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Abstract—Despite all efforts in creating and disseminating 
requirements modeling languages, natural language is still 
the dominant language for writing requirements specifica-
tions in practice. Furthermore, when documenting early 
requirements, natural language (in combination with pic-
tures) outperforms today’s requirements modeling lan-
guages. 
In this paper, we present a vision and research roadmap for 
an ultralightweight requirements modeling language which 
can be used as easily as natural language with pictures, but 
has a visual structure with some lightweight semantics that 
allow the visual expression of hierarchical structure, context, 
general relationship, flow, and influence, while all the details 
are specified in natural language, both form-based and free-
text. Furthermore, it should be possible to evolve parts of 
such an ultralightweight model into classic models of struc-
ture and behavior with full-fledged semantics by incremen-
tally adding more formal model elements and tightening the 
meaning of the already existing ones. 
We envisage that such a modeling language – when sup-
ported by appropriate tools – will (1) outperform natural 
language requirements specifications with respect to com-
prehensibility, changeability, analyzability and internal 
traceability, (2) be simpler and more straightforward to read 
and create than today’s heavyweight modeling languages, (3) 
provide an efficient and effective means for expressing re-
quirements at an early stage. 

Keywords—requiremements modeling language; ultra-
lightweight; natural language specification; 

I.  INTRODUCTION 
The idea of describing requirements in a requirements 

modeling language has been around for more than thirty 
years now [24]. Since then, a plethora of modeling lan-
guages has been developed and used for modeling require-
ments, including the ubiquitous UML [17]. In our own 
work in Zurich, we have more than ten years experience 
with the development of the requirements modeling lan-
guage ADORA [7][20]. 

Despite all effort that went into the development of re-
quirements modeling languages, the vast majority of re-
quirements specifications created today in industry are still 
written in natural language, augmented with tables, pic-
tures, and, increasingly, some isolated model diagrams. 
Standards and templates such as the IEEE guideline for 
software requirements specifications [13] or the Volere 
template [21] are also based on natural language. This 
situation is not just due to the inability of industry to adopt 
the existing modeling technology. It is a strong indicator 

that heavyweight modeling languages such as UML don’t 
fit the needs of industrial requirements engineers [6]. 

Another strong indicator of the requirements modeling 
malaise was the “Next Top Model” contest at RE’09 [12], 
where the combined power of natural language and rich 
pictures outperformed all modeling approaches in the task 
of specifying a requirements problem [10] at an early 
stage. 

Furthermore, a lot of the so-called non-functional re-
quirements [8], in particular quality requirements and con-
straints, can’t be expressed as models and have to be writ-
ten in natural language. 

This situation motivates us to propose the creation and 
use of an ultralightweight modeling language (or ULM, for 
short), a small language with little formal expressive 
power, but one that easily integrates with natural language, 
helps structure a natural language requirements specifica-
tion and provides some simple modeling constructs for 
those things typical requirements engineers and 
stakeholders hate to express textually: structure, relation-
ships, influence, and flow. On the other hand, the envis-
aged language shall be constructed such that powerful tool 
support for editing, navigating, and analyzing specifica-
tions is possible. 

We don’t aim at replacing heavyweight modeling lan-
guages such as UML or ADORA, but at improving that 
huge number of textual requirements specifications that 
have no structure beyond a chapter-section-subsection 
classification and are not analyzable beyond careful read-
ing. 

In this paper, we make a case for such an ultralight-
weight modeling language, sketch how it could look, de-
scribe potential tool support and present a roadmap to-
wards such a language and tool. A condensed version of 
the ideas laid out in this paper will appear in [10]. 

II. CORE REQUIREMENTS FOR A ULM 
Requirements specifications at an early stage are by 

their very nature mainly narrative and pictorial: most of the 
information transmitted from stakeholders to requirements 
engineers comes in this form. Hence, we have a first core 
requirement for a ULM: 

R1. A ULM shall provide strong support for writing 
textual requirements and drawing pictures.  

