
Anti Money Laundering
under real world

conditions
-

Finding relevant patterns

Linard Moll
from Schwyz SZ, Switzerland

Student-ID: 00-916-932
aml@linardmoll.ch

Master Thesis September 9, 2009

University of Zurich
Department of Informatics

Advisor: Jonas Luell

Prof. Abraham Bernstein, PhD
Department of Informatics
University of Zurich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I would like to thank Professor Abraham Bernstein for offering me the opportunity to write my

Master Thesis at the DDIS group of the University of Zurich. Many thanks to Jonas Luell for

the interesting topic and all the hours of discussion about new algorithms and improvements of

the system, since he was the only one allowed to verify the impact of the system on confidential

real world data. Additionally, I would like to thank my parents for all the support that enabled

this thesis after several years of studying, and my friends for joining the coffee breaks and all the

technical and non-technical discussions during the last months.

Abstract

This Master Thesis deals with the search for new patterns to enhance the discovery of fraudu-

lent activities within the jurisdiction of a financial institution. Therefore transactional data from a

database is analyzed, scored and processed for the later usage by an internal anti-money launder-

ing specialist. The findings are again stored in a database and processed by TV - the Transaction

Visualizer, an existing and already commercially used tool. As a result of this thesis, the software

module TMatch and the graphical user interface TMatchViz were developed. The interaction of

these two tools was tested and evaluated using synthetically created datasets. Furthermore, the

approximations made and their impact on the specification of the algorithms will be addressed in

his report.

Zusammenfassung

Diese Masterarbeit befasst sich mit der Suche nach neuen Algorithmen, um betrügerische Ak-

tivitäten innerhalb des Einflussbereiches einer Bank besser zu erkennen. Dazu werden Trans-

aktionsdaten ausgewertet und für die weitere Untersuchung durch einen bankinternen Geld-

wäscherei-Spezialisten bewertet und aufbereitet. Die gefundenen Resultate werden in einer Daten-

bank hinterlegt und durch das bestehende und bereits kommerziell verwendete Werkzeug Trans-

action Visualizer, weiterverarbeitet. Zu diesem Zweck wurde die Softwarekomponente TMatch

entwickelt, welche die erstellten Algorithmen beinhaltet und die Bedienoberfläche TMatchViz, um

die Konfiguration und die Bewertung der Resultate vereinfacht. Das Zusammenspiel von TMatch

und TMatchViz wurde anhand von synthetischen Daten geprüft und beurteilt. Im Weiteren wird

auf gemachte Annahmen und deren Auswirkungen auf die Spezifikation der Algorithmen näher

eingegangen.

Table of Contents

Table of Contents ix

1 Introduction 1
1.1 Goal of this thesis . 2
1.2 Structure . 2

2 Motivation 3
2.1 Fraud, fraudulent behavior and money laundering 3

2.1.1 Fraud and fraudulent behavior . 4
2.1.2 Money laundering . 4
2.1.3 Criticism . 6
2.1.4 Conclusion . 7

2.2 Money Laundering detection and related work . 7
2.2.1 Introduction . 8
2.2.2 Basic money laundering detection pattern . 9
2.2.3 Related work . 10
2.2.4 Available anti-money laundering solutions 15

2.3 Suggested solution . 16
2.3.1 Requirements of the solution . 16

3 Approach Description 19
3.1 Overview . 19
3.2 Used Software . 21
3.3 Assumptions . 21
3.4 Implementation of TMatch . 22

3.4.1 Architectural view . 22
3.4.2 Configuration . 22
3.4.3 Runner . 23
3.4.4 Expander . 23
3.4.5 Component Calculation . 24

x TABLE OF CONTENTS

3.4.6 Scorer . 29
3.5 Implementation of TMatchViz . 31

3.5.1 Architectural View . 31
3.5.2 Configurability . 32
3.5.3 Preselection of the results . 32
3.5.4 Distribution . 34

4 Evaluation 37
4.1 Test environment . 37
4.2 Test configuration . 37
4.3 Test results . 38
4.4 Conclusion . 40

5 Discussion 43
5.1 Limitations . 43

6 Conclusion and future work 45
6.1 Future Work . 45

A Appendix 47
A.1 Content CD-ROM . 47
A.2 TMatchViz graphical user interface . 48
A.3 TMatch extendability . 48
A.4 TMatch library creation . 52
A.5 TMatchViz release creation . 52
A.6 TMatchViz installation . 54
A.7 Properties . 55
A.8 Logging . 55
A.9 Evaluation results . 56
A.10 Database related . 61

List of Figures 63

List of Tables 65

List of Listings 67

Bibliography 69

1
Introduction

Hardly a week goes by without a newspaper article on fraudulent financial actions or even money
laundering occurrence. Fraudulent money transactions are often reported in the case of corrup-
tion and blackmail. Since the incident of 9/11, money-laundering stands close to the term ”terror
financing”. According to the 9/11 commission [Roth et al., 2004], the airplane hijackers used
U.S. and foreign financial institutions to manage funds. The U.S. accounts were filled up by wire
transfers and deposits of cash. The foreign accounts were accessed in the U.S. through ATM and
credit card transactions. The commission remarks, that neither the airplane hijackers nor the fi-
nancial facilitators were experts in use of the financial system and created a lasting imprint with
their financial transactions. But because the existing money-laundering controls were focussing
on drug trafficking and large-scale financial fraud, the hijackers’ transactions could not have been
detected by the institutions. As a first reaction, the U.S. and later on the E.U. created new laws to
focus on the prevention of fraudulent actions on the financial markets [S/CT, 2001].

The Swiss government created an Anti-Money Laundering Act (AMLA) in October 1997 [MROS,
2009]. This forms the official basis of the Money Laundering Reporting Office Switzerland (MROS),
a department of the Swiss Office of Police1. The MROS receives reports on suspicious transac-
tions so called Suspicious Activity Reports (SARs) from all types of financial intermediaries, such
as banks, payment service providers, fiduciaries, asset and investment advisors, attorneys, insur-
ances, casinos, credit card companies, etc. According to [MROS, 2009], the MROS received 851
SARs in 2008 involving assets of around CHF 1.9 billion - compared to 303 SARs in 1999 [MROS,
1999] involving assets of more than CHF 1.5 billion. According to MROS, 69% (572) of all SARs
were reported from the banking sector in 2008.

The U.S. Bureau of International Narcotics and Law Enforcement Affairs (INL) published a
list [INL, 2009] of countries containing Switzerland as a ”Jurisdiction of Primary Concern” saying
that the swiss financial institutions engage in transactions involving significant amounts of (laun-
dered) proceeds from all serious crimes like narcotics trafficking and narcotics-related money

1From time to time, the intergovernmental organization Financial Action Task Force (FATF) assesses the Swiss financial
center and the measures for combating money laundering and terrorism financing. In 2005, the FATF certifies the MROS
as ”largely compliant” with FATF standards [MROS, 2005], in the following years new FATF suggestions were adopted or
are in process to.

2 Chapter 1. Introduction

laundering. In other words, the Swiss finance markets are affected by heavy money laundering
attempts.

1.1 Goal of this thesis

The main task of this thesis is to find new patterns which support already existing anti-money
laundering (AML) efforts. For this purpose we collaborate with a Swiss financial institution. Be-
cause of strict confidential agreements, the anonymous virtual financial institution called AlphaFin
[Luell and Bernstein, 2009] was created. With this background, the main goal was to enhance the
discovery of fraudulent activities within the jurisdiction of AlphaFin. Therefore, data from Al-
phaFin’s transaction database was analyzed, scored and stored for the later usage by an internal
anti-money laundering specialist. This led us to the development of the software module TMatch
and the graphical user interface TMatchViz to fulfill the needs at AlphaFin. TMatch implements
the newly created patterns for transaction processing and scoring. In addition it provides all the
needed configuration and database management parts. TMatchViz uses TMatch as an external
library and adds the necessary user-interaction functionality to our software solution. The co-
operation and efficiency of these two modules was tested and evaluated by using synthetically
created transaction datasets.

1.2 Structure

For the upcoming part of this thesis, we follow the structure of a ”design science thesis” according
to [Bernstein, 2005], including the following chapters.

Chapter 2 mentions the motivation behind this thesis together with recent work in the field of
anti-money laundering, the problem definition and a description of a possible solution.

In chapter 3, the implementation of TMatch and TMatchViz, the made assumptions and the
specification are described.

Chapter 4 addresses the evaluation of the TMatch and TMatchViz software modules by regard-
ing issues like processing power, memory consumption and time durations.

In chapter 5, the results are matched to the initial goals and the limitations of TMatch and
TMatchViz are discussed.

Finally, chapter 6 draws the conclusion of this Master Thesis; suggestions for future work and
a personal résumé are given.

2
Motivation

In the end of March 2009, the Office of the Attorney General of Switzerland (OAG) freezes 700 mil-
lion Swiss francs [Häfliger, 2009]. The OAG suspects mangers of the Czech Coal mining company
committing crimes of embezzlements. The money was spread across 100 Swiss bank accounts.

This example shows, how an act of crime seems to work today. Money is transferred from one
country to another in unforeseeable amounts and deposited into separate places. According to
this newspaper article the average account holdings is around 7 million Swiss francs. Whether the
transactions were made in full or split up into smaller parts was not stated, but the accused actions
should have taken place between 1997 and 2002. The money transfers went through several
letterbox companies all over the world to get a shiny face.

This points to the main problems anti-money laundering precaution measures must overcome
if fraud is conducted in a continuous manner, over a long time period and from different locations
worldwide. At the same time, such money laundering attempts reflects the motivation behind
this Master Thesis to enhance detection at AlphaFin.

Effective AML measures consists of legal, organizational and technical aspects. In order to
reach the goal of this thesis, it is considerably important to know each aspect. The upcoming
sections will explain the terms and legal aspects of fraud and money laundering, as needed for
this thesis, technical countermeasures found in literature and as commercially available prod-
ucts. This will lead us to the main part of this Master Thesis; the description of the TMatch and
TMatchViz systems.

2.1 Fraud, fraudulent behavior and money laundering

As [Wells, 2008] accurately states: ”Understanding how fraud is committed is paramount to pre-
venting and detecting it.”. This presupposes a clean and relevant understanding of Fraud in con-
sideration of this thesis.

4 Chapter 2. Motivation

2.1.1 Fraud and fraudulent behavior

According to [Encyclopædia Britannica, 2009], fraud stands in its broadest sense for ”the delib-
erate misrepresentation of fact for the purpose of depriving someone of a valuable possession”
and has its origin in occupational frauds and abuses, various acts of corruption, asset misap-
propriation and fraudulent statements [Wells, 2008]. Involved actors are in all kind of positions.
Financial statement fraud, for instance, is potentially committed by the senior management, mid-
and lower-level employers and organized criminals, according to [Wells, 2008].

Relevant for this thesis is the aspect of economic related fraud, most likely based on specific
money transactions. Those are transfers from and to financial institutions and in the case of a
bank, the deposition or withdraw of money from a certain bank account. Hence, fraudulent
behavior describes the circumstances that causes the fraud, and again in this context, resulting
in individual money transactions. In turn, this characteristic of fraud denotes the term of Money
laundering.

2.1.2 Money laundering

Money laundering is a subset of fraud and has a legal and a technical interpretation. In this
subsection the legal parts will be highlighted. The technical and more important part for this
thesis is covered in the Section 2.2.

According to [Altenkirch, 2006], there are several theoretical models of money laundering.
The most popular one is the three-step model [Altenkirch, 2006] created by the U.S. customs
authorities, including the following steps:

1. Placement. Cash reserves obtained from underlying offenses must be transformed to legiti-
mate money. Ways to do so are to place the money on deposit, pay vastly inflated amounts
for goods or the purchase of real estate for later renting or leasing.

2. Layering. After successfully placed money into the financial system, money launderers tries
to cover the paper trail by carrying out multiple transactions using multiple accounts, dif-
ferent owners and different financial institutions in different countries.

3. Integration. The money launderer aim is to report the money as regular income and regain
access. Interests from rent or deposits are now used for new undertakings having a clean
record from legitimate activities.

In the legal industries Money laundering describes the legal controls that require regulated
entities like financial institutions to prevent or report money laundering actions. In most coun-
tries, financial and non-financial institutions are required to identify and report suspicious money
transactions to the financial intelligence unit of that particular country.

In the U.S. the legal base is set by the Bank Secrecy Act of 19701 and the USA PATRIOT Act2.
1See http://www.fincen.gov/statutes_regs/bsa.
2See http://www.fincen.gov/statutes_regs/patriot/index.html.

2.1 Fraud, fraudulent behavior and money laundering 5

They define what transactions must be reported to the government. As an example, cash trans-
actions in excess of USD 10,0003 during the same business day conducted by or on behalf of the
same person, must be reported.

In Switzerland, money laundering was recognized as an offence in the Swiss Criminal Code
since 1990. The Swiss Anti-Money Laundering Act of 19984(SAMLA) enacted due diligence obli-
gations to all financial intermediaries like banks, insurance companies, independent asset man-
agers, money transmitter or money changer. The financial intermediaries have to inform the gov-
ernment, if there is a probable cause. This so-called Know Your Customer (KYC) principle stands
for the obligation of all the intermediaries to verify the identity of the customer; establishing the
identity of the beneficial owner; the repetition of these two actions, if some doubt arises dur-
ing daily business; the duty to clarify the nature and purpose of a business relationship or of an
unusual transaction; the duty to keep records of carried out transactions5. The SAMLA further
regulates the responsibility of the financial intermediaries to instruct and test their employees ad-
equately; the duty to immediately file a report6 with the reporting office7 and the obligation of
freezing assets. Since 2009, the Federal Act on the Swiss Financial Market Supervisory Authority8

entered full force with the consequence that the Swiss Financial Market Supervisory Authority
(FINMA)9 is in charge of the governmental supervision in Switzerland.

The Financial Action Task Force (FATF)10 is an inter-governmental organization. The FATF
developed policies to combat money laundering and terrorist financing and was founded in 1989
by the G7 forum11. The FATF currently comprises 32 member jurisdictions and 2 regional organi-
zations, representing most major financial centers in all parts of the globe [FATF, 2009].

The Wolfsberg Group12 is an association of eleven global banks, developing and publishing fi-
nancial services industry standards and policies, focused on the KYC principle, anti-money laun-
dering and counter terrorist financing. Members of this group are Barclays, Citigroup, Credit Su-
isse and HSBC to name just some of them. Some of the Wolfsberg Standards13 are the ”Wolfsberg
AML Guidance on Credit/Charge Card Issuing and Merchant Acquiring Activities”(2009), the
”Wolfsberg AML Principles on Private Banking” (2002) and the ”Wolfsberg AML Principles for
Correspondent Banking”(2002). The latter principle includes a more risk-based view on due dili-
gence14 and postulates an ”Enhanced Due Diligence” approach containing a richer information

3According to the Bank Secrecy Act all banks had to report transactions with an total amount over USD 10,000 to the
authorities.

4See http://www.admin.ch/ch/d/sr/c955_0.html.
5In Switzerland for a minimum of ten years.
6This means the Suspicious Activity Report (SAR).
7This stands for the Money Laundering Reporting Office Switzerland (MROS).
8See http://www.admin.ch/ch/d/sr/c956_1.html.
9See http://www.finma.ch.

10The FATF is housed at the headquarters of the OECD in Paris; also known by its French name Groupe d’action
financière sur le blanchiment de capitaux (GAFI). See http://www.fatf-gafi.org.

11Now the G8 forum - the Group of Eight, consisting of the group’s member countries Canada, the Russian Federation,
France, Germany, Japan, Italy, the United Kingdom, and the United States, together with the European Union. See http:
//www.g8italia2009.it.

12See http://www.wolfsberg-principles.com.
13Available from http://www.wolfsberg-principles.com/standards.html.
14Correspondent Banking Clients presenting greater risk should be subjected to a higher level of due diligence. Accord-

6 Chapter 2. Motivation

exchange transfer in bank-to-bank transactions and an examination of the anti-money laundering
measures taken by the counterparty.

There are several compliance frameworks and methodologies helping to detect and avoid
money laundering like Basel II15, Fair and Accurate Credit Transactions Act (FDICIA)16, Gramm-
Leach-Bliley Act (GLBA)17 and Sarbanes-Oxley Act (SOX)18 to name some of them. Depending
on the grad of internationality, companies worldwide have to comply with some of them by
implementing the key concepts, providing all the required financial statements to stakeholder
and governmental agencies and being successfully audited on a regular basis.

2.1.3 Criticism

At same time the money-laundering regulations are getting more comprehensive and versatile,
they also meet with criticism. Geiger and Wuensch [Geiger and Wuensch, 2007] published a study
conducted in Switzerland, Singapore and Germany on the impact of AML measures on banks and
the financial services industry. According to their survey, they found that banks consider the com-
pliance with AML rules essential and important but also highly burdensome, causing significant
costs and efforts. In addition they observed a ”broad consensus amongst practitioners and scien-
tists that the impact of money laundering prevention on the predicate offences is small” [Geiger
and Wuensch, 2007]. Possible reasons are found in the anticipation of the AML restrictions and
use of still existing alternatives by the criminals. The fraudster can keep the money in an anony-
mous form like cash and coins and use informal value transfer systems like the Hawala or Hundi
system19 without paying taxes, avoiding mandatory reporting on large transactions to the gov-
ernmental agencies nor leaving a treasonable paper trail. Furthermore, the criminals may use
non-designated institutions and private individuals to repurify the criminal money or contrari-
wise they could avoid the need to launder money by keeping the criminal money in the criminal
world20. Besides the economic damage resulting by increased transaction costs and discrimina-
tion of actors and countries with lower reputation, consequences are carried out by the society
through loss of civil liberties, most likely privacy.

ing to the KYC principle, the risk should be calculated based on named indicators on time the relationship is initiated and
on a continuous basis.

15The Basel Committee on Banking Supervision created the Basel II accord containing a three-pillar concept with rec-
ommendations on regulations and banking law issues like the amount of capital a bank has to put in reserve to overcome
financial and operational risks. Money laundering is faced by a possible reputation or legal risk a bank gets maybe ex-
posed to. See http://www.bis.org/publ/bcbsca.htm.

16Covering Identity Theft Prevention and Credit History Restoration (Fraud, money laundering), Improvements
in Use of and Consumer Access to Credit Information, Enhancing the Accuracy of Consumer Report Information
and so forth. See http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=108_cong_public_
laws&docid=f:publ159.108.

17Amongst others, GLBA defines pretexting protection, hence fraudulent access to personal non-public financial infor-
mation by phone, mail or phishing. See http://banking.senate.gov/conf/.

18SOX defines several requirements for trustworthy financial reporting like Auditor Independence, Corporate, Criminal
and Corporate Fraud Accountability. See http://www.sarbanes-oxley.com/section.php.

19From the United States Department of the Treasury Financial Crimes Enforcement Network (FinCEN) Advisories
Number 33 (March 2003) on Informal Value Transfer Systems.

20As a side note, the authors points to the fact that if the whole world gets criminal, money laundering even becomes
impossible.

2.2 Money Laundering detection and related work 7

Based on the sensed small impact on money laundering, increasing regulations against money
laundering and hardly quantifiable costs and benefits of these counteractive measures, the au-
thors ascertains that compared with the monetary and non-monetary costs of AML prevention
for the society and the economy, the benefits are small. Geiger and Wuensch propose an in-depth
review of the current approach instead of continue broadening and deepening the current AML
frameworks.

2.1.4 Conclusion

As can be seen, there are several governmental, inter-governmental and non-governmental insti-
tutions that try to prevent money laundering by introducing direct obligations, guidelines and
standards. And since almost all types of banking activities are made using a computer instead
in front of a cashier’s desk, the main principle to know your customer is getting hard to realize.
In early days, the clerk was in direct contact with the customer and it was much easier to get the
customers intentions. Nowadays, computer programs analyze and interpret transactions accord-
ing to predefined and calculated usage attributes, actual law, international blacklists and so forth.
In order to achieve customer satisfaction, they have to prevent false-positives as good as possible
to avoid for instance, that a cash transaction originating from a recently graduated Swiss student
traveling through the U.S. for the first time, therefore renting a car, paid with a credit-card, is
blocked.

These technical aspects are described in the following sections together with the needs of Al-
phaFin and the implemented solution.

2.2 Money Laundering detection and related work

The last section gave an impression about the legal actions taken against financial fraud. Since
global electronic (payment) transactions are widely used, the volume is increasing and resulting
in the need of having them monitored constantly, autonomously and close to real-time. On the
one hand, strict defined legal boundaries are monitored and automatically trigger an alarm. Such
examples are transaction amount limits that are crossed or entries from an international blacklist
that are hit. On the other hand, the behavior of an individual actor is labeled, stored and moni-
tored over time. Fraudulent behavior is then detected as a significant deviation from the normal
condition. But because the criminal mind is visionary and adaptive, criminals usually find ways
to bypass existing measures [Bolton and Hand, 2002].

In this section the current approaches and some available commercial products are presented.

8 Chapter 2. Motivation

2.2.1 Introduction

Wire transactions are data telegrams sent from one actor to another. As shows in Figure 2.1,
the originator instructs Bank A to send money via a chain of intermediaries to the beneficiaries
Bank B. Both, payer and payee could be a person or business. In an international perspective,
the Society for Worldwide Interbank Financial Telecommunication (SWIFT) provides a network
for interchanging financial messages between all types of financial and non-financial actors. The
messages are built according to the SWIFT Standards identified by an message type21. Depending
on this type, the telegram contains items such as the identity of originator, beneficiary and the
participating banks, transaction date, the transaction amount and some free text fields. Sometimes
fields are left blank, filled with internal data or at the worst contains errors. Automatic error
detection software based on semantic and syntactic constraints is needed to prevent incomplete
messages [Bolton and Hand, 2002].

Figure 2.1: The flow of money and informations in a wire transaction according to [Chang et al.,
2008].

In contrast to credit card and telecommunication fraud, where the fraud normally comes to
light at an early stage, time is a significant factor in anti-money laundering efforts. Years can
go by until the laundering process is detected, all accounts and involved parties are identified.
Therefore, improvements in the range of customer record management systems are needed.

In early days, fraud detection was performed manually triggered by some fixed size transac-
tion amounts. In order to match the tactics of the authorities, the money launderers divided larger
sums into multiple smaller amounts and deposit them in different banks [Bolton and Hand, 2002].
This practice, termed smurfing or structuring, shows that anti-money laundering systems must

21For example, MT1xx stands for an message concerning customer payments and cheques; MT2xx for a financial insti-
tution transfer message. See http://www.swift.com/solutions/standards/index.page.

2.2 Money Laundering detection and related work 9

continuously learn how to react on new proceedings. Switching between wire and cash move-
ments, using single transfers of low amount, use of complex bogus companies or false invoicing
is used to obfuscate fraudulent actions. The situation gets even more complicated by the fact that
banks often won’t share all the details of their findings because of strong competition, confiden-
tiality and privacy reasons.

2.2.2 Basic money laundering detection pattern

A proposal for wire transfer monitoring was published by the U.S. Congress, Office of Technology
Assessment (OTA) in 1995. They list four categories of technologies needed for detecting money
laundering according to Figure 2.2.

Figure 2.2: Core technologies proposal according to [OTA, 1995].

1. Data transformation is used to normalize input data in terms of removing variations in for-
mat and spelling; the determination of the real originator and beneficiary even if multiple
accounts numbers are used and the creation of new data records by aggregating input.

2. Knowledge acquisition is used to construct new profiles used for the screening step later on.
Therefore, knowledge-based systems are used to make inferences on fraud detection. They
are constructed by knowledge engineering (e.g. interviewing AML experts and creating
rules) and knowledge discovery techniques such as machine learning, statistical model
building, cluster analysis and case-based reasoning. In addition, visualization techniques

10 Chapter 2. Motivation

are used allowing human analysts to examine data by recognizing patterns based on their
own knowledge. Additional data from several input sources like financial reports and gov-
ernmental registries is aggregated here too.

3. Wire transfer screening is the central part of the pattern including knowledge-based systems
(according to knowledge acquisition) and link analysis. It uses the processed input data and
the created profiles to create alerts. In most cases this alerts are processed by an AML expert
and a SAR will be filled, if the suspicion is substantiated. Link analysis techniques explore
associations among a large number of objects with different types. This functionality is
needed to uncover connections between individual accounts, people and organizations and
support the completion of existing profiles. Visualization is again needed for AML experts
to reduce the amount of data to some meaningful dimensions.

4. Knowledge sharing allows a quick and reliable sharing of profiles in a useful form, between
knowledge-based systems installed at multiple locations. Such locations are at wire transfer
systems, like Fedwire22 or SWIFT; at money center banks and maybe at all banks. Because
money laundering approaches can change rapidly, profiles in knowledge-based systems
would have to change as well.

As we will see, this pattern is largely used in most of the commercial products in Section 2.2.4
as well as for our TMatch and TMatchViz system.

2.2.3 Related work

Together with the enhancements in modern technologies, the use of information technology to
discover and protect against all kind of fraud, increased as well. [Phua et al., 2005] categorized,
compared and summarized 51 technical and review articles in automated fraud detection be-
tween 1994 and 2005. The proposed categories contribute towards our understanding of the
problem and are matter of the next subsection. [Phua et al., 2005] criticizes that in most real-world
scenarios, the data mining technique is chosen based on the emerging practical issues of opera-
tion requirements and of managerial commitment instead of technical aspects. In addition, the
authors perceive that are the time of writing, researchers tend to create complex algorithms like
neural network, which are outperformed by less complex and faster algorithms such as Bayesian
and logistic regression in the long term.

Another survey based on data mining technologies was written by [Yue et al., 2007]. They
found 15 publications focusing on financial statement fraud between 1995 and 2007. This survey
supplements the work of [Phua et al., 2005] by adding some details on possible data sources and
data mining tasks and proposing a generic data mining based financial fraud detection frame-
work. According to the found publications on detecting financial statement fraud, [Yue et al.,

22A real time gross settlement funds transfer system run by the U.S. Federal Reserve Banks. See http://www.
federalreserve.gov/paymentsystems.

2.2 Money Laundering detection and related work 11

2007] state that most of the detection algorithms methods were using regression models or artifi-
cial neural networks with accuracy rates of more than 84 per cent. Bayesian based mechanisms
were used rarely.

Four Categories

In order to organize all the different fraud detection mechanisms [Phua et al., 2005] propose the
following classification into four categories.

1. Supervised approaches on labeled data. Supervised approaches use an internal prediction model
trained by evaluating labeled test data sets. The internal model is based on Bayesian [Ezawa
and Norton, 1995; Maes et al., 1993] or (supervised) neural networks [Maes et al., 1993], deci-
sion trees, case based reasoning, statistical modeling, genetic programming or is connected
to expert and rule based systems. The type of algorithm is defined based on the desired
characteristics such as learning time, calculation speed, robustness or precision and on re-
strictions like data format and the value range. After learning, the model should be able to
separate fraudulent and non-fraudulent data sets reliably.

2. Hybrid approaches with labeled data. These approaches are similar to the first category, but
use more than one algorithm to decide if data is fraudulent or not [Maes et al., 1993]; a
consequence of the different characteristics and requirements. According to [Phua et al.,
2005], most of the hybrid approaches contain only supervised learning algorithms but there
exist some unsupervised hybrids too, learning only unlabeled data. The mixed hybrids
undercut the results of the pure supervised ones.

3. Semi-supervised approached with only legal (non fraud) data. In this category, the approaches
use only non-fraudulent data for training the internal prediction model. Fraud is detected
if an input data set differs sufficiently later on. According to Phua et al. [Phua et al., 2005],
these approaches were used in detecting internal fraud and telecommunication fraud. In the
latter case the approach was to calculate the daily behavior profile and comparing it with
overall profile. If the daily profile excesses the overall profile by a predefined threshold, a
fraudulent situation was found.

4. Unsupervised approaches. This fourth category contains unsupervised approaches based on
processing only unlabeled data sets. They usually detect changes in behavior of the ob-
served entity compared to a predicted profile [Kingdon, 2004; Fawcett et al., 1997]. They
are vulnerable to a high false-positive rate, if configured to react highly sensible. The used
techniques are link analysis, (graph-based) pattern matching [Ullmann, 1976; Gallagher,
2006; Foggia et al., 2001; Cheng et al., 2008], graph mining, peer group analysis [Weston
et al., 2008; Bolton et al., 2001], unsupervised neural networks like hidden Markov mod-
els. Again, the proper technique is based on the desired characteristics like learning time,
calculation speed, robustness or precision.

12 Chapter 2. Motivation

Conclusion

As already mentioned, the chosen approach for the final product should depend on the practical
usage of the gained results and the intended level of integration [Phua et al., 2005]. If the AML
system has the purpose to process unstructured data from several text-based data sources the
output will most likely be text-based too, which often requires sophisticated rule based system or
workflows, including human expert for further processing. In contrary, in the case of structured
data, the AML system is able to make a reliable autonomous decision by, for example, setting a
flag, raising an alert or even denying the transaction in real time. That is very probably the reason
why all found commercial products in Section 2.2.4 use a combination of different techniques
like rule based systems for sanction or PEP screening, data mining techniques for transaction
monitoring and profiling of the customers activities and link analysis to highlight hidden linkages
between transactions, customers and accounts.

In order to tie with the critics of [Phua et al., 2005], we faced a similar problem with the algo-
rithms in TMatch and the interpretation of the results. If the user has to decide how to proceed
with an array of numerical results or which modules he should use for a job, all of them have to
straightforward to understand even without the whole knowledge about the internal computa-
tion.

At AlphaFin, labeled fraudulent data was not available and all findings were reported in un-
structured text without reference to the actual data [Luell and Bernstein, 2009]. Supervised ap-
proaches are only used in terms of keyword detection and rule matching. The fourth category of
approaches containing graph mining and visual graph analysis which, as you will see in Section
3.4, were used for the TMatch and TMatchViz systems too. The next subsections will present recent
work in these two fields.

Graph-based data mining

For AML purposes, a transaction between an originator A and beneficiary B of a given amount
W can be seen as a directed weighted graph structure containing two nodes A and B and one
edge from A to B with weight W . If this transaction is repeated over time, this simple graph is
changed to a directed weighted multigraph containing several edges from A to B.

The basic graph pattern matching problem is to find a target graph in another graph structure.
According to [Gallagher, 2006; Black and Lovrencic, 2004], this is formally defined as:

1. A data graph G is composed of a set of vertices V and edges E. Each edge e ∈ E is a vertex
pair (vi, vj) where vi, vj ∈ V .

2. The target (pattern) graph is defined as graph P = (Vp, Ep).

3. For pattern matching, a subgraph G′ of G is matching if G′ = (V ′, E′) and V ′ ⊆ V and
E′ ⊆ E. The final result set S is defined as S ⊆ G.

2.2 Money Laundering detection and related work 13

A common problem in working with graph structures is to find such subgraphs in a set of
graphs. According to [Black and Lovrencic, 2004], a subgraph is defined as graph whose ver-
tices and edges are subsets of another graph structure, or formally: The graph G′ = (V ′, E′) is a
subgraph of a data graph G = (V,E), iff

1. V ′ ⊆ V and

2. E′ ⊆ E ∧ ((vi, vj) ∈ E′ → vi, vj ∈ V ′).

Subgraph isomorphism is known to be an NP complete problem [Gallagher, 2006; Foggia et al.,
2001], having a complexity of O

(
nk

)
. Time requirements of brute force matching algorithms in-

crease polynomially with the size n of the input graph [Foggia et al., 2001], which causes long
computational times and high memory requirements. At AlphaFin computational resources like
disk-space and memory can be a critical matter of expense [Luell and Bernstein, 2009]. Depend-
ing on the task, pattern matching does not have to provide exact matching. Inexact matching
algorithms enable the use of wildcards or cardinality operators and are faster to solve, since the
target pattern itself is imprecise compared to the exact search pattern.

In graph mining, the goal is to find a set of most common or interesting patterns in a graph
[Gallagher, 2006]. One method is the mining of frequent subgraphs [Yan and Han, 2002; Han
and Kamber, 2000]. Therefore, the definition of graph pattern matching is enhanced by a new
function. frequency(G’) is the number (or percentage) of existing subgraphs G′ in the data graph
G. A frequent subgraph S′ is a graph with frequency(S’) ≥ min freq, a threshold value. The gen-
eration of frequent subgraphs candidates G′ is done by starting with a small graph and adding
additional vertices and edges; called ”Apriori levelwise approach”. gSpan [Yan and Han, 2002] is
an approach towards better candidate generation.

Eberle and Holder [Eberle and Holder, 2007] developed new algorithms for analyzing graph
substructures. They detect structural anomalies, caused by modifications, insertions and dele-
tions of graph components. The algorithms are based on the fact that fraudsters will try to hide
their actions by behaving as close as possible to legitimate activities. The algorithms work for data
sets containing all the needed information to detect different types of anomalies. As shown by the
authors, this works for cargo shipment and network intrusion detection because of theirs recur-
rent patterns. As an example, in cargo shipment an extra traversed port or a missing statement in
the shipment documents implies a certain probability of smuggling.

However, for AML purposes the data sets and customer profiles are potentially incomplete
and consist of the tacit knowledge of the customer consultant according to the KYC principle.
Depending on the customers business, the financial transaction won’t even be recurrent. Nev-
ertheless, having the transactions in a graph structure allows the use of graph theory such as
subgraphs, network routing and flow calculations [Blessing, 1998]. As you will see in chapter 3,
TMatch will use graph-based data mining for data processing.

14 Chapter 2. Motivation

Visual Explorations

After the Visual Analytics Science Technology Symposium in autumn 2007, [Ribarsky and Dill,
2008] refer to a strong interest in collaboration between visualization scientists and researchers
from areas like mathematical and statistical methods, social analyses or financial analytics hap-
pened. Fraud discovery is strongly influenced too. Ziegler et al. [Ziegler et al., 2007] describe an
approach to detect atypical behavior in financial markets based on two dimensional color maps.
Therefore, they monitor the performance of some chosen assets, calculate the significant charac-
teristics and compare them over time to the performance of the whole market. The color map
covers a range of colors from red, standing for negative growth and loss, over beige, meaning un-
changed growth, to green for positive growth and profits. The two used dimensions are time of
purchase and time of sale. After the color map is calculated for a specific asset, it reveals whether
the asset behaves differently that most others in the past, or whether another asset would have
been a better investment and other correlations. These uncovered facts are easily recognized for
a human eye compared to the large sized data sets standing behind the image.

In money laundering, the layering step in Section 2.1.2 is done for instance by buying assets
over price and selling at a loss. The loss resulting from the deal is small compared that the residual
money has now a cleaner history [Altenkirch, 2006]. It is quite possible that an AML specialist
obtains a new visualizations-based instrument to detect layering attempts.

Another approach [Huang et al., 2009] uses visual surveillance of market performance and
a behavior-driven visual analysis of trading networks to defect financial fraud. Therefore, 3D
treemaps and social networking visualization are used as visualization techniques.

WireVis is a tool for the analysis of financial wire transactions for fraud protection, built and
described by [Chang et al., 2008] in collaboration with the Bank of America. It uses a multi-view
approach including a keyword heatmap and a keyword network graph to visualize the relation-
ships among accounts, time and keywords within wire transactions. All the textual elements
contained in a transaction data record are seen as keywords. Whether a keyword is indicating
high risk or not is defined by several keyword lists, based on intelligence reports, previous anal-
yses and input from third parties. The analyst has the ability to aggregate and organize groups of
transactions and to trill-down into single records and compare them. If for example a keyword
shows abnormal temporal patterns the information provided in the different views let the analyst
locate all involved parties and start further investigations.

However, for wire transactions it seems to be adequate to use a keyword-based temporal ap-
proach to detect money laundering attempts. But since a transaction data store contains more
valuable information like the transaction amount and accounts involved over time, there is an
imminent risk of overlooking important evidence.

2.2 Money Laundering detection and related work 15

2.2.4 Available anti-money laundering solutions

As expected, most of the commercial AML software solutions are hardly documented for the pub-
lic and their internal mode of operation is a well-guarded secret, opened only to the customers.

An exception is found in the publication of Searchspace23 approach to fight money laundering.
J. Kingdon [Kingdon, 2004] presents the proceedings towards building an artificial intelligence
based AML system. Searchspace used a multidimensional adaptive probabilistic matrix to set
the customers behavioral pattern and track it over time. The used dimensions were customers,
accounts, products, geography and time. In order to improve stability and thereby the detection
results, they added a threshold-based monitoring module. A peer group analysis module added
the ability to distinguish normal and suspect transactions based on certain criteria such as account
type and branch of trade. The author states a 1-in-14 false positive rate of that system. Information
on the false-negative rate, estimated missed positives and deployment in other banks are left out.

In august 2006, Celent24, an American research and advisory firm, published an evaluation on
AML solution vendors. They created a framework containing four categories such as advanced
technology, breath of functionality, customer base and depth of client services applied to watch
list filtering and transaction monitoring products. Katkov [Katkov, 2006a] gives an overview on
the evaluated transaction monitoring solutions vendors. Vendors selling a feature rich and ad-
vanced technical product are Norkom Technologies25, Mantas26, NetEconomy27, SAS Institute28

and Fortent. Fiserv put its part of the Celent evaluation results online. According to [Katkov,
2006b], their ERASE financial crime suite contains transaction monitoring using mechanisms like
rule-based analysis, creation of account profiles, peer group analysis for risk scoring. Users have
several predefined configurations to choose from as well as rich visualization tools to display
transaction activity over time and compare it to average behavior, influencing scoring properties
and profiles (Figure 2.3) or network visualization including account relationships and transaction
flows between them. In addition they provide watch list filtering for real-time screening of wire
transactions and account transactions, supporting global and governmental high-risk lists. An
automated alert investigation module supports the automatic investigation of manual alerts or
SARs; a case management module manages the investigation workflow and finally a reporting
toolkit generates files for regulatory reports including audit trails of activity and case history.

Conclusion

It is surely not surprising that the complete evaluation paper is only available for Celent cus-
tomers. The information on the vendor web pages implies that it crucial to have a risk-based
approach in detecting AML attempts. Most of the current commercial solutions use rule-based

23In June 2006, Searchspace and Semagix merge and formed Fortent, a company working in the risk and compliance
area. See http://www.fortent.com.

24See http://www.celent.com.
25See http://www.norkom.com.
26Is now a part of Oracle. See http://www.oracle.com/us/industries/financial-services.
27NetEconomy is now a business unit of Fiserv, Inc. See http://www.aml.fiserv.com.
28See http://www.sas.com.

16 Chapter 2. Motivation

Figure 2.3: User interface to modify an behavior profile in Fiserv’ Dynamic Risk Scoring Module.

techniques, generate behavior profiles over time using link and group analysis to enrich and com-
pare them and include visual analysis tools. In terms of [Phua et al., 2005] the mechanisms are
often from the second and forth category.

2.3 Suggested solution

After this introduction into the legal, organizational and technical background needed to fight
money laundering, an AML solution for AlphaFin should contain a risk-based approach to lower
the false-positives rate, the load on the monitoring system, and finally the load of the AML spe-
cialists. Furthermore it should contain an intuitive graphical workbench where analysts are able
to track fraudulent actions in place and time and set up intuitive filters to focus on relevant data.
Legal regulations, international and governmental risk-keyword lists should be considered au-
tomatically. If an action hits a certain risk level, an alarm should be sent to the user containing
all needed details such as reason of the alarm, all the action details and possible links to existing
user profiles. But instead of waiting until a legal or governmental boundary is hit, the solution
should be able to detect uncommon financial transactions patterns, rate them and present them to
the analysts in suitable format. Figure 2.4 shows the proposed investigation process for AlphaFin.
The evaluation and, if enough evidence is found, the investigation phase is executed by AML spe-
cialists. Nowadays, human resources are expensive. The concept to replace human analysts by
information technology contains the risk of losing knowledge in detecting fraudulent behavior.
Simply spoken, IT systems work in terms of probabilities and triggers, humans in terms of facts
and feelings. In order to combine both worlds should be the aim of this solution.

2.3.1 Requirements of the solution

As previously mentioned, AlphaFin has a data mart containing financial transactions from several
years. Each day a huge amount of new data is stored. Data access and handling is severely
limited due to strict confidentiality regulations as well as the computational resources are very
limited [Luell and Bernstein, 2009]. The solution has to be built on plain SQL queries, working

2.3 Suggested solution 17

Figure 2.4: The proposed investigation process.

on a secured IBM DB229 database server. Stored procedures should be avoided; the creation of
temporary tables is allowed. The final solution should scale to analyze hundreds-of-thousands
up to millions of transactions in feasible time. The output has to be stored into another table for
further processing by TV , the transaction visualizer, or other analysis tools.

As proposed, the final AlphaFin solution should use a risk-based approach for an optimal
resource allocation. Within our approach, this is done by additional prefiltering of the input
database by attributes, like the geographical location or the business category of the account
holder. As a direct consequence, the main data source table should be configurable having a
regular table, a SQL view or a materialized query table type.

The found transaction patterns should be scored in several ways to assist an AML expert in
further processing. The scoring mechanisms and results have to be intuitive and easy to under-
stand. In order to develop the final specifications, one-way prototypes of the algorithm parts have
to be build and tested together with an AML expert.

The solutions should contain a modern graphical user interface with the possibilities to con-
figure the mining and scoring algorithms, to start and observe the search process and to evaluate
the results. Error messages should be displayed in a suitable way.

Due to the fact, that neither real world data nor fraudulent data examples are available [Luell
and Bernstein, 2009] and each testing prototype has to be authorized first, a feasible project man-
agement and engineering model is required.

The next section describes the implementation of TMatch and TMatchViz, the made assump-
tions and design choices. In Chapter 4 we will evaluate the proposed solution.

29See http://www.ibm.com/db2.

3
Approach Description

Since AlphaFin already has an AML section using tools to detect fraudulent actions, the main
task of this thesis is to add a new approach for finding fraudulent data. This part describes the
implementation of TMatch and TMatchViz.

3.1 Overview

As one can see in Figure 3.1, our solution contains three steps. In a first step, the AlphaFin data
warehouse (base view) is queried to create an alert graph view on the interested data. The at-
tributes and constraints to generate this view are based on possible previous alerts or given by
compliance-related reasons. The creation of this shortened dataset is large step towards higher
performance and supposed lower false-positives rate. Because of the data transformation, the
alert graph view contains only a defined set of columns, needed for the next step. This is another
improvement of speed for data retrieval. Responsible for this step is the Base Pattern Matcher
which does the transformation and some analysis, depending on its configuration. At AlphaFin, a
tool called ChainFinder is used [Luell and Bernstein, 2009] and create the datasets, TMatch works
with. This data transformation is seen in Figure 3.2.

The proper data analysis is done in step two by the TMatch module. Therefore the transaction
data, generated in step one, is reused as a big graph structure and evaluated by TMatch. The
details for this module are written in Section 3.4. After this step, the database will contain the
found graph components and the associated scorings.

In the last step, the module TMatchViz is used to display the findings from TMatch in an ap-
propriate way. For convenience, TMatchViz contains all visible aspects of this solution including
the parameterization of TMatch and its execution. After finishing the job and displaying the re-
sults, TMatchViz offers a first possibility to evaluate the findings by an operator. The operator is
able to compare, visualize or remove entries. In order to complete the workflow, the Transaction
Visualizer (TV) is used for further processing of the results.

20 Chapter 3. Approach Description

Figure 3.1: Architectural overview.

Figure 3.2: Overview data transformation.

3.2 Used Software 21

3.2 Used Software

TMatch was implemented using Java 6 JDK1 and the newest version of Eclipse2. The graph data
structures and some of the graph algorithms were provided by JGraphT3.

TMatchViz is based on NetBeans swing application framework4 implementation appframe-
work5. For visualization the Prefuse6 library was used. Because of the excellent application frame-
work support, NetBeans IDE7 was used instead of Eclipse.

iBATIS8 was used for DB2 database access. iBATIS is a persistence framework, which auto-
mates the mappings between SQL and Java objects.

For monitoring CPU and memory consumption, hot spots and leaks, the trial version of the
newest YourKit Java Profiler9 was used.

3.3 Assumptions

Some assumptions have been made, for developing the two modules.

∙ Setup. This solution is correctly installed before being used by an AML professional. The
database connection is not changeable by the operator. All the needed configurations are
done in TMatchViz.

∙ Computational resources. Because of the restriction, not being allowed to save temporary
data on the operator’s workstation, some of the algorithms were implemented using the
database as storage for temporal results. In addition, because of the high memory needs
of some algorithms, the database was used instead of local RAM10. The possibly resulting
higher delays are accepted by AlphaFin. Further fine tuning should weaken this effects.

∙ Dataset prefiltering. As seen in 3.1, TMatch is optimized for accessing prefiltered alert ta-
bles instead of the whole data mart table size. This is another limitation in order of the
computational restrictions.

∙ User-friendly. The solution has to act user-oriented and stable. In science, solutions are
often very sophisticated, prototypically and the results hard to understand. That is why the
used algorithms were built returning intuitive results, or changed to do so.

1See http://java.sun.com/javase.
2See http://www.eclipse.org.
3See http://jgrapht.sourceforge.net.
4See http://jcp.org/en/jsr/detail?id=296.
5See https://appframework.dev.java.net.
6See http://prefuse.org.
7See http://www.netbeans.org.
8See http://ibatis.apache.org.
9See http://www.yourkit.com.

10Abbreviation for Random-Access Memory. See Sections 3.4.4, 3.4.5 and 3.4.6 for further details.

22 Chapter 3. Approach Description

∙ Specifications. The specifications of the algorithms were developed over time in agreement
with an AML expert. They changed according to the actual needs and new suggestions
untill the end of this thesis.

Additional (programmatically) assumptions are mentioned in the following sections.

3.4 Implementation of TMatch

The following subsections contain the implementation details of TMatch. In order to simplify the
reuse of this component, a jar library is generated, providing a public API and java-doc11 pages.
This library is used for the implementation of TMatchViz in Section 3.5.

Informations on how to add new algorithms or scorer models to TMatch are found in Section
A.3. The creation of the TMatch library is described in Section A.4.

3.4.1 Architectural view

Figure 3.3 shows an architectural view of TMatch. A global configuration registry administers all
the configuration entities needed. The runner object coordinates the execution sequence of the
graph expander module, the component calculation and the scoring part. The graph expander
works with the data from the alert graph view. This view is created by the predecessor compo-
nent; the base pattern matcher. As mentioned before, the database access is made using iBATIS
and sometimes for convenient or technical reasons plain SQL syntax. The graph expander creates
a JGraphT graph structure containing all the transactions of interest, the component calculation
module extract all weak components out of the structure and the scorers evaluate the different
weak components. The graph components and scorings are saved to the database.

All output is logged by a central logging facade. Further information on how to activate or
deactivate logging is given in Section A.8.

3.4.2 Configuration

A global configuration is needed, since there are many different parameters that have to be set for
each run. The registry is implemented by a Java Properties class. This offers the advantage, that
different files for system and user properties are supported. At runtime the files are merged to-
gether providing a single configuration access. The keys of the entries are defined at the respective
classes, together with public getter and setter methods if needed. This global registry is invoked
by the TMatchViz system too, using the according API methods. The default configuration values
are shown in Table A.2.

11See http://java.sun.com/j2se/javadoc.

3.4 Implementation of TMatch 23

Figure 3.3: Overview TMatch.

3.4.3 Runner

The runner object implements the workflow of TMatch. It coordinates and configures the different
components and the database storage, according to the pipe and filters pattern. As mentioned,
the memory consumption had to be kept low. For this reason the invoked components are con-
figured to use temporarily results stored in the database instead of using local RAM, like Java
Collection objects12. In a first step, this object verifies the database access and all the needed
SQL functionality. This is important, due to some of the unique DB2 SQL statements used in the
queries.

3.4.4 Expander

The expander module evaluates a set of interesting nodes to analyze possible connections be-
tween them and others, yet unknown nodes. Therefore it loads the account data from the config-
ured start and target account lists, merges them and accesses the alert graph view like a directed
multigraph. The entities from the account lists are now the starting points for the search. The
search is finished for a specific start-node, if there are no connections left, a loop is detected,
another interesting node is hit or the search depth reaches a configured maximum threshold.
The decision if a new node should be taken into account is implemented by the class method
ch.uzh.tmatch.algorithm.NodeSetExpander.isInteresting(). This method handle all the value range
and flag verification according to the configured parameters. In Listening 3.1 the pseudo code
of the expander class is shown.

A multi-threaded expander was built, to exploit the (marshalling and unmarshalling) time,

12Originally, the results from the first components were the input of the second. But since some of the results are kept
in the database, the pipe and filter pattern was not applicable in all cases.

24 Chapter 3. Approach Description

iBATIS needs to build and transmit queries or receive results. For the coordination of the expand-
ing process, some Java Collection objects were used. The implementation is thread-safe, includes
no prepared statements and works with results, saved in temporal tables; therefore with lower
RAM consumption for the local computer. The runtime behavior of the different threads is shown
in Figure 4.5.

Figure 3.4: TMatch workflow: transaction in the alert graph table; expander, component finder
and scorer output.

Figure 3.4 shows the data of the alert graph table and the expanding results. Visible are three
different components in the result set, yet combined in the same graph instance. The expander
converts a multigraph into a single graph for calculation and node filtering, according to the
configuration. The runner component defines how the conversion for edges with same node-
pairs and direction works: adding up the edge weight values, or counting the number of edges.
The result of this expanding step is an instance of the JGraphT DirectedWeightedMultigraph class,
assigned to the next filter.

According to the specifications, active nodes are of interest; highly interdependent structures
are rather uninteresting. A node is seen as active, if there are several connections or different
amounts assigned over time.

Table 3.1 shows the available filter settings and their meanings. The default values are found
in Section A.7. These settings have an immediate impact on the size of the resulting node set
based on the examination of each node. The component calculation part uses the similar settings,
but they are applied on the aggregated component member nodes instead of the underlying alert
graph nodes.

3.4.5 Component Calculation

According to Figure 3.4, the component calculation module, or component finder (CF), use the
results from the previous expander step and calculates all the maximally connected components.
Afterwards, CF filters the components according to the configuration, calculates some additional
metrics and stores the remaining subgraphs and metrics in the database. Depending on the defini-
tion in Section 2.2.3, this step is where data mining is performed. The result is a list of subgraphs,

3.4 Implementation of TMatch 25

Property Key Summary

NSE.DEPTH This value defines the maximum search depth of the
expander algorithm.

NSE.NUM INCOMING EDGES This value defines the minimal overall number of
incoming transactions, a node needs to have. If the
amount is lower, the node is filtered out.

NSE.NUM OUTGOING EDGES According to NSE.NUM INCOMING EDGES, this
value defines the minimal overall number of outgo-
ing transactions, a node needs to have.

NSE.TOTALAMOUNT IN This value defines the minimal overall incoming
transaction amount, a node needs to have. If the
amount is lower, the node is filtered out.

NSE.TOTALAMOUNT OUT According to NSE.TOTALAMOUNT IN, this value
defines the minimal overall outgoing transaction
amount, a node needs to have.

NSE.THRESHOLD PASSAGE FLAG This value defines the threshold, used for passage
flag detection. A value of 0.9 means that the overall
outgoing amount must be greater or equal than 90
percent of the overall incoming transaction amount.

NSE.REMOVE LONELY NODES If this value is set, the expander algorithm will re-
move lonely nodes from the final graph structure.

NSE.DB REUSE EXPANDED DATA If this value is set, the expander algorithm will reuse
previous results. This is very time-saving, if a calcu-
lation in repeated, having the component finder or
scorer configuration changed.

GL.CREATE DB INDEX According to this value, the expander algorithm
will create or refresh database table indexes. This
is very time-saving but not usable if the alert graph
is a database view.

NSE stands for the namespace NodeSetExpander
GL stands for the namespace Global

Table 3.1: The Expander configuration keys

26 Chapter 3. Approach Description

1 targetNodeSet := {User input : merged S t a r t− and Targe tNodeSe t f i l e s }
2 seenNodeList := {Empty l i s t }
3 FOR each o r i g i n a t o r in targetNodeSet DO
4 BEGIN
5 { I n i t i a l i z e s t a c k s }
6 actualNodeStack := new Stack ()
7 nextLevelStack := new Stack ()
8

9 { Get a l l b e n e f i c i a r y nodes f o r t h i s o r i g i n a t o r }
10 benLis t := queryDb (o r i g i n a t o r)
11 actualNodeStack . add (benLis t)
12

13 { Analyze u n t i l a p r e c o n f i g u r e d s e a r c h d e p t h i s r e a c h e d }
14 FOR i :=0 to getMaxDepth () DO
15 BEGIN
16 { P r o c e s s a l l node o f t h i s l e v e l }
17 WHILE actualNodeStack not empty DO
18 BEGIN
19 a c t u a l T r a n s a c t i o n := actualNodeStack . pop ()
20 a c t u a l O r i g i n a t o r := a c t u a l T r a n s a c t i o n . g e t O r i g i n a t o r ()
21 a c t u a l B e n e f i c i a r y := a c t u a l T r a n s a c t i o n . g e t B e n e f i c i a r y ()
22

23 { Check f o r l o o p s }
24 IF a c t u a l O r i g i n a t o r == a c t u a l B e n e f i c i a r y DO
25 //Nothing .
26

27 { Check f o r h i t }
28 ELSE IF targetNodeSet . conta ins (a c t u a l B e n e f i c i a r y) DO
29 // Save connect ion in seenNodeList and database
30

31 { Check f o r a l r e a d y known nodes }
32 ELSE IF seenNodeList . conta ins (a c t u a l B e n e f i c i a r y) DO
33 // I n s e r t the connect ion or update the connect ion weight
34

35 { Check i f t h i s node i s i n t e r e s t i n g }
36 ELSE IF i s I n t e r e s t i n g (a c t u a l B e n e f i c i a r y) DO
37 // Save connect ion in seenNodeList and database
38 // and add i t to the nextLevelStack
39 END
40 { Enter t h e nex t l e v e l : s w i t c h t h e a c t u a l N o d e S t a c k and

n e x t L e v e l S t a c k }
41 END
42 END

Listing 3.1: TMatch expander pseudo code.

3.4 Implementation of TMatch 27

ordered by the node size.
According to [Lovrencic, 2004] and the definitions in Section 2.2.3, a subgraph G′ = (V ′, E′) is

a maximally connected component of the graph G = (V,E), if:

1. G′ is connected, and

2. for all vertices u with u ∈ V and u /∈ V ′ there is no vertex v ∈ V ′ for which (u, v) ∈ E

After the search process is finished, the metrics and flags in Listing 3.2 are calculated for all
resulting subgraphs.

Metric Summary

Graph Density The graph density is calculated with different connection orders, to
filter out ”noise”. A result of 1 means fully connected.

Degree Centrality The maximal and average degree centrality is calculated for each
subgraph. Therefore, the degree of each node in the subgraph is
added up for the average and compared to the highest value seen
for the maximum-calculation. A value of 1 for a node means that
the node is connected with all other nodes in the subgraph. For the
subgraph, a maximum centrality of 1 and a low average centrality
are indicators of a ”star structure”.

Cycle-Node-Ratio The cycle-node-ratio is calculated by creating a subgraph of all cy-
cles. The ratio is the node size of the found cycle-subgraph, divided
by the size of the analyzed subgraph from the CF results.

Total-Amount-In This value contains the sum of all incoming transaction amounts.

Total-Amount-Out This value contains the sum of all outgoing transaction amounts.

Total-Amount-In Flag If the Total-Amount-In value is higher or equals than the configured
CF.THRESHOLD TOTAL AMOUNT IN FLAG, this flag will be set
to 1.

Total-Amount-Out Flag If the Total-Amount-Out value is higher or equals than the con-
figured CF.THRESHOLD TOTAL AMOUNT OUT FLAG, this flag
will be set to 1.

Passage Flag If the difference of Total-Amount-In and Total-
Amount-Out is higher or equals than the configured
CF.THRESHOLD PASSAGE FLAG, this flag will be set to 1.

Table 3.2: The calculated component metrics and flags.

A design decision was to abandon a separate search for strongly connected components, since
they are of low interest and the search for weakly connected subgraphs will include them too.
The JGraphT class org.jgrapht.alg.ConnectivityInspector was used for the connected component de-
tection.

Table 3.3 shows the available filter settings and their meanings. The default values are found
in Section A.7.

28 Chapter 3. Approach Description

Property Key Summary

CF.THRESHOLD TOTAL AMOUNT IN FLAG This value defines the threshold, used for
the total-amount-in flag detection. It de-
fines the minimal overall incoming trans-
action amount, a node must reach to get
an active flag set.

CF.THRESHOLD TOTAL AMOUNT OUT FLAG According to the AMOUNT IN FLAG,
this value defines the threshold for the
total-amount-out flag detection.

CF.THRESHOLD PASSAGE FLAG This value defines the threshold, used for
passage flag detection. A value of 0.9
means that the overall outgoing amount
must be greater or equal than 90 percent
of the overall incoming amount.

CF.MINIMAL COMPONENT SIZE This value defines the minimal compo-
nent size. Components with lower sizes
will be discarded.

CF.CALC WEAK COMPONENTS Deprecated, since only weak connected
components are used.

CF stands for the namespace ComponentFinder

Table 3.3: The Component Finder configuration keys

3.4 Implementation of TMatch 29

Property Key Summary

GL.SCORER MODEL LIST This value is a comma separated list, including all the scoring
models that will be invoked for scoring.

GL stands for the namespace Global

Table 3.4: The Scorer configuration key.

3.4.6 Scorer

After the separation into graph components, the seven scorer models are loaded for each sub-
graph, calculate the score and save it to the database. This is shown in the last step of Figure 3.4.
The scorers are enabled or disabled according to the configuration.

In accordance with the specification not only the grand total but each score is sent to the
database, having the scorer identification string as key. The range of the result value is config-
urable in the ch.uzh.tmatch.score.AbstractScoreModel class by the minimalResult and maximalResult
variables. The decision was, to go without a configuration option for this values, because of the
normalization and thereby better understanding of the results.

Table 3.4 shows the available configuration setting. The default value is found in Section A.7.

ch.uzh.tmatch.score.SizeScoreModel<V, E>

The SizeScoreModel calculates a score for a component based on all found components. The dis-
tribution of the resulting score lies between 0.0 and 1.0 whereas 1.0 means that there is just one
component containing all nodes. A score of 0.5 is reached, if there are two components found,
having the same number of nodes. The calculation is implemented as follow:

1. Sum up the nodes from all found components

2. Calculate the fraction for a particular component, by dividing the components size by the
total node count

ch.uzh.tmatch.score.PassageScoreModel<V, E>

The PassageScoreModel calculates the amount of nodes with an active passage flag, against the size
of the component. The distribution of the resulting score lies between 0.0 and 1.0, whereas 0.0
means that no active passage flags were found. The calculation is implemented as follows:

1. Sum up the nodes with an active passage flag

2. Calculate the fraction by dividing the components size by the total flag count

30 Chapter 3. Approach Description

ch.uzh.tmatch.score.PassagePathScoreModel<V, E>

The PassagePathScoreModel searches for connected passage-flag nodes (passage-path) in each com-
ponent and calculates an overall rating. The distribution of the resulting score is between 0.0 and
the highest found passage-path length. The calculation is implemented as follows:

1. Search and count connected nodes with an active passage flag

2. Calculate the min/max/average passage-path length for each component

According to the specification, only average results are used. In a component containing 4 passage-
paths, a value of 5.0 means for example, that there are two paths of length 4 and two of length 6.
This scorer uses a recursive approach and is very memory consuming. For highly comprehensive
networks, this scorer should be turned off.

ch.uzh.tmatch.score.StartEndSetScoreModel<V, E>

The StartEndSetScoreModel calculates a score for a component, based on the start and target ac-
count sets. The distribution of the resulting score lies between 0.0 and 1.0, whereas 0.0 means,
that zero nodes matches a start/end set account. The calculation is implemented as follows:

1. Calculate a fraction by dividing the result-value range by the number of nodes in the start
and end sets.

2. Walk through a component and search for nodes from the start and end account sets.

3. Add the fraction to the resulting score for each hit.

ch.uzh.tmatch.score.TransactionTypeCountScoreModel<V, E>

The TransactionTypeCountScoreModel counts the occurrence of predefined transaction type values
within all transactions of the component (e.g. ”Cash-in” transactions). The transaction types
are read from the transaction-type input file. In order to count all transactions, not the aggregated
node-to-node edges are used. The scorer queries all the underlying transactions from the database
and count the hits. The distribution of the resulting score is between 0.0 and 1.0. If the transaction
type is set to ”Cash-in” a result of 0.1 means that 10 percent of all the transaction in the component
have that type set. The calculation is implemented as follows:

1. Count the number of transactions matching the transaction-type, according to an predefined
input set

2. Count the total number of underlying transactions of this component

3. Calculate and return the result of number of type-matches divided by number-of-transactions

3.5 Implementation of TMatchViz 31

ch.uzh.tmatch.score.TransactionTypeAmountScoreModel<V, E>

The TransactionTypeAmountScoreModel works like the TransactionTypeCountScoreModel, but in-
stead of counting the occurrences, it adds the transaction amount of all found transactions. The
resulting score is calculated by dividing the transaction-amount of transactions with a particular
type, by the total amount of all transactions in the component. The distribution of the resulting
score is between 0.0 and 1.0. If the transaction type is set to ”Cash-in” a value of 0.1 means that
10 percent of all the transaction-amounts in the component originate from a transaction with that
type set.

ch.uzh.tmatch.score.MaximalFlowScoreModel<V, E>

The MaximalFlowScoreModel calculates the Maximum-Flow between start- and target set nodes
for each component and calculates an overall rating. The distribution of the resulting score is
between 0.0 and the highest calculated flow value. The calculation is implemented as follows:

1. Add an artificial start node to the component, connecting all nodes from the start set

2. Add an artificial end node to the component, connecting all nodes from the end set

3. Calculate and return the Edmonds-Karp Maximum Flow13

3.5 Implementation of TMatchViz

The following subsections contain the implementation details of TMatchViz, like the invocation of
TMatch, the different views, and the final distribution package.

3.5.1 Architectural View

As mentioned in Section 2.3.1, TMatchViz should offer intuitive possibilities to screen the results
from TMatch. The decision was to use an assisted approach, guiding the operator from the config-
uration to the results. At the same time, the visual impression should be a clear and tidy one. The
views are built according to the MVC design pattern. The result screen receives the data directly
from the database. For performance reasons, a query caching mechanisms was added. In order
to force a logical and technical separation of the two projects, TMatchViz accesses TMatch as an
included jar library, over its public API.

According to Figure 3.5, TMatchViz uses the scored-component tables from the data ware-
house. IBATIS is again used for querying the database. After the AML expert finishes screening
the results, these datasets will be used by TV , the Transaction Visualizer, as previously shown in
Figure 3.1.

13See code example http://en.wikibooks.org/wiki/Algorithm_Implementation/Graphs/Maximum_
flow/Edmonds-Karp. Accessed on 25th August 2009.

32 Chapter 3. Approach Description

To follow the specifications, all the TMatchViz views are created using German language.
TMatchViz must support the operation system Microsoft Windows XP.

Figure 3.5: Overview TMatchViz.

3.5.2 Configurability

In TMatchViz search profiles are used for a convenient configuration of TMatch. The profiles
are planned by business users like AML specialists, since they have the required knowledge.
The implementation of the final profiles is done by an assigned developer. Instead of using the
predefined profiles, an operator has the possibility to change all required parameters by using the
built-in ”Expert Mode”. Again, the configuration is saved as the default user profile, activated
after starting up the application and choosing ”Use no profile” in the configuration window.

Figure 3.6 illustrates the configuration screen. The additional options of the ”Expert Mode”
are shown in Figure A.4.

3.5.3 Preselection of the results

In Figure 3.7, the stored results from the database are shown. The operator is able to unhide
the intermediate scorer results, simply by clicking on the left-most action-icon. In order to get a
first impression of the found component, the operator activates the built-in graph visualizer, by
clicking on the middle action-icon. The selected component will appear, as shown in Figure 3.8.

The graph structure is movable, scalable and unfolds itself. If a node is selected by the mouse
pointer, all direct connected nodes and edges will be highlighted. If the analyst concludes that a

3.5 Implementation of TMatchViz 33

Figure 3.6: The TMatchViz configuration screen.

34 Chapter 3. Approach Description

particular component is of no importance, he can delete it from the database by clicking on the
right-most icon.

Figure 3.7: The TMatchViz result screen, showing found components and the intermediate scorer
results.

3.5.4 Distribution

According to the specification, the software system must be easy to install. At AlphaFin, the work-
stations are managed by the central IT support. In order to guarantee that the software will
overcome changes in the installed software base, a Java runtime 1.6 (JRE) is bundled together
with TMatchViz. The batch file ”Starter.bat” is used to setup the required execution environment
variables and classpath entries. Additional memory settings14 are set there too.

The TMatchViz resources, class files, libraries and the Java JRE files are packaged into an exe-
cutable archive file. The open source archive manager software 7-Zip15 was used here.

Figure A.8 shows the TMatchViz main directory content after unpacking; Figure A.9 the con-
tent of the library folder. The installation is described in Section A.6; the creation of a new
TMatchViz release in Section A.5.

14Memory settings like Xmx for the maximum java heap size or Xss, the stack size for each thread, to prevent stack
overflow errors while analyzing big components.

15See http://www.7-zip.org.

3.5 Implementation of TMatchViz 35

Figure 3.8: The TMatchViz result screen with activated component preview.

4
Evaluation

The main goal of this Master Thesis was not to improve an existing algorithm but to create a
concrete solution, based on the requirements of an AML specialist. The solutions should be used
intuitively and complement the system landscape. As mentioned before, real world data was
not available for testing or benchmarking purposes. The evaluation of the solution is based on
the processing of synthetic datasets and should show how fast the calculation is done for several
datasets.

In the next section, the experimental setup is described. In Section 4.2, the dataset generation
as well as the software configuration is presented. In 4.3, the collected results are analyzed and
discussed.

4.1 Test environment

All the experiments were conducted on an Intel Pentium 4 machine with 3.0 GHz and 1 GB
RAM on a 32 bit Windows XP operating system. Hyper-threading was activated. The com-
puter was connected directly to the university network through a 100 Mbit connection. The DB2
database server was directly connected to the university network as well. Further details about
the database server configuration like connection speed, number of CPUs, installed memory, etc.
are not available.

4.2 Test configuration

The TMatch library was evaluated using the TMatchViz interface and synthetic datasets. The
datasets were created using the sql.test.DataCreator class. Depending on the sql.test.TestdataProvider
class, random transaction entries were created. As seen in Listing 4.1, an entry contains a transac-
tion id ”BTX ID”, an originator and beneficiary account, a transaction date ”BTX DT”, an amount
and a transaction type.

38 Chapter 4. Evaluation

BTX ID: 1
ORIG: 584599
BEN: 245425
BTX DT: 24.04.2009 15:11:38
AMOUNT: 95308
TYPE: S

Listing 4.1: A sample test transaction entry from a 1M node dataset.

StartNodes.txt: 1,2,3,4,5,6,7,8,9,10
EndNodes.txt: 11,12,13,14,15,16,17,18,19,20
TransactionTypes.txt: X, Y, Z

Listing 4.2: The start node, end node and transaction type file contents.

The start node, end node and transaction type sets are shown in 4.2. These values were left
unaltered for all experiments.

In a first part, the TMatch library was configured according to the default configuration with a
search depth of 5. The default configuration properties are shown in Table A.2. The ch.uzh.tmatch.-
algorithm.ThreadedDbNodeSetExpander class was used as expander class. The measured items were
maximal memory consumption and execution time of the Runner, Expander, Component Calcu-
lation and Scorer components. Since the Runner class contains the whole workflow, its result was
used to calculate an existing overhead that occurs based on the database access test and creation
or update of the database table indexes.

In a second part, the three different expander classes ch.uzh.tmatch.algorithm.RamNodeSetExpan-
der, ch.uzh.tmatch.algorithm.DbNodeSetExpander and ch.uzh.tmatch.algorithm.ThreadedDbNodeSetExpan-
der were compared based on maximal memory consumption and execution time.

For the measurement of the maximal memory consumption, the YourKit Java Profiler was
used.

4.3 Test results

To simplify the evaluation charts, the number of nodes and edges was shifted by a factor of ten to
obtain a logarithmic scale.

Figure 4.1 shows the results of the first evaluation part. For different numbers of nodes and
edges, the node-edge ratio1 was calculated and used as x-axis in all the charts. The logarithm of
the ratio is plotted against the logarithm of the elapsed time. The execution time is increasing
(dis-)proportionately for all curves in Figure 4.1, with a ratio between 0.0001 and 0.1. For a ratio
bigger than 0.1, the time is decreasing disproportionately until a ratio of 1.0 is reached. The
computation time is between 12 to 15 sec for a ratio bigger than 1.0.

1This is the number of nodes divided by the number of edges.

4.3 Test results 39

Figure 4.1: The TMatch node-to-edge ratio to time consumption graph.

For the second part the different expander classes were compared, again for different numbers
of nodes and edges.

Figure 4.2: The expander node-to-edge ratio to time consumption graph with 10k edges.

Figure 4.3: The expander node-to-edge ratio to time consumption graph with 100k edges.

The complete results of the first evaluation part are shown in Table A.4. The results of the

40 Chapter 4. Evaluation

Figure 4.4: The expander node-to-edge ratio to time consumption graph with 1M edges.

second part are shown in Table A.5. Both evaluation results are available on the enclosed CD-
ROM.

In Figure 4.5, the behavior of the threaded DB-based expander class is shown over time. Each
thread tries to expand a particular node and has a blocked state, while waiting to send or receive
data from the database abstraction layer. In addition, the main thread is shown containing the
runner class as well as the ”Thread-4”, running a simple database performance counter (ch.uzh.-
tmatch.utils.DbPerfCounter). The impact on the time behavior of these expander threads caused by
a defect network switch is shown in Figure A.10.

Figure 4.5: Thread view of the threaded DB-based expander.

4.4 Conclusion

Since there exist no real-world test datasets to evaluate and compare with, the use of synthetic
transaction datasets was the only method. As mentioned before, the TMatch library uses a pipe-
and-filter based approach. If for example, the nodeset expander does not find any new nodes, the
subsequent steps are finished very quickly without significant resource and time consumption.
There is a certain (low) probability that the random generated datasets will not contain any of

4.4 Conclusion 41

the searched account numbers. The same problem exists for the component finding module. If
there is only one small component found, the following calculation is done very quickly without
much resource consumption. In contrary, if the component finder extracts one large component
composed of all existing nodes, the time and resource consumption will be potentially high. If
the test dataset is regenerated with the same number of nodes and edges, there will be new com-
ponents of different sizes with different resource consumption and execution time. That is why
these evaluation results only provide a first impression of the time and memory requirements,
according to certain numbers of nodes and edges.

In addition, the calculation time is strongly dependent on the network throughput. Table A.6
shows, that with a 10 Mbit LAN connection, the expanding step (as well as some scorer) need
between 40 to 50 percent more time to finish the task as with an active 100 Mbit LAN connection.

The database server is seen as a black box system, because there is no available information
about technical specifications. Nevertheless, great speed enhancements are expected by adjusting
the database server setup and the table structures or by adapting the TMatch algorithms to the
server settings. As an example, the introduction of database table indexes had a heavy impact
on the processing speed. In Figure A.11, a query used by the expander class is shown and rated
by a DB2 Explain Plan. The Explain Plan shows information about the way the database will
process a particular SQL statement. This information is useful for analyzing and improving the
performance of SQL queries. The estimated query costs were 8195. After adding table indexes,
the Explain Plan changed the calculated query costs to 195, according to A.12. This points to the
importance of database table indexes for TMatch2. Since SQL views works with data from the
underlying tables, no indexes can be applied to a view itself. Thats why SQL views should be
avoided and replaced by either a materialized query table, which stores the query results as data
in a table, or a regular SQL table.

If the calculation speed is crucial, a node-to-edge ratio between 0.01 and 0.1 should be avoided
by changing the start and target set nodes or applying additional filter conditions on the alert
graph. This is shown in Figure 4.1. If the ratio cannot be changed, the threaded nodeset expander
shows the lowest processing time for bigger graphs, according to Figures 4.3 and 4.4 compared to
the other implementations. At the same time, the threaded DB-based expander shows often the
lowest memory consumption. In Figure 4.4 with a ratio of 0.01 and 1M edges, the processing time
is almost equal to the memory-based expander implementation but the memory consumption
is much lower. The same is true for a ratio of 1.0 with 100k edges, seen in Figure 4.3. For a
ratio of 0.1 and 1M edges, processing time as well as used memory is significant lower for the
threaded DB-based expander than for the other implementations. This applies for a ratio of 0.1
with 100k edges too. The memory-based expander outperforms the DB-based implementations
if the ratio is smaller than 0.01. This is seen in 4.2 where the number of nodes is really low. In
the case of 1M edges, its memory consumption is almost eight times as high as for the DB-based
implementations.

The load of the database is elevated during processing, since most of the algorithms are im-
2The new configuration property Global.CREATE DB INDEX was introduced to control the creation of table indexes.

42 Chapter 4. Evaluation

plemented using the database without storing temporary results locally. If the chosen database
structure does not allow the usage of database indexes, the load is even heavier. Depending on
the administrative restrictions, this behavior should be avoided. A possible approach to lower
down the database load is to change the expander class to the non threaded DB-based expander
or if possible, to the local memory-based expander class. This is done in the ch.uzh.tmatch.main.-
Runner class by changing the AlgorithmLoader.createThreadedDbNodeSetExpander() method call to
AlgorithmLoader.createDbNodeSetExpander() or to AlgorithmLoader.createRamNodeSetExpander(). The
scorer model class ch.uzh.tmatch.score.PassagePathScoreModel tries to find connected nodes with
active passage flags. Therefore, this model queries all the underlying transactions between the
nodes of each found component. An other approach to lower down the database load is to deac-
tivate the passage path scorer in the TMatchViz expert configuration view.

In the next Chapter the results of this Master Thesis are matched to the initial goals and the
limitations of TMatch and TMatchViz are mentioned.

5
Discussion

Section 2.3 suggested how a possible AML solution should look like. The main goal of this Master
Thesis was not to create a new product like the available commercial products in Section 2.2.4,
but to evaluate and implement new solution patterns to enhance the existing AML measures at
AlphaFin. This was done according to a graph-based data mining approach, where the accounts
and transactions are seen as nodes and edges in a multi-connected weighted graph. As written
in 2.2.3, graph pattern matching tries to find a target graph in a bigger graph structure. The
component finder in TMatch calculates all the connected components out of the expanded graph
data. Since there is no target graph, this procedure points to a graph mining approach with the
goal to find a set of most common or interesting patterns in a graph.

As a result, TMatch and TMatchViz were developed according to the requirements of Section
2.3.1 and with direct feedback from an AlphaFin AML specialist. This lead us to the proposed
investigation process as shown in Figure 2.4.

The extendability of TMatch should enable further development based on new specifications
and real-world results. TMatchViz facilitates these intentions due to the MVC-based implemen-
tation and the loose coupling between the two software modules. New configuration properties
can be defined in TMatch and are automatically shown in TMatchViz. The implementation of new
algorithms or scorer models is done in TMatch, thus is transparent for TMatchViz. Because of the
bundled Java runtime, further development is not influenced by any Java version constrains.

The evaluation in Chapter 4 showed that TMatch is capable to process certain amounts of
synthetically created datasets within a reasonable time frame. The spotted limitations caused by
the used algorithms and the test datasets are mentioned in the following section.

5.1 Limitations

As mentioned before1, the purpose of this Master Theses was not to create a generic AML product
but to enhance an existing solution based on the direct input of an AML specialist. Due the lack

1According to the last stylistic issue in [Bernstein, 2005] on page 13.

44 Chapter 5. Discussion

of labeled real-world datasets, TMatch had to be evaluated using synthetically datasets. As stated
in Section 4.4, the test datasets are only able to give a rough impression of the real-world. Even
if generated with the same parameters, the test transactions always change, evolving new graph
components that differs in processing time and needed amount of computational resources. That
is why these results are hard to compare to real-world scenarios. The evaluation showed that a
node-to-edge ratio of 0.01 to 0.1 should be avoided. This is most likely caused by the fact, that
the random generated transactions often form a mesh-like structure, if the search depth is higher
than five. With real-world data, such a ”global” mesh will probably never occur. Expected are
tentacles-like structure, based on the fact that the line-of-sight is ending at the boarders of the
financial institution, where cash machines are available to the customers or the international wire
transfers starts. Nevertheless, premature results shows that in a real world dataset consisting of
around 30k accounts, several 100k transactions and a target node set of several hundred nodes
finds a double-digit number of components. This is surprising and will be matter of further
investigations.

It was reported by AlphaFin’ AML expert, that some database queries generate heavy load on
the database. Since testing was done using a nonproductive database server, the database load
had a lower priority in development than local memory consumption. Possible solutions were
described in Section 4.4, like database index creation, the replacement of the ThreadedDbNodeSet-
Expander or the deactivation of the PassagePathScoreModel class in the configuration.

Concerning TMatchViz, the component preview framework has a performance issue if the
underlying graph structure is big. That’s why the component preview is deactivated if the com-
ponent contains more than 200 nodes. This behavior suits the specification, since the TV system
is used for the real graphical analysis.

6
Conclusion and future work

This Master Thesis was about discovering new possibilities in the fight against money laundering.
TMatch uses a modern graph mining approach together with filtering and scoring capabilities
to enable a risk-based approach in money laundering detection. Limited data access and data
handling, due to strict confidentiality regulations as well as limited computational resources had
to be taken care of. The lack of labeled real-world transaction datasets and the fact that there were
no exact specification required a feasible project management and autonomous working behavior.

The TMatch library and the TMatchViz user interface represents a good combination for com-
mercial utilization and future development.

According to the evaluation, the presented approach is capable of processing thousands of
accounts connected by hundreds-of-thousands of transactions within a suitable time. The pro-
cessing of real-word data is currently matter of work, the final evaluation of the results will be
part of the future work as well as for the modification of the TMatch library according to the
real-world results.

The discussion in Section 5 pointed to possible future work in order to overcome the found
limitations. Together with additional algorithms, these subjects are matter of the next section.

6.1 Future Work

High priority future work is to refine the specifications of TMatch and TMatchViz according to
new result. Therefore real-world data should be processed by TMatch, analyzed and rated by an
AML specialist. This enables the detection of operational issues which will be handled by the
developers. In addition, the search profiles used in TMatchViz should be completed according to
the results and the AML processes at AlphaFin.

Additional future work is to simplify the reuse of the TMatch results by the Transaction Visu-
alizer. Therefore, an additional XML dataset exporter should be bundled together with TMatch or
TMatchViz.

46 Chapter 6. Conclusion and future work

To lower down the processing time, TMatch should use another way to expand the target
nodes and to extract the connected components from the alert graph datasets. One possibility
is to implement the component finder to work on the database system instead of working on
the operators workstation. This would prevent, that all the expanded graph structures has to be
sent from the database to the local memory and back. In [Faloutsos et al., 2004] the relationship
between two nodes is calculated in a fast manner by finding a small subgraph out of a large
base graph. This can be used in TMatch as a new scoring model or to replace the expander and
component finder parts, if there is a way to support not only two but many ”target” nodes.

To analyze the component or node behavior over time a peergroup analysis based approach
should be implemented, as proposed by [Weston et al., 2008]. The peergroup membership could
be built on the calculated component scores like transaction amounts or number of transaction.

A low priority future task is to simplify the source building and packaging step. The TMatch
and TMatchViz sources should be handles by one ANT building task. This would reduce the
needed steps to create the final distribution package including the program code and the Java
runtime.

A
Appendix

A.1 Content CD-ROM

In Figure A.1, the data content of the enclosed master thesis CD-ROM is shown.

∙ Folder ”Statistics” contains all the evaluation results.

∙ Folder ”TMatch” as well as the archive file ”TMatch.7z” contains the TMatch Eclipse project
folder.

∙ Folder ”TMatchViz” as well as the archive file ”TMatchViz.7z” contains the TMatchViz Net-
Beans project folder.

∙ PDF file ”Masterarbeit.pdf” contains the written part of this Master Thesis.

∙ PDF files ”Zusfsg.pdf” and ”Abstract.pdf” contains the abstract page in German and En-
glish.

Figure A.1: The data content of the master thesis CD-ROM.

48 Appendix A. Appendix

A.2 TMatchViz graphical user interface

Additional TMatchViz screens are shown in Figure A.2, A.3, A.4, A.5 and A.6.

Figure A.2: The TMatchViz Starter.bat output.

Figure A.3: The TMatchViz welcome screen.

A.3 TMatch extendability

This section describes how to extend TMatch by adding new algorithms or scorer models.

A.3 TMatch extendability 49

Figure A.4: The TMatchViz expert configuration screen. Changes are automatically saved in the
user profile for later reuse.

50 Appendix A. Appendix

Figure A.5: The TMatchViz running dialog with start-button and additional process informations.

A.3 TMatch extendability 51

Figure A.6: Same TMatchViz result screen as Figure 3.7, after rearranging the table columns and
sorted by the component size.

52 Appendix A. Appendix

Basic entities are:

∙ The class ch.uzh.tmatch.main.Runner for the main workflow.

∙ The class ch.uzh.tmatch.algorithm.utils.AlgorithmLoader used as an algorithm factory class.

∙ The abstract class ch.uzh.tmatch.algorithm.utils.AbstractAlgorithm used for all algorithms.

∙ The abstract class ch.uzh.tmatch.score.AbstractScoreModel used for all scorer models.

To implement a new algorithm, the class ch.uzh.tmatch.algorithm.ShortestPath can be used as a
template. Each algorithm must define its own algorithmId and a free() method for memory house-
keeping. The algorithm is loaded by the algorithm factory class and is added with a new creator
method. Finally, the creator method must be invoked to create a new instance of the new algo-
rithm, most likely by the Runner class or in any other part of TMatch.

A new scorer model is added by extending the abstract scorer model class. Again, each model
has to define its own algorithmId and a method according to the signature double calculate(int com-
ponentId). The model constructor method can be used to send additional variables to the model.
Finally, the Runner class must be extended to invoke this new model. Optionally, the global con-
figuration setting Global.SCORER MODEL LIST may be used to activate or deactivate the scorer
model. Therefore, the model id must be added to the default configuration /ch/uzh/tmatch/configu-
ration/TMatch.default.properties or appended during runtime to the Global.SCORER MODEL LIST
configuration parameter in the TMatchViz expert configuration view.

A.4 TMatch library creation

For the creation of the TMatch JAR library, an ant task used. Listening A.1 on page 53 shows the
used source code.

A.5 TMatchViz release creation

The following steps are necessary to create a new TMatchViz release.

∙ Build the TMatchViz project in NetBeans IDE. The JAR output folder will be
<PROJECT-DIR>\TMatchViz\dist\.

∙ Assure to have 7-zip installed and accessible through C:\Program Files\7-Zip\7z.exe,
or change the CreateRunnable.bat in the next step accordingly.

∙ In folder <PROJECT-DIR>\TMatchViz\starter\ edit the batch file CreateRunnable.bat
according to your needs. The files in this folder are seen in Figure A.7. The archive java-
bin.7z contains an already packed Java JRE 1.6. As already mentioned, Starter.bat is the start
batch file.

A.5 TMatchViz release creation 53

1 <?xml vers ion =”1.0” encoding=”UTF−8” standalone =”no”?>
2 <p r o j e c t d e f a u l t =” c r e a t e r u n j a r ” name=” Create Runnable J a r for P r o j e c t TMatch”>
3 <t a r g e t name=” c r e a t e r u n j a r”>
4 < j a r d e s t f i l e =”D:/SVN/ t v i s /TMatch/ d i s t /TMatch . j a r ” f i l e s e t m a n i f e s t =”mergewithoutmain”>
5 <manifest>
6 <a t t r i b u t e name=” Bu i l t−By” value =”∖${ u s e r . name}”/>
7 <a t t r i b u t e name=”Main−Class ” value=”ch . uzh . tmatch . main . Main”/>
8 <a t t r i b u t e name=”Class−Path ” value =”.”/>
9 </manifest>

10 < f i l e s e t d i r =”D:/SVN/ t v i s /TMatch/bin”/>
11 < f i l e s e t d i r =”D:/SVN/ t v i s /TMatch/ s r c”/>
12 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/SVN/ t v i s /TMatch/ l i b /db2 jcc . j a r ”/>
13 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/SVN/ t v i s /TMatch/ l i b /db2jcc4 . j a r ”/>
14 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/SVN/ t v i s /TMatch/ l i b / i b a t i s −2 . 3 . 4 . 7 2 6 .

j a r ”/>
15 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/SVN/ t v i s /TMatch/ l i b /jgrapht−jdk1 . 5 . j a r

”/>
16 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/SVN/ t v i s /TMatch/ l i b /jgraph . j a r ”/>
17 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/SVN/ t v i s /TMatch/ l i b /jgraphlayout . j a r ”/>
18 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/SVN/ t v i s /TMatch/ l i b /prefuse . j a r ”/>
19 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/UniZH/ e c l i p s e /plugins/org . j u n i t 4 4 . 3 . 1 /

j u n i t . j a r ”/>
20 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/SVN/ t v i s /TMatch/ l i b /y . j a r ”/>
21 <z i p f i l e s e t excludes =”META−INF/∗ . SF” s r c =”D:/SVN/ t v i s /TMatch/ l i b /log4 j −1 . 2 . 1 5 . j a r ”/>
22 < f i l e s e t excludes =”∗ . x ls , ∗ S J P r o f i l e 0 . ser , r e l e a s e . t x t , user . proper t ies , TODO. t x t ,

l o g 4 j . log , . s e t t i n g s /∗∗ , s r c /∗∗ , bin /∗∗ , d i s t /∗∗ , l i b−s r c /∗∗ ,THESIS/∗∗ , P e r f T e s t /∗∗ ,
s t a r t e r /∗∗” d i r =”D:/SVN/ t v i s /TMatch”/>

23 </j a r>
24 </t a r g e t>
25 </p r o j e c t>

Listing A.1: TMatch library creation ant script. The used file paths must be adjusted before using
it.

54 Appendix A. Appendix

Figure A.7: The TMatchViz release builder directory.

Figure A.8: The TMatchViz directory content after installation.

∙ Run CreateRunnable.bat. The executable TMatchViz.exe will be created. This is now the
newest release of TMatchViz.

A.6 TMatchViz installation

To install TMatchViz, the file created in Section A.5 needs to be executed. It will extract the entire
system to a new subfolder called TMatchViz. The folder will contain around 113 MB data. Figure
A.8 shows the content of the TMatchViz directory. In order to get started, the following steps are
required.

∙ Configure iBATIS by renaming the appropriate template file
SQLMapConfig.properties.*.template to SQLMapConfig.properties and mov-
ing it to the library folder.

∙ The files StartNodes.txt, EndNodes.txt and TransactionTypes.txt should be edited now or dur-
ing the configuration step, while running TMatchViz.

A.7 Properties 55

Figure A.9: The TMatchViz library directory after installation.

TMatchViz is now ready to be started by executing Starter.bat.

A.7 Properties

There are several locations, where properties files are searched for:

∙ <TMatchViz-Directory>/*

∙ TMatchViz.jar:tmatchviz/*

∙ TMatchViz.jar:tmatchviz/resources/profiles/*

There are several properties files stored:

∙ The TMatch default properties file is located in
TMatch.jar:ch/uzh/tmatch/configuration/TMatch.default.properties.

∙ The TMatchViz profile properties files are located in
TMatchViz.jar:/tmatchviz/resources/profiles/Profile.*.properties. To
change the existing profiles delete or modify the specific file.

∙ The ”user.properties” file is located in
<TMatchViz-Directory>/user.properties. To reset the user configuration values,
the ”user.properties” file must be deleted.

A TMatchViz profile properties file includes some additional entries, as seen in A.1. New
profiles are stored in the TMatchViz main directory or, if a new release is created, in the profile
folder of the JAR file.

Table A.2 shows all the TMatch default values, Table A.3 the valid input ranges.

A.8 Logging

The ch.uzh.tmatch.utils.Logger class is a simple logger facade. It provides several methods and
differs between several logging priority levels. In addition, Log4j is also connected to this Logger

56 Appendix A. Appendix

Property Key Summary

Search.Profile.Image This string value is the filename to an image file in the
TMatchViz.jar:/tmatchviz/resources/profiles
directory.

Search.Profile.Name This string value is the displayed profile name.

Search.Profile.Hint This string value is the profile description text.

Table A.1: The Scorer configuration key.

class. Since iBatis uses Log4j too, the log4j.properties file is used to activate the different logging
channels. As default, the ch.uzh.tmatch is set to ALL. The logging output is direct to the active
console window as well as to a log file called log4j.log. The log4j.properties configuration is valid
for TMatch and TMatchViz. To activate additional iBatis logging output, the prepared properties
must be uncommented in the log4j.properties file.

The following logging setup can be made.

∙ Configuration property: Global.MESSAGE LEVEL
The accepted values and theirs precedence are: ERROR > INFO > DEBUG > TRACE

∙ Log4j.properties file.
The TMatch logging output is controlled by Global.MESSAGE LEVEL, thus should not be
changed.
The iBatis logging channels are available by log4j.logger.com.ibatis.* and log4j.logger.java.sql.*.
Possible values are OFF, WARN, DEBUG.

A.9 Evaluation results

To simplify the evaluation charts, the number of nodes and edges was shifted by the factor of
ten to obtain a logarithmic scale. Table 4.1 shows all the results from the TMatch library evalua-
tion with the different component timings. Table 4.2, 4.3 and 4.4 shows the characteristics of the
different expander implementations.

In Figure A.10 the blocked expander threads, caused by a slow network connection, are shown.

Figure A.10: Thread view of the threaded DB-based expander influenced by a 10Mbit LAN and
permanent packet collisions.

A.9 Evaluation results 57

Property Key Default Value

GL.MESSAGE LEVEL INFO

GL.CONFIG TYPE UZH

GL.DB MODE ONLINE

GL.WRITE TO DB TRUE

GL.INCLUDING TP NODES FALSE

GL.REUSE EXPANDER DATA FALSE

GL.REUSE COMPONENT FINDER DATA FALSE

GL.SCORER MODEL LIST SizeScoreModel,
PassagePathScoreModel,
PassageScoreModel,
StartEndSetScoreModel,
TransactionTypeCountScoreModel,
TransactionTypeAmountScoreModel,
MaximalFlowScoreModel

GL.CREATE DB INDEX TRUE

NSE.DEPTH 10

NSE.NUM INCOMING EDGES 0

NSE.NUM OUTGOING EDGES 0

NSE.TOTALAMOUNT IN 0.0

NSE.TOTALAMOUNT OUT 0.0

NSE.THRESHOLD PASSAGE FLAG 0.0

NSE.REMOVE LONELY NODES TRUE

NSE.DB REUSE EXPANDED DATA FALSE

CF.THRESHOLD TOTAL AMOUNT IN FLAG 0.0

CF.THRESHOLD TOTAL AMOUNT OUT FLAG 0.0

CF.THRESHOLD PASSAGE FLAG 0.0

CF.MINIMAL COMPONENT SIZE 0

CF.CALC WEAK COMPONENTS TRUE

DPC.SLEEP DURATION 1000

DPC.SHOW MESSAGES FALSE

GL stands for the namespace Global; NSE for NodeSetExpander;
CF for ComponentFinder; DPC for DbPerfCounter

Table A.2: TMatch default configuration values.

58 Appendix A. Appendix

Property Key Input Range

GL.MESSAGE LEVEL INFO/DEBUG/TRACE

GL.CONFIG TYPE UZH/AlphaFin

GL.DB MODE ONLINE

GL.WRITE TO DB Boolean value

GL.INCLUDING TP NODES Boolean value

GL.REUSE EXPANDER DATA Boolean value

GL.REUSE COMPONENT FINDER DATA Boolean value

GL.SCORER MODEL LIST Comma-separated string

GL.CREATE DB INDEX Boolean value

NSE.DEPTH Integer value

NSE.NUM INCOMING EDGES Integer value

NSE.NUM OUTGOING EDGES Integer value

NSE.TOTALAMOUNT IN Double value

NSE.TOTALAMOUNT OUT Double value

NSE.THRESHOLD PASSAGE FLAG Double value: 0.0 to 1.0

NSE.REMOVE LONELY NODES Boolean value

NSE.DB REUSE EXPANDED DATA Boolean value

CF.THRESHOLD TOTAL AMOUNT IN FLAG Double value

CF.THRESHOLD TOTAL AMOUNT OUT FLAG Double value

CF.THRESHOLD PASSAGE FLAG Double value: 0.0 to 1.0

CF.MINIMAL COMPONENT SIZE Integer value

CF.CALC WEAK COMPONENTS Boolean value

DPC.SLEEP DURATION Integer value (msec.)

DPC.SHOW MESSAGES Boolean value

GL stands for the namespace Global; NSE for NodeSetExpander;
CF for ComponentFinder; DPC for DbPerfCounter

Table A.3: TMatch configuration values range.

A.9 Evaluation results 59

#Nodes #Edges Ratio Mem Runner Expander CF Scorer Overhead

100 100 1.0000 2.7 15.4 4.4 0.2 0.7 10.1

100 1000 0.1000 3.8 22.5 11.2 0.4 0.9 9.9

100 10000 0.0100 7 40.6 25.2 1.4 3.9 10.1

100 100000 0.0010 8.2 59.4 39.4 2.6 6.7 10.7

100 1000000 0.0001 56 125.7 94.5 2.6 10.4 18.2

1000 100 10.000 2.2 14.0 3.1 0.2 0.8 9.9

1000 1000 1.0000 2.9 21.2 9.5 0.3 1.5 10.0

1000 10000 0.1000 13 94.4 77.2 1.5 5.3 10.3

1000 100000 0.0100 56 407.2 251.6 35.7 108.8 11.1

1000 1000000 0.0010 343 6266.5 1667.3 2064.0 2515.3 19.9

10000 100 100.00 2.1 12.9 2.4 0.1 0.4 10.0

10000 1000 10.000 2.9 13.6 2.7 0.2 0.7 10.0

10000 10000 1.0000 3.1 19.4 7.7 0.3 1.3 10.2

10000 100000 0.1000 64 1165.6 939.4 13.3 201.7 11.2

10000 1000000 0.0100 605 9920.0 5967.4 412.5 3521.7 18.3

100000 100 1000.0 3.2 13.5 2.7 0.2 0.6 10.0

100000 1000 100.00 2.7 13.0 2.4 0.1 0.4 10.0

100000 10000 10.000 2.3 13.7 2.7 0.2 0.6 10.2

100000 100000 1.0000 3.1 21.1 8.1 0.3 1.4 11.3

100000 1000000 0.1000 389 46629.0 39793.2 64.4 6754.3 17.1

1000000 100 10000 3 13.8 2.5 0.1 0.4 10.8

1000000 1000 1000.0 2.7 13.3 2.4 0.1 0.4 10.3

1000000 10000 100.00 2.6 13.7 2.4 0.1 0.4 10.7

1000000 100000 10.000 3 14.6 2.6 0.2 0.6 11.2

1000000 1000000 1.0000 2.6 66.3 40.5 0.4 1.4 23.9

#Nodes or #Edges stands for the number of nodes or edges.
Ratio stands for the node-to-edge ratio.
Mem stands for the maximal used heap memory in megabytes [MB].
Runner stands for the time consumed by the Runner component in seconds [sec].
Expander stands for the time consumed by the Expander component in seconds [sec].
CF stands for the time consumed by the Component Calculation component in seconds [sec].
Scorer stands for the time consumed by the Scorer component in seconds [sec].

Table A.4: Evaluation results of the TMatch library.

60 Appendix A. Appendix

Max. Heap Memory [MB] Time Consumption [sec]
#Nodes #Edges Ratio RAM DB Threaded DB RAM DB Threaded DB

100 100 1.0000 2.9 2.9 2.6 5.10 2.6 7.7

100 1000 0.1000 2.7 7.6 2.6 16.93 2.6 16.2

100 10000 0.0100 4.5 10.0 3.4 29.98 4.9 21.1

100 100000 0.0010 39 29.3 5.1 48.91 8.4 34.5

100 1000000 0.0001 398 208.1 50 139.58 54 107.2

1000 100 10.000 2.1 0.6 2.6 2.90 2.4 4.3

1000 1000 1.0000 2.6 9.0 2.5 14.40 3 12.5

1000 10000 0.1000 5.2 89.6 4.4 144.72 4.9 96.4

1000 100000 0.0100 45 129.9 25 486.35 21 251.3

1000 1000000 0.0010 517 576.7 172 2779.58 171 1428.4

10000 1000 10.000 2.7 0.4 2.4 2.10 2.6 3.6

10000 10000 1.0000 2.3 7.4 2.8 11.34 3 10.4

10000 100000 0.1000 45 1095.5 15 1307.71 18 970.5

10000 1000000 0.0100 458 4876.2 216 7437.83 217 5191.7

100000 10000 10.000 2.6 0.3 2.6 17.06 2.8 3.7

100000 100000 1.0000 279 15.2 2.7 92.86 3.1 17.7

100000 1000000 0.1000 295 23381.6 113 24176.90 121 20156.2

1000000 1000 1000.0 2.1 0.2 2.6 1.84 2.3 3.4

1000000 10000 100.00 2.6 0.2 2.8 1.87 2.9 3.4

1000000 100000 10.000 2.3 0.3 2.8 2.19 2.4 3.7

1000000 1000000 1.0000 2.7 38.7 2.7 42.56 3.1 41.3

#Nodes or #Edges stands for the number of nodes or edges and Ratio for the node-to-edge ratio.
RAM, DB and Threaded DB addresses the nodeset expander implementation (see Section 3.4.4).

Table A.5: Evaluation results of the three different nodeset expanders.

A.10 Database related 61

LAN speed #Nodes #Edges Expander

10 Mbit 100 100000 61.5

10 Mbit 100 1000000 167.9

10 Mbit 1000 100000 454.1

100 Mbit 100 100000 39.4

100 Mbit 100 1000000 94.5

100 Mbit 1000 100000 251.6

#Nodes or #Edges is the number of nodes or edges.
Expander stands for the expander time consumption [sec].

Table A.6: Evaluation results with 10 or 100 Mbit LAN speed.

A.10 Database related

Figure A.11 shows the DB2 Explain Plan rating without having access to database indexes. After
creating new indexes, the Explain Plan rating changed according to Figure A.12.

Figure A.11: DB2 Explain Plan query costs calculation without table indexes.

62 Appendix A. Appendix

Figure A.12: DB2 Explain Plan query costs calculation with table indexes.

List of Figures

2.1 The flow of money and informations in a wire transaction according to [Chang
et al., 2008]. 8

2.2 Core technologies proposal according to [OTA, 1995]. 9
2.3 User interface to modify an behavior profile in Fiserv’ Dynamic Risk Scoring Module. 16
2.4 The proposed investigation process. 17

3.1 Architectural overview. 20
3.2 Overview data transformation. 20
3.3 Overview TMatch. 23
3.4 TMatch workflow: transaction in the alert graph table; expander, component finder

and scorer output. 24
3.5 Overview TMatchViz. 32
3.6 The TMatchViz configuration screen. 33
3.7 The TMatchViz result screen, showing found components and the intermediate

scorer results. 34
3.8 The TMatchViz result screen with activated component preview. 35

4.1 The TMatch node-to-edge ratio to time consumption graph. 39
4.2 The expander node-to-edge ratio to time consumption graph with 10k edges. . . . 39
4.3 The expander node-to-edge ratio to time consumption graph with 100k edges. . . 39
4.4 The expander node-to-edge ratio to time consumption graph with 1M edges. . . . 40
4.5 Thread view of the threaded DB-based expander. 40

A.1 The data content of the master thesis CD-ROM. 47
A.2 The TMatchViz Starter.bat output. 48
A.3 The TMatchViz welcome screen. 48
A.4 The TMatchViz expert configuration screen. Changes are automatically saved in

the user profile for later reuse. 49
A.5 The TMatchViz running dialog with start-button and additional process informa-

tions. 50

64 LIST OF FIGURES

A.6 Same TMatchViz result screen as Figure 3.7, after rearranging the table columns
and sorted by the component size. 51

A.7 The TMatchViz release builder directory. 54
A.8 The TMatchViz directory content after installation. 54
A.9 The TMatchViz library directory after installation. 55
A.10 Thread view of the threaded DB-based expander influenced by a 10Mbit LAN and

permanent packet collisions. 56
A.11 DB2 Explain Plan query costs calculation without table indexes. 61
A.12 DB2 Explain Plan query costs calculation with table indexes. 62

List of Tables

3.1 The Expander configuration keys . 25
3.2 The calculated component metrics and flags. 27
3.3 The Component Finder configuration keys . 28
3.4 The Scorer configuration key. 29

A.1 The Scorer configuration key. 56
A.2 TMatch default configuration values. 57
A.3 TMatch configuration values range. 58
A.4 Evaluation results of the TMatch library. 59
A.5 Evaluation results of the three different nodeset expanders. 60
A.6 Evaluation results with 10 or 100 Mbit LAN speed. 61

List of Listings

3.1 TMatch expander pseudo code. 26

4.1 A sample test transaction entry from a 1M node dataset. 38
4.2 The start node, end node and transaction type file contents. 38

A.1 TMatch library creation ant script. The used file paths must be adjusted before
using it. 53

Bibliography

[Altenkirch, 2006] Altenkirch, L. (2006). Techniken der Geldwäsche und ihre Bekämpfung.
Bankakademie-Verlag GmbH, Frankfurt am Main.

[Bernstein, 2005] Bernstein, A. (2005). So what is a (Diploma) Thesis? A few thoughts for first-
timers. Technical report, Dynamic and Distributed Information Systems Group, Univerity of
Zurich, Switzerland.

[Black and Lovrencic, 2004] Black, P. E. and Lovrencic, A. (2004). Subgraph. Technical report, U.S.
National Institute of Standards and Technology. Available from http://www.itl.nist.

gov/div897/sqg/dads/HTML/subgraph.html. Accessed on 14th August 2009.

[Blessing, 1998] Blessing, J. (1998). Applying flow analysis methods to the problem of network
design. In System Theory, 1998. Proceedings of the Thirtieth Southeastern Symposium on, pages
424–428.

[Bolton and Hand, 2002] Bolton, R. and Hand, D. (2002). Statistical Fraud Detection: A Review.
Statistical Science, 17(3):235–255.

[Bolton et al., 2001] Bolton, R. J., Hand, D. J., and H, D. J. (2001). Unsupervised profiling methods
for fraud detection. In Proc. Credit Scoring and Credit Control VII, pages 5–7.

[Chang et al., 2008] Chang, R., Lee, A., Ghoniem, M., Kosara, R., Ribarsky, W., Yang, J., Suma, E.,
Ziemkiewicz, C., Kern, D., and Sudjianto, A. (2008). Scalable and interactive visual analysis of
financial wire transactions for fraud detection. Information Visualization, 7(1):63–76.

[Cheng et al., 2008] Cheng, J., Yu, J. X., Ding, B., Yu, P. S., and Wang, H. (2008). Fast graph pattern
matching. Data Engineering, International Conference on, 0:913–922.

[Eberle and Holder, 2007] Eberle, W. and Holder, L. (2007). Discovering Structural Anomalies
in Graph-Based Data. In Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE
International Conference on, pages 393–398.

[Encyclopædia Britannica, 2009] Encyclopædia Britannica (2009). Fraud. From Encyclopædia
Britannica Online: http://www.britannica.com/EBchecked/topic/217591/fraud. Accessed
on 26th July 2009.

70 BIBLIOGRAPHY

[Ezawa and Norton, 1995] Ezawa, K. J. and Norton, S. W. (1995). Constructing bayesian networks
to predict uncollectible telecommunications accounts. IEEE Intelligent Systems, 11(5):45–51.

[Faloutsos et al., 2004] Faloutsos, C., Mccurley, K. S., and Tomkins, A. (2004). Fast discovery of
connection subgraphs. In KDD ’04: Proceedings of the 2004 ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 118–127, New York, NY, USA. ACM Press.

[FATF, 2009] FATF (2009). Financial action task force annual report. Technical report, Financial
Action Task Force. Available from http://www.fatf-gafi.org. Accessed on 26th July 2009.

[Fawcett et al., 1997] Fawcett, T., Foster, and Provost, F. (1997). Adaptive fraud detection. Data
Mining and Knowledge Discovery, 1:291–316.

[Foggia et al., 2001] Foggia, P., Sansone, C., and Vento, M. (2001). A performance comparison of
five algorithms for graph isomorphism. In In Proceedings of the 3rd IAPR TC-15 Workshop on
Graph-based Representations in Pattern Recognition, pages 188–199.

[Gallagher, 2006] Gallagher, B. (2006). Matching structure and semantics: A survey on graph-
based pattern matching. In In AAAI FS ’06: Papers from the 2006 AAAI Fall Symposium on Cap-
turing and Using Patterns for Evidence Detection, pages 45–53.

[Geiger and Wuensch, 2007] Geiger, H. and Wuensch, O. (2007). The fight against money laun-
dering. Journal of Money Laundering Control, 10(1).

[Han and Kamber, 2000] Han, J. and Kamber, M. (2000). Data Mining: Concepts and Techniques
(The Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann, 1st edition.

[Häfliger, 2009] Häfliger, M. (2009). Schweizer Justiz jagt Kohle-Barone. NZZ am Sonntag, 29th
March 2009.

[Huang et al., 2009] Huang, M. L., Liang, J., and Nguyen, Q. V. (2009). A Visualization Approach
for Frauds Detection in Financial Market. In Information Visualisation, 2009 13th International
Conference, pages 197–202.

[INL, 2009] INL (2009). Major Money Laundering Countries. Technical report, U.S.
Bureau of International Narcotics and Law Enforcement Affairs. Available from
http://www.state.gov/p/inl/rls/nrcrpt/2009/vol2/116550.htm. Accessed on 26th July 2009.

[Katkov, 2006a] Katkov, N. (2006a). Evaluating the Vendors of Anti-Money Laundering Solutions
2006. Technical report, Celent. Available from http://www.celent.com/67_69.htm. Ac-
cessed on 14th August 2009.

[Katkov, 2006b] Katkov, N. (2006b). Evaluating the Vendors of Anti-Money Laundering Solu-
tions 2006, NetEconomy Profile. Technical report, Celent. Available from http://www.aml.

fiserv.com/leadingAMLvendor.aspx. Accessed on 14th August 2009.

BIBLIOGRAPHY 71

[Kingdon, 2004] Kingdon, J. (2004). Ai fights money laundering. Intelligent Systems, IEEE,
19(3):87–89.

[Lovrencic, 2004] Lovrencic, A. (2004). Maximally connected component. Technical report, U.S.
National Institute of Standards and Technology. Available from http://www.itl.nist.

gov/div897/sqg/dads/HTML/maximallyConnectedComponent.html. Accessed on
14th August 2009.

[Luell and Bernstein, 2009] Luell, J. and Bernstein, A. (2009). Detecting Internal Fraud under Real
World Conditions. Unpublished Paper. Version of 26 July 2009.

[Maes et al., 1993] Maes, S., Tuyls, K., Vanschoenwinkel, B., and Manderick, B. (1993). Credit
card fraud detection using bayesian and neural networks. In In: Maciunas RJ, editor. Interactive
image-guided neurosurgery. American Association Neurological Surgeons, pages 261–270.

[MROS, 1999] MROS (1999). 2th Annual Report. Technical report, Money Laundering Reporting
Office Switzerland. Available from http://www.ejpd.admin.ch. Accessed on 26th July 2009.

[MROS, 2005] MROS (2005). 8th Annual Report. Technical report, Money Laundering Reporting
Office Switzerland. Available from http://www.ejpd.admin.ch. Accessed on 26th July 2009.

[MROS, 2009] MROS (2009). 11th annual report. Technical report, Money Laundering Reporting
Office Switzerland. Available from http://www.ejpd.admin.ch. Accessed on 26th July 2009.

[OTA, 1995] OTA (1995). Information Technologies for the Control of Money Laundering. Techni-
cal report, U.S. Congress, Office of Technology Assessment (OTA). OTA-ITC-630 (Washington,
DC: U.S. Governemnt Printing Office).

[Phua et al., 2005] Phua, C., Lee, V., Smith, K., and Gayler, R. (2005). A comprