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1
Introduction

The goal of this thesis is the identification of time-dependent relationships between different data

streams1. The application field is the determination of dominant factors influencing exchange

rates. Finance experts call such a dominant factor “regime”. These factors change over time and

therefore this problem has been named regime drift. The early and reliable identification of such

changes is crucial for finance research.

The background of this work is the following. We were approached by the fixed income de-

partment of UBS Switzerland. UBS is a finance institute which holds a foreign exchange market

share of 14.85% 3. They are interested in an illustration of time-dependent relationships between

various economic variables and the foreign exchange rate between Swiss francs and US dollars

(CHF/USD). The goal is a better understanding of the market situation leading to more reliable

exchange rate predictions. For example, they need to know which factor (like gold price, wages,

price Brent per barrel, or money supply) is the main driver for the exchange rate development.

In contrast to most previous work in finance we do not perform any automated prediction

task. We pursue a more human-centered approach by presenting the relationships between the

variables in a comprehensive way. We believe that on the long run successful trading strongly

depends on the domain knowledge and capabilities of the finance experts. Therefore, we enable

them to focus on the decisions by providing the relevant information.

In the next section we discuss the problem of foreign exchange rates and the regime determi-

nation.

1This thesis is associated with the research field “data mining”, which is a computer science domain. Data mining is
about pattern identification and knowledge discovery in data. We assume that the reader of this thesis has basic knowl-
edge about data mining2.

3http://www.euromoneyfix.com/Article.aspx?ArticleID=1331250&PageID=3594 (December 6, 2007)
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1.1 Motivation

According to the Triennial Central Bank Survey of Foreign Exchange and Derivatives Market

Activity [CBS, 2007] there is a huge amount of capital involved in foreign exchange. Average daily

turnover was $3.2 trillion4 in April 2007. The survey also mentions that the increase was much

stronger than the one observed between 2001 and 2004. This shows the increasing importance of

exchange rates. In addition to valuation effects the Central Bank Survey specifies the following

factors for the turnover increase. “Against the background of low levels of financial market volatility

and risk aversion, market participants point to a significant expansion in the activity of investor groups

including hedge funds, which was partly facilitated by substantial growth in the use of prime brokerage,

and retail investors. A trend for institutional investors with a longer term investment horizon towards

holding more internationally diversified portfolios might also have been a factor. A marked increase in the

levels of technical trading most notably algorithmic trading is also likely to have boosted turnover in the

spot market.”[CBS, 2007, p. 1]

The foreign exchange market is not centralized. The currencies are traded directly between the

counterparties (often major banks). The price level is regulated by supply and demand of each

participant. There are several possible influencing factors for the rates e.g. liquidity of the banks.

Basically, there are two ways of making profit with spot5 foreign exchange. The first method

is known as “spread”. Spread is the distance between bid and ask price. This is the profit margin

of the traders when they buy or sell currencies. The gain rising from the spread covers adminis-

trative and transaction cost, but the profit is marginal concerning trade between major banks.

The other, more profitable, way is to buy a large amount of one currency now and sell it

later for a higher rate. This accumulation of a certain currency results only in a benefit when the

foreign exchange rate evolves positively. Naturally, a profit is also made by first selling an amount

of currency and then buying back the same amount later at a lower rate. Both of these trading

strategies have the common assumption that the underlying estimation of future exchange rate

movements is better than chance. This estimation of market movement is called “sentiment”.

Often the market is influenced by numerous factors. When a certain factor appears to be dominant

for the market movement, finance expert say that the market is under the “regime” of this factor.

Regimes usually change over time. We call a change in regimes a regime drift. This regime

drift can be abrupt, or slow and continuous. The illustration in 1.1 shows such a regime drift

on synthetic data. Variable 1 at the top is the target variable – in our case the exchange rate.

The other two variables are time series which are regime candidates. At the beginning the target

variable is parallel to variable 2, hence variable 2 is the dominating regime. After half of the time

an abrupt change in the regimes takes place. Now, variable 2 has no more influence on variable 1

and variable 3 takes charge. So, variable 3 is the new regime.

41 trillion = 1’000’000’000’000
5Spot defines a contract for immediate delivery. In contrast to future trading, where a trade is set at a specified time in

the future for a predefined price.
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When experts are able to identify a regime drift before counterparties, they have an advantage

in knowledge resulting in a superior trading strategy. The leverage effect of such an advantage is

immense regarding the huge turnover in foreign exchange trade.

Time →

Variable 1

Variable 3

Variable 2

Regime Drift

Figure 1.1: Illustration of an abrupt regime drift.

So, identifying regimes is of central importance to increase profit as well as to safeguard a

currency. Nowadays, analysts and traders identify regimes by spotting parallel movements, e.g.

when the exchange rate starts to move parallel to the oil price. Then, the trader knows from his

domain knowledge that this might be an important factor – a regime – and starts to take the ap-

propriate actions. In reality, the trader is faced with various difficulties during his research. One

problem is the variety of factors. For example Goldman Sachs keeps track of 1.1 million finan-

cial time series [Weigend, 1997]. This is far too much. To cope with this problem, usually the

observation is focused on a subset of time series. Even though there is redundant information in

the overall available data, one might have omitted useful information by limiting the number of

candidates. This bears the risk of omitting useful information, even though there is redundant

information in the overall available data. In our case, the finance experts have chosen 86 candi-

dates as possible influencing factors (see Section 6) which is still a large number. Here, the finance

experts need assistance in the following ways.

• They need a concise, but comprehensive overview on the regime candidates. This includes

monitoring for critical phases, i.e. hot spot detection or going on alert at the beginning of

turbulent times. Also useful for the expert would be the possibility to compare the current

regime situation with situations from the past so he is able to recall similar scenarios from

the past.

• They need a precise regime representation. This includes two requirements. On the one

hand accurate measurement of regime intensities and on the other hand the ability to quickly

adapt to new situations. Otherwise, the expert can not rely on the regime representation or

will react too late.

In this work we present an approach to this kind of problem. In our work, we mainly focus on
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precise representation of the regimes. A comprehensive representation of the regimes supports

the overview on all factors.

But first, we formalize the requirements in the problem definition section.

1.2 Problem Definition

According to the requirements stated in the “Motivation” Section we formulate the problem as

follows:

For their research, finance experts require comprehensive reports on the relationships between

foreign exchange rates and numerous economic variables. Since these relationships tend to

change over time (regime drifts) the main challenge is to identify these relationships with high

precision and detect their changes.

To tackle the problem above we decompose the problem to well-known, solvable sub-problems.

To this end, we make the following assumptions and definitions.

• Assumptions

– We have to assume an open world in contrast to a closed world. A closed-world

assumption states that all influences are known and appropriately represented. We

cannot hold this assumption because there are manifold influences e.g. political over-

throws and natural disasters which cannot be represented [Brooks, 1991].

– Without loss of generality, we assume all relationships to be one-to-one and not many-

to-one relationships.

– We exclude self-reinforcing systems.

– We focus on simultaneous relationships between two economic variables and neglect

indicators running ahead of other variables and vice versa.

• Definitions

– We define a regime as the relationship intensity of a variable with respect to another

variable. The higher the relationship the higher the regime.

– A regime drift is defined as a the change of the regime intensities with time.

– We define relationships between two economic variables as correlations. So, we do not

claim to explain or discover influences, only correlations. This has implications for the

interpretation of the results (see Section “Causality”, p. 16).

– The problem definition aims at high precision. High precision is defined as being as

close as possible to the real target concept. Besides a suitable correlation measure to
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determine the regime intensity, this requires both adaptivity and robustness. Adaptiv-

ity is the ability to cope with new situations in short time. Robustness is insensitivity

towards noise. Obviously, the goal of adaptivity and robustness is a typical trade-off,

which has to be optimized to reach high precision.

• Decomposition into Sub-Problems

We decompose the regime drift determination problem into two well-known sub-problems.

This provides a fundament of state-of-the-art techniques to tackle our problem.

– The first sub-problem is to find the most suitable correlation measure to determine

the regime intensity. In data mining terms the correlation finding task can be associ-

ated with the field of “feature selection and feature ranking”. Feature ranking is about

determining the relevance of each feature6 with respect to the target problem and the

subsequent ranking based on a relevance score. In feature selection, a subset of the

features is selected based on the ranking for further applications. In our work we only

make use of the relevance determination step because this corresponds to the determi-

nation of the variables’ regime intensities. Then, we hand over the regime illustrations

to the finance experts who analyze the results by incorporating their (implicit, tacit)

background knowledge.

– The second sub-problem is the adaptivity towards fundamental regime changes while

staying robust towards noise. The adaption to rise and fall of regimes can be viewed as

a concept drift problem. A concept drift occurs when the underlying data generating

mechanism changes over time. When learning a model on all of the available data,

the model would be more and more inaccurate because it’s underlying data set gets

increasingly inconsistent. Concept drift techniques are able to determine the moment

where out-dated models have to be substituted by new, more accurate models (see

Section 2.2). These techniques are able to tackle the adaptivity/robustness trade-off.

The assumptions confine the scope of this work and leave space for further research and de-

velopment (see “Limitations and Future Work”, p. 91). The definitions and the sub-problems are

discussed in detail in the “Foundations and Related Work” Chapter to provide an overview on

the different solution approaches. These solutions are the foundation we build our work on.

6The formatted input attributes for data mining algorithms are called features. We use the name “feature” synonymous
with “attribute”, “variable”, and “factor” since in this work we do not perform any feature construction and use the
variables as features as they are.
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1.3 Hypothesis

Since this work is a doctoral thesis, the goal of this work to prove/disprove the validity of a

thesis. Therefore, we formulate the basic research question as a hypothesis. The hypothesis is: “It

is possible to calculate time-dependent correlations between two variables with high precision.”

1.4 Our Approach

We follow a bottom-up strategy to cope with drifting regimes. In the “Problem Definition” Section

we decomposed the regime drift problem to two known data mining fields. Now, we combine

these well-known fields to a novel solution.

There are two ways to combine these two fields: on the one hand we take the problem as a

feature selection task which is subjected to concept drifts. On the other hand we can view the

problem as a concept drift task where we have to perform feature selection. Figure 1.2 shows

these two approaches and how they are combined based on the initial data mining fields.

Concept Drift

Techniques


Concept Drift


Techniques


Feature


Selection


Feature

Selection


Approach I
 Approach II


Figure 1.2: The two approaches to combine concept drift techniques and feature selection.

In the following sections, we assess both approaches on two representative implementations

of these methods and decide which one to take. The selection criteria are adaptivity, robustness,

and computational complexity.

The next section “Foundations and Related Work” shows that this problem has not been ad-

dressed the way we approach it. Hence, this work makes two contributions. First, we introduce

the combination of the two fields “concept drift” and “feature selection”. Then, we solve the

real-world problem of drifting regimes on the example of exchange rates.
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1.5 Organization

This work is structured as follows. First, we establish the foundation of this work which includes

a review of the related work from every relevant perspective. The related work is categorized

into three sections about the fields “feature extraction”, which covers the regime determination,

the field concept drift, which covers the adaptivity, and an overview on data mining applications

in finance.

Then, in the next two chapters we present two different approaches to cope with the regime

drift problem. One approach addresses this problem from the regime determination point of

view. The other approach focuses on the drift part of the regime drift problem. After that, we

compare the two approaches and choose the most appropriate for our finance problem.

Subsequently, we apply the chosen approach on the finance dataset. The regime analysis is

performed on 86 factors with respect to the exchange rate USD/CHF. The results are presented

in a standardized way for better comparability. At the end the results and their presentation are

discussed.

Next, we investigate the limitations and possible future work. We close with some concluding

thoughts. For the sake of readability we have placed many calculations and experiments which

are important to assert our claims in the appendix.





2
Foundations and Related Work

In this chapter we establish the foundations of our research. Therefore, we have a closer look into

three research fields that are related to our work. We provide a short overview on the different

fields and we discuss the relevant points for our study. To emphasize the novelty and relevance

of our approach we contrast it with the work done before.

We start with “feature extraction” which contains the field of the ranking of different variables

with respect to a target variable. This task contains the comparison and estimation of the relation-

ship between variables, which is important for the determination of regime intensities. We also

have a closer look on causality which is important for the interpretation of relationships between

variables.

Second, we review the techniques for concept drift handling. These techniques allow adapting

to the time-dependent situations.

Third, we finish with an overview on data mining in finance – our initial motivation and target

application.

2.1 Feature Extraction

Feature extraction is about finding the attributes (variables, features) that represent the problem

of interest in the most appropriate way.

A fundamental requirement for regime drift handling is accurate determination of regime

intensities. To do this, we have to examine the relationship between a collection of candidate

variables (in our case 86 micro- and macro-economic variables) and the target variable (the ex-

change rate CHF/USD). Figure 2.1 shows this task on a synthetic example. At the top we see

the target “variable 1” and below two other variables. Feature selection – a sub-field of feature

extraction – applies techniques to choose the most relevant variables for a certain problem. Here,

our task is to determine the most relevant variable with respect to the target variable. The de-

termined relevance can be viewed as the regime intensity of each variable. In the example of
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Figure 2.1 the correlation has been derived by applying the Pearson correlation and the results

are r12 = 0.902 and r13 = 0.02. The regime of the step curve is more intense than the regime of the

zigzag curve. Therefore, in feature selection the first choice would be “variable 2” and “variable

3” would hardly be selected.

Time →

Variable 1
(Target)

Variable 2
r
12

 = 0.901

Variable 3
r
13

 = 0.02

Figure 2.1: Illustration of a feature selection task.

Before focusing on feature selection we provide a short overview on some data preprocessing

and feature handling techniques. All these techniques together are summarized under the name

“feature extraction”. The purpose of this short overview is to relate the fields “feature selection

and ranking” to the other activities in “feature extraction”.

Feature extraction is mostly used in predictive modeling (classification and regression). De-

tailed information can be found in Isabelle Guyon’s book [Guyon et al., 2006]. Obviously, fea-

ture extraction is also relevant to other data mining fields like clustering [Dash and Liu, 2000,

Liu and Yu, 2005]. We limit our survey on prediction problems because this will be our applica-

tion field. Most of the approaches presented below can be used in other fields directly or can be

extended accordingly.

2.1.1 Data Collection

The worst case for model generation is the absence of data. Often information is available, but the

data acquisition is one of the most tedious and time-consuming tasks in data mining because this

involves experiments and research. Experience with similar problems and background knowl-

edge of the problem domain is of great help during data collection.

2.1.2 Data Quality

If data is available, it might still be error-prone or some information is missing. Even worse, mis-

leading or outdated records can be part of the dataset. There are several techniques to deal with

these problems. There are techniques on the data level [Dasu and Johnson, 2003] and on the algo-

rithm level such as decision tree pruning [Quinlan, 1993] and learning of numerous models with
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subsequent model combination (ensemble learning) [Opitz and Maclin, 1999]. One of the main

elements of our study treats strategies against outdated records (see Section 2.2 “Concept Drift”).

To estimate the impact of error-prone datasets on our algorithms, we investigate the behavior of

our models under noisy conditions in Appendix A.5.

2.1.3 Feature Generation

Sometimes algorithms are performing not well enough even though the relevant information

should be available in the data and the data quality is high. One reason could be an inappropriate

algorithm, but in most cases the input variables do not reflect the underlying facts appropriately.

New features can be constructed by transforming or combining the original attributes. This

approach is known as feature construction. It is often done by incorporating expert’s background

knowledge about the problem domain. For example, take a binary classification problem based

on two numeric attributes. Assume, we have the background knowledge that these two at-

tributes stand for the height and the weight of a person and the target values are “normal weight”

and “abnormal weight” (underweight and overweight). Using this background knowledge we

might improve the classification model by constructing a new feature like the “body mass index”

BMI = weight/height2. Another example is the incorporation of background knowledge about

buyer behavior which can be obtained from commercial data providers based on certain buyer

attributes like age, gender, or place of residence.

Other methods for feature generation work without background knowledge. They make use

of an optimized mathematical representation of the input attributes. The “Principal Component

Analysis” PCA [Jolliffe, 2002] is such a method for finding the most descriptive features. In detail,

PCA finds the optimal linear axes transformation (rotation and stretching) by solving an Eigen-

value problem on the input attributes.

In this study, we do not transform the input variables / attributes into new features. We take

the features directly from the data source without further processing, because the focus of our

work is not on the feature generation level. Our focus is the relevance of the pure features.

2.1.4 Feature Selection

In some cases we are faced with the problem of having a too many possible relevant attributes.

Then, the question is, which attributes are the most descriptive for our purposes? Some attributes

might be irrelevant, redundant, or others contain useful information only when combined to-

gether. In short: we can’t see the woods for the trees. Often an algorithm’s calculation time,

memory use, and performance suffers under too much input features so we need to care about

this problem before feeding all possible features to the final algorithm.

The common way of dealing with a vast amount of features is choosing the most descriptive
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sub-set of features for the target domain. This task of finding the most compact and informative

set of features is called “feature selection” [Blum and Langley, 1997, Guyon and Elisseeff, 2003,

Hall and Holmes, 2003]. In the next sections we will discuss the three feature set reduction meth-

ods.

Wrapper Methods

In machine learning a wrapper is an interpretative function that evaluates an expression to be

tested and returns a value. This value allows to select the best alternative expression.

In feature selection, the wrapper is the model evaluation based on different feature combina-

tions. The evaluation result values (e.g. the accuracy from a 10-fold cross validation) allow the

identification of the best-performing model and thus, the best-performing feature combination.

So, the best-performing feature combination is the feature combination to select from all features.

There are three decisions to make to perform this kind of feature selection.

First, what is the selection criterion to apply. Typically, the outcome of a classifier evaluation is

the accuracy or the “area under the ROC curve” AUC [Provost and Fawcett, 2001] (also called the

c-statistic [Cash, 1979]). These measures are the mostly used selection criteria following the rule:

the higher, the better.

Second, which algorithm to use. Although, the wrapper approach is concerned to be a black

box approach to score the feature sub-sets, the algorithm choice has some influence on the results

of the final model. Maybe the algorithm used by the wrapper has less discriminative power than

the subsequent learner and thus, unintentionally, omits valuable information.