On the other hand, we want to harness the power of 
modeling for overcoming the greatest weakness of text and 
pictures: their unstructuredness and total informality. 
Hence we have two further core requirements: 

R2. A ULM shall provide model elements for structur-
ing text. 
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R3. A ULM shall provide model elements for drawing 
pictures as diagrams, with individually identifiable ele-
ments and some very lightweight semantics. 

Visual languages are strong in providing an overview 
of a problem with little cognitive effort, while for the de-
scription of details, textual notations are superior to visual 
ones: 

R4. A ULM shall be visual in the large and textual in 
the small. 

One of the biggest advantages of modeling languages 
over textual ones is that the syntax and semantics of mod-
els can be exploited by tools: 

R5. A ULM shall enable the creation of tools that pro-
vide powerful means for editing, navigation, selective 
visualization and analysis of specifications. 

When competing with natural language and pictures, 
both readability and writability of models is of paramount 
importance: 

R6. A ULM shall be easy to read, to write and to learn. 
As a corollary, we can state that a ULM needs to be a 

small language in terms of modeling elements. 
Many of today’s modeling languages are visually ill-

designed [16]. In order not to repeat old mistakes, we state: 
R7. The visual syntax of a ULM shall be well-designed 

with respect to the design principles for visual notations. 

III. DESIGNING A ULM 

A. Design Considerations 
Based on the requirements presented in the previous 

section and on our own experience with visual modeling 
language design, we now discuss design considerations for 
a ULM that go beyond the general principles stated in 
[16]. 

Hierarchical structure. Requirements specifications 
are organized in hierarchies: document hierarchies (sec-
tion-subsection-paragraph), component hierarchies (sys-
tem-subsystem), classification hierarchies, etc. There are 
two intuitive visual structures for expressing hierarchy: 
nesting and trees, the latter coming in two flavors (Fig. 1).  

 
Figure 1.  Options for intuitive visualization of hierarchy 

Both tree options have an implicit connotation of ele-
ments on the same hierarchical level being ordered accord-
ing to their visual presentation, which is frequently not the 
case and thus misleading. Furthermore, graphic trees need 
more space than a nested notation and linear trees are 
visually inflexible. On the other hand, tool support for 
viewing only selected parts of a hierarchy is trivial for 
linear trees and rather easy for graphic trees, while it is 
hard for nested structures with an arbitrary layout. How-

ever, this problem has been solved [20]. Hence, we prefer 
nesting for a ULM. 

Contextualization. Whenever only a part of a model is 
visualized, this part needs to be contextualized, i.e. the sur-
rounding context is required for understanding this part of 
the model [16]. Some existing modeling languages, UML 
being the most prominent example, just ignore this prob-
lem, thus forcing readers to reconstruct the context by 
mentally merging various diagrams. Fisheye views [5] [2] 
[20] are a proven technique for contextualizing partially 
visualized models. From a modeling language point of 
view, nested hierarchical structure suffices for contextuali-
zation, as such structures allow the application of fisheye 
views. However, fisheye views can become clumsy when 
viewing inner parts of large models and they can’t visual-
ize the full context when an element is part of more than 
one hierarchy. Hence, for a ULM it is recommendable to 
choose a design that additionally provides the option of 
explicitly stating one or more hierarchical paths for a given 
model element, thus explicitly defining the context of this 
element. 

Small visual vocabulary. Any ULM design will use a 
small visual vocabulary, otherwise one would eventually 
end up with a new normal-weight modeling language 
instead of a lightweight one. The requirement that the 
language needs to be easy to learn also leads to a language 
which is small with respect to the number of its visual 
constructs. Using graphic modifiers for the objects of the 
language (see Table I in next subsection) can further re-
duce the number of concepts to be learned. Despite the 
small vocabulary, the expressiveness of a specification 
written in a ULM must be ensured. This can be accom-
plished in two complementary ways that both are based on 
the principle of textual enrichment: (i) embedding natural 
language text in the language (e.g., as a part of an object) 
provides the full expressive power of natural language, but 
at the expense of analyzability; (ii) textual attributes simi-
lar to UML’s tagged values [17] or ADORA’s standardized 
properties [7] provide analyzable detail information, but 
with limited expressive power. 

Naming. A major drawback of natural language speci-
fications is that natural language does not distinguish 
nouns that denote an identifiable concept from other nouns 
that don’t. As a consequence, any phrase that shall be 
identifiable and traceable must be assigned an explicit 
identifier by the engineer who writes the specification. A 
ULM can (and must) add value here by providing a flexi-
ble naming concept that allows to tag a word or phrase to 
be a name and to create a traceability link just by referring 
to such a name elsewhere. Even when the person who 
writes a specification does not set any explicit traceability 
links, such a naming concept improves traceability: having 
a set of known names improves both the precision and 
recall of automatic traceability retrieval in comparison to a 
situation where names need to be guessed/inferred by the 
retrieval algorithm. Furthermore, a good ULM design 
makes it possible to annotate icons in a picture with 
traceable names. 

Semantic enrichment. A ULM model will be more 
valuable (and, hence, more worthwhile to create) when the 
ULM provides an evolution path to full-scale models by 
incrementally enriching ULM models with additional 
syntax elements and semantics of the target modeling 
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language or by providing a straightforward transformation 
from a ULM model into a model expressed in the target 
modeling language. 

Lightweight analysis. The additional effort required 
for modeling a problem in a ULM instead of using plain 
natural language and pictures is only justifiable when there 
is a clear benefit in terms of better analyzability of the 
ULM models (and, as a consequence, also better 
comprehensibility). Some analysis capabilities, e.g. the 
analysis of hierarchical structure and context, just pay off 
by enabling powerful tool capabilities for editing, 
navigation, tracing and selective visualization support. 
Further, a ULM design needs to support model validation. 
For example, one will choose a design that makes 
incompleteness analysis possible to some extent (e.g. 
names that are used but not defined) or exploit the 
semantics of relationships. 

TABLE I.  A PRELIMINARY SET OF LANGUAGE ELEMENTS 

 
B. A Preliminary Language Design 

In this subsection we sketch a concrete ULM based on 
the design considerations and core requirements given 
above. Table I summarizes the visual syntax. The specifi-

cation in the appendix gives an impression of the look and 
feel of the language. This is not meant to be a complete 
and polished language design. Our intention is to make our 
vision of a ULM more concrete, tangible and criticizable. 

Objects. A model in this language is a set of objects 
that may be specialized by modifiers and can have rela-
tions among each other. Technical items can have a hierar-
chical inner structure. The context of an object is given by 
its embedding in a hierarchical structure or an explicit 
context name path. An object may have multiple contexts.  

Names. Objects may have a name and an additional 
shorthand identifier. Names, when prefixed with any of 
their context paths, must be unique. Fig. 2 illustrates the 
naming concept.  

Object content. The content of an object can consist of 
• other objects, possibly linked by relations, and 
• text in natural language, possibly with links to 

other objects.  
Missing / hidden information. Incompletely specified 

objects are marked with an ellipsis after their names. If 
some content of an object is hidden from a diagram (e.g. 
because it is specified separately or because a diagram is 
intended to give an overview only), this is indicated by a 
‘[...]’ symbol. Suppressed annotations on relations (see 
below and Fig. 3) are marked by a pull down handle sym-
bol. 

 

 
Figure 2.  A naming concept for a ULM 

 
Figure 3.  Examples of relation annotations 
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Enrichments. The basic objects and relations may be 
enriched with additional semantics. Table I specifies two 
enrichments for connectors that are useful for describing 
flow. Other enrichments may be needed. 

Annotations. Relations may be annotated in the mid-
dle and at both ends (Fig. 3). In order to keep models read-
able, the display of annotations can be suppressed. 

Attributes. Any object or relation may have metadata 
attached, such as author, status, date created, etc. Further-
more, modelers can define typed attributes similar to 
UML’s tagged values or ADORA’s standardized properties. 
Fig. 4 illustrates the concept. As described in the previous 
subsection, typed attributes provide information in a form 
that allows analysis by tools. 

