p le s o f O W L p ro p e r t ie s

The examples above only scratch the surface of the entire expressiveness of OWL. For instance,

there are several classes constructors and relations like owl:Class, owl:Thing, owl:disjointWith,

owl:hasValue, owl:equivalentClassand owl:complementOf, role properties like owl:inverseOf

and owl:sameAs as well as datatypes Hitzler et al. (2007).

With the growing user community around OWL, new requirements have been incorporated

into OWL2. There are three OWL2 profiles, each - as in OWL - a sublanguage in order to trade

expressive power for the efficiency of reasoning (B. Motik, 2009):

1. OWL 2 EL is designed for the use with ontologies containing a large number of classes and

properties. The expressive power is that of description logics EL (see (Baader et al., 2005))

that only provides existential quantifiers.

2. OWL 2 QL where QL stands for the ability to rewrite queries into a standard query language.

It is used especially with large volumes of instance data.
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3. OWL 2 RL stands for the ability to reason in standard Rule Language. OWL 2 RL has high

expressive power and is built for reasoning applications.

In addition to the OWL 2 profiles, OWL 1 sublanguages can be expressed with OWL 2

(B. Motik, 2009).

A sophisticated graphical ontology editor and knowledge-base framework is Protégé by the

(Mark Musen, 2010, Standford University School of Medicine). It supports a variety of formats

including RDF, RDFS and OWL as well as rules and reasoning.

2.4.5 Rule formats

In addition to representing primarily ontology data in OWL, the W3C has examined a significant

number of rule formats like the Semantic Web Rule Language (SWRL) that uses horn clauses,

RuleML and the brand new recommendation from June 2010, the Rule Interchange Format (RIF).

Although it comes a little too late in order to be incorporated in the implementation part of this

thesis, it would be a good idea to enable a follower version of LISy to read rules in RIF, or also in

SWRL and RuleML.
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2.5 Signal/Collect
Signal/Collect is a scalable programming model for running various algorithms on typed graphs

developed by Stutz et al. (2010) of the DDIS Group at Univerity of Zurich. In addition to the

programming model, a Signal/Collect framework has been built, that eases the implementation of

message passing algorithms substantially. As it is written in Scala, it runs on the Java Virtual

Machine.

The principle of the model is that computations on the Semantic Web usually involve sending

information between the resources (which depict vertices) over the properties (edges) of the graph.

The target vertex then collects the messages, and may do some computation like, for instance,

to update the state. This idea of signaling and collecting messages is illustrated in the following

figure 2.13.

resource resource

Figure 2.13: Il lu st ra t io n o f th e Sig n a l/Co lle ct m o d e l

Since many algorithms like page rank, RDFS subclass inference, and Bellman-Ford pass mes-

sages over their edges, it is perfectly suitable as a generic programming model. In this thesis,

Signal/Collect is used to implement belief propagation in an efficient way.

The framework itself contains a collection of predefined features. For instance, it can construct

the network by fetching data from a SPARQL endpoint. By defining a SPARQL query to retrieve

the source and target predicates that fully specifies the edge, the Signal/Collect framework han-

dles the construction of the network it runs on. The algorithm can then be executed in parallel by

assigning a number of workers.

The compute graph, on which Signal/Collect builds, is defined as a tuple G = (V,E) where

V is the set of vertices, and E the set of edges in G. Furthermore, there are four core attributes

defined on every vertex:

• v.id: unique id of the vertex

• v.state: current state representing computational intermediate results

• v.signals: most recent signals received from neighboring vertices as a map
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• v.uncollectedSignals: list of arrived signals with signals all since the last collect operation

was executed on the vertex

The edges are all directed, consisting of a source, a target and the following attributes:

• e.sourceId: source vertex id

• e.targetId: target vertex id

• e.currentSignal: last signal sent along the edge

To implement the algorithm of choice on Signal/Collect, the framework provides already pre-

defined methods. Other methods like the two main tasks signal and collect need to be imple-

mented seperately. The standard methods v.signal and v.collect, as well as the method

v.initialState are therefore overridden with custom code:

• G.initialState: vertexId → state: returns the initial value for a vertex for a given vertexId

• G.signal: edge → signal: returns the signal to be sent along a specified edge

• G.collect: vertex → state: returns the new vertex state for a specified vertex

To calculate and print the results, the method v.processResults needs to be implemented.

Another predefined method that can be overriden is v.scoreSignal, which enables the developer

to guide the algorithm where necessary, using a score. Like this, asynchronous algorithms can be

easily developed.

After implementing the algorithm with the provided skeleton functions, Signal/Collect can be

executed by calling computeGraph.execute.

Having all the conceptual utilities at hand, requirements for the Markov Logic inference system

can be gathered.





3
System Requirements

As declared in the introduction of this thesis, the goal is to create infrastructure that allows to do

inference on Markov Logic formulas by running belief propagation on the Signal/Collect frame-

work. The resulting system will be called Logic Inference System, or LISy for short.

In order to meet the requirements, a specification of the system is presented hereafter, using

an id for every requirement. In addition, every requirement receives one marker included in the id,

depending on the priority. The two categories are either ”must have” with marker M and ”nice to

have” with N. Hence the id looks something like M01.

3.1 Functional requirements
The key functionality of the system is to run the loopy belief propagation inference algorithm on

Markov logic. With the grounding of Markov Logic formulas with data from an RDF database, a

Markov Logic Network is built. The result of the loopy belief propagation algorithm should then

deliver correct (approximate) results on the belief of the inference task.

Data requirements

• M01: The data for evidence and potential grounding of the Markov Logic formulas are pulled

from an RDF database via a SPARQL endpoint. The predicate query therefore requires

fetching all individuals that are rdf:type of any rdfs:domain or rdfs:range. Furthermore,

duplicate values need to be filtered. For evidence query should retrieve all elements with any

property and bind it to predicates.

• N02: Support for Alchemy-compatible parsing of .mln and .db files in order to use one or

more for inference.
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Logic requirements

• M03: The system supports the use of rules as formulas in Markov logic as defined in the

EBNF of first-order logic with an additional weight.

• M04: Existential quantification is supported.

• N05: The equality predicate is supported.

Network requirements

• M07: Markov Logic Formulas can be compiled into a grounded Markov logic network, using

the loaded data.

Inference requirements

• M08: Loopy belief propagation as an implementation of a inference algorithm can be run

on a grounded Markov Logic Network using the Signal/Collect programming model.

• M09: The messages sent in belief propagation over the Markov logic network are as describes

by Domingos and Lowd (2009) in figure 3.1. There is a message from each variable repre-

senting a grounded predicate to the corresponding factor representing the grounded formula

where they are linked with an edge. In the next step, the messages are sent in the opposite

direction.

variables(x) factors(f)

μx→f (x) =
∏

h∈nb(x)\{f} μh→x(x)

μf→x(x) =
∑

{̃x}
(
f(x)

∏
y∈nb(f)\{x} μy→f (y)

)

Figure 3.1: Be lie f p ro p ag a t io n in a f acto r g rap h

• M10: The messages from variables to factors are initialized with the multiplicative identity

element.

• M11: The factor f is calculated with an exponential function fi(x) = exp(wigi(x)) per

feature gi.
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• M12: Features over the same variables are not aggregated into a single factor.

• M13: Evidence from the database is incorporated by setting f(x) = 0 for states x that are

incompatible with it.

• N14: RDFS sub-class inference is supported.

• N15: Special treatment to the !-operator (at least 1 and at most 1).

3.2 Nonfunctional requirements

This section includes all nonfunctional requirements referring to performance and other qualities,

as well as constraints.

3.2.1 Attributes

Performance requirements

• M16: The inference algorithm can be run in parallel.

Special Q ualities

• M17: Developers can easily integrate Markov Logic Formulas in the system.

• N18: The system should have the characteristics of a framework.

3.2.2 Constraints

Technology requirements

• M19: For the storage and query of triples, OpenRDF Sesame (Aduna, 2010) is used. Sesame

runs on Apache Tomcat (Apache, 2010) which is a servlet container for Java Servlets and Java

Server Pages (JSP). Furthermore, it provides a pure Java HTTP web server environment for

Java code.

• M20: The query language used to retrieve the nodes and edges from the triple store is

SPARQL.

• M21: The system runs on the Java Virtual Machine and is therefore written in either Scala

or Java.

• M22: For the implementation, the Signal/Collect framework is used.
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Development process requirements

• M23: During development, the revisions are regularly committed to the SVN server.

• M24: The classes and methods are documented using JavaDoc.

Based on the specified requirements, the system can be designed.



4
System Design and
Implementation

This chapter builds on the requirements that were defined previously in chapter 3. In the following

the system design decisions are made and the implementation of the Logic Inference System LISy

is discussed in detail.

4.1 Architecture
LISy is built in a multi-tier approach using multiple layers as can be seen in 4.1 in order to sepa-

rate concerns. It is built to conceptually match the layered architecture of the Semantic Web by

building a network on top of single data elements. On this network, rules can be formulated and

reasoned by them.

As the goal of LISy is to establish infrastructure for Markov logic applications, it is built itself

as part of a multi-tier. LISy can be integrated in new applications by adding a business and

application layer on top.

formulas groundings

network

reasoning

logic

Figure 4.1: Lo g ic la y e r s
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4.2 Markov Logic formulas
In order to ease the use of Markov Logic formulas for developers, formulas can be entered in Scala.

This simplifies the later development of parsers, that import Markov Logic formulas from external

files like the Alchemy .mln file format. Since Scala offers an elegant way of defining functions with

all kinds of characters, the formulas can be written in the form given below and assigned to a

variable of the type Formula:

val f1: Formula = "Smokes"~(x) -> "HasCancer"~(x) w 1.5

or even

val f2: Formula = ∀(x, ∃(y, "Loves"~(x,y) ∧ "Loves"~(y,x))) w 2

The strings followed by variables in brackets ("Loves"~(x,y)) are assigned automatically to a

predicate and the weight after the w is assigned to the formula. The following symbols are used

to create valid formulas: ∀ or forall, ∃ or exists, ¬ or not, ∧, ^ or And, ∨, v or Or, →, ->,

or Implies, ↔, <-> or Equivalent, and finally w. Thus, all elements from first-order logic and

Markov Logic are valid in this implementation.

By building the hierarchical structure of the formula consistently by recursion as shown figure

4.2, it can be kept for later reuse as for example the easy reconstruction of the string representation

or the evaluation of the formula in first-order logic.

weightedformula

→ 1.5

x

Smokes

x

HasCancer

Figure 4.2: Exam p le o f a h ie ra r ch ica lly d e fi n e d f o rm u la .

The class structure can be similarly constructed, as presented in the class diagram of figure

4.3. The artificial seeming class BinaryOperatorFormula is used to ease the handling of the cor-

responding formulas and is therefore kept abstract, and hence can not be instantiated.

After having defined one or several formulas, they are added to the Markov logic network

(MLN) by applying the addFormula method of an MLN object of type MarkovLogicNetwork.
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Figure 4.3: Class st ru ctu re o f Fo rm u la h ie ra r ch y in M ark o v Lo g ic
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4.3 Netw ork grounding

Now with all formulas formulated, the MLN can be grounded with individuals of type Individual

by running the ground(db)method of the MLN which in turn grounds all the formulas recursively

as can be seen in figure 4.4, similar to the formula hierarchy. This configuration brings about, that

the rootFormula attribute has to be set, in order to remember where the formula started.

Figure 4.4: Im p le m e n ta t io n o f g ro u n d e d f o rm u las

A grounded formula or predicate is a Formula extended with the trait Grounding. The concept

therefore is described in the class diagram 4.5. It uses a mapping between variables and individu-

als, that are queried from the database given to the method by parameter.
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Figure 4.5: G ro u n d e d f o rm u las b u ilt f ro m f o rm u las w ith g ro u n d in g

Since the network is grounded with RDF triples from the Sesame triple store, the database is

the abstract SparqlAccessor of the Signal/Collect framework for Scala by Stutz et al. (2010). It is

instantiated as a SesameSparql object, that also comes with the SignalCollect framwork, with the

two parameters database URL and namespace each as string. The deployment diagram 4.6 below

shows how the system is connected to OpenRDF Sesame implementation of a SparqlAccessor.

Since SparqlAccessor is an abstract concept, any other triple store could be used as a data source,

as for example Jena1.

Apache Tomcat

OpenRDF Sesame

RDF data set

Markov Logic Inference

1

*

Figure 4.6: D e p lo y m e n t d iag ram

1Jena is a semantic web framework for Java that provides RDF(S), OWL and SPARQL support. It is available
unter http://jena.sourceforge.net.
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On creation, the GroundedPredicates and the Formula with Grounding assign themselfs to

the MLN.

After the grounding of the network is complete, evidence in the MLN is marked. Evidence, in

the terminology used in this thesis, is a known fact about a predicate in the MLN. The method

that retrievs evidence is getEvidence(db), which needs access to a SparqlAccessor, and then

fetches the evidence by using a simple SPARQL query. It assigns a truth value of type TruthValue,

which can either be true, false or unknown. For each of these, an object (TRUE, FALSE, UNKNOWN,

see figure 4.7) exists, that eases comparison later on.

Figure 4.7: Tru th Va lu e s f o r Ev id e n ce

Because usually in order to do inference on the network, both, grounding and assigning evi-

dence has to be done, there exists a method init(db), that covers all the preparation processes.

4.4 Running loopy belief propagation
With the complete grounded network including evidence, it is ready to run inference algorithms2. In

this case it will be loopy belief propagation. Since Signal/Collect offers all the needed functionality

to do this kind of message passing algorithm, it makes sense to implement loopy belief propagation

with this framework.

variables factors

Figure 4.8: Tw o ve r t ice t y p e s f o r b e lie f p ro p ag a t io n

Like specified in section 2.5, in order to run belief propagation on Signal/Collect, the ComputeSubgraph

2the fun stuff.
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has to be defined by vertices and edges. When running loopy belief propagation on a fac-

tor graph, the vertices are twofold as shown in figure 4.8. Of course, variable nodes represent

GroundedPredicates and factor nodes are of type Formula with Grounding (without grounded

predicates), which can be any Formula from GroundedNot to GroundedWeightedFormula where

the rootFormula attribute is set.

This results in separate implementations for variable and factor nodes in Signal/Collect, but

with matching edges in order to form a graph without having edges pointing to nirvana. They

are called BeliefPropagationVariable and BeliefPropagationFactor. Since in the framework

vertices are defined over their edges, it is sufficient to only create them, which can be easily done

by loading the MarkovVariableEdges and the MarkovFactorEdges as can be seen in figure 4.9.

Figure 4.9: Be lie f p ro p ag a t io n w ith Sig n a l/Co lle ct
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Slightly more complicated is the design of joint distributions. For belief propagation, the truth

table of every formula has to be created resulting in a function g(x). To incorporate weight, the

values of g(x) are converted to real numbers between 0 (false) and 1 (true), then multiplied by the

weight and finally exponentiated, resulting in f(x).

Conveniently, trait Grounding offers a method getEvidenceTruthMap which can be seen as

creating the truth table for the grounded formula. This method runs recursively, returning the

truth map as type TruthFactor. To efficiently produce the truth map, the logical operators are

defined in the type itself.

Also defined in trait Grounding is the method getEvidenceWeightMap. This method handles

weighting of evidence, resulting in a weight map of type BeliefFactor. Similar to TruthFactor,

it offers certain operations like the multiplication, addition as well as the inversion, which are used

for collecting and signaling. Also for later use the method marginalize and normalize are pro-

vided. As a special instance of BeliefFactor, the MultiplicativeIdentity is provided. Figure

4.10 depict the different types of Factors.

Figure 4.10: Tru th Facto r an d Be lie f Facto r in M ark o v Lo g ic N e tw o rk

By using Factors as basic representation of the vertex state and for messages, loopy be-

lief propagation can easily be applied to Signal/Collect. In the first node type, which is the

BeliefPropagationVariable, the following methods need to be implemented:

• initialState(vertexId:Formula with Grounding): the initial state is set to the multi-

plicative identity

• edges: the edges are loaded from the MarkovVariableEdges by passing the grounded MLN
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as parameter

• scoreSignal(v:Vertex): the vertex with the highest difference in state is handled first

• signal(e:Edge): the normalized product of all signals are sent to the target (excluding the

target contribution)

• scoreCollect(v.Vertex): the vertex with the most uncollected messages is handled first

• collect(v:Vertex): the signals of the vertex multiplied resulting in the new state

• processResult(v:Vertex): the vertex state is normalized and printed for every grounded

predicate

The other vertex type BeliefPropagationFactor is implemented similarly:

• initialState(vertexId:Formula with Grounding): the initial state is set to the multi-

plicative identity

• edges: the edges are loaded from the MarkovFactorEdges by passing the grounded MLN as

parameter

• scoreSignal(v:Vertex): the vertex with the highest difference in state is handled first

• signal(e:Edge): the signal is the marginalized product of the weight map times the joint

distribution of all incoming message except the target contribution

• scoreCollect(v.Vertex): the vertex with the most uncollected messages is handled first

• collect(v:Vertex): the new state is the product of the weight map times the joint distri-

bution of all the collected signals

Putting this all together, the algorithm can be executed by adding all the vertices to a new

ComputeGraph and running the execute method. As a result, the inferred values for all the

grounded predicates are listed.

Summing up, the system is built across three layers (see figure 4.1), conceptually matching

the layered architecture of the Semantic Web. The first layer containing formulas and groundings

represents the data, merging into a network in the second layer. On top of that, the algorithm can

be applied.