Third, we have to determine the appropriate search strategy. Ideally, wrapper methods would

make use of all possible feature combinations to determine the feature contributions (exhaus-

tive, complete search). The state space of all possible feature combinations grows exponentially

with the number of features. The number of states s grows as s = 2f , where f is the num-

ber of total features. Therefore, the determination of the most relevant features using this kind

of method is primarily a problem of computational complexity. As usual in computer science

this problem can be represented as a search problem for which numerous solution strategies ex-

ist. Thus, most studies on wrapper methods are about finding the most efficient search strategy

[Kohavi and John, 1997, Opitz, 1999]. In feature selection, there are two fundamental search pro-

cedures, the forward and backward selection. Forward selection starts from scratch and adds new

variables one-by-one while evaluating the optimal search path. The backward selection does the

opposite. The search starts from a model based on all variables and eliminates one-by-one. The

results of both approaches can differ due to non-independent variables and different stopping

points when a certain quality threshold value is reached. In other wrapper application fields also

other search techniques as evolutionary search and simulated annealing are used.
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Embedded Methods

Embedded methods perform variable selection during the training process of the definitive algo-

rithm and are specific to given learning machines. In contrast to wrapper methods the embedded

methods are not handling the algorithm as black box.Early examples are decision trees such as

CART which have a built in mechanism to perform feature selection [Breiman et al., 1984]. More

recent embedded methods guide their search for the feature sub-set by a fitness function which

has to be optimized in order to reach a maximal goodness of fit and a minimal number of features

[Cun et al., 1990, Weston et al., 2003].

Filter Methods

Filter methods filter out features that have little chance to be useful in the subsequent data mining

steps. Wlodizislaw Duch provides a comprehensive overview on this field in [Guyon et al., 2006,

pp. 89-118]. The filter is a function returning a relevance score for each feature. The estimation of

a relevance score and the subsequent ranking of the features according to their scores are known

as “feature ranking”. The feature filter can be based on simple functions such as correlations,

information contents, and distance measures. An example for such a correlation function is the

Pearson correlation, which we will use – amongst other measures – in this study and discuss be-

low. Relevance estimations based on information contents and distance measures are discussed in

detail in [Duch et al., 2004, Hall, 1998, Dhillon et al., 2003, Forman, 2003]. More sophisticated es-

timations for the relevance score make use of more complex algorithms incorporating depending

variables and non-linear models.

After the ranking of the features the “feature selection” step takes place by selecting the useful

features by their relevance.

For our work the relevance scores are of central importance. One part of our initial problem

definition is the regime determination. We interpret the relevance of a variable with respect to

another variable as measure for regime intensities. Therefore, we make use of feature ranking

techniques. The selection step after the feature ranking step might be important for the entire

feature extraction process as performed in classical data mining, but for us the ranking step is

sufficient. We leave the selection and other actions to the finance experts, who first have to inter-

pret the relevance of each feature in combination with their experience. Therefore, we proceed

with a closer look at some relevance estimation techniques we use in our work.

Pearson based Relevance Estimation The outcome of all relevance estimation techniques is a

ranking score for each feature. To simplify the notation we call the different ranking scores “cor-

relations”. This is reasonable since a correlation describes the fact of a relevance score between

two variables.

For feature ranking we use a correlation coefficient to get a measure on how strongly a vari-
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able ~x relates to another variable ~y. There exist numerous correlation measures [Hall, 1998]. In

this study we exemplarily discuss the Pearson correlation. The Pearson correlation is defined in

Equation 2.1.

r =

∑n

i=1 (xi − x̄) · (yi − ȳ)
√

∑n

i=1 (xi − x̄)2 ·
∑n

i=1 (yi − ȳ)2
(2.1)

The Pearson’s correlation reflects the degree of linear relationship between two variables. The

output value spans a range of {x ∈ R| − 1 ≤ x ≤ 1}. The Cauchy-Schwarz inequality ensures that

the correlation cannot exceed 1 in absolute value. A correlation of “1” stands for a high positive

and “-1” for a high negative correlation. “0” stands for no correlation.

The Pearson’s correlation coefficient is a parametric statistic which assumes a normal distri-

bution (i.e., following a Gaussian distribution) of the values1. This assumption is reasonable for

a real-world application field like finance because of the “Central Limit Theorem”. The “Central

Limit Theorem” states that if the sum of the variables has a finite variance, then it will be ap-

proximately normally distributed. Natural sciences like physics also use this basic assumption.

Nevertheless, there exist other non-parametric correlation methods, such as Chi-square, Spear-

man’s ρ, and Kendall’s τ .

Most of the commonly used correlation functions – like the Pearson correlation – are of uni-

variate nature, i.e. represent one-to-one relationships. Multivariate (many-to-one) aspects are

considered for example in wrapper-based approaches. We will discuss such an approach be-

low. For more theoretical background on multivariate correlations and their construction, see

[Pourahmadi, 2001, Section 7.4.1].

Wrapper based Relevance Estimation For our study we used the univariate Pearson correlation

and a more sophisticated multivariate correlation which we designed in a wrapper-like way. The

wrapper-like correlation is constructed a little bit differently than seen in the wrapper section. In

the wrapper section the best sub-set is evaluated, while the variables of a set are switched on or

off. Only the overall model output was of interest. Here, in contrast, the goal is to assign a corre-

lation value to each input variable. This is done by calculating the contribution of the variable to

the model’s performance. Therefore, we compare the model’s accuracy with and without the vari-

able of interest. We perform this comparison for all model combinations containing the feature

1 If the Pearson correlation is computed on a very small number of values it is possible that all are of the same value.
For this case of yi = ȳ,∀i(i = 1, ..., n) the enumerator and denominator of Eq. 2.1 both tend to zero. Nevertheless, the
equation can be calculated as the proof below shows. Let ǫ > 0 and define |ȳ − yi| =: ǫ.

r = lim
ǫ→0

0B� P
n

i=1
(xi − x̄) · ǫqP

n

i=1
(xi − x̄)2 ·

P
n

i=1
ǫ2

1CA = lim
ǫ→0

0B� P
n

i=1
(xi − x̄) · �ǫqP

n

i=1
(xi − x̄)2 · n�ǫ2

1CA =

P
n

i=1
(xi − x̄)q

n ·
P

n

i=1
(xi − x̄)2

Because of the equation’s symmetry the proof also holds for xi = x̄, ∀i(i = 1, ..., n).
If both, xi = x̄ and yi = ȳ,∀i(i = 1, ..., n) the Pearson correlation tends to 1 by applying the same proof approach.

�
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of interest and take the average performance value. Equation 2.3 shows the equations for a clas-

sification problem with three input variables. For each of the three variables j the “wrapper-like

correlation” rj is calculated as follows:

r1 = 0.25 · [a(m100)− a(m000) + (2.2)

a(m110)− a(m010) +

a(m101)− a(m001) +

a(m111)− a(m011)]

r2 = 0.25 · [a(m010)− a(m000) + a(m110)− a(m100) + a(m011)− a(m001) + a(m111)− a(m101)]

r3 = 0.25 · [a(m001)− a(m000) + a(m101)− a(m100) + a(m011)− a(m010) + a(m111)− a(m110)]

In Equation 2.2 m101 stands for the model based on “variable 1” and “variable 3”. The in-

dices are binary and indicate whether a variable is considered (1) or not (0). The model m000 is

the random predictor generated without any information. We have chosen the 4 most popular

classifiers as underlying algorithms. These are Naı̈ve Bayes , k-Nearest Neighbor, C4.5 decision

tree (with and without pruning), and support vector machine. All these algorithms are discussed

more detailed in the Appendix A.1.1. The function a(·) is the evaluation function. In our work the

evaluation function performs a 10-fold cross-validation2 and returns the accuracy. The correlation

in 2.2 does not exceed “1” in absolute value, since the accuracy is always between 0 and 1.

The “wrapper-based” correlation function also incorporates possible dependencies between

the variables in contrast to the Pearson correlation. In the following we use the naming “wrapper

correlation” for the “wrapper-like” correlation.

Feature Selection on Time Series

Our target problems are financial time series. Therefore, studies on feature selection on time series

are relevant for our application. The focus of these studies is the handling of vast amount of data.

For example [Yoon and Yang, 2005, Yoon and Shahabi, 2006] show how to solve this problem for

feature selection using different algorithms (principal component analysis, recursive feature elim-

ination and support vector machines).

We could not find any approach considering feature selection under drifting concepts (for

more information about concept drifts see next section on p. 17). Neither was a feature selection

approach with forgetting capabilities found. In our study we present an approach which is able

to cope with time-dependent feature relevances.

2For less than 10 instances we performed a leave-one-out cross-validation
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2.1.5 Causality

This section is not about feature extraction itself, but nevertheless is of major importance for this

field. Here, we present some rules about correlation interpretation and how to avoid typical

pitfalls. For the interpretation of the correlations it is important to differentiate between correla-

tion and causality, because correlation does not imply causation [Barnard, 1982]. An example is the

“falling barometers” problem that tries to correlate “falling barometers” with “rain”. There are

four possible explanations:

1. Falling barometers are the cause of rain.

2. Some unknown third factor is actually the cause of the relationship between rain and falling

barometers, e.g. a low-pressure area.

3. The correlation is coincidental. The two events occur at the same time, they have no simple

relationship to each other besides the fact that they are occurring at the same time.

4. Falling barometers may be the cause of rain at the same time as rain is the cause of falling

barometers (self-reinforcing system).

[Pearl, 2000] differentiates between statistical concepts and causal concepts. The examples of

statistical concepts he gives are: correlation, regression, conditional independence, association,

likelihood, collapsibility, risk ratio, and odds ratio. Examples of causal concepts are: influence,

randomization, effect, confounding, exogeneity, ignorability, disturbance, spurious correlation,

path coefficients, instrumental variables, intervention, and explanation.

Techniques to infer causal dependencies like probabilistic causality methods are based on the

closed world assumption – all relevant variables are given for the domain of interest. In our target

problem – the regime drifts in the finance domain of exchange rates – we cannot assume a closed

world. There are always unmeasured or even unexpected confounding factors. The large number

of available features (86) shows how the finance community is aware of this issue and intends to

represent all influencing factors, but still there are many factors like political decisions and other

real-world influences that can not be modeled [Brooks, 1991].

Here, the knowledge of the finance experts is crucial. They know how to interpret certain

correlations and to find possible hidden patterns. Nevertheless, the set of all correlations supports

the experts to preselect possible influencing factors for discussion, since correlations do not imply

causality, but if there is no correlation the probability of causality is very low.

More information about causality and methods of inferring causal dependencies is given and

assessed in [Pearl, 2000] and [Holland, 1986].
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2.2 Concept Drift

In this section we show that regime drifts are related to the data mining field “concept drifts”.

A concept is the underlying rule that generates the data set. In machine learning an algorithm

usually learns a model, which should be as close as possible to the concept. When a concept

changes (drifts) the algorithm’s model needs to change too. Alexey Tsymbal provides a survey

on concept drift research [Tsymbal, 2004]. He defines a concept drift as follows:

In the real world concepts are often not stable but change with time. Typical examples of this

are weather prediction rules and customers preferences. The underlying data distribution may

change as well. Often these changes make the model built on old data inconsistent with the

new data, and regular updating of the model is necessary. This problem, known as concept

drift, complicates the task of learning a model from data and requires special approaches, dif-

ferent from commonly used techniques, which treat arriving instances as equally important

contributors to the final concept.

Finance market data are subjected to external effects such as political and environmental

events. Following the definition of drifting concepts above we are faced with a typical concept

drift problem in finance.Harries and Horn realized the relation between financial time series and

concept drifts [Harries and Horn, 1995]. They examined the movement of the stock market. Their

target value for prediction was “up” or “down” for the stock market movement. They learnt a

stock market model on a one month data interval and assessed their predictions during the next

month. The predictions were only considered when an unseen instance is “like” the training data,

i.e. only in absence of a drift. When a possible drift occurred they chose a conservative trading

strategy of not taking any action. Their concept drift detection method relied only on changes in

the attribute domain range. When the attribute domain range was shifted or changed in size, they

assumed the occurrence of a concept drift. The predictive performance was better than chance for

two of the total three month under investigation. From the weak prediction on the last month’s

data they inferred that there must be a concept drift between training month and target month.

They could actually identify an external factor. The reason was the “Share Price Index” contract

price change from $100 to $25 resulting in different trading behavior.

Although, they used a weak concept drift indicator, only the suspension of trading stocks

during a drift resulted in a positive result. For our work this result emphasizes how suitable

the concept drift approach is even though our targets are exchange rates, not stock markets. In

contrast to the work of Michael Harries and Kim Horn we do not implement a trading strategy.

We determine the relationships between the variables, visualize them, and leave the decisions to

the experts by providing them the information on the factors and their intensity. Furthermore, we

adaptively determine the optimal amount of history that has to be taken into consideration.
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2.2.1 Types of Concept Drift

Concept drifts can occur abruptly or gradually. Examples of abrupt drifts are monetary con-

cerns after graduation or the switch of context when a person steps into the office and disrupts

[Vorburger and Bernstein, 2006a]. Examples for gradual drifts are sensor data from aging sensors

or the global warming effect on the climate.

[Widmer and Kubat, 1993] differentiate between changes in the actual target concept called

real concept drifts and changes in the distribution called virtual concept drifts. [Tsymbal, 2004]

states that “...from the practical point of view it is not important, what kind of concept drift occurs, real or

virtual, or both. In all cases the current model needs to be changed.” In [Vorburger and Bernstein, 2005]

we developed an entropy (information content) based concept-drift method that is able to detect

each of these two kinds of drifts. We also showed that virtual drifts occur when we deal with

distribution sensitive measures such as accuracy, but when using distribution insensitive mea-

sures like AUC the models are not subjected to virtual drifts and thus, the models need not to be

changed.

2.2.2 Handling of Concept Drift

By far most of the concept drift literature is about classification [Tsymbal, 2004]. There are also

some studies about other data mining fields such as regression [Herbster and Warmuth, 1998,

Herbster and Warmuth, 2001], association rule mining [Rozsypal and Kubat, 2005], and cluster-

ing [Nasraoui et al., 2003, Aggarwal et al., 2003]. The subsequent discussion is focused on classi-

fication, but holds also for other fields or can be extended accordingly.

In literature the three strategies have been introduced to keep up-to-date with the current

concept: (1) instance selection, (2) instance weighting, and (3) ensemble learning. We discuss

these different approaches below.

Instance Selection and Instance Weighting

In instance selection, the goal is to select the most relevant instances for the current concept

[Klinkenberg and Rüping, 2003]. Instance weighting is the same, but the instances are weighted

according to their individual relevance. Thus, instance selection can be formulated as a special

case of instance weighting by using binary weights. [Klinkenberg and Joachims, 2000] find that

instance weighting is inferior to instance selection – probably due to overfitting .

The most common procedures for concept drift handling are based on the assumption that the

most recent instances are the most representative for the current concept. Thus, most procedures

select the instances from a window of the most recent instances. We illustrated such a sliding

window in Figure 2.2. The window size is the number of instances covered (by the window).



2.2 Concept Drift 19
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Figure 2.2: Illustration of a sliding window

Some approaches use a fixed window size [Widmer and Kubat, 1992] and others use heuristics

to adjust the window size to the current situation. Most approaches adjust the window size by

maximizing an evaluation measure such as the accuracy, e.g. the more advanced versions of the

FLORA [Widmer and Kubat, 1993, Widmer, 1996] and FRANN system [Widmer and Kubat, 1996]

and other measures like the f-measure [Kifer et al., 2004]. Other approaches compare data changes

in differently sized windows. [Lazarescu et al., 2004] use three windows of different size to esti-

mate the change in data by looking at the average vector value changes. For the concept drift

estimation between differently sized windows, more sophisticated metrics e.g. entropy can be

considered [Vorburger and Bernstein, 2006a].
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Figure 2.3: Mode of operation for a perfect window size based algorithm.

The adjustment of window size is very relevant. A too narrow window misses relevant in-

stances, generates unstable models, and is very noise sensitive. A too wide window includes out-

dated instances and, therefore, the resulting models are not correct. Additionally, large window-

based models are lazy towards concept changes. Figure 2.3 shows a schematic example of a

window adapting its size to a concept drift. The figure represents the same problem setup of a
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single abrupt concept drift on five timelines at different time steps t1, ..., t5. The topmost timeline

shows the situation when the algorithm starts to learn. The second and the third timeline show

the window of fixed size sweeping over the data. This is like a conventional data mining learner

with constant forgetting of old instances. At t4 the concept drift has passed by. The model built

on the maximum sized window would be inconsistent and thus, outdated. Therefore, the optimal

model is based on a window that is collapsed to contain only the data of the current concept. The

last timeline shows the recovered model built again on the larger window size. The most popular

methods of coping with concept drifts are ensembles which we discuss in the next section.

Ensemble Learning

Ensemble methods are well known from classical data mining to achieve very powerful and ro-

bust predictions [Littlestone and Warmuth, 1994, Blum and Langley, 1997]. Ensemble methods

are learning algorithms that construct a set of models and then predict new data points by tak-

ing a (weighted) vote of their predictions [Dietterich, 2000]. The individual models are called

experts or ensemble members and all experts together form the ensemble also known as commit-

tee. The final prediction of the ensemble depends on the decision making process which can be a

(weighted) majority vote or based on other rules [Bauer and Kohavi, 1999].

The approach of ensemble methods has been successfully adapted to the concept drift domain.

The ensemble’s experts are models built on possibly different concepts. Continuously, the best-

performing expert is chosen which the expert is built on the current concept. In the field of drifting

concepts ensemble methods turn out to be accurate, flexible, and robust.

There where several different ensemble designs introduced, for example with different expert

algorithms [Wang et al., 2003] or different window sizes [Kenneth, 2003, Fan, 2004]. Others ex-

tended the ensemble method with incremental updating [Chu et al., 2004] or unified the different

approaches [Kolter and Maloof, 2003, Kuncheva, 2004].

In our study we make use of the ensemble method Dynamic Weighted Majority DWM in-

troduced by [Kolter and Maloof, 2003]. We have chosen this algorithm because of its outstanding

predictive performance and robustness whilst the algorithm’s design is kept very simple. In Table

2.1 the pseudo-code for the DWM algorithm is listed and briefly discussed below.