 
Figure 4.  Attaching attributes to an object 

C. Examples 
The model in the appendix provides examples: GC 

FEDS-Spec is an object representing a document. Its top-
level nested objects serve as an organizational structure. 

On lower levels, for example in the Business goals ob-
ject, nested objects are arranged in a diagram, in this case a 
goal graph. The ‘fuzzy’ modifier is used to denote soft 
goals. 

The details of the Core requirements object are hidden 
from the overview diagram. The ‘[...]’ marker indicates 
that more details are available. On the other hand, the 
Glossary of terms object is incomplete. It is displayed in 
full (no ‘[...]’ marker), but more needs to be specified 
(name followed by ‘...’). 

The underlined word incident in the definition of Dis-
patcher in the glossary is a reference to an object with that 
name. 

In the objects contained in the Stakeholders object, 
Importance and Goals are typeset in italics, thus indicating 
that these are attributes that are followed by values. 

The object BP6, the Emergency Call Process, is part of 
two hierarchies. By its visual embedding it is part of the 
Core requirements within the GC-FEDS-Spec. On the 
other hand, an explicit context path states that this object is 
also part of a Business processes object within an object 
called FDGC.  

Core requirement R4 contains a named, but uninter-
preted picture. 

On the second page of the model, the Call processing 
object is shown in isolation. In order to contextualize it, 
the context paths of the two hierarchies that this object is 
embedded in are given. 

In the System context object, the external and bound-
ary modifiers are used to mark the context boundary of the 
GC-FEDS system and indicate which elements are external 
to it. 

IV. TOOL SUPPORT 
A software tool that supports modeling in a ULM is an 

indispensable part of our vision. Requirements engineering 
specifications can become very large artifacts over time. 
Editing and maintaining such artifacts is cumbersome 
without appropriate tool support. A tool can help in editing 
the requirements, it can ease and speed up navigation, and 
it can provide different views on the specification, thus 
providing abstractions and reducing complexity. Further-
more, a tool can provide support for requirements trace-
ability and model validation. 

When supporting a ULM, we need tool capabilities for 
handling textual specifications way beyond the basic edit-
ing, searching and configuration support that text process-
ing software and classic requirements management tools 
provide today. Equally, when handling pictures, we need 
tool capabilities beyond those of graphic editors. Further-
more, when eliciting requirements at an early stage, both 
engineers and stakeholders love sketching requirements on 
whiteboards or blank sheets of paper [19], a procedure that 
goes well together with using a ULM and also needs to be 
tool-supported, hence. 

A. The Tool Metaphor: a Large Canvas 
A tool supporting a ULM should have the same flavor 

as the supported ULM itself: it should be lightweight and 
provide a simple and intuitive user interface. 

We envisage that a tool presents a large 2D canvas to 
the users, mimicking a classic whiteboard, but with infinite 
space. The users can create and freely arrange the objects 
of the requirements specification in that 2D space, using a 
pointing device (e.g., a mouse) for drag-and-drop manipu-
lation, a keyboard for entering/editing text and a pen or 
fingers for sketching. 

B. Editing 
Mouse and Keyboard. The tool can display a drag-

and-drop interface for a fast construction of diagrams and 
the structure of the specification. Natural language is heav-
ily used in requirements specifications. Therefore key-
board input allows for a fast creation of textual elements. 
Standard editing features like an undo option can further 
facilitate the editing of documents. 

Natural drawing. A ULM allows efficient require-
ments modeling at an early stage, and a tool has to support 
this. People like to use whiteboards and to sketch by hand 
at early stages, because freehand sketching gives them a 
great deal of freedom. (Creating a diagram with drag-and-
drop can be easy and efficient, but this kind of interaction 
limits the drawing possibilities.) Thus a tool must provide 
a form of freehand sketching in order to be suitable for 
expressing requirements at an early stage. Furthermore it 
must be possible to import pictures.  

The value of these drawings and pictures is increased 
when the tool recognizes them in a way such that they can 
be converted to model elements that have semantics. Sez-
gin et al. [23] discuss the technical details of online sketch 
recognition. Another problem is the analysis of imported 
images. Individual symbols can be recognized easier while 
a person draws them than when given as a static image. In 
the latter case, the recognition algorithm must be able to 
separate the elements of a drawing into individual sym-
bols. Ouyang et al. investigate symbol recognition in 

a. A user-defined attribute

ATTRIBUTEDEF  Importance: [ Critical | Major | Minor ]

b. An object with attributes (both metadata and user-defined)

Q12  Overall performance

Average response time shall be < 0.3 s.   Importance: Critical 
Author: MG   Created: 2010-02-16  Source: End user
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drawings [18]. Because a ULM uses few distinctive sym-
bols, the recognition of hand-drawn diagrams should be 
easier for a ULM than for a heavyweight language such as 
UML. While fully automatic recognition of some parts of 
drawings should be feasible, other parts will definitively 
require human guidance (Fig. 5). 

 
Figure 5.  Converting a drawing into a ULM model 

C. Navigation and Views 
As requirements specifications can be large artifacts, a 

tool must provide help both for navigating and selectively 
viewing the specification. Navigation support eases orien-
tation in large models. Selective views provide abstrac-
tions or present details about a part of the model in isola-
tion from the rest. View generation must be versatile, 
because different user groups (e.g., novice vs. expert users) 
as well as different purposes require specifically adapted 
views. Below we summarize some proven techniques for 
navigation and view generation. 

Overview map. Computer screens and projected dis-
plays are not able to show all parts of an advanced specifi-
cation document at the same time. A simple way to give 
the users a better overview over the structure of a docu-
ment is to display an overview map. Additionally, a rec-
tangle on the map indicates the part of the document that is 
currently visible on the screen. The overview map can be 
extended with more features. For example, clicking an area 
in the map could automatically display that part of the 
specification. 

Expand and collapse hierarchies. Hierarchies are a 
crucial structuring concept in a ULM. A tool should ex-
ploit these hierarchies for selectively displaying the parts 
of current interest in detail while abstracting or hiding 
others. Fisheye views [5] [2] are a proven technique for 
achieving this. However, as users can freely arrange the 
elements of the specification in the 2D space, a tool needs 
to preserve the user-created layout when parts of the speci-
fication are expanded or collapsed. This is a non-trivial 
problem that has impeded the practical use of fisheye 
views. In our previous work, we have contributed solutions 
to this problem [20]; so fisheye view based visualization of 
hierarchical models can now be used practically in a tool 
for a ULM. 

Keyword search and filtering. As in text processing 
programs, a user can search for a certain term. All occur-
rences of the term will be highlighted in the normal view 

as well as in the overview map (the text in the map is too 
small to be read, but the highlighting can give visual cues 
on where the term can be found). To further improve the 
keyword search, objects that contain the keyword can 
automatically be expanded, and other objects can be col-
lapsed.  

Filtering uses a slightly different concept. Filtering al-
lows users to generate views where only those model ele-
ments are shown that match given filtering criteria. For 
example, in the model given in the appendix, a user might 
want to create a view that shows only the important 
stakeholders and their goals. He or she can achieve this by 
filtering the model with the criteria ‘objects contained in 
the Stakeholders object’ and ‘value of attribute Importance 
is Major or Critical’. 

D. Analysis and Requirements Traceability 
Apart from editing and navigation support, a tool can 

also help in requirements analysis and traceability tasks.  
The semantics of relations and user-defined attributes can 
be exploited for tool-based analyses. Traceability links 
created by referring to names (see ‘Naming’ in Sect. III) 
can also be exploited. Alternatively, a tool also can com-
pute links semi-automatically, e.g. by analyzing the simi-
larity of terms in different parts of the specification [4]. A 
related idea is a tool-assisted selection and verification of 
terms relevant to the project [15]. As natural language is 
ambiguous, a tool shall also support the identification of 
synonyms and words with the same stem. For relevant 
terms that are missing in the glossary, the tool can add 
entries automatically and notify the users about missing 
definitions. 

When the software tool manages requirements trace-
ability links, it is possible to immediately highlight the 
requirements and entities that get influenced by changes in 
the specification. This makes users aware of the effects 
caused by their changes. In addition, the tool can construct 
and present a special view of a traceability tree to the user. 

The stronger the semantics of a modeling language, the 
more and stronger analyses are possible. However, the lim-
ited semantics of a ULM suffice to support the basic analy-
sis and traceability tasks described above. 

E. Simulation and Model Validation 
Tool support enables the analysis of diagrams by simu-

lation. Simulation can be used for analyzing dependencies 
between requirements and for the validation of the model – 
even when a model is not fully formalized. The missing 
formality is compensated by interaction with the modeler 
during a simulation run [22][9]. Even the weak semantics 
of a ULM allow some form of interactive simulation. 

For example, a business process (such as the Emer-
gency Call Process in the specification given in the appen-
dix) can be simulated by stepping through the model along 
the flow paths. In each step of the simulation, the tool 
highlights active objects in the diagram. At the same time, 
all stakeholders and objects (requirements, goals, etc.) that 
are associated with the active step could also be visually 
emphasized. The next step is either determined by the 
model or the tool inquires it interactively from the person 
who runs and observes the simulation. The observer thus 
perceives relationships between the individual process 
steps and the involved requirements. 

Automatic inference of the Product Manager actor and the Product 
and Market objects should be possible, while recognizing the 
Board as a group of actors and distinguishing influence from flow 
will require human guidance.

Market

Executive 
Board

Product 
Manager

configures

Directions

Research 
Data

Needs

Product

Product Configuration Context
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Such an animated simulation also helps validate 
requirements with stakeholders: stakeholders can be 
demonstrated the animated flow of information and control 
when a requested task is performed, which gives them a 
better understanding of the requirements than static 
reading of models would. 

V. DISCUSSION 

A. Related Work 
We are not aware of any other work specifically di-

rected at creating a ULM or using ultralightweight model-
ing in requirements engineering. Jackson’s work on Alloy 
[14] is called ‘lightweight’, but – in contrast to our ap-
proach – refers to lightweight formal modeling. Moody’s 
work is on general design criteria for visual notations in 
modeling [16]. 

In our own previous work, we have investigated tool 
support for modeling languages with a structure of nested 
hierarchical objects (see [20] and work cited there). We 
also have investigated the analyzability of semi-formal 
models by simulation [22] [9]. 

[3] and [23] investigate online recognition of model 
elements when drawing, while [18] investigates the extrac-
tion of model elements from pictures. Work on analyzing 
natural language requirements [1] and on identifying 
names in natural language text [15] also becomes relevant 
in the context of creating analysis tools for a ULM. 

B. Where We Are: Achievements and Limitations 
In this paper, we have developed a vision for an ultra-

lightweight modeling language and presented its design 
rationale. Further we have presented a draft design for a 
ULM and shown that a typical problem can be adequately 
modeled with this language. We have also investigated the 
problem of supporting a ULM with an adequate tool. 

With respect to our initial seven core requirements, we 
claim that a ULM carefully crafted along the lines given 
by our draft language will easily meet R1-R5. Checking 
for R6 requires empirical validation. Except our experi-
ence when writing the model given in the appendix, we 
have no empirical evidence yet concerning ease of writing, 
reading and learning. So this is subject to future work. 
With respect to R7 (that the language meets the design 
principles for visual notations [16]), we claim that our 
draft language already scores at least better than UML. 
Again, an in-depth analysis is subject to future work. 

We have not yet investigated some important issues: 
for example, the role of color, the inclusion of rich media 
such as video and the question whether we need 
user/domain specific languages (or at least language dia-
lects). 

C. Where to Go: A Research Roadmap 
Having made a case for an ultralightweight require-

ments modeling language, we subsequently present a re-
search roadmap towards creating a fully developed, indus-
trial-strength ULM. 

Language design. The next step towards a real ULM 
will be designing a carefully crafted language. The lan-
guage draft presented in this paper may serve as an inspira-
tion. The design should be guided by (i) analytical consid-
erations (for example, semiotic clarity [16] or orthogonal-
ity and minimality of language constructs), (ii) experi-

ments (for example, about intuitive understanding and ease 
of learning), (iii) benchmarking (specify a problem both in 
a conventional language and in the new language and 
compare the results), and (iv) empirical work (try the lan-
guage on real-world problems). Design and preliminary 
validation should be closely intertwined. Design trade-offs 
will have to be made between simplicity and (formal) 
semantic expressivity. (Informal expressivity is secured by 
making unrestricted natural language text a part of the 
language.) 

Another criterion that should be assessed is the effort 
required to transform a model written in the new language 
into a conventional model (class models, activity models, 
state machine models, etc.).  

In a first step, the design should focus on simplicity 
and domain independence, but also on extensibility. As 
soon as a stable, high-quality language core is achieved, 
extensions can be considered, for example the inclusion of 
media beyond text and pictures, or domain-specific lan-
guage dialects. Support for specific problem areas such as 
software product line requirements modeling or software 
product management modeling could also be considered in 
further steps. 

Tool design. The challenges in tool design are primar-
ily of technical nature. Existing algorithms for smart edit-
ing and navigation in hierarchical structures need to be 
drawn together and adapted. Mechanisms for selective 
visualization and smart report generation need to be 
adapted to the needs of a ULM. New concepts and algo-
rithms for handling multi-hierarchies and for semi-formal 
analyses need to be developed. On the basis of existing 
work on understanding sketches, mechanisms for evolving 
pictures into models have to be developed. 

Some basic tool support is required already in the early 
stages of language design: creating specifications with 
general-purpose drawing tools impedes the empirical tasks 
in language design.  

Method/process considerations. Using a ULM 
doesn’t a priori require methods or processes different 
from those we already have. Nevertheless, it would be 
worthwhile to investigate whether using a ULM enables 
methods and/or document structures different from what 
we have today. 

Validation. Ultimately, the ‘grand’ research challenge 
in validating a ULM is to test the validity of the two basic 
hypotheses that form the basis and motivation for develop-
ing a ULM: 

 (H1) A well-designed ULM outperforms both plain 
natural language with pictures and classic modeling lan-
guages when specifying requirements at an early stage. 

(H2) Average requirements engineers will prefer using 
a ULM over plain natural language with pictures when 
given a choice. 

However, testing these hypotheses empirically can 
only be the last step, when a fully developed ULM, well-
supported by a tool, is available. On the way to that goal, 
intermediate validation work will be needed that addresses 
more specific topics, such as language design quality, 
language expressivity, suitability and ease of use. Suitabil-
ity can be subdivided into suitability for (i) creating and 
communicating requirements, (ii) analyzing and verifying 
requirements, (iii) transforming requirements written in a 
ULM into more formal requirements models, and (iv) 
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using a specification written in a ULM as a basis for archi-
tecture and implementation. 

VI. CONCLUSIONS 
We hope that this paper will stir the discussion on 

ultralightweight requirements modeling languages for 
early-stage requirements specification and motivate other 
researchers to contribute critique and ideas. In our own 
research we plan to further investigate both the language 
and tool design issues. We are convinced that the light-
weight model structure will make ULM specifications 
significantly better than plain natural language ones while 
retaining the flavor of naturalness and ease of use. 
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APPENDIX: THE GC-FEDS PROBLEM MODELED IN AN ULTRALIGHWEIGHT MODELING LANGUAGE 
This specification is based on a hypothetical letter in which the Fire Chief of the Gotham City Fire Department asks a 
requirements engineering consultancy company for help. He wants a replacement for his current fire engine dispatch sys-
tem and informally describes his problems and needs. The specification below is intended to capture this initial informa-
tion for a meeting with the stakeholders. The original problem description has been created by Gotel [10] with inspirations 
from the famous London Ambulance System report. 
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