Of course, this architecture leaves space to implement further algorithms on top of the Markov

logic network later on, or even implement other network types like the Bayesian network.





5
Evaluation

Having implemented LISy through all its three layers from the formulas over the network to the

belief propagation algorithm, the system can be evaluated. The first claim holds already: Namely

the successful implementation of a complex algorithm (i.e. loopy belief propagation) on Signal/-

Collect returning valid inferred values as a proof of concept. The fulfillment of the other objectives,

which is the efficiency of the implementation as well as the infrastructure provided with LISy, fol-

low beneath.

In the first section, a benchmark test is performed in order to compare the reasoning efficiency

of the Logic Inference System (LISy) with Alchemy. In the second section, it is evaluated, how

well the implementation scales on multiple processors.

The data sets utilized for this evaluation are built on the basis of the ”friends smoke” example

by Domingos and Lowd (2009). Since the interest lies on a large number of groundings as they

are typical in Semantic Web applications, different datasets with a varying number of individuals

are used. The largest dataset ”largesmokes” has 300, the second ”mediumsmokes” 100, the third

”smallsmokes” 50 and ”tinysmokes” only 5 individuals.

5.1 Benchmark test w ith LISy and Alchemy

In order to evaluate the overall performance of the system, LISy is compared with the most popular

Markov logic inference system available, Alchemy, in a benchmark test. Therefore, a number of

tests are run to compare the time for grounding (building and grounding the Markov logic network),

initializing (loading) the network, the execution time of belief propagation as well as the overall

run time.
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5.1.1 Test environment

All of the following tests are run on a iMac OSX 10.6.4 with two 2.16 GHz Intel Core 2 Duo and

4 GB 667 MHz DDR2 SDRAM.

5.1.2 Configuration

The naming of the test indicates the number of workers assigned (e.g. A.2 for two workers), as

well as if the test is run with or without scoring (e.g. AS.1 for scoring).

• A: Simple execution of BP for the trivial formula smokes(x) w 0.8 and with 300 individuals

for grounding, resulting in 300 grounded predicates and 300 grounded formulas. Test A.1 is

run over 100 times on Lisy and 20 times on Alchemy.

• B: Execution of BP for the slightly more complex formula smokes(x) → cancer(x) w 0.8,

resulting in 600 grounded predicates and 300 grounded formulas.

• C: In order to bloat up to the network for BP, C.1 uses already two variables in formula

smokes(x) → cancer(y) w 0.8, resulting in 600 grounded predicates and 90’000 grounded

formulas. The test is repeated only 10 times for both, LISy and Alchemy.

• D: BP is now executed for the formula friendOf(x, y) → (smokes(x) ∧ smokes(y)) w 0.8.

For the data set with 50 individuals, the network with 10’000 grounded predicates and 10’000

grounded formulas, and is run 10 times for both, LISy and Alchemy.

• E: To achieve even more grounded predicates, the formula friendOf(x, y) → (smokes(x) →
hasCancer(y)) w 0.8 is evaluated with, again, 10 runs for both systems.

• F: Test F finally uses a third variable which results in an even higher number of grounded

formulas. Here, the formula (smokes(x) ∧ smokes(y)) → hasCancer(z)) w 0.8 is executed

10 times on both systems.

Of course, Alchemy was initialized with the belief propagation parameter -bp. In order to

compare the same algorithm, lifting was not enabled in Alchemy.

5.1.3 Results and conclusion

The results of the benchmark tests A.1 to CS.2 are presented in the following figures 5.1 through

5.3, each showing a box plot of the tests with the minimum, lower quantile (Q1), median (Q2),

upper quantile (Q3) and the maximum. The vertical axis shows the execution time in milliseconds

for each test on the horizontal axis.

The trivial benchmark test A shows already that the main goal of reducing execution time

was impressively successful indeed by running loopy belief propagation on the Signal/Collect. In
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Figure 5.1: Re su lt s o f te st s A

comparison to running the test on Alchemy, LISy was 14.3 times faster in execution. Due to the

short execution time of a couple of milliseconds, LISy only gains little by using more than one

worker thread, and the example is too simple to really gain from scoring.

The grounding times for LISy, however, remain slightly longer because of the more complex

retrieval of data from the Sesame RDF store. In contrast to Alchemy, which loads the data from

its native *.mln and *.db files directly into its own data structure, LISy converts the grounded

MLN into the edges that define the compute graph of Signal/Collect. Since defining the edges by

a source and a target vertex is in the LISy implementation by using two for-loops, the loading

time is extraordinarily high, resulting in a slightly longer total run time for LISy. But still, LISy

beats Alchemy in its best run by being 4.2 times faster. The outliners visible in the pox plot most

certainly result from garbage collection as only the first couple of runs are effected.
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Figure 5.2: Re su lt s o f te st s B

Benchmark test B shows a similar picture with the fastest execution being 6.3 times faster with

LISy than with Alchemy. But again, the grounding and loading of the network in LISy shoots

down the head start a little, but still resulting in a slightly better run time in total.

It seems that the use of specialized scoring function in loopy belief propagation already shows a
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gain in performance although it does not seem too significant, yet due to the fact, that the formula

is still very simple. The main reason for the short execution time is that the algorithm already

converges really fast on Signal/Collect due to the asynchronous execution as can be anticipated

for the very low amount of signals sent (for 900 vertices, only 2400 signals are sent).

In test C, the problem becomes more complex as a second variable is introduced. This can

clearly be seen with the long grounding times for the network, as well as the loading times of the

edges of the compute graph in Signal/Collect. The problem is, that the Sesame server is already

combining all the possible individuals for the later grounding. But this task could probably be

done with lower effort if only the individuals and the domain restrictions were received, resulting

in a lower transmission but higher loading time.

But although the initial grounding and loading time is very long, the execution converges again

extremely fast, letting LISy win the race about execution time hands down. Alchemy was stopped

by default after 1000 iterations with no convergence, where it is clear to see that scoring makes a

huge difference in letting the algorithm converge quickly. As the intuitive objection may be, that

Alchemy uses a lower threshold, this intuition can be proved wrong.
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Figure 5.3: Re su lt s o f te st s C

5.2 Scalability of LISy
In order to evaluate the transparent scalability of the algorithm implementation, the test A to C

from above have been run with a CPU core for each worker thread.

5.2.1 Test environment

The computer used for this has two quad-core X5570 CPU and 72 GB RAM. Since the network

would never use 72 GB, the JVM was initialized with 42 GB in order to never reach the limit but
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also not to slowdown the system.

5.2.2 Configuration

Each test was run again 100 times, measuring the time for network creation and load, for algorithm

execution as well as the total time.

5.2.3 Results and conclusion

Unfortunately, the algorithm execution in LISy does not seem to scale linearly as we expected from

the evaluation of Stutz et al. (2010). This fact can be seen by looking at figure 5.4, in which the

number of threads are marked on the horizontal and the performance scale on the vertical axis.

The measured speedup the average scalability of the test A to C made in the evaluation.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

measured speedup linear speedup

number of threads

speedup

Figure 5.4: Sp e e d u p w ith ad d it io n a l th re ad s

The reasons therefore have to do with the characteristics of the Markov network in the exam-

ples. While the graph used for Bellman-Ford by Stutz et al. (2010) consists of 1 million vertices

and 94 million edges, the Markov networks in this example is less cross-linked. Therefore, asyn-

chronous scoring does not affect the convergence as much as it did in the Bellman-Ford example.

The different scalabilities of the algorithm can be seen in figure 5.5 below.

Overall, the results gained with the evaluation of LISy are very much satisfying. First, it could
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Figure 5.5: D if f e re n t sca lab il it y p e r n e tw o rk

be shown that loopy belief propagation can be applied to the Signal/Collect programming model,

proofing the concept. Second, the system performs very well despite that it needs to fetch the

data from an RDF store, especially on the algorithm. LISy even outperforms the popular Markov

logic reasoning and learning engine Alchemy when it comes to belief propagation due to its scoring

capability and asynchronous message flow. Although the scalability is not exactly as good as

expected, it is still fairly good none the less. Possible threats to validity as discussed in the next

chapter 6.



6
Limitations

Whereas the project of this thesis was in many belongings a success, there usually are limitation

that narrow the achievements. Some limitations in both, evaluation but also system design, are

inevitable like physical limitations, but of course there is always something that can be done better

or that will be subject to further research and development.

These limitations and learnings are subject of the following sections. First, some of the con-

straints on the evaluation process of the previous chapter are discussed, then further limitations

one the system are revealed.

6.1 Limitations of the evaluation process
One of the most important limitations is the limited variety of datasets used for evaluating the

system. The predicates used were only friedsOf, smokes and hasCancer. Of course, with these pred-

icates, a complete network with different characteristics can be built, but testing the algorithms on

real world data like with GeneID (University, 2010) or an interconnection between several datasets

available would have given the evaluation a higher relevance and therefore higher credibility. Also,

the graphs may scale differently because of different characteristics of applications in practice.

In coherence to this, the fact that only 600 individuals were grounded at the most for the

creation of the Markov network, which is in terms of Semantic Web data a very limited number,

the system could not be evaluated exactly for the application domain. Of course, with a million

individuals for grounding, even the simplest formula would lead to combinatoric explosions. A

social graph with friend-of-a-friend (FOAF) and XHTML Friends Network (XFN), however, as

it may occur in applications using the Google Social Graph API (Google, 2010), the scenario is

realistic. But a distributed grounding and inference environment is not already part of LISy, nor

of the Signal/Collect framework (Stutz et al., 2010) LISy builds on.
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Another limitation that is close to the one mentioned above is that only one type of RDF store

and SPARQL endpoint was tested: Sesame. Here, the implementation and evaluation of other

SPARQL binders may have shown a difference in grounding speed. Also, it would have given the

system more flexibility to interconnect with different datasets. However, since running efficient

belief propagation on RDF datasets were the main goal, the grounding itself was not considered

as a very important issue.

Then, also coming from the database side, the evaluation could not be performed completely

autonomous because the query on the data in order to retrieve the data needed for grounding either

implied the Sesame server on the evaluation machine to use resources and therefore influence the

measurements, or it could would suffer from latencies due to the network link between the Sesame

server and the evaluation machine.

Another point is, that as benchmark applications, only Alchemy came to play. With an addi-

tional benchmark system like PyMLN, the evaluation would have gained more credibility.

Last but not least, while it is my personal opinion that LISy can now easily be used to develop

applications with support for inference in Markov logic, this is not arisen by inquiries or by usabil-

ity studies.

6.2 System limitations
An limitation of the underlying logical system of LISy is the missing support for existential quan-

tifiers to this date. Of course, this does call the reasoning algorithm into question, but it limits

the expressiveness of the formulas and hence the applications of the system drastically. More to

this in future work.

Technical progress can also be made by allowing ontology inference. With the implementation

as it is, groundings like pregnant(Peter) can be made, if they are not already eliminated by the on-

tology itself (e.g. allowing only individuals of the class women for the predicate rather than person).

Other requirements that have not been met are the implementation of a Alchemy file parser, as

well as the at least and at most one operators. Another feature that was not part of the require-

ments, but will be one of the first feature requests is the ability to allow more than only retrieving

RDFS and OWL classes and instances. Usually, datasets define their own formats, so the need for

querying other relations is obvious.

Also, there is a bug that messes up the grounding process in specific cases. Although it is
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natural that some features are not correctly implemented in the beginning, these bugs must be

eliminated for non-restrictive use of the system. Usually, a bug tracking system is used for these

cases.

Finally, a circumstance that limits the extensive use of the inference system in other application

is that the Signal/Collect framework itself is still in its beginning and is subject to minor or maybe

even major changes as new requirements arise. This leads to the suggestion to merge the code

bases of both frameworks in order to assure consistent releases.

As usual, plenty of limitations flow smoothly into future work, which the next chapter is devoted

to.





7
Future W ork

Progress in science often picks up when evaluating a project with its limitations or when new im-

plications and ideas arise from them. In the case of LISy, future research directions are manifold,

since the subject ranges over a wide application domain.

7.1 Features
Some of the first things that are worth implementing in the near future are some missing features

of LISy, as the universal and existential quantifiers. Since they are missing in the latest version,

the light Markov logic in LISy lacks of expressiveness.

Another missing feature is taking RDFS class inference into account, as for example fatherOf(x).

Since a lot of datasets use this kind of representation, the domain of application could be broadened.

There is also no clearly defined API available at this time, meaning well defined interfaces for

the developer of other applications to use specific algorithms and networks. This would ease the

usage of LISy heavily.

For the Signal/Collect framework, it would be a good to be able to distribute it easily, possibly

letting the developer define, which parts of the network are distributed exactly. This could enable

the system to run efficiently by e.g. only inferring on the Markov blanket and therefore not being

bothered by exchanging the complete network.

One rather small but helpful feature is a collection of SPARQL connector besides the Sesame

connector. This could interest more user groups for Signal/Collect.
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The most important feature missing, however, is in my opinion a lifted version of belief prop-

agation as proposed by Singla and Domingos (2008). As it would have been unfair to compare

the standard belief propagation algorithm with a lifted version, it is not present in the evaluation.

An informal test on the mediumsmokes dataset let LISy cut a rather poor figure. Especially with

large datasets used for Semantic Web applications, a lifted version is inevitable in order to create

a successful and popular reasoning framework.

7.2 Research
Since the scalability was not completely satisfactory, it is for future work to find out where weak

links are. One assumption is, that it depends highly on the topology of the network, whether or

not inference scales. The guess is, that highly interlinked networks scale much better than many

local clusters. Therefore, an evaluation with entirely different data sets could show, what types of

networks are suitable and which are not.

One big problem with LISy is the size of the grounding data. As this takes very long time, the

data structure for the grounded network should be reorganized or replaced by something slimmer.

Avoiding this problem has high priority in future work.

In order to give the evaluation even more credibility, it would be interesting to see how other

inference engine besides Alchemy would score. One example is PyMLN (Beetz and Jain, 2010c),

that comes with an own inference engine.

Since this is my personal opinion that LISy is well structured and easy to use in other applica-

tions that want to integrate Markov logic, this has not arisen by inquiries or any usability studies.

In order to legitimate this claim, a usability study with Scala developers, each with the goal to

implement a series of smaller tasks should be done.

Coming to the rule definition, there should be a way to use extended Semantic Web formats

like the new W3C recommendation, the Rule Interchange Format RIF (Axel Polleres, 2010), or

the Semantic Web Rule Language SWRL (Connor, 2009) for Markov logic.

It would be interesting to know, how good systems like LISy integrate in a RDF triple store

as extensions. Because getting inferred data can also be viewed as getting data, this functionality

would fit perfectly into a triple store (or database server).



8
Conclusions

This Master Thesis was about creating infrastructure for running inference for Semantic Web

data. The goal was to create infrastructure that allows to do inference on Markov logic formulas

by running loopy belief propagation on the Signal/Collect framework. This lead to two main tasks:

The first was to show successfully that loopy belief propagation can be run on Markov logic

networks using Signal/Collect in order to provide a solution to the missing infrastructure problem.

By implementing the Logical Inference System LISy, an easy-to-use system is now available for

developers, so that they can integrate Markov logic into other applications.

The second was to show, that this can be done efficiently and scalable. After running several

evaluation tests, the main task which was the execution of the algorithm, performed very satisfi-

able, as LISy won every benchmark against the popular Markov logic system, Alchemy. Especially

the scoring functionality of Signal/Collect had a great impact on the execution times of LISy,

letting it converge really fast while Alchemy often had to break without final convergence. Using

Signal/Collect for loopy belief propagation seems to be a perfect approach since, according to the

evaluation, LISy is capable of inferring also in networks with many individuals within excellent

time.

The question of scalability could not be answered clearly in every aspect and is therefore still

open for further evaluation. Depending highly on the network topology, the results achieved in the

evaluation only showed still pleasing, but limited scalability for the used dataset.

Since the implementation of LISy on the Signal/Collect framework was a huge success, this

certainly leads to further research on the subject. As a next step to run even faster inference,

distributed lifted belief propagation could be the key.





A
Appendix

A.1 Content CD-RO M

The enclosed CD-ROM contains the following data, as shown in figure A.1:

• The folder ”Datasets” containing all datasets used for evaluation.

• The folder ”LISy” contains the Logic Inference System as a JAR including the libraries used.

• The folder ”Source” contains the Scala source files of LISy.

• The PDF file ”Masterarbeit.pdf” contains the written part of this Master Thesis.

• The PDF file ”Abstract.pdf” contains the abstract in English.

• The PDF file ”Zusammenfassung.pdf” contains a German version of the abstract.

Figure A.1: Co n te n t o f th e M aste r T h e sis CD -RO M
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A.2 System usage
Since the Logic Inference System LISy is a Scala framework, it uses the Java Virtual Machine. To

execute the JAR, copy the LISy folder to a writable directory and open a terminal in the corre-

sponding path. Type java -jar -Xmx3000m MarkovLogicInference.jar.

In order to use LISy for other applications, be sure to install Scala ≥2.8 and a suiteable IDE

like Netbeans or Eclipse.

A.3 Data sets used
In order to evaluate the implemented system, the following datasets were used.

Alchemy:

• TestA.mln

• TestB.mln

• TestC.mln

LISy:

• largesmokes.rdf

• mediumsmokes.rdf

• smallsmokes.rdf

• tinysmokes.rdf
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