The DWM algorithm maintains an ensemble of base learners, predicts using a weighted ma-

jority vote of these experts (line 11), and dynamically creates (lines 16-18) and deletes (line 14)

experts in response to changes in performance (line 7 and 15). The base learners are all based on

the same algorithm. In our case the Naı̈ve Bayes , k-Nearest Neighbor, decision tree (with and

without pruning), support vector machine, and linear regression. We extended the DWM algo-

rithm from the original classification version to a regression version (see appendix A.2). We also

explain how the algorithm can be extended to different evaluation measures and how the drift

detecting ensemble can be decoupled from the final prediction task.
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{~x, y}n1 : training data, feature vector and target
β : factor for decreasing weights, 0 ≤ β ≺ 1
c ∈ N

∗: number of classes
{e, w}m1 : set of experts and their weights
Λ, λ: global and local predictions
~σ ∈ R

c: sum of weighted predictions for each class
θ: threshold for deleting experts
p: period between expert removal, creation, and weight update

1 Dynamic Weighted Majority DWM
2

3 for i = 1, ..., n
4 ~σ ← 0
5 for j = 1, ..., m
6 λ = Classify (ej , ~xi)
7 if (λ 6= yi and i mod p = 0)
8 wj ← βwj

9 σλ ← σλ + wj

10 end;

11 Λ = argmaxλ σλ

12 if(i mod p = 0)
13 w ← NormalizeWeights(w)
14 {e, w} ← DeleteExperts(e, w, θ)
15 if(Λ 6= yi)
16 m← m + 1
17 em ← CreateNewExpert()
18 wm ← 1
19 end;

20 end;

21 for j = 1, ..., m
22 ej ← Train(ej , ~xi)

23 output Λ
24 end;

25 end.

Table 2.1: Pseudo-code for the DWM algorithm.

2.2.3 Theoretical Aspects

Research on concept drift handling is mostly of empirical nature. The reason for this might be

the central characteristic of drifting concepts, the unpredictability of the next concept occurring.

This does not only include the questions “will it show up abruptly or slowly?” or “what is its

structure?” We do not know anything about the next concept; it could be something absolutely

new. Thus, the field can hardly be covered by theory.

Nevertheless, there exist theoretical studies about defining lower and upper bounds for the

window size as presented in [Helmbold and Long, 1994] and [Kuh et al., 1990].
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2.2.4 Datasets for Concept Drift Assessment

In the research about concept drift handling algorithms the data sets for evaluation and bench-

marking are of central importance.

Synthetic data sets are of special interest because they allow controlling the type and rate

of the concepts as well as setting the noise level and adding irrelevant attributes. Unlike the

real-world data sets the underlying data generator (concept) is known and allows a more pro-

found assessment of the generated models. The most used synthetic data sets are “Stagger”

[Schlimmer and Granger, 1986], the “moving hyperplane in a cube” [Hulten et al., 2001]

[Wang et al., 2003], the “plane intersects a sphere” [Vorburger and Bernstein, 2006b], the SEA con-

cept [Street and Kim, 2001], and the “moving sphere in a unit cube” [Chu et al., 2004]. All of these

datasets represent two-class problems.

The “Stagger” dataset consists of discrete features and the concepts are represented by logical

rules. The “moving hyperplane in a cube” defines the two-class problem by intersecting a unit

cube by a plane. If an instance in the cube is on one side of the plane it belongs to class “A” and

if the instance is on the other side of the plane it belongs to class “B”. The SEA concept is the

same, but in two dimensions. The “plane intersects a sphere” is also about the same, but instead

of a cube a unit sphere is used. The symmetry of the sphere and the hyperplane rotating around

the origin allows focusing on the real concept drift only – without any artifacts like distribution

changes. In the “moving sphere in a unit cube” all instances are inside a unit cube. The class

separation is defined by a sphere boundary inside the cube which is moved around to generate

drifting concepts. The “Stagger” and the “plane intersects a sphere” datasets are discussed in

detail in the next two sections.

In literature there exist also some applications on real-world datasets [Harries et al., 1998,

Hulten et al., 2001, Street and Kim, 2001]. Unfortunately, they typically show only little concept

drifts and are sometimes adapted for evaluation purposes making it difficult to assess their use-

fulness as a benchmark. The major problem is that the underlying concept generating the data is

usually unknown.

Nevertheless, real-world datasets are very important since all concept drift handling approaches

are motivated by real-world problems and are designed to be applied in the real-world. This can

only be done by using real-world data. To bridge this gap we use a real-world data whose under-

lying data generating process is known – data taken from meteorological sensor measurements.

In the meteorology dataset the drift of concept is caused by seasonal changes. We introduce this

dataset after discussing synthetic datasets.

In the following, we discuss the datasets used throughout this work. There are three datasets

to assess the different methods and the finance dataset for our final application. First, we present

two synthetic datasets of which we know the properties of the different target concepts behind

the data generation3. In concept drift research the predictive power on these datasets is of interest.

3In contrast, we focus on the time-varying correlation between the input features and the target labels.
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For these two datasets we constructed different versions, where we changed the noise levels to

assess the algorithm’s robustness. Second, we introduce a real-world meteorology dataset where

we know the period of the concept drift. lastly, the finance dataset will be discussed at the end of

this study in Section “Application on Finance Data” while presenting the results.

Stagger Dataset

The “Stagger” dataset is the standard benchmark for concept drift algorithm evaluation since it

has been introduced by [Schlimmer and Granger, 1986]. Schlimmer and Granger introduced this

dataset together with the first algorithm dealing with this kind of problem.

Color Shape Size Concept 1 Concept 2 Concept 3

green triangle small false true false
green triangle medium false true true
green triangle large false true true
green circle small false true false
green circle medium false true true
green circle large false true true
green rectangle small false true false
green rectangle medium false true true
green rectangle large false true true
blue triangle small false false false
blue triangle medium false false true
blue triangle large false false true
blue circle small false true false
blue circle medium false true true
blue circle large false true true
blue rectangle small false false false
blue rectangle medium false false true
blue rectangle large false false true
red triangle small true false false
red triangle medium false false true
red triangle large false false true
red circle small true true false
red circle medium false true true
red circle large false true true
red rectangle small true false false
red rectangle medium false false true
red rectangle large false false true

Prior class distribution 88.9% (false) 55.6% (true) 33.3% (true)

Table 2.2: Stagger concepts – all combinations

The dataset consists of 120 time steps and is divided into three different concept regions each

taking 40 instances. Each instance consists of three discrete feature values and a binary target.

The feature values are: color ∈ {green, blue, red}, shape ∈ {triangle, circle, rectangle}, and size ∈
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{small, medium, large}. For the first 40 time steps, the target concept is color = red∧size = small.

During the next 40 time steps, the target concept is color = green∨shape = circle. Finally, during

the last 40 time steps, the target concept is size = medium ∨ size = large. Table 2.2 illustrates all

possible feature vector combinations and the binary target labels for each of the three concepts.

The table also shows the different prior class distributions in the lowest row.

For the assessment of the algorithms under noisy conditions, we introduce noise by randomly

switching target labels.

Since this dataset is very short, all experiments are repeated 50 times and the results are av-

eraged over these runs. Of course, these calculations are performed on 50 different “Stagger”

datasets, all generated by the same rule presented above.

Plane Intersects Sphere Dataset

The second synthetic dataset is the “plane intersects sphere” dataset which is similar to the dataset

introduced by [Wang et al., 2003] and has been applied by [Vorburger and Bernstein, 2006b]. In

this dataset the three real-valued input features describe points in a three dimensional Cartesian

space. Their domain is limited by a three-dimensional unit sphere (see Figure 2.4, left). A two-

dimensional plane intersects the sphere through the origin, separating the instances into two-

classes (see Figure 2.4, middle and right). Table 2.3 provides some sample instances of the dataset.

x-axis y-axis z-axis Target Label

0.06446 0.10694 0.30232 0
-0.13922 0.38407 -0.22187 0
0.06526 -0.00899 0.17475 0

-0.00711 -0.10392 0.08745 1
-0.30884 0.09292 0.02075 1
-0.36573 0.18841 0.24551 1
-0.07086 0.12332 0.38036 0
0.34229 0.00683 0.22822 0

-0.11034 -0.00741 -0.02182 1
0.17800 -0.09793 0.25653 0

...
...

...
...

Table 2.3: Example instances of the “plane intersects sphere” dataset.

The target concept is defined by the orientation of the plane. Thus, the plane orientation in

space defines a concept generating the two-class problem. A concept drift is induced by rotating

the plane (see Figure 2.5). The plane’s rotation axis is parallel to the third dimension such that

the third feature does not affect the target concepts. Our dataset consists of 2000 time steps in

total. The starting position of the plane is at -45 degrees (see Figure 2.6), lying exactly between

the first two axis so the two first feature attributes have the same influence on the target concept.
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Figure 2.4: Plane separating the instances inside the sphere into two classes (blue and red).

Figure 2.5: Definition of different concepts by rotating the plane.

After 500 time steps the plane flips by 180 degrees so that the new target concept is the opposite

of the concept before. Then, after the next 500 instances the plane gradually rotates back to its

initial starting position. This gradual shift takes 25 time steps. After a total of 1525 time steps the

plane rotates gradually for 50 instances to the opposite direction and stays in this position for the

remaining time steps.
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Figure 2.6: target concept definition of the “plane intersects sphere” dataset

To generate noise-prone datasets, noise is introduced like seen in the “Stagger” dataset by

randomly switching target labels.

Figure 2.6 shows that this dataset allows not only assess instantaneous shifts as seen in the

Stagger dataset; we can also consider gradual drifts.
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Meteorology Dataset

Meteorology is a common example for continuously drifting concepts. The relationships between

meteorological measurements often change during the seasons.

Figure 2.7: Jungfraujoch station.

From the “Bundesamt für Meteorologie und Klimatolo-

gie MeteoSchweiz” we obtained a dataset containing the

measurements of the “relative humidity” and the “global so-

lar radiation” over a time period of two years (2004-2005).

The data has been acquired at the Jungfraujoch – the most fa-

mous gauging station in Switzerland, located in the midst of

the UNESCO World Natural Heritage site Jungfrau - Aletsch

- Bietschhorn (see Figure 2.7; Source: jungfraujoch.ch, 2007).

The measurement rate is 10 minutes, resulting in 144 mea-

surements per day. We reduced the total dataset length of

105264 measurements by averaging the daily data. This re-

sults in a total of 731 instances. The reason for this reduction

is the huge amount of data resulting in time-consuming cal-

culations. This reduction does not affect the validity of our

models since we are not interested in intra day predictions.

Figure 2.8 shows the measurements for the relative humidity RH and the global solar radiation

GSR. The global solar radiation shows the seasonal drift in a very beautiful way. The sine shape

of this curve reflects the changing angle effect of the incoming solar radiation direction during the

seasons. The other curve of the relative humidity does not show such distinct behavior.

0

50

100

R
H

 [
%

]

0 100 200 300 400 500 600 700
0

500

time [days]

G
S

R
 [

W
/m

2
]

Figure 2.8: Meteorology dataset

This dataset has been chosen because it is complementary to the other datasets discussed

above. First, the concept drift is continuous. Second, it is an error-prone real-world dataset with

real-valued features. These properties are supposed to be similar in the finance dataset.
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2.3 Data Mining and Finance

Data mining techniques play a fundamental role in financial applications [Weigend, 1997],

[Nakhaeizadeh et al., 2002, Kovalerchuk and Vityaev, 2005]. The focus is on financial tasks such

as forecasting stock markets and currency exchange rates. Other core tasks are the understanding

and managing of financial risks, trading futures, credit rating, loan management, bank customer

profiling, and money laundering analyses. In the following we provide a short overview on these

fields. We also relate our work to these tasks and point out the differences.

2.3.1 Forecasting

Plenty of research [Kingdon, 1997] has been done on forecasting market behavior and financial

variables. Examples are the stock markets [Harries and Horn, 1995, Rahman et al., 2002] and cur-

rency exchange rates [Walczak, 2001, Zhang and Berardi, 2001]. All studies referenced above use

neural networks for prediction. For our work the study of Steven Walczak is of major interest.

Therefore, we discuss it in detail. The goal of his work was to empirically find requirements on

the data for financial forecasting which he investigates on the example of currency exchange rate

prediction. Even though, we are not performing prediction, an investigation on data requirements

is fundamental for our work. Walczak shows that models that learned an appropriate amount of

historical knowledge (i.e. on a given fixed window size) outperform models using larger training

sets. This has been a new fact since previous research claims that larger training sets produce

better results [Zhang and Hu, 1998, Box and Jenkins, 1994, Gately and Gately, 1995]. Zhang and

Hu compared predictions on window sizes of 6 and 16 years, where the predictions on 16 years

performed better. In contrast Walczak showed that a window size of two years performs better.

His results are supported by the Time Series Recency Effect argumentation. This effect states that

constructing models with data that is closer in time to the data that is to be forecasted by the

model produces a higher quality model. The conclusion is: forgetting (i.e., ignoring older data)

is important. This supports our approach of introducing forgetting to our solution. The second

conclusion is that the length of the window size is difficult to set and object of extensive research.

All of the recent research focuses on assessing window sizes of a given fixed length. We solve

this problem with our approach of applying concept drift techniques that are able to adapt the

window size to the appropriate length.

Limitations of Forecasting Approaches

The intension of the approaches above is forecasting. Their goal is to have a lead in information

over the other market competitors resulting in a superior trading strategy. Unfortunately, we

identified two structural limitations for the forecasting approaches.
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First, the information or strategy has to be unknown to the competitors, which holds only for a

short period of time due to staff fluctuation and the trading strategy itself, which can be observed

and – after some time – anticipated by other market participants. The result is information equi-

librium. So, the application of forecasting model can be interpreted as a disturbance in a system

tending to equilibrium. Nevertheless, at the beginning the profit can be considerable when using

this kind of information advantage. After that, the competitors have to catch up to minimize their

loss.

The equilibrium of a market with equal information for all participants is described by the

efficient market hypothesis established by Eugene Fama [Fama, 1970]. The efficient market hy-

pothesis asserts that financial markets are “informationally efficient”. For example, prices on traded

assets, e.g., stocks, bonds, or property, already reflect all known information and therefore, are

unbiased in the sense that they reflect the collective beliefs of all investors about future prospects.

The efficient market hypothesis states that it is not possible to consistently outperform the market

by using any information that the market already knows, except through luck.

The second limitation is that exchange rate predictions are very difficult. [Zhang and Berardi, 2001]

for example use a traditional single keep-the-best neural networks ensemble for prediction, but

they do not have a significant improvement compared to the widely used random walk model in

exchange rate forecasting.

In contrast to the forecasting approaches, we do not try to forecast, we enable experts to make

better predictions. Our approach is human-centered. We summarize the vast amount of informa-

tion so a human expert can work more effectively. More precisely, we are the first to determine

and illustrate the regimes. We are convinced that the human expert’s experience in the problem

of foreign exchange rate research is crucial. The experts are able to recall similar situations – even

when faced in other fields. This experience acquired over years is the expert’s “unique selling

proposition” kept as tacit knowledge [Nonaka and Takeuchi, 1995]. In our opinion the combi-

nation of the expert’s knowledge and a summarized view on important variables should result

in better predictions. Even more, because of the expert-bound component, this kind of advan-

tage over other market participants might hold for a longer time than a pure data mining-based

forecasting model.

Human experts have even more advantages. Compared to computer applications, they are

able to deal better with effects outside of the original boudary of attention such as political over-

throws and natural disasters. Last but not least, experts might also have personal relationships to

other market participants and upper level decision-makers which help to exchange knowledge or

to make an arrangement during a crisis. The prime example for such a crisis is “Black Monday”,

where the “Dow Jones Industrial Average” dropped by 22.6% (loss of more than 500 000 000 000

dollars) on Monday, October 19, 1987. One reason was trading applications with a strategy model

of blindly selling stocks as the markets fell. These feed-back effects resulted in an aggravation of

the market collapse.
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2.3.2 Bank Customer Profiling

Bank customer profiling as it has been part of the PKDD2000 Discovery Challenge4 have many

similarities with data mining for customer profiling in other fields [Riecken, 2000]. The goal is to

get as much insight from the data to know more about the customers and to be able to take the

appropriate actions.

2.3.3 Risk Management

Risk management is a field where data mining has become very important. There are different

kinds of risk. Market risk is the uncertainty of future earnings due to changes in market condi-

tions. Financial institutes also deal with credit risks. There exist numerous – already commercial

– approaches to minimize those risks, e.g. JPMorgan came out with the RiskMetrics and Cred-

itMetrics framework [Morgan Guaranty, 1994]. Another field, the country investment risk, has

been investigated by [Becerra-Fernandez et al., 2002]. They predicted investing risk categories of

52 countries obtained from a Wall Street Journal survey of international experts. As input they

fed their model 27 variables e.g. economic, stock market performance/risk, and regulatory effi-

ciencies.

Another kind of risk management concerns credit ratings. [Galindo and Tamayo, 2000] pro-

vide an overview on credit risk assessment. They introduce the basic methodologies and ap-

plications. Even more, they compare different statistical and machine learning methods in this

field. [Huang et al., 2004] compare a neural network and support vector machine approach on

bond rating with respect to predictive and explanatory power. They also conducted a market

comparative analysis on the differences of determining factors in the United States and Taiwan

markets.

2.3.4 Monitoring and Auditing

Machine learning techniques are used for monitoring and auditing. One example is the simple

but powerful approach using Benford’s law5 [Benford, 1938]. Hal Varian [Varian, 1972] proposed

to apply Benford’s law to detect possible fraud. For example, in financial accounting, the first

digits which do not follow the logarithmic distribution attract attention.

Another field is the task of evaluating and forecasting banking crises. Celik and Karatepe use

– again – neural network models to address this kind of problem [Celik and Karatepe, 2007]. To

demostrate they examine the Turkish banking sector.

4http://www.cwi.nl/events/conferences/pkdd2000/ (November 5, 2007)
5The Benford’s law states that the leading digit of real-life numbers is mostly “1”. A leading digit of “2” does not

occur as much as “1”, but more than the number “3” and so on. The number of the leading digits follows a logarithmic
distribution.
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2.3.5 Financial Crime Detection

A comprehensive survey on the automated fraud detection of the last ten years is provided by

[Phua et al., 2005]. In this context financial crime refers to money laundering, violative trading,

and insider trading. In these fields rule pattern matching and sequence matching algorithms

provide good results as the “National Association of Securities Dealers” (NASD) “Regulation

Advanced Detection System” (ADS) shows [Kirkland et al., 1998, Senator, 2000]. In the ADS, for

example, the pattern and sequence matcher detects predefined suspicious behaviors. In addition,

new or refined patterns are identified by association rules and decision tree algorithms. Other

approaches cover techniques like peer-group analysis e.g. the commercial service providers IBM

and Searchspace offer6.

For more information on money laundering we recommend the Financial Services Authority7

(FSA) report “Review of private banks anti-money laundering systems and controls”. This report

summarizes the various risks originating from money laundering and the different measures (or-

ganizational and technical) against money laundering.

2.4 Conclusion

The overview of related work shows that our work is novel from all three perspectives. In feature

ranking we introduce the new approach of detecting and dealing with drifting concepts. To concept drift

research we add the new perspective of feature assessment. Finally, in finance research we introduce

adaptive model forgetting and accurate regime illustration. The foundations are mostly of empirical

nature. Therefore, we also mentioned the datasets, which we will use to assess our regime drift

approaches.

After stating the foundations, we are prepared for the following research steps.

6http://www-03.ibm.com/industries/financialservices/doc/content/bin/searchspace and ibm aml brochure.pdf
(October 9, 2007)

7http://www.fsa.gov.uk/
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Approach I: Concept Drift on
Feature Ranking

In this chapter we present the first approach to bring the two fields feature ranking and concept

drifts together (see Figure 1.2). We name this approach “Approach I”. In this approach we first

start with given correlations. Then, we introduce a method to detect possible concept drifts based

solely on the available correlation data.

There is a theoretical reason for this approach. Following the Ockham’s razor argument1,

correlations are the best representation for a correlation problem.

3.1 Method Overview

First, we focus on feature ranking. To apply feature ranking on data streams, we use a sliding

window technique (see Figure 2.2). The sliding window covers the last n instances of the data

stream and the feature ranking score (i.e. correlation) is computed in this window like on a closed

data set.

To introduce adaptivity we re-use the most-used technique applied when dealing with concept

drifts: ensemble methods. Therefore, we choose a selection of experts using the same correlation

determination method, but based on different window sizes (see Figure 3.1). When a regime drift

occurs, we should prefer models with a shorter window-size and in absence of any drift we keep

the window as large as possible to achieve more accurate results. This is a common approach in

the concept drift field (see section 2.2.2).

Unfortunately, the solution is not straightforward. Classical ensemble algorithms make use

of some kind of fitness function that defines which ensemble expert has to be considered. Typ-

ically, when dealing with a classification problem, the fitness function is based on parameters

1Named after the 14th-century English philosopher, William of Ockham. Ockham’s razor suggests that the simplest
hypothesis is the best. [Russell and Norvig, 2003, Mitchell, 1997]
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Figure 3.1: Illustration of a an ensemble made of different experts based on different sized sliding windows.

such as each expert‘s accuracy, the overall ensemble prediction, and possible feedbacks from past

predictions. Figure 3.2 illustrates the process of classical ensemble model generation.
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Figure 3.2: Process of classification under concept drift (classical)

The ensemble methods have been shown to be very powerful [Kolter and Maloof, 2003]

[Wang et al., 2003], but they make use of an assumption that does not hold for this kind of ap-

proach. Their fitness function relies on the ordinal character of the input value, like the accuracy

or AUC. In short, their selection criterion is based on the rule “the higher the better”. In the regime

drift problem, in contrast, we are dealing with correlations. Correlations are not ordinal. Correla-

tions don’t have to be more reliable if the correlations value is higher. A lower correlations value

might be the correct one.
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Figure 3.3: Process of concept drift method on non-ordinal measures for the case of correlations.

To reduce this new problem to a known problem we pursue the following strategy. We convert

the non-ordinal correlation values to ordinal values. Then, having an ordinal measure, we pursue the

classical process by applying well-known concept drift methods. Figure 3.3 shows the adjusted

process for our approach. There are two differences to the classical process. First, we have in-

troduced the ordinalization step. Second, we have the interaction between the ensemble-based

concept drift detection and the definitive correlation determination. More details on the single

process steps are provided in the next section and in the pseudo-code of an exemplary implemen-
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tation in Table 3.1.

3.2 Method Formalization and Implementation

In this section we provide an exemplary implementation of the regime drift handling approach

as presented in Figure 3.3. First, we provide the entire algorithm as pseudo code, followed by a

detailed discussion of the ordinalization step.

Our implementation of approach I is based on an adjusted version of the Dynamic Weighted

Majority (DWM) algorithm. The DWM algorithm is one of the best performing concept drift han-

dling algorithms and has been initially designed for classification problems. Therefore, to perform

the ensemble generation with the DWM algorithm we need an adjusted version of the DWM algo-

rithm. In Appendix “DWM Algorithm for Regression Problems” on page 101 we present a DWM

version for regression problems also able to handle continuous target values and not only dis-

crete class values. The adjusted version is very similar to the original version discussed in section

2.2.2, but with a difference in the ensemble expert assessing. In the regression version the driver

for considering or dropping ensemble experts is the deviation (error) between predicted and real

values. Thus, this DWM version can be applied on our problem.

The link from the adjusted DWM algorithm to our application is the fitness function based on

an error measure. The ordinalization step returns ordinal values which can be interpreted as error

measure (see Section 3.2.1). A value of “0” stands for the highest level of correctness (no error)

and the higher the value the less correct the measure is regarded. So, we use the ordinal measure

direct as “error” as it would originate from a regression model evaluation.

The pseudo code in Table 3.1 formalizes an exemplary implementation of the regime drift

handling method named “approach I”. In this paragraph we will discuss this implementation

line by line. First, we start with the initialization of the first “ensemble expert” with a window

size of 1 instance and the weight of 1. This is the first range where we compute the correlation

on. Then, we proceed with the outer for loop starting on line 4. This loop goes through the

instances of the time-series occurring one-by-one. The next for loop on line 5 is executed for all

available “ensemble experts”. In this loop we first calculate the correlation rij between the input

feature variable and the target variable based on the last νj instances. Without loss of generality,

we show our algorithm for only one single input variable. More input variables would result in

an additional loop, but the algorithm would stay the same since we assume the input variables

to be independent of each other. Now (line 7), we convert the non-ordinal correlation value into

an ordinal measure. Therefore, we pass all calculated correlations to the Ordinalize function

(see next section 3.2.1) together with the information of the actual time step i and the expert j of

interest. The return value is ξj , the actual ordinal measure for the expert of interest. If the ordinal

measure (taken as error) exceeds the value ϑ the corresponding expert‘s weight is reduced by

the factor β (line 9). On line 11 all weights are normalized, so the sum of all weights is 1. The
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{x, y}n1 : training data, feature x and target y
1, ..., n: numbering of instances, sorted by occurrence
β : factor for decreasing weights, 0 ≤ β ≺ 1
{w, ν}m1 : set of experts’ weights and number of instances in their sliding windows
R, r: global and local correlation values
Ξ, ξ: global and local ordinalized correlation values
θ: threshold for deleting experts
ϑ: “error” threshold

1 Approach I
2

3 w = 1, ν = 1
4 for i = 1, ..., n // Loop through time steps

5 for j = 1, ..., m // Loop through experts

6 rij = CalcCorr ({x, y}ii−νj+1) // CalcCorr on window (size=νj)

7 ξj = Ordinalize (r, i, j)
8 if (ξj > ϑ) // Expert error > threshold

9 wj ← βwj // Reduce expert weight

10 end;

11 w ← NormalizeWeights(w) //
∑

j wj = 1

12 R =
∑

j wjrij // Calc overall correlation

13 Ξ =
∑

j wjξj // Calc overall error

14 for j = 1, ..., m
15 if (wj < θ) // Delete expert,

16 wj ← 0 // where weight < θ
17 end;

18 if(Ξ > ϑ) // Create new expert

19 m← m + 1 // if overall error > ϑ
20 νm ← 0
21 wm ← 1
22 end;

23 for j = 1, ..., m // Increase window size

24 νm ← νm + 1 // of all experts by 1

25 output R // Return overall correlation

26 end;

27 end.

Table 3.1: Pseudo-code for approach I based on a modified DWM algorithm.

normalized weights allow a direct calculation of the averaged and weighted global correlation

R which will be the final return value on line 25. On line 13 we estimate the global error Ξ of

all ensemble experts combined together. The next for loop between line 14 and 17 “deletes”

the single ensemble experts by setting their weights to 0 when their weight goes below the limit

θ. If the estimated global error of all ensemble experts together exceeds the ϑ error threshold,

a new expert is added to the ensemble (lines 19 until 21). At the end (lines 23–24) we prepare

the calculation for the next instance by increasing each ensemble expert’s window size by one
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instance.

As we have seen in the pseudo code, the link between the ensemble based on the ordinalized

values and the final correlation result is the ensemble‘s byproduct, the expert’s weights (line 12)

and window sizes. The expert‘s weights describe the optimal distribution of the window size to cope with

the drift. So, when taking the weights we have the optimal window sizes to calculate the final

adaptive correlation on.

Now, we focus on the central step of the ordinalization. This is the major difference between

the classical concept drift and the regime drift handling mechanism.

3.2.1 Ordinalization Step

The ordinalization of a non-ordinal value is a non-trivial problem. To be able to perform this step

we have to invest additional knowledge about the structure of the problem. To reach this goal we

use a large number of ensemble experts having slightly different sliding window sizes. If experts

with similar window sizes show considerable different outcomes, we rate them as non-reliable

and, thus, we make sure they do not influence the overall outcome. Our assumption behind this

approach is:

”If the outcome of the models for slightly varied border conditions remains similar, the outcome

is more robust and thus, considered to be more reliable than if small changes of the border

conditions cause large changes in the outcome”.

This statement can be interpreted as an application of the Lyapunov stability [Lyapunov, 1992]

known from chaos theory.

Our ordinalization implementation is explained in Figure 3.4. The topmost surface plot shows

all possible Pearson correlations on the “Stagger” data set (for the first feature; the “Stagger”

dataset has been introduced in Section 2.2.4, p. 23). The axis of abscissa stands for the time steps

and the axis of ordinates stands for the sliding window size for the correlation calculation. Here,

the dataset consists of 120 time steps. We calculate a set of correlations for every time step so that

we have the same number of window-sizes (up to 120 instances). Obviously, the upper left corner

does not contain any correlation values, since the windows cannot exceed the underlying data

range. The color reflects the correlation value which can be read out from the color bar on the

right of the plot. On the surface plot we can identify three different regimes. The first region is

of a medium negative correlation (blue color), followed by a medium positive region (red color),

and at the end a low negative correlation region (between blue to green color).

The triangle shapes in this surface plot are eye-catching. We have observed that triangle-like

structures typically occur in this kind of problem. There is a reason for this kind of shape. The left

diagonal border is caused by the window size of the experts and the history of data they contain.

As an example the upper left region of the figure does not have any values, because the window
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Figure 3.4: Illustration of the ordinalization of the correlation measure

sizes would be larger than the available data history. The triangle’s border on the right is due

to the impact of a new instance to the ensemble’s expert model. If the latest instances are not

consistent with the current model, the output value changes. Changes of larger window-sized

experts are delayed because the older instances dominate. Smaller window-sized experts already

start to recover after a few time steps and form a new triangle shape. This behavior can also be
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observed for continuous drifts, where the triangle borders are smoother.

To create our ordinalization function we exploit this “triangle effect” in Figure 3.4. We ex-

plain the conversion using the correlation value at time step t = 100 with a window size ν of 40

instances. As shown in the middle rows of Figure 3.4, we take all possible triangles having the

same top vertex at the example point and calculate the standard deviation std for all values in

each triangle. Their sum results in a single value ξt=100,ν=40. ξt=100,ν=40 that represents our new

ordinal value (see lowest surface plot2 in Figure 3.4). When performing the ensemble-based con-

cept drift handling we take this ordinal measure as the experts’ selection criterion. In particular,

the ordinal value at time step t = 100 with a window size of 40 instances is the criterion at time

t = 100 for the expert of length 40.

The ordinalization function has been designed in this manner for the following reasons:

1. The standard deviation is the implementation of the stability criterion (where 0 corresponds

to the most stable region).

2. The triangle-shaped data ranges exploit the “triangle effect” which typically occurs in con-

cept drift problems.

3. The consideration of all the triangles in the formula emphasizes the region next to the expert

of interest without neglecting the experts having a smaller history.

4. We use the sum-function (and not, e.g., the average) because we want to remember all

“bumps”.

Due to the sum-function the ordinalized values can theoretically grow without limit when the

std values are non-zero. Thus, the model collapses its window size when the accumulated values

exceed the acceptable ensemble expert limit in Table 3.1. In all of our experiments we have not

been faced to this effect.

2For illustration purposes, the ξ values in surface plot have been normalized such the largest value is 1.
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3.3 Results

After discussing the implementation approach I we assess it on the three different datasets. These

three datasets have been presented in Section “Datasets for Concept Drift Assessment”, p. 22.

3.3.1 Performance on the Stagger Dataset

Figure 3.5 summarizes the results of approach I on the “Stagger” data set. The “Stagger” dataset

is the standard benchmark used in the concept drift community. It’s subjected to two abrupt

concept drifts.
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Figure 3.5: Adaptive correlations on the “Stagger” dataset for different correlation functions (Approach I)3. δ2 is the
average deviation from the perfect reference curves.

.

The left side of Figure 3.5 illustrates the results for the Pearson correlation and the right side

the results of the five wrapper-based correlations4.

The upper three plots on the left side show the Pearson correlation for each of the three features

of the dataset. The dash-dot line corresponds to the perfect Pearson correlation according to the

underlying data generating concept. The dotted line shows the Pearson correlation calculated

3The δ2-scales are different, because we focus only on the relative comparison between the adaptive and non-adaptive
case.

4The base algorithms are Naı̈ve Bayes, k-nearest neighbor (KNN), support vector machine (SVM), and two versions
of a decision tree (DT). DT25 stands for a decision tree with a confidence level setting of 25, which is the default level for
C4.5 decision tree pruning. DT0 stands for a confidence level of 0, which stands for “no pruning”.
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without any forgetting mechanism. Finally, the solid line shows the adaptive Pearson correlation

calculated with approach I. There is a clear difference between the adaptive and the non-adaptive

curves. The adaptive curves approach the reference curves over a short period in contrast to the

non-adaptive curves.

The lowest plot on the left side summarizes the results of the three plots above. It shows

the deviation of the adaptive and non-adaptive Pearson correlation from the perfect reference

correlation. The δ2 value is calculated by taking the squared difference between the predicted

and the reference curve followed by averaging the differences over all three features. These two

δ2-curves allow drawing the same conclusions as from the three single plots above.

The plots on the right show the differences δ2 for all five wrapper-based correlation algo-

rithms. The support vector machine (SVM) and Naı̈ve Bayes based algorithms show high adap-

tivity with our method. The k-nearest neighbor KNN based algorithm shows a bit weaker adap-

tivity and both decision tree based algorithms exhibit a poor performance. The reason for the poor

performance of the latter two is the decision tree algorithm’s performance on the rules defining

the “Stagger” dataset. Decision trees usually have difficulties in predict target concepts which

contains the “∨” operator like in the rule “size = medium ∨ size = large”. For a small number

of training examples the tree model is insufficient and therefore, our algorithm does not allow

keeping those unstable ensemble experts. The non-adaptive algorithm happens to have a smaller

δ2 value because it is such inert that it remains about at the same correlation which happens to be

closer to the reference.

3.3.2 Performance on the Plane Intersects Sphere Dataset

Figure 3.6 shows the results of the approach I applied on the “plane intersects sphere” dataset.

The Figure has the same layout as the Figure presented in the “Stagger” assessment. Because

of the large size of this dataset we limited the maximal window size of the ensemble experts to

250 time steps. Therefore, the algorithm “without forgetting”5 needs 250 time steps to recover.

Here, the decision tree based wrapper correlation performs much better as on the “Stagger”

dataset. All other algorithms also show high adaptivity. Sometimes our approach seems to be too

aggressive as the spikes in the plots indicate. First of all, the adaptive Pearson correlation for the

third feature shows some distinct peaks where no peaks should appear. The curves for the other

two features look fine.

3.3.3 Performance on the Meteorology Dataset

The meteorology dataset spans two years and contains two meteorological measurements, the

“relative humidity” and the “global solar radiation”. Figure 3.7 shows the adaptive and non-

5“Without forgetting” is a widely used term. Here a “limited forgetting” would be more precise.
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Figure 3.6: Adaptive correlations on the “plane through sphere” dataset for different functions (Approach I).

adaptive Pearson correlation between these two variables. We can identify regions in the second

half of each year where the adaptive correlation differs from the non-adaptive correlation demon-

strating the presence of different concepts.
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Figure 3.7: Adaptive Pearson correlation for Approach I on the meteorology dataset.

Figure 3.8 shows the ensemble weights for the non-adaptive and adaptive case. The two and

three-dimensional plots on the top (a) display both the non-adaptive ensemble expert weights.

The x-axis on the two-dimensional plot is the time in years. The y-axis is the memory length

(window size) of each expert. The weights are exactly on the diagonal because at every time

step we choose the expert with the maximal window size. While performing the calculation this

stands for keeping one single expert from the beginning whose window size grows with the time

steps. The coloring matches the color bar on the right. The three-dimensional plot shows exactly
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the same, but the weight values are also depicted on the z-axis.

The lower plots (b) show the weights for the ensemble experts chosen by approach I. There are

three reconsideration phases where the expert’s memory collapses and starts to increase again.

a)

b)

Figure 3.8: Experts weights for the meteorology dataset: a) without forgetting and b) adaptive case
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3.4 Discussion

The assessment above demonstrates that approach I is able to react on concept drifts and to deter-

mine the time-varying correlations. Rarely, the method is too aggressive resulting in unwanted

signal peaks as seen by the third feature in the “plane intersects sphere” dataset. The next sec-

tions are about other properties of approach I. All these outcomes will have influence on the

overall comparison between the two approaches (I and II) in Section 5.

3.4.1 Computational Complexity

The computational complexity of this approach is considerably higher than for classical concept

drift approaches. On the one hand we have to compute much more fine-grained expert variations

and on the other hand we have the extra-step of ordinalization. That is the price we have to pay

to outweigh the less information we get from the non-ordinal input values compared to classical

ensemble selection methods.

The ordinalization costs are much higher than the variation costs. The computation time in-

creases with the order of magnitude “timesteps · Experts4” as Figure 3.9 shows. In this example

we logged the computation time during the calculation on the meteorology dataset (performed

on a 3 GHz Pentium 4 machine with 1 GByte RAM). A new ensemble expert is added every time

step, i.e. for each time step the maximal number of experts could reach the number of time steps

elapsed. The complexity measurement has been performed by calculating all possible experts so

this measurement represents the upper limit for this operation.
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Figure 3.9: Computational complexity for ap-
proach I.
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Figure 3.10: Computational complexity for
the std calculation on the triangles.

The complexity of the ordinalization step is calculated as follows. The factor “timesteps” orig-

inates from the ensemble reconsideration done at each time step. If the reconsideration has a

period larger than 1, then the factor is “timesteps/period” which is still an order of magnitude of

“timesteps”. The first “Experts” factor is the number of experts at each time step for which the

ordinalization has to be calculated. The remaining factor “Experts3” originates from the std com-
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putation on the triangles. Figure 3.10 shows this std-computation behavior on the raw correlation

values5. The x-axis depicts the number of experts. For each added expert the number of triangles

is increased by another larger triangle as seen at the ordinalization function description in Figure

3.10. The quantity of values contained in the triangle increases quadratically. The y-axis shows

the corresponding computation time. As stated above the computation time is of O(timesteps3).

In both Figures the trend line fit f(x) is excellent with an R-squared value6 of R2 = 0.999999 for

Fig. 3.9 and R2 = 0.99997 for Fig.3.10, respectively.

This behavior results in a computation time of almost 15 days for the meteorology dataset (731

time steps). If applied to the financial dataset with 6824 time steps the computation would take

2925 years.

There are alternatives to cut the computational complexity. One approach is to remodel the

algorithm to an incremental version. Other approaches are e.g. limiting their maximal window

size. Limiting the window size is limiting the expert’s memory, like we did for the “plane inter-

sects sphere” example. Other alternatives are more coarse-grained calculations or more efficient

deviation detection algorithms than the one shown in this section. But this is beyond the scope of

this work, since it requires more sophisticated methods i.e. topographic matching.

Nevertheless, we have to invest computational power in order to outweigh the lack of infor-

mation provided from the non-ordinal correlation values compared to the information provided

from ordinal measures.

3.4.2 Other Properties

Approach I exhibits a strong generalization properties such it can be applied to any problem, e.g.

clustering, subjected to concept drifts whenever there is a ordinal or non-ordinal measure present.

In Appendix A.3 on page 103 we show how this approach performs on a classification task

compared to well-known benchmarks. The outcome is of comparable performance, even though

this approach does not make any use of the ordinal nature of accuracies. Hence, we can estimate

that approach I is good at handling concept drifts in any field.

Appendix A.5 shows the mean δ2 for the two datasets “Stagger” and “plane intersects sphere”

depending on different noise levels from 0% to 100%. The result is a continuous loss of predictive

6 R-squared value: An indicator from 0 to 1 that reveals how closely the estimated values for the trend line correspond
to your actual data. A trend line is most reliable when its R-squared value is at or near 1. The R-squared value is also
known as the coefficient of determination.

R2 = 1 −
SSE

SST
, where Total Sums of Squares SST =

P
i
(Yi − bYi)2

Error Sum of Squares SSE = (
P

i
Y 2

i
) − 1

n
(
P

i
Yi)2

Yi are the measured valuesbYi are the values of the trend line

n is the number of data points to compare.
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performance. The absence of an abrupt loss suggests a stable behavior under noise.

There exist some concept drift algorithms in literature that are able to store and remember

past concepts [Widmer and Kubat, 1993]. Our approach as it is throws away previous experience

without re-use. Any approach could be expanded in this direction by saving a concept library

that is checked every time a new concept occurs, but this is beyond the scope of this work.



4
Approach II: Feature Ranking
under Concept Drift

In this Chapter we present the second approach to bring the two fields feature ranking and concept

drift together. In approach I we started from the correlations and detected the drifts on them. In

contrast to approach I, in this approach we first start with the concept drift detection. Then, based

on the knowledge about the drifts we apply the correlation determination methods. We name

this approach “approach II”.

4.1 Method Overview

Our second approach interprets the regime drift problem as a concept drift problem. From this

point of view the task is to first detect the drift and then, the subsequent determination of the

regime. We name the first part the “indicator” and the second part “executor”.

The indicator can be one of the manifold concept drift handling algorithms as seen in Section

2.2. The choice of the indicator depends on the problem domain. The executor is one of the

correlation determination methods presented in 2.1.4.

There are two fundamental questions when applying approach II. First, we need to decide

how to combine the indicator and the executor so that the executor follows the indicator when

facing a drift. The next Section shows an exemplary implementation of such a combination. The

second fundamental question concerns the interaction between the indicator and the executor.

On the one hand the indicator might not be able to model concepts which are relevant to the

executor. On the other hand we are faced with dynamic effects. The indicator might be too fast or

too lazy compared to the executor which is not able to catch up with the drift or drops valuable

information too early. This research question is addressed at the end of the next section.
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4.2 Method Formalization and Implementation

In this section we present an exemplary implementation of approach II. This implementation is

of general nature so it can be extended with other indicators and executors. The only restriction

is the approach of combining the indicator with the executor. For the combination we assume

that the indicator’s concept drift handling mechanism uses window-based forgetting (see Figure

2.3). Then, we pass the information about the windows to the executor. The executor determines

the correlation on these windows and the correlation should exhibit the same adaptivity as the

indicator. In Figure 4.1 illustrates the regime determination process under drifting concepts.

Data


Classifier

Ensemble


Method


Quality


Measure


Ensemble


Correlation


Ensemble


Weights


Correlation


Indicator


Executor


Figure 4.1: Process of calculating adaptive correlations using an external concept drift indicator

In this illustration we identify the concept drifts in a data stream by a classification (or re-

gression) based ensemble algorithm. Therefore, we interpret the two variables1 of interest as a

prediction task dataset. One variable is taken as target, the other as input feature. In our study,

we apply the concept drift detection ensemble algorithm Dynamic Weighted Majority DWM on

the data stream. As byproduct we obtain the assigned ensemble expert weights from the algo-

rithm. These weights stand for the preferred experts, i.e. for the appropriate window sizes for

this kind of problem. The next step is to calculate the correlations on the same window sizes as

they have been selected before by the DWM.

The pseudo-code in Table 4.1 shows the algorithm in detail. On line 3 in the left column we

start with an ensemble without experts, i.e. only a random model. We proceed with the outer for

loop starting on line 4. This loop stands for the instances appearing one after another. Then, we

turn to the indicator part. From the CalcEnsemblemethod we obtain all ensemble experts from

which we get each window size ν (line 7) and weight w (line 8). The CalcEnsemble method

is listed on the right and is the DWM algorithm (Appendix A.2). After having determined the

window sizes we calculate all correlations on each window (line 11). Then, we normalize the

experts’ weights in order to calculate the overall correlation R on line 14. R is the average of all

correlations rj with respect to the weights of the windows. Hence, the overall correlation should

have the same adaptive properties as the indicator. On line 15 the value R is returned as result.

1We assume one-to-one relationships as mentioned in the problem definition section.
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{x, y}n1 : training data, feature x and target y
1, ..., n: numbering of instances, sorted by occurrence
β : factor for decreasing weights, 0 ≤ β ≺ 1
c ∈ N

∗: number of classes
{e}m1 : set of experts, their weights w, and their number of instances

in their sliding windows ν
Λ, λ: global and local predictions
~σ ∈ R

c: sum of weighted predictions for each class
θ: threshold for deleting experts
R, r: global and local correlation values

1 Approach II
2 e = ∅
3 for i = 1, ..., n // Loop through time steps

4 // Indicator part for concept drift identification

5 e← CalcEnsemble (e, xi, yi) // Calculate all experts

6 w ← GetWeights(e) // Get weights from experts

7 ν ← GetWindowSizes(e) // Get windows from experts

8 // Executor part for regime determination

9 for j = 1, ..., m // Loop through experts

10 rj ← Corr({x}ii−νj+1, {y}
i
i−νj+1) // Correlation on each window

11 end;

12 w ← NormalizeWeights(w) //
∑

j wj = 1

13 R =
∑

j wj · rj // Calc overall correlation

14 output R // Return overall correlation

15 end;

16 end.

1 CalcEnsemble (e, xi, yi) // CalcEnsemble method used in Approach II

2 ~σ ← 0 // Set initial weight to 0
3 for j = 1, ..., m // Loop through experts

4 λ = Predict (ej , ~xi) // Expert predictions

5 if (λ 6= yi) // Lower weights, if

6 wj ← βwj // local prediction is false

7 σλ ← σλ + wj // Increase predicted class weights

8 end;

9 Λ = argmaxλ σλ // Choose dominant class prediction

10 w ← NormalizeWeights(w) //
∑

j wj = 1

11 {e, w} ← DeleteExperts(e, w, θ) // Delete experts below θ
12 if(Λ 6= yi)
13 m← m + 1 // Create new expert, if

14 em ← CreateNewExpert() // ensemble prediction is false

15 wm ← 1 // Assign weight to new expert

16 end;

17 for j = 1, ..., m // Loop through experts

18 ej ← Train(ej , ~xi) // Include latest instance in model

19 output {e, w} // Return set of experts

20 end.

Table 4.1: Pseudo-code for approach II and the example DWM algorithm as concept drift indicator.
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The crucial question when applying this approach is: what happens if the indicator has a

different adaptivity than needed by the executor? For example, the indicator is too adaptive for

the executor and the resulting correlation is not yet stable. This has been one reason for approach

I, where we argued with Ockham’s razor and thus, used the same basic values as indicator and

executor.

Hence, the fundamental question behind this approach is whether a concept drift indicator

based on a different algorithm is able to take the suitable actions to cope with the changing

regime. We empirically investigated this on the two synthetic datasets both for a classification

and a regime drift problem in Appendix A.4.2 on page 106. The results show that this application

of different indicators and executors in approach II is reasonable and thus, we can proceed.
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4.3 Results

In this section we assess the approach II in the same way as we did for approach I. But first, we

need to define the indicator/executor mapping applied in the following calculations2. To combine

similar indicating and executing algorithms we defined the following mapping in Table 4.2.

Indicator −→ Executor

Naı̈ve Bayes classifier −→ Naı̈ve Bayes based wrapper method
KNN classifier −→ KNN based wrapper method
SVM Classifier −→ SVM based wrapper method
Decision Tree classifier −→ Decision Tree based wrapper method
Linear regression −→ Pearson correlation

Table 4.2: Mapping of the indicating and executing algorithms (Approach II)

The reason for combining the linear regression and the Pearson correlation is their close rela-

tion. The Pearson correlation stands for the linear relationship between two variables (see page

13). Naturally, we mapped the decision trees with different confidence levels3 to the correspond-

ing wrapper methods.

4.3.1 Performance on the Stagger Dataset

The results of this approach on the “Stagger” dataset are about the same as the results seen for

approach I (see Figure 4.2, p. 50). The most distinct difference is the decision tree based regime

determination. In this case the correlation shows a high deviance right after the second drift like

seen in approach I, but in contrast to approach I it is able to recover and tends to the correct

correlation values. The cause of this behavior is the indicator DWM algorithm on the decision

tree classifier which is more tolerant to unstable models than the DWM algorithm based on the

ordinal measure. So, the DWM algorithm keeps some ensemble experts with low weights and

allows them to recover when the expert predictions improve with larger window sizes.

4.3.2 Performance on the Plane Intersects Sphere Dataset

Figure 4.3 illustrates the results of approach II on the “plane through sphere” dataset. The adap-

tive Pearson correlations are performing very well for all three features in contrast to the approach

I where the third feature was not properly represented (see Figure 4.3, p. 50). The performance

of the adaptive wrapper-based correlation values is affected by the aggressive nature of the algo-

rithm during the drifts resulting in high adaptivity, but also in numerous spikes. The number of

2See Section A.4 for all mapping combinations and outcomes.
3The confidence level is the threshold for decision tree pruning, see Section A.4.
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spikes in the drifting regions is higher than seen at approach I. The conclusion is that the overall

performance is about the same for both approaches.
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Figure 4.2: Adaptive correlations on the “Stagger” dataset for different correlation functions (Approach II).
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Figure 4.3: Adaptive correlations on the “plane through sphere” dataset for different functions (Approach II).
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4.3.3 Performance on the Meteorology Dataset

Figure 4.4 shows the adaptive and non-adaptive Pearson correlation curves of Approach II on the

meteorology dataset. There are two regions where the adaptive Pearson correlation differs from

the non-adaptive curve. These regions span a period between summer and fall for both years.

The calculation using approach I in Figure 4.5 shows a similar curve with two differences 4.

First, the reaction time is faster for approach II. Second, for the last season of the second year the

correlations are different. Looking at the overall shape of the curve and knowing the periodic

concept behind the dataset suggests preferring the approach II solution.
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Figure 4.4: Adaptive Pearson correlation for Approach II on the meteorology dataset.

0 1 2
−1

−0.5

0

0.5

1

Time [Years]

Without Forgetting

Our Approach

Figure 4.5: Adaptive Pearson correlation for Approach I on the meteorology dataset. (Repeated illustration to ease
the comparison.)

Figure 4.6 and Figure 3.8 allow the comparison of the weights of approach II and approach

I. The weight plots of approach II in Figure 4.6 provide deep insight in the meteorology dataset.

The division into the seasonal changes can be recognized at first sight. The most striking facts are

the two alternating regimes. The first regime almost vanishes during the other regime’s period

followed by recovery until the next regime rises.

4We repeated the illustration of Figure 4.5 to simplify the comparison.
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a)

b)

Figure 4.6: Experts weights for the meteorology dataset: a) without forgetting and b) adaptive case
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4.4 Discussion

4.4.1 Review of the Results

The assessment of approach II on the three datasets above shows that this approach is suitable to

cope with the regime drift problem. It is even able to handle the difficult situation of the decision

trees on the stagger dataset. The adaptive Pearson correlation in the meteorology dataset reveals

the seasonal changes behind the data. In contrast to those striking aspects the approach lacks

some robustness for the wrapper-based correlations on the “plane intersects sphere” datasets (see

5.1 in the overall discussion, p. 56).

4.4.2 Computational Complexity

The computational complexity for the indicator consists of the computation of the base-algorithm

and the DWM ensemble method. The DWM algorithm’s computational costs can be neglected

compared to the cost of building the expert models. Also the executing correlation determination

step only depends on the computation costs of the chosen algorithm’s properties.

4.4.3 Other Properties

We also assessed this approach on the two synthetic datasets under the influence of different noise

levels up to 100%. The result is a continuous loss of predictive performance (see Appendix A.5).

The behavior is similar to the behavior of approach I with the difference of better performance for

the decision tree based algorithms on the “Stagger” dataset.

On the special prerequisite for the application of this approach is a dataset which we can

express as a classification or regression problem.

Figure 4.6 shows that past concept models have been re-activated, but we do not intentionally

store a collection of past concept descriptions.





5
Comparing Approach I with
Approach II

In this chapter we compare the two approaches presented in the last two Chapters. Then we pick

the most suitable one for the finance domain.

The comparison is conducted with respect to the following criteria. The most important is the

performance in terms of adaptivity and robustness. This criterion ensures the high precision of

the results. The next criterion is the computational complexity. After that, we have a look at other

factors which may have some influence on the decision.

5.1 Criterion 1: Adaptivity and Robustness

The central criteria in the problem definition are adaptivity and robustness. Adaptivity is the abil-

ity to cope with new situations in short time. Robustness is insensitivity towards noise. Adaptiv-

ity and robustness are typical trade-off antagonists. Here, we look for the approach handling this

trade-off best.

First, we have a look at synthetic dataset assessment. Table 5.1 shows the averaged deviations

of both approaches from the perfect benchmark avg(δ2) for both synthetic datasets. The lower the

deviation, the better the approach. The light gray background denotes the better value.

On the “Stagger” dataset both approaches (compare Figure 3.5, p.38 and 4.2, p.50) perform

similar – except for the decision tree wrapper based correlation where approach I is not able

to recover like approach II. Table 5.1 shows that approach II is slightly superior to approach I,

especially for the decision tree based wrapper correlations.

On the “plane intersects sphere” dataset both approaches exhibit advantages and disadvan-

tages. Approach I is performing better than approach II for the wrapper-based correlation com-

putations (see Table 5.1). On the other hand (at the Pearson correlation) approach I shows too
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aggressive adaptivity when applied on the irrelevant third attribute (see Figure 3.6, p.50). This

also affects the average deviation in Table 5.1.

The behavior of approach II is complementary to the behavior of approach I. Approach II is

more robust when dealing with the third feature in the Pearson case, but is too adaptive when

applied to the wrapper-based correlations. This is a typical example of the adaptivity / robustness

trade-off. Whenever we aim at high adaptivity there is a limit where robustness begins to suffer.

Hence, we classify the behavior of both approaches as similar. The behavior under noise influence

is also similar for both approaches (see Appendix A.5, p.109).

Dataset Correlation-Measure
Approach I Approach II

avg(δ2) avg(δ2)

“S
T

A
G

G
E

R
” Pearson 0.0227 0.0197

Wrapper (NB) 0.0042 0.0027
Wrapper (KNN) 0.0074 0.0061
Wrapper (SVM) 0.0047 0.0040
Wrapper (DT0) 0.0495 0.0230
Wrapper (DT25) 0.0398 0.0161

P
la

n
e

th
ro

u
g

h
sp

h
er

e

Pearson 0.0736 0.0535
Wrapper (NB) 0.0053 0.0076
Wrapper (KNN) 0.0031 0.0098
Wrapper (SVM) 0.0065 0.0144
Wrapper (DT0) 0.0036 0.0126
Wrapper (DT25) 0.0041 0.0078

Table 5.1: Comparison of both approaches by the average δ2.

Second, we look at the meteorology dataset. Both approaches are able to identfy the seasonal

drift. The adaptive Pearson correlation looks more accurate when generated by approach II. It

nicely reflects the concept cycle for all seasons and reacts faster on the changes (higher adaptivity).

Our conclusion is that the overall performance of the two approaches is comparable, but with

an advantage for approach II.

5.2 Criterion 2: Computational Complexity

Computational complexity is important since the target finance application data spans a range of

decades and there are almost one hundred variables to examine. Even though an update period of

one day is sufficient, the computational complexity can be a limiting factor. Since both approaches

base on the same algorithms and the same ensemble selection method the major difference in

terms of computational complexity is the ordinalization step in approach I. The computational

costs are very high for this step as explained in detail in Section 3.4.1 on page 42. Therefore,

approach II is preferable from this point of view.
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5.3 Decision

Based on the slightly better outcome of criterion 1 and the advantage on computational complex-

ity we decide to go on with approach II and apply it on the finance data in the next chapter.

The generalization property of approach I to other data mining fields is not a deciding factor

for application on the finance domain.





6
Application on Finance Data

In this Chapter we apply our research results to a real-world problem. The real-world problem is

the exchange rate regime drift visualization task which has been the motivation for our research

in this field. For the calculations we decided to apply approach II based on the outcome of the

comparison chapter before.

In particular, we use a concept drift indicator based on the Dynamic Weighted Majority DWM

ensemble. In our case the underlying algorithm of the DWM is the linear regression. We have

chosen linear regression because of the continuous value range when dealing with most finance

variables. The correlation determination is performed by the Pearson correlation (executor). The

Pearson correlation is suitable for use in combination with a linear regression indicator since both

are linear methods. Even more, the Pearson correlation is fast in computation and widely used.

The structure of this chapter is the following. First we provide an overview on all finance

variables used in our application. Then, we explain the presentation of the results which are

presented in the subsequent sections. For purposes of clarity, the presentation of the results is

accompanied by a short definition of the variables. At the end we close with a recapitulation and

discussion of the results.

6.1 Dataset

We investigated 77 variables (features) with respect to the foreign exchange rate between Swiss

franc and the dollar (FX CHF/USD). We have chosen the Swiss franc as target on request of the

finance experts.

All raw data presented in this section are available at Bloomberg and/or the Swiss National

Bank SNB. We categorized the variables into three groups as the listing in Table 6.1 below shows:
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Market-specific variables

• Foreign Exchange (spot) (p. 65)

• Currency Swap (p. 67)

• Commodities (p. 68)

• Forward Foreign Exchange Rate (p. 66)

• Key Interest Rates (p. 69)

• LIBOR (p. 70)

• Treasury Bonds (p. 71)

• Forward Rate Agreements (p. 73)

• Futures Short-Term Interest (p. 74)

• Stock Exchange (p. 75)

Macro-economic variables

• Gross Domestic Product (p. 77)

• Money Supply (p. 79)

• Consumer Price Index (p. 81)

• Producer Price Index (p. 81)

• Industrial Production Index (p. 83)

• Purchasing Managers Index (p. 84)

• Unemployment Rate (p. 85)

• Wages (p. 86)

Soft Factors

• Consumer Confidence Index (p. 87)

Table 6.1: Overview on the finance data.

Without loss of generality, we limited our study on the economic regions United States of

America (US), European Union (EU), and Switzerland (CH). These three regions are of high in-

terest for the Swiss market. Furthermore, the data is available and widely used.

The dataset spans a time range from January 2nd, 1980 to February 28th, 2006. Even though

some of the variables (macro-economic variables from the US) have been available for more than

eighty years, this time range has been chosen to best fit the average time range of all variables of

interest.

The dataset consists of 6824 instances each representing a working day. Weekends and high

days are not included. Non-daily variables, such as quarterly published variables, are trans-

formed into daily variables by repetition of the last known value1. Besides this, the data is not

preprocessed at all. Even outliers have not been corrected to keep the real-world data setup.

1Some variables such as the GDP are sometimes published with a delay, re-estimated and revised, but without any
change history. So, we were not always able to retrace the momentary knowledge at publication time.
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6.2 Presentation of the Results

To assist finance experts we provide an interpretation instruction together with some background

information about the origin of the presented curves. Therefore, the results are always illustrated

in the same way in a figure block as shown in Figure 6.1.

The figure block contains five sub figures. The three sub figures on the right side contain the

two variables to compare and the resulting curve reflecting the comparison in terms of correlation.

The two sub figures on the left provide some background information about the problem. These

two plots might give some more insight to finance experts - more than one single result curve can

do.

Figure 6.1: Interpretation instruction.
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In Figure 6.1 the five sub figures are marked by text arrows. All of these sub figures are

explained in detail below:

• Reference Curve

The sub figure in the upper right corner shows the curve of the Foreign Exchange CHF/USD

which is the reference for all of our calculations. Therefore, this sub plot stays the same for

all of the following figure blocks.

• Target Curve.

The target curve is the curve of interest and sketched below the reference curve. The abscissa

spans the same time range as the reference curve (1980-2006). Sometimes not all data is

available. Then, we plotted the missing values as zero-values, but the time-range remains

the same.

• Surface Plot

The surface plot in the left upper corner shows all possible Pearson correlations between

the reference curve and the target curve for all time steps and for all possible experts’ win-

dow size lengths. On the axis of abscissa the full time range is depicted and on the axis of

ordinates the experts’ window sizes. For example, the point at year 1995 with a length of

5 years corresponds to the Pearson correlation value calculated on a window of the range

from 1990 until 1995. In the Figure the Pearson correlation value for this point is about 0.2

which can be derived by matching the point’s color with the values on the color bar on the

right.

The topology in the correlation surface plot reveals the deeper relations between the two

explored curves. So, we see how stable the correlations are, where changes occur, and where

patterns re-emerge. In this example we see that a strong negative correlation dominates the

most of the surface plot. The exceptions are the first 7.5 years of the nineties where the

negative correlation switches sporadically to a positive correlation.

• Expert Weights

The sub plot on the lower left corner illustrates the expert weights calculated by the dynamic-

weighted-majority DWM ensemble algorithm. In the Sections 3.3.3 and 4.3.3 we discussed

this kind of plots for the meteorology dataset. In short, the layout is the same as seen in

the surface plot above, with the difference of having expert weights instead of Pearson cor-

relations. The points of non-zero weights show the experts in power and which Pearson

correlation values have to be considered from the surface plot above in order to calculate

the adaptive Pearson correlation.

• Pearson Correlation Curves

The sub plot in the lower right corner shows the Pearson correlation between the reference

and the target curve.
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The solid line is the final outcome of our work: the adaptive Pearson correlation. This curve

has been calculated by selecting the most suitable (according to the expert weights) Pearson

correlations from the surface plot. This curve is expected to reflect the correct correlation at

each time step.

The dotted line shows the Pearson correlation based on all available data since the beginning

of both curves. So, all past data is incorporated and we call this “Pearson correlation without

forgetting”. The purpose of this curve is to demonstrate the advantage of the adaptive over

the non-adaptive Pearson correlation curve.

Keep in mind the time range is 26 years. So, narrow peaks in our graph correspond to

larger periods. For example see the magnification in Figure 6.1 (the lowest plot). On the

larger scale the two original narrow peaks turn out to be separated by about one year and

are of a duration of almost a half year. So, this is considered as a real signal and not as an

outlier. Of course, the finance experts get reports with higher resolution.

Pay attention to the fact that we are dealing with correlations which do not imply causality

(see Section “Causality”, p. 16)!

For the current calculations we used an update period for the DWM model of 5 days, i.e. about

one week. This cycle turned out to be sufficient regarding the order of magnitude of the changes

we are faced with. For even more fine-grained investigations shorter periods are feasible without

limitations.

The illustration in Figure 6.1 provides valuable information for finance experts. But a static

figure has it’s limitations in the illustration of the dynamics of such a system. Dynamics are very

important for the interpretation and intuitive comprehension since our problem is a temporal data

mining problem subjected to fundamental time-dependent changes. Therefore, we provide an

animated version of the illustration. The animated illustrations can be downloaded as movies

under www.regimedrift.com/movies. The two screen shots in Figure 6.2 demonstrate how the

animated illustration looks like. The upper plot is the screen shot of 1990 and the lower plot is the

same, but one year later. The most eye-catching feature is the square covering the two variables of

interest. The right border of the square is the actual time. The horizontal range is the illustration of

the window size in power. As window size range illustration we have chosen to take the window

size of the ensemble expert with the highest weight. Comparing the two screen shots reveals that

the window size of the lower figure collapsed after one year. The adaptive Pearson correlation is

drawn until the actual point of time. In the lower sub figures on the left a red circle shows the

current ensemble expert with the highest weight. In the upper left sub figure a white circle shows

the dominant Pearson correlation chosen by the ensemble expert with the highest weight.
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Figure 6.2: Two screen shots of the animated illustration of the regime calculation. The upper screen shot has been
captured at 1990 and the second screen shot one year later at 1991.
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6.3 Results

Now, it’s time to apply our research on the real-world finance data. Together with the results we

provide a short quote about the meaning of the variable. Each variable examination is conducted

for the three regions of interest.

6.3.1 Foreign Exchange (spot)

As mentioned in the problem definition our main interest is the FX CHF/USD target. Our regions

of interest are the regions with the currencies CHF (Swiss franc), USD (US dollar), and the EUR

(European euro). Therefore, we have to look at the other exchange rates between these three

regions, the FX EUR/USD and the FX CHF/EUR. Spot transactions are transactions in which

currency is exchanged directly.

Figure 6.3: Foreign exchange (spot).

The adaptive Pearson correlation in Figure 6.3 shows a very high correlation between the FX

CHF/USD and the FX EUR/USD. The reason for that behavior is the tight CHF/EUR relationship

which can also be observed in the FX CHF/EUR raw data. The adaptive Pearson correlation

between the FX CHF/USD and the FX CHF/EUR reflects the alternating relation between EUR

and USD.
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6.3.2 Forward Foreign Exchange Rate

Figure 6.4: Forward foreign exchange rate.

Transactions consisting of con-

tracts to exchange one currency to

another at a future date, but ter-

minated now are called forward

transactions. Their exchange rate

is called forward exchange rate.

As Figure 6.4 shows the for-

ward rates are very similar to

the foreign exchange rates and so

are the adaptive Pearson correla-

tions.

This effect is caused by the

following situation. At the time

of contract signing the positions

have to be covered. “Dealers

in forward exchange usually balance

their commitments; for instance, a

contract to deliver forward marks can

be offset against one to deliver for-

ward dollars, and nothing more has

to be done about it. If a particular

dealer cannot manage this he will be

in communication with another who

may be in the opposite position. It

may not, however, always be possi-

ble to offset every transaction. If this

is not done, the dealer must make a

spot purchase of the currency in ex-

cess demand in the forward market.

If he did not do this he would risk an

exchange loss on some of his forward transactions”. [Encyclopædia Britannica, 2007]. Thus, the for-

ward exchange rates reflect the current (spot) exchange rates.
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6.3.3 Currency Swap

Figure 6.5: Currency swap.

A swap is in general a finan-

cial term for a combined or simulta-

neous buying and selling operation

[UBS Dictionary of Banking, 2007].

1. Swaps between central banks:

transactions that are frequently

carried out in connection with

the International Monetary

Fund IMF or the Bank for In-

ternational Settlements BIS to

bridge international liquidity

crises.

2. Capital-market swaps: agree-

ments whereby the two par-

ties undertake to swap pay-

ments over a specified period

on specified dates and at con-

ditions fixed in advance. The

swap contract can either refer

to the exchange of interest pay-

ments (interest-rate swap) or

the exchange of interest pay-

ments and nominal amounts

in different currencies (cur-

rency swaps).

3. Synonym for currency swap.

4. Synonym for debt-equity swaps.

Here we are dealing with currency swaps (bullet item 2) which are according to the Bloomberg

glossary [Bloomberg Financial Glossary, 2000] an agreement to swap a series of specified payment obli-

gations denominated in one currency for a series of specified payment obligations denominated in a different

currency.

The curves in Figure 6.5 show the 3M (three month) swaps for CHF, USD, and EUR. Noticeable

is the increase of the correlation in the late nineties up to a high correlation between the swaps

and the exchange rate CHF/USD.
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6.3.4 Commodities

We limit our study on commodities to the gold, silver and oil price. All three resources are ac-

counted in USD. The oil price is the price of Brent Crude which is sourced from the North Sea.

Whereas silver has not a pronounced correlation to the exchange rate CHF/USD, the gold and

oil price have a high correlation most of the time. The correlations to gold and oil are switch from

strong positive to strong negative. Looking at the decade starting in the early nineties, gold and

oil price are complementary to each other with respect to the reference FX CHF/USD. Then after

2003 both commodities have again a high negative correlation to the FX CHF/USD.

Figure 6.6: Commodities: gold, silver, and oil.
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6.3.5 Interest Rates

Key Interest Rates

Figure 6.7: Key interest rate.

The key interest rate is also

known as key rate, base rate (GB),

and prime rate (USA). The key in-

terest rate is set by a central bank

for central bank funds. The eco-

nomic importance of the key in-

terest rate is its fundamental role

as monetary policy instrument.

This is described by the SNB: “All

regular monetary policy instruments

of the SNB are based on repo transac-

tions. In a repo transaction, the cash

taker sells securities spot to the cash

provider. At the same time the cash

taker enters into an agreement to re-

purchase securities of the same type

and amount from the cash provider

at a later point in time. The cash

taker pays interest (the repo rate) for

the duration of the transaction. From

an economic perspective, a repo is a

secured loan. Regular instruments

are divided into main financing op-

erations and liquidity absorbing op-

erations, fine-tuning operations, as

well as the intra day facility and

the liquidity-shortage financing fa-

cility.”[SNB Glossary, 2007].

Due to the direct correlation of

the key interest rate to the monetary liquidity the correlation to the exchange rates in Figure 6.7 is

high too (except for the time range where no data has been available).
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LIBOR

“The London Interbank Offered Rate (LIBOR) designates the interest rates fixed every business day at

11:00 a.m. (London time) by the British Bankers’ Association. These are the rates at which major banks

are prepared to grant unsecured money market loans to each other. The LIBOR is fixed according to a

clearly defined procedure for different currencies and maturities. The Swiss franc LIBOR corresponds to

the average of the current interest rates of six leading banks.” [SNB Glossary, 2007].

The LIBOR development in Figure 6.8 is parallel to the development of the key interest rates

discussed above. Therefore, the adaptive Pearson correlation curves look the same as above.

Figure 6.8: LIBOR.
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Treasury Bonds

Figure 6.9: Treasury bonds.

Figure 6.9 shows the Federal

bond (CH), Treasury securities

(US), and the euro-denominated

bond curves, where the Trea-

sury bond of Germany has been

taken as representative for the

EU. For all these bonds the state-

ment of the SNB is true: “A Fed-

eral bond is a fixed-interest debt cer-

tificate (bond issue) of the Swiss Con-

federation employed by the Confed-

eration for medium-and long-term

borrowing in the capital market.”

[SNB Glossary, 2007]

The UBS Dictionary of Bank-

ing provides more information

about Treasury securities. “U.S.

Treasury securities are debt obliga-

tions of the U.S. government and, as

such, are backed by the ”full faith and

credit” of the U.S. government. Con-

sidered the safest of all investments,

they are viewed as having virtually

no credit risk. As a result of this

safety, treasuries generally offer the

lowest rates of all widely traded debt

in the domestic market. The U.S.

Treasury market is the most liquid

debt market in the world, offering the

most efficient trading and pricing. Treasuries are exempt from state and local taxes and are issued as:

• Bills: Issued in maturities of no more than 6 months. Sold at discounts to their value at maturity

(i.e., par amount).

• Notes: Typically issued in 2, 3, 5 and 10 year maturities. Interest paid semi-annually.

• Bonds: Issued in maturities from 10 to 30 years and interest is paid semi-annually.

• Zeros: Represent ownership of a future interest payment on a Treasury note or bond...”
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The maturities for our three variables under observation are 10 years. The bond curves of all

three regions do not differentiate much at first sight. But looking at the Pearson surface plots and

the resulting adaptive Pearson correlation reveals some differences – specially, between the US

and the two European regions. The adaptive Pearson correlation is very spiky for the US treasure

securities. The correlation for the Federal and the euro-denominated bonds are smoother.

The second bond futures (Fig. 6.10) are plotted in units “100 − value”. Therefore, they look

mirrored to the corresponding Treasury bonds (Fig. 6.9). Except for the mirroring, the second

bond future curves are parallel to the Treasury bond curves and so are the adaptive Pearson

correlations.

Figure 6.10: Future bonds 2nd.
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Forward Rate Agreements

[UBS Dictionary of Banking, 2007] defines the forward rate agreement (FRA) as follows. A FRA is

a forward transaction between banks and industrial firms whereby the two parties agree on an interest rate

for a future period and no initial margin payment is required at the time the contract is concluded. Unlike

financial futures, FRAs are not standardized and are not traded on interbank markets. They are used to

hedge the risk of a change in interest rates by locking in the current interest rate for future payments.

In the first column of Figure 6.11 shows the 3x6 forward rate agreements and the second col-

umn shows the 3x9 FRAs for the three currencies CHF, USD, and EUR. The designation 3x9 stands

for hedging of the interest rate under a contract that begins in three month’s time and remains in

force for another six months (nine months after issue).

The adaptive Pearson correlations show that there is no significant difference between the 3x6

and the 3x9 FRAs. The CHF FRAs show a higher correlation to the exchange rate CHF/USD than

the USD and EUR FRAs. The peak in the USD 3x9 FRA is an outlier. If eliminated, the curve looks

the same as the USD 3x6 FRA curve.

Figure 6.11: Forward rate agreements.
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As in real-world applications we use unprocessed real-world data for our survey. Neverthe-

less, our algorithm demonstrates its robustness towards such disturbing factors on the USD 3x9

FRA variable.

Futures Short-Term Interest

Figure 6.12 shows the futures of the short-term interests. The short-term interests are issued by

banks. The short-term interest description “3M 1st Generic” for example is defined as follows.

“3M” stands for a maturity of 3 months and “generic” stands for the continuous illustration by

taking the next future contract after expiration of the preceding future. “1st” stands for the futures

expiring as next and “2nd” for the futures expiring after the next one, thus, more distant.

There is almost no difference between the “1st” and the “2nd” future correlation curves, except

a slight difference between “1st” and the “2nd” US futures. There are more pronounced differences

in the adaptive Pearson correlation between the different regions.

Figure 6.12: Futures short-term interest.
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6.3.6 Stock Exchange

Figure 6.13: Stock exchange index

A stock exchange index or share

index is an indicator showing

changes in the average prices of

shares or groups of shares on the

stock market. We have chosen a

representative stock exchange in-

dex for each of the three regions

CH, US, and EU. In Switzerland

the most commonly used equity

price indices are the Swiss Perfor-

mance Index (SPI) and the Swiss

Market Index (SMI). The UBS

Dictionary of Banking states the

SPI is the “broadest based Swiss

share index, covering all domestic

companies listed on the Swiss Ex-

change. Weighted by capitaliza-

tion and dividend-adjusted, the SPI

is an ideal benchmark for perfor-

mance comparisons.” So, we de-

cided to go with the SPI. For the

US region we preferred the NAS-

DAQ to the Dow Jones because

of its composition towards more

innovative stocks. NASDAQ is

the “acronym for National Associa-

tion of Securities Dealers Automated

Quotations. US electronic exchange

for high-growth, innovative stocks,

catering for OTC traders.” The Ger-

man DAX has been chosen as representative for the EU. The DAX (Deutscher Aktienindex) is a

“stock index, which measures the performance of the 30 largest German companies in terms of order book

turnover and market capitalization.” [UBS Dictionary of Banking, 2007]

All stock indices have a climax in 2000 due to the dot-com bubble (Fig. 6.13). Even though,

there is an overall difference in the shape between the share indices and the exchange rate

CHF/USD, we observe a high correlation between these curves. After the late eighties we ob-

serve higher and more stable correlations.
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Now, we take a look at equities futures in Figure 6.14. As representative for the stock futures

in the regions of interest we have chosen the futures in three trading places of these regions. 2nd

stands for the futures that will be converted after the first future conversion date. The raw curves

are similar to the stock exchange index except for the US region, where the dot-com bubble peak

is not as pronounced. The reason for this effect is that the future curve is based on the Dow Jones

which not that sensitive to new technology valuation changes NASDAQ. Comparing the result

with the results of the stock exchange indices, the adaptive Pearson correlation is about the same

for the CH and EU and also for the US region (when neglecting the constant value region in the

nineties).

Figure 6.14: Future equities 2nd.
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6.3.7 Gross Domestic Product

The Gross Domestic Product (GDP) is defined as the “total market value of the goods and services

produced by a nation’s economy during a specific period of time. It includes all final goods and services -

that is, those that are produced by the economic resources located in that nation regardless of their ownership

and that are not resold in any form.” [Encyclopædia Britannica, 2007]. We distinguish between two

kinds of the GDP. The nominal and the real GDP. The nominal GDP is calculated using the actual

price level and is affected by inflation. The real GDP is inflation-adjusted. Figure 6.15 shows the

calculations for the nominal GDP and Figure 6.16 for the real GDP, respectively.

GDP values are published quarterly. Therefore, the values appear cascaded (in particular the

CH real GDP values which are subjected to an annual inflation). Bloomberg classifies the GDP as

highly market important.

As Figure 6.15 and 6.16 show, all three economic regions Switzerland, US, and EU have a

continuous GDP growth. Typically, the values of the European Union are only available since the

nineties.

Looking at the surface plots on the left side of each of the Figure units shows that all Pearson

correlation plots are very similar for the adjusted and non-adjusted case. Thus, the adaptive Pear-

son correlation curves look very similar, too. The Pearson correlations show switching regimes

from high negative correlations to high positive correlations.
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Figure 6.15: Gross Domestic Product, nominal. Figure 6.16: Gross Domestic Product, real.
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6.3.8 Money Supply

[Encyclopædia Britannica, 2007] defines money supply as “the liquid assets held by individuals and

banks. The money supply includes coin, currency, and demand deposits (checking accounts). ... The Federal

Reserve Board in the United States and the Bank of England in the United Kingdom regulate the money

supply to stabilize their respective economies. The Federal Reserve Board, for example, can buy or sell

government securities, thereby expanding or contracting the money supply.”

The Swiss National Bank SNB differentiates between four kinds of money supplies M0, M1,

M2, and M3 [SNB Glossary, 2007].

• M0 is the money supply of the central bank, also referred to as the monetary base, or occa-

sionally as the cash base.

• M1 comprises currency in circulation in the form of Swiss francs (banknotes and coins) held

by the public plus sight deposits in Swiss francs held by the resident public at banks and

the post office as well as transaction deposits.

• M2 is defined as the sum of the money stock M1 and savings deposits. Excluded from

savings deposits are pension fund monies invested in schemes with restricted terms and tax

benefits within the framework of the mandatory occupational pension scheme (pillar 2) and

the voluntary, individual pension scheme (pillar 3).

• M3 comprises the money stock M2 plus time deposits.

Bloomberg classifies the market relevance of this kind of data as low.

For our research we have chosen to focus on M1, M2, and M3. The columns in Figure 6.17

show the calculations for different kinds of money supply for each economic region (rows).

First, we have a look at the raw money supply curves. The behavior of the central banks of

the different economic regions seems to be a little bit different. Whereas the most liquid kind

of money increases continuously in the EU, the short-term available money in the US and CH

changes sporadically over time. The overall amount of money M3 is continuously increasing for

all of the three economic regions.

Second, we look at the adaptive Pearson correlations. Comparing the curves for Switzerland

M1 and M2 the interval between 1992 and 2000 is eye-catching. The correlation between the

foreign exchange rate CHF/USD for M1 is much more pronounced than for M2. This behavior is

caused by the money bound by the pensions in M2, so that investors are not able to react as fast

on exchange rate variations. Also the liquid M1 from the US correlates with the exchange rate

because of the Dollar.
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Figure 6.17: Money supply.
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6.3.9 Consumer Price Index and Producer Price Index

Figure 6.18: Consumer Price Index.

[Encyclopædia Britannica, 2007]

defines the Consumer Price In-

dex (CPI) “as measure of living costs

based on changes in retail prices.

Such indexes are generally based on

a survey of a sample of the popula-

tion in question to determine which

goods and services compose the typ-

ical market basket. These goods and

services are then priced periodically,

and their prices are combined in pro-

portion to the relative importance of

the goods. This set of prices is com-

pared with the initial set of prices

(collected in the base year) to deter-

mine the percentage increase or de-

crease. Consumer price indexes are

widely used to measure changes in

the cost of maintaining a given stan-

dard of living.” Bloomberg classi-

fication: very high importance.

The U.S. Department of Labor

defines in the “Bureau of Labor

Statistics Handbook of Methods”

the Producer Price Index (PPI).

“The PPI measures average changes

in prices received by domestic pro-

ducers for their output. Most of

the information used in calculating

producer price indexes is obtained

through the systematic sampling of virtually every industry...” [BLS Handbook of Methods, 2003].

Nouriel Roubini2 provides some more information. “The Producer Price Index (PPI) is the first

indicator of inflation each month. It is a measure of wholesale prices at the producer level for consumer goods

2Professor of Economics and International Business at the Stern School of Business, New York University,
http://pages.stern.nyu.edu/ nroubini/bci/ProducerPriceIndex.htm (October 12, 2007)
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and capital equipment. Unlike the CPI, it does not include services. It compares prices for approximately

3,450 commodities to a base period. Currently, the base period, which equals 100, is the average prices that

existed in 1982.” Bloomberg classification: high importance.

Figure 6.19: Producer Price Index.

Whereas the CPI measures

price changes from the con-

sumer’s perspective, the PPI mea-

sures it from the sellers and man-

ufacturer’s perspective. For more

insight on the difference between

the Producer Price Index and the

Consumer Price Index we recom-

mend the article [BLS, 2004] pub-

lished by the Bureau of Labor

Statistics.

The CPI curves in Figure 6.18

show high correlations for the CH

and EU region. The Swiss region

differs by an increase of the CPI

in the early nineties. In this time

range the correlation for the US

region is very weak.

The PPI curves in Figure 6.19

show a similar behavior for the

US and EU region. In the eighties

the Swiss PPI correlation is very

high and similar or even more ro-

bust as the other two regions. But

in the early nineties the correla-

tion of the Swiss region differs

from the other regions. After that,

the Swiss PPI correlation is not

as pronounced as the PPI of the

other two regions.
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6.3.10 Industrial Production Index

Figure 6.20: Industrial Production Index.

The industrial production index

measures real production output

of a region. We used the overall

index whereas it can be obtained

by market and industry groups.

The data is published by the Fed-

eral reserve (US), Eurostat (EU),

and the Swiss Federal Statistical

Office (CH). The US and EU in-

dices are published monthly and

the CH index quarterly. The US

reference value of 100% is based

on the production output at the

end of 2002. The index covers

output, capacity, and capacity uti-

lization in the U.S. industrial sec-

tor, which is defined by the Fed-

eral Reserve to comprise man-

ufacturing, mining, and electric

and gas utilities.

The adaptive Pearson correla-

tion (Fig. 6.20) between the US

and CH industrial production in-

dex and the CHF/USD exchange

rate shows very high correlation

after the year 1995. The corre-

lation for the EU region is high

after the year 2000. This shows

the industry’s capability to adapt

its production output to the eco-

nomic situation. In our opinion, this has been enabled by the support of information systems

which allow more efficient supply chain management and just-in-time production.
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6.3.11 Purchasing Managers Index

Figure 6.21: Purchasing Managers Index.

The Purchasing Managers Index

PMI is defined by [Kennon, 2007].

“The Purchasing Managers Index is

released on the first day of the month

by the National Association of Pur-

chasing Managers. The PMI mea-

sures five factors in business: new

orders, inventory levels, production,

supplier delivers, and employment

conditions. Each of these five factors

are adjusted and weighed according

to time of year and other events. A

PMI over 50% means that manufac-

turing is growing and expanding. A

PMI under 50% means that man-

ufacturing is declining. A PMI of

42.7% or more over a long period of

time means the economy as a whole is

expanding. A PMI of 42.7% of below

over a long period of time means the

economy as a whole is contracting.”

Bloomberg classification: high.

The PMI for all three regions is

quite the same and so is the adap-

tive Pearson correlation, see Fig-

ure 6.21. Overall the correlations

are not as pronounced as maybe

expected.
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6.3.12 Unemployment Rate

Figure 6.22: Unemployment rate.

Statistics on unemployment are

collected and analyzed by gov-

ernment labor offices in most

countries. Bloomberg classifies

the employment rate as highly

important for the market.

The raw variables in Figure

6.22 are plotted in percentage

units with respect to the entire

population. The unemployment

rate differs for the three economic

regions. The adaptive Pearson

correlation between the exchange

rate CHF/USD and the unem-

ployment in CH is more stable

than the correlation for the US un-

employment rate. The EU region

unemployment rate is similar to

the Swiss rate, but not that pro-

nounced. In our opinion, the high

correlation between the Swiss un-

employment rate and the ex-

change rate CHF/USD reflects

the flexible employment market

in Switzerland which allows to

adapt to the current economic sit-

uation.
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6.3.13 Wages

We differentiate between nominal and real (inflation-adjusted) wages. We focus on real wages,

since the higher the real wages the higher the purchasing power. Purchasing power has influence

on consumption and savings behavior and thus, the economic situation. As representative for

the EU wages we have chosen to use the UK wages. Bloomberg classifies the wages as medium

important for the market.

Figure 6.23: Wages.

The wages of the US and UK are continuously increasing in contrast to the Swiss wages which

remain at the same level between 1993 and 2002. This behavior can also be recognized in the

adaptive correlation curves.
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6.3.14 Consumer Confidence Index

Figure 6.24: Consumer Confidence Index.

The Consumer Confidence Index

(CCI) is calculated and published

by the Conference Board. The

latest CCI is published in the

Board’s monthly Consumer Con-

fidence Survey3. The Consumer

Confidence Survey contains de-

tails on consumer attitudes and

buying intentions. Data is avail-

able by age, income and region.

The reference of the index is the

starting year 1967, when the in-

dex was set to 100. The CCI

for EU and CH are calculated in

a similar way, but with different

reference levels.

The Bloomberg classification

is medium important.

The CCI curves of the EU and

(more coarse-grained) CH region

are very similar. The US CCI is

also similar, but does not show

that pronounced ups and downs.

The adaptive Pearson corre-

lation reveals some more infor-

mation. It shows a high posi-

tive over-all correlation between

the exchange rate and the US

CCI, whereas the CH CCI does

not show such distinct behavior -

there is little correlation. The EU CCI shows high positive and negative correlations staying over

years at the same level.

3The survey is posted on the Board’s Web site www.conference-board.org/economics/consumerConfidence.cfm (Oc-
tober 6, 2007).
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6.4 Discussion

All results show the advantage of using the adaptive Pearson correlation compared to the non-

adaptive (without forgetting) correlation which turns out to be inadequate for this kind of prob-

lem.

According to the finance experts, they feel confirmed in their assumptions.On the one hand in

observing recent situations and comparing it to the past. On the other hand as an early-warning

system when something begins to change. Concerning the huge amount of variables of interest

the experts like the overview on all correlations so they can focus directly on the hot spots. They

are also able to compare the adaptive correlations with each other. The surface plot containing

all correlations supports the expert in recognizing past patterns. Additionally, the comparison of

the expert weights supports the experts in assessing different variables in parallel. So, even when

the adaptive correlation values are different, the underlying drift can be similar and, thus, there

might be a non-obvious relationship.

We can also identify global concept drifts, i.e. drifts that occur in most of the variables pre-

sented above. As an example we demonstrate two of such global effects on the relationship be-

tween FX CHF/USD and the oil price in Figure 6.25.

When looking at the two surface plots on the left of Figure 6.25 we can identify such a drift

at the beginning of the year 1997. The upper surface plot shows the change in all possible Pear-

son correlations. A new structure emerges at 1997. This structure is also detected by the linear

regression based indicator in the lower surface plot. Other relationships like the relationship to

the Treasury bonds in Figure 6.9 or the currency swaps in Figure 6.5 show this even more distinct.

Actually, we can associate the drift to a major event: the East Asian financial crisis. The East

Asian financial crisis, also known as the East Asian currency crisis or as the IMF crisis, had a huge

impact on currency exchange rates [Weisbrot, 2007]. Many nations learned from this crisis and

quickly built up foreign exchange reserves which have also influence on the funding of Treasury

bonds. This is exactly what we observe in our data.

We have also identified another kind of global effect. It is rather slowly appearing than abrupt

compared to the effect of the East Asian financial crisis. We observed that by-and-by correla-

tions tend to be more and more stable and the correlations are higher, too (see Figure 6.25). We

identified the market penetration by information systems as possible reason. Information sys-

tems allow more participants to take part on the market. Also gathering of market figures and

purchase orders can be processed electronically. Thus, the processes are faster, allow parallel pro-

cessing and bridge company barriers - even more, automated trading systems can be installed.

All these effects cause a more competitive market situation. A competitive market exhibits faster

reaction times and faster price finding processes. This is exactly what we observe. At the end

the correlations are higher due to the Pearson correlation that is sensitive to synchronous curve

movements. Non-synchronous, i.e. delayed, movements would result in lower correlations and



6.4 Discussion 89

Figure 6.25: Exemplary global effect example.

spikes when the movements are parallel due to short-time overlapping. The assumption of the

computer induced market change is supported by the correlations of the stock exchanges (Figure

6.13) which show high correlation for the longest time. Stock exchanges were the first trading

platforms using new information systems. The influence of information systems can also be ob-

served at the industrial production index (Fig. 6.3.10). The impact of information systems on

production output starts in the mid-nineties.

The animated illustration of the regime drifts has been of high usefulness. It provides a more

intuitive approach to the dynamics of the foreign exchange rate system. The expert is able to get

a feeling about the fluctuations and the stability of the system and, thus, how reliable a variable

might by.

This information combined with the knowledge of the experts augments the foreign exchange

research and might have influence on trading strategies. But the investigation on this level is

beyond the scope of this work and belongs to the daily practical business.

When dealing with correlations a fundamental question rises4: Is there a real correlation or a

spurious correlation? Although finance experts feel confirmed in their assumptions when looking

at the results, we have a look at an synthetic example where spurious correlations appear. For this

purpose we have a closer look at the comparison of two random walk curves. Figure 6.26 is the

illustration of such a scenario. Both random walk curves have been calculated by applying the

4Recall Chapter 2.1.5, p.16, bullet point 3: “The correlation is coincidental. The two events occur at the same time, they
have no simple relationship to each other besides the fact that they are occurring at the same time.”
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Figure 6.26: Computation for a random walk scenario.

formula X(t + 1) = X(t) + Φ, where the starting point X(0) = 0 and Φ is a random number

from an uniform distribution between−1 and +1. Theoretically, the global overall correlation for

infinite large and independent random walk curves tends to zero. Naturally, random walk curves

move parallel in some intervals resulting in local non-zero correlations. The surface plot in the

top left corner of Figure 6.26 shows such regions. In this case our regime handling method does

not identify any drift and thus, does not collapse its window size5. So, our method does not fare

worse than any general non-adaptive one. It will, however, detect random patterns, just like the

non-adaptive ones. The correlation approaches the zero-value with increasing time series length

as expected.

5All paramaters are the same as used for the finance calculations.
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Limitations and Future Work

In this section we list identified limitations of our work. All limitations point to possible future

research. Here, we distinguish between two factors limiting the validity of our study: the internal

and external validity.

7.1 Internal Validity

Internal validity is the extent to which a study properly measures what it is meant to.

First, we examine some of our initial assumptions. We assumed simultaneous correlations. In

the finance domain running ahead variables are known which are not covered by our correlation

determination methods. Techniques like time warping [Berndt and Clifford, 1994] exist, but there

is still research potential on time-shifted correlations. One of our findings was that the variables

are getting more and more simultaneous. So, there is a trend towards simultaneous behavior

which is covered by our measures.

The other assumption was the limitation to one-to-one relationships between all variables.

From experience in the finance field we know that this assumption is reasonable. Theoretically,

other effects might exist, for example, many-to-one relationships or self-reinforcing systems. The

extension to such problems might contribute some value for finance models, but it has not been

the focus of our research.

Furthermore, we have a look at the theoretical justification of applied techniques. Concept

drift and feature selection are mainly empirical scientific disciplines. Even though we designed

our experimental setup to ensure internal validity, our background is of empirical nature. There-

fore, there is still potential for research on theoretical aspects.

Such research could focus on the interaction between dataset and algorithm. How fast does

an algorithm approach the correct hypothesis depending on the nature of the dataset? The back-

ground is the decision at which point of time an old classifier should be substituted by a new

one. This is of importance in the case of slowly and marginal drifting concepts. Especially, when
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combining two different algorithms as seen in approach II. The indicator might be discarded, but

the executing algorithm is not able to catch up with the current concept (or vice versa).

Theoretical work in this fields like the Vapnik-Chervonenkis VC dimension does not provide

information about the learning dynamics [Vapnik and Chervonenkis, 1971]. Research on learning

dynamics like active learning [Angluin, 1988] does not sufficiently cover theoretical investigations

on the dataset / algorithm interaction – except for fastening the learning process depending on

the dataset topology.

7.2 External Validity

External validity is the extent to which the results of a study can be generalized.

So, the assessment can be enhanced to more synthetic and real datasets. We could also con-

sider more algorithms for correlation determination, for concept drift handling and for the ordi-

nalization of the non-ordinal correlation values. Nevertheless, we are convinced that our study

sufficiently ensures external validity.



8
Conclusions

In this work we exposed an actual problem addressed by finance researchers and traders. Then,

we formalized this problem in terms of data mining methods. Specifically, we broke down the

problem to the fields of feature selection and concept drift.

We tackled the problem by combining these two fields using two different approaches. The

two approaches enlightened the problem from two different perspectives. On the one hand from

the feature selection perspective and on the other hand from the concept drift perspective.

After implementing the two approaches we assessed them on two different synthetic datasets

and a real world dataset. The results showed that both approaches are suitable for regime drift

problems - even under noisy conditions. We compared the two approaches and selected the

second approach because of its superior behavior concerning computational complexity.

Finally, we applied the selected method on real finance data. The results on the exchange rate

data allow drawing conclusions that are consistent with real events. Even more, finance experts

are able to gain more insight on the regime drift problem.
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A
Appendix

A.1 Predictive Modeling Algorithms

Predictive modeling embraces classification and regression [Duda et al., 2000]. In this section we

present the base algorithms we use throughout this work. The algorithms are the most used

algorithms in machine learning as the ICDM 06 Panel1 confirms. In the ICDM 06 Panel the classi-

fiers introduced below are all amongst the “Top 10 Algorithms in Data Mining”. Our additional

criterion for the choice is the complementary structure of the different algorithm designs.

A.1.1 Classifiers

In this work four kinds of classifiers are applied. All classifiers below are based on the MAT-

LAB implementation available from [Stork and Yom-Tov, 2004] except the Naı̈ve Bayes Algorithm

which has been implemented from scratch.

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

Figure A.1: Training and reference set for the visualization of the classifiers on the “sphere through plane” dataset.

1International Conference on Data Mining ICDM, http://www.cs.uvm.edu/˜icdm/algorithms/ICDM06-Panel.pdf
(December 21, 2006)
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We provide visualizations for more insight into the classifier’s learning mechanisms. The vi-

sualizations are based on the models learned on the training data illustrated at the left Figure A.1.

The Figure on the right shows the perfect class separation for this two-class problem according

the underlying data generating mechanism (concept). The concept definition is taken from the

“plane intersects sphere” dataset in Section 2.2.4.

Decision Tree

We have chosen to apply Quinlan’s C4.5 [Quinlan, 1993] as decision tree implementation. This

tree uses information content as splitting criterion for continuous features and a histogram for

discrete features. We modified the MATLAB C4.5 implementation in order to be able to handle

special cases like one-dimensional patterns and to avoid infinite recursions. The decision tree

parameter “confidence level” is the maximum error percentage at a node that will prevent it from

further splitting.

Throughout this work we make use of two decision tree alternatives, one with the default

confidence level of 25% and the other with a confidence level of 0%. A confidence level of 0% cor-

responds to a full decision tree without pruning. Typically, ensembles of unpruned trees perform

better compared to ensembles of pruned trees [Sollich and Krogh, 1996, Street and Kim, 2001].

Figure A.2: Illustration for the decision tree models.

The two illustrations in Figure A.2 show the performance of the two decision trees on the

“sphere through plane” dataset. The upper Figure illustrates the model of the unpruned decision

tree. Since the splitting nodes are parallel to the input features the decision boundaries are vertical

and horizontal, approximately close to the diagonal reference boundary. The lower Figure shows

the pruned decision tree which only considers the two topmost decision node levels.
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k-Nearest Neighbor

The k-nearest neighbor algorithm KNN is a type of instance-based learning [Dasarathy, 1990].

KNN is a method for classifying instances based on the closest k training examples in the feature

space and, thus, is able to represent very complex models.

Figure A.3: Illustration for the KNN model.

Throughout this work we set the number of nearest neighbors to k = 7, unless the total num-

ber of instances dropped below 10 instances, where we reduced k accordingly. The applied met-

rics is the Euclidean distance.

The Figure A.3 represents the KNN model which represents the target concept very accurately.

Support Vector Machine

The Support Vector Machine SVM algorithm works in two stages [Boser et al., 1992]. In the first

stage, the algorithm transforms the input data by a kernel function. In the second stage, the

algorithm inserts a linear separating hyperplane. Throughout this work a Radial Basis Function

RBF kernel function was used with its default Gaussian width of 0.05. A simple farthest-margin

Perceptron solver is used to find the linear separating hyperplane.

Figure A.4: Illustration for the SVM model.
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The MATLAB implementation is only suitable for classification problems, although there exist

SVMs for regression problems [Drucker et al., 1997]. We modified the algorithm in order to be

able to handle special cases like one-dimensional patterns or situations where no support vectors

could be found.

The Figure A.4 shows how well the SVM model represents the target concept. The boundary

is smooth due to the Gaussian kernel function.

Naı̈ve Bayes

The probabilistic classifier Naı̈ve Bayes is based on the Bayes’ theorem. The prefix “Naı̈ve” stands

for the assumption of the input features being independent of each other. [Zhang, 2004] assesses

and gives some more insight in the Naı̈ve Bayes algorithm.

Figure A.5: Illustration for the Naı̈ve Bayes model.

This implementation of the algorithm makes use of the Laplace estimation to avoid estima-

tions biased by zero-probabilities. The Laplace values used throughout all calculations has been

set to 0.1.

For the “plane intersects sphere” dataset all input features have been discretized into 10 equal-

sized chunks. Figure A.5 shows how well the Naı̈ve Bayes classifier copes with this kind of

classification problem even though the features are assumed to be independent.

A.1.2 Regression

To perform regression we used the built-in MATLAB function polyfit. This function returns

the polynomial coefficients of a n-degree polynomial fitting the data in a least squares sense. For

this work we limited the problem to linear regression (n=1).
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A.2 DWM Algorithm for Regression Problems

The state-of-the-art ensemble weighting algorithm is the Dynamic Weighted Majority DWM al-

gorithm introduced by [Wang et al., 2003]. This algorithm is designed for classification problems.

So, we adjusted the DWM algorithm since we are not aware of any other similar algorithm dealing

with regression.

Table A.1 shows the original DWM algorithm on the left side and the adjusted algorithm on

the right side. Both algorithms still look similar except for the following adjustments.

1. The prediction values Λ and λ are continuous because we are dealing with a regression

problem. The λ results are stored for each expert for the subsequent calculation of the global

prediction Λ, therefore, we use the annotation of λj .

2. The error ξ is compared to the threshold ϑ to eliminate non-acceptable ensemble experts.

This is in contrast to the binary comparison of the prediction hitting the correct class.

3. The global prediction Λ is not chosen by taking the prediction of dominant expert as seen

at the original algorithm. We calculate the overall prediction by adding up the expert’s

weighted predictions, i.e., we take the weighted average prediction value. The result is a

more robust prediction. In the original algorithm we are dealing with class predictions,

where we can not define averaged predictions unless the classes correspond to ordered

numbers.

For the linear regression algorithm we define the error calculation function as the difference

of the predicted value with respect of the real value CalcError (a, b) := |a− b|.

The main difference between the two algorithms is the choice of the threshold parameter ϑ

which determines the adaptivity of the ensemble towards concept drifts. We found the values

depend on the applied domain, but they are quite robust under variations. So, for the “Plane

through sphere” and the “meteorology” dataset we used a value of 0.5. For the “Stagger” dataset

we applied a value of 0.2. The results on the “Stagger” dataset do not change much by taking a

value of 0.5 – the algorithm would be a little bit less adaptive, but more robust under noise. For

the finance dataset we used a value of 0.1. Before performing these calculations we normalized

all data streams to a range between 0 and 1.

For the “Stagger” and “meteorology” dataset the period p between the reconsiderations is

equal to 1. We set period p to 5 for the “Plane through sphere” and “finance” datasets because

of their large number of instances. The other parameters have been chosen to be the same as

recommended by the authors of the DWM algorithm. The threshold for deleting experts is θ =

0.01 and the factor for decreasing weights is β = 0.5.

We also make use of the adjusted DWM algorithm at the method presented in the approach I

on page 31, where we generated an ordinal measure based on non-ordinal values (see Fig. 3.4).
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To transfer the new problem to a well-known problem we interpret the generated ordinal value

as an error. Hence, we replace the error function CalcError (a, b) by the ordinal measure obtained

for the corresponding ensemble expert. The λ predictions are replaced by the corresponding

correlation values and the everything else remains the same. We kept the threshold values ϑ the

same as defined for the regression problem.

{~x, y}n1 : training data, feature vector and target
β : factor for decreasing weights, 0 ≤ β ≺ 1
c ∈ N

∗: number of classes
{e, w}m1 : set of experts and their weights
Λ, λ: global and local predictions
~σ ∈ R

c: sum of weighted predictions for each class
θ: threshold for deleting experts
p: period between expert removal, creation, and weight update
ξ: error of prediction
ϑ: threshold for prediction deviation

DWM Classification DWM Regression

for i = 1, ..., n for i = 1, ..., n

~σ ← 0 ~λ← 0
for j = 1, ..., m for j = 1, ..., m

λ = Predict (ej , ~xi) λj = Predict (ej , ~xi)
ξ = CalcError (λj , yi)

if (λ 6= yi and i mod p = 0) if (ξ > ϑ and i mod p = 0)
wj ← βwj wj ← βwj

σλ ← σλ + wj

end; end;

Λ = argmaxλ σλ Λ = 1
w

∑

j wjλj , where w =
∑

j wj

if(i mod p = 0) if(i mod p = 0)
w← NormalizeWeights(w) w← NormalizeWeights(w)
{e, w} ← DeleteExperts(e, w, θ) {e, w} ← DeleteExperts(e, w, θ)

ξ = CalcError (Λ, yi)
if(Λ 6= yi) if(ξ > ϑ)

m← m + 1 m← m + 1
em ← CreateNewExpert() em ← CreateNewExpert()
wm ← 1 wm ← 1

end; end;

end; end;

for j = 1, ..., m for j = 1, ..., m
ej ← Train(ej , ~xi) ej ← Train(ej , ~xi)

output Λ output Λ
end; end;

end. end.

Table A.1: Pseudo-code for the DWM and adjusted DWM algorithm.
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A.3 Application of Approach I on Classification Problems

In this section we benchmark the method presented as approach I in Chapter 3 in a well-known

field: a classification task subjected to drifting concepts. The tests are performed on the two

synthetic datasets “Stagger” and “plane through sphere” (see Section 2.2.4). The benchmark al-

gorithm is the Dynamic Weighted Majority DWM algorithm2 which has been designed for this

kind of problems. As base algorithms we used the five classifiers presented in Appendix A.1.1.
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Figure A.6: Overview on the classification performance.

For the evaluation, our approach has been adjusted to be able to handle classification tasks.

Instead of taking correlations as input values we now take accuracies. We are dealing with the

accuracies as if they were correlations, i.e., we do not make use of the ordinal nature of the accura-

cies. Instead of combining correlations according to the identified drifts we combine the classifier

predictions to get a final class prediction. So, the only adjustment we did is the rounding of the

2We used the same parameters as recommended by the authors [Wang et al., 2003].
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final output values at the end to obtain whole-numbers corresponding to discrete class values3.

The evaluation measure of the predictions is the accuracy. The accuracy is calculated by as-

sessing the generated models on test sets. The evaluation has been conducted in the following

way. On the “Stagger” dataset the classifiers are evaluated on test sets of 100 randomly generated

instances of the current target which is presented to the learner at each time step. The assessment

of the classifiers on the “plane through sphere” dataset is similar with the difference of presenting

10000 random instances to the learner.

Figure A.6 shows the resulting accuracies of both ensemble methods on both datasets. Ad-

ditionally, there is a curve representing the performance of a non-adaptive algorithm. Both

ensemble-based methods outperform the non-adaptive calculations. On the “Stagger” dataset the

DWM benchmark is slightly better performing than the method of our approach. On the “plane

through sphere” dataset the benchmark algorithm is more aggressive. This results in higher adap-

tivity - but less robustness - compared to the method of our approach.
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Figure A.7: Noise considerations for classification on “Stagger” dataset.

Figures A.7 and A.8 show the averaged accuracies on both datasets for different noise levels

(up to 100%). The behavior is about the same for both datasets and all classifiers. The method of

our approach is mostly more robust under noise influence. The reason is the ordinalization step

of our method which contains smoothing that makes the predictions more robust towards noise.
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Figure A.8: Noise considerations for classification on “plane through sphere” dataset.

3This is allowed since we are dealing with two-class problems.
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To conclude, both approaches perform on about the same level. This is surprising because the

method of our approach does not have as much information about the problem compared to the

original DWM algorithm. To achieve this performance we have to invest much more computa-

tional power (see Section 3.4.1, p. 42) than the DWM algorithm. So, we can make two statements.

First, the method of our approach is suitable to detect drifting concepts which justifies its use for

regime drift handling. Second, the results here suggest there could be constructed an even better

performing and more robust ensemble classification method by combining these two approaches.
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A.4 External Indication

Concept drift methods can be decomposed the same way. There is a drift indicating algorithm

(indicator) and an algorithm (executor) doing some task based on the information obtained from

the indicator. For example, the indicator’s outcome is a collapsing of the window size when faced

to a concept drift. Then, the executor performs its calculations based on the collapsed window

size.

In most cases the indicator and executor are based on the same algorithm (see Figure A.9a ).

In some cases the indicator would be very time consuming when based on the same algorithm

as the executor. A solution approach is a less complex algorithm as indicator preceding the more

complex executor (see Figure A.9b ). We call this approach “external indicator”. For example

in the field of feature selection – not in the field of concept or regime drifts – [Bi et al., 2003]

use a linear indicator to select the features and learn on these features a non-linear SVM model

(executor) which produces good results. This study of mixing two algorithm categories promises

also good results for our approach; even though our application field is of dynamic nature.

The research question is whether an indicator algorithm can be substituted by another indica-

tor algorithm or not – without any considerable loss of performance. This is a non-trivial question.

An indicator algorithm might be too lazy in recognizing a concept drift and the executor will still

use outdated data. Or the opposite, an algorithm might be too aggressive and useful informa-

tion for the executor’s model is thrown away. Though the VC-dimension theoretically describes

the size of an algorithm’s hyperspace (model building capacity), the VC-dimension provides no

statement about how fast a certain dataset can be approached by the algorithm’s hypotheses. This

is the reason why we provide an empirical answer to this question in the two sections below.
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Figure A.9: Illustration of the external indicator setup.

First, we have a look at a classification problem subjected to concept drifts. Then, we have a

look at the regime drift problem using the method discussed in Approach II (see Section 4, p. 45).

The results below are presented as bar plot figures (see Fig. A.10 and A.11) that are composed

as follows. The horizontal axis is grouped by the executing algorithms; each bundle contains the

assessment values for all indicator combinations. The performance is illustrated by the value on
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the y-axis.

A.4.1 Cross-Indication for Drifting Classification Problem

In this section we assess the classification task under drifting concepts using the five classifiers

presented in Appendix A.1.1. We examine the influence of substituting an indicator classifier

by the other classifiers. Figure A.10 shows the average accuracies reached by the five different

indicator classifiers combined with all five executor classifiers. As ensemble selection method we

use the Dynamic Weighted Majority DWM algorithm.
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Figure A.10: Cross-Indication assessment for a classification problem on a) the “Stagger” dataset and on b) the
“plane intersects sphere” dataset

The result for both datasets is that the influence of the different indicators is marginal. Only

the decision tree with confidence level 0 reveals it’s shortcomings in dealing with the Stagger

dataset4. So, indicating algorithms can be substituted by other algorithms to some extent. The

impact of this finding is that we can perform the indicator step with less computational costs -

say a Naı̈ve Bayes classifier - and use a more time-consuming classifier for the final prediction

like a Support Vector Machine.

A.4.2 External Indication for Drifting Regimes Problem

The regime drift problem following approach II consists of an indicator algorithm defining the

drift handling and an executing algorithm which is a correlation finding algorithm. The concept

drift detection has been performed with the DWM algorithm based on the six algorithms intro-

duced in Appendix A.1. Then, the resulting ensemble expert weights are applied to determine

the correlation values obtained from the feature ranking methods (see Section 2.1.4).

4The classifier’s performance is very weak for short window sizes, thus, the ensemble (indicator) does not expand to
larger and more robust experts
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The performance of the regime calculations are reported in δ2. δ2 is the deviation between

the calculated and the reference regime values. The results are comparable to the results of the

previous section. The different overall values of the bundles are due to the different correlation

(regime) value scales of the correlation determination methods. The only exceptions are the deci-

sion tree based methods on the Stagger dataset due to the short-coming of the decision trees on

this kind of data4. The short-coming of the decision tree based indicator (confidence level 0) is

apparent for the Pearson correlation.

The conclusion is that the overall indicator algorithms can be substituted to some extent.

Maybe it’s good to perform a trial before relying on one single indicator. So, the results are con-

sistent with the results obtained for the pure classification problem in Section A.4.1.
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Figure A.11: External Indication assessment for a regime drift problem on a) the “Stagger” dataset and on b) the
“plane intersects sphere” dataset
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A.5 Noise Considerations
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Figure A.12: Assessment of Approach I and Approach II on the two

synthetic datasets for different functions and increasing noise levels.

Figure A.12 shows the performance

of both regime drift adaption ap-

proaches subjected to increasing

noise levels. The assessment has

been performed on the two syn-

thetic datasets “Stagger” and “plane

through sphere”. Noise has been

introduced by random switching of

the target labels. As measure we use

the δ2 value which is the squared dif-

ference between the predicted corre-

lation and the reference correlation

averaged over all features. It is dif-

ficult to compare the δ2 values since

the absolute correlation values (pre-

dictions and reference) for the differ-

ent wrapper and correlation meth-

ods are different. To allow a comparison between the different algorithms we normalized the

δ2 values by their δ2 values at 100% (δ2
100%

). The sub figures in the rows show the assessment of

the different approaches and the columns show the different datasets.

First, we have a look at the first row, the assessment of approach I. The decision tree based

wrapper value predictions are very poor as discussed in Section 3.3.1. The performance under low

noise is even worse than the prediction under 100% noise. This is because the selected ensemble

experts are of short window size and reflect different models than the reference models obtained

at large window sizes. This is due to the limitations of the decision tree to model the Stagger

dataset on few instances. On the “plane through sphere” dataset all correlation functions show

the same behavior.

Second, we have a look at the assessment of approach II. Here, the performance of the decision

tree based predictions perform poor on the Stagger dataset, too. But the performance is not much

worse than the performance at 100% noise. On the “plane through sphere” dataset all correlations,

again, perform similar.

All except the decision tree based curves perform very well and show a continuous loss of

predictive performance. The absence of sudden changes suggests a stable behavior under noise.
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Diploma in Business Administration and Computer Science
(Eidg. Dipl. Wirtschaftsinformatiker)

2000 - 2002 Zurich Insurance Company
Application development and project management

2000 SIGpack Systems AG
Research and Development Department

1993 - 1999 Swiss Federal Institute of Technology Zurich ETH
Diploma in Physics (Dipl. Phys. ETH)

1986 - 1993 Gymnasium Friedberg, Gossau SG
Matura Typus B (Latin)

1980 - 1986 Primary School Andelfingen ZH, Riethüsli SG, and Gossau SG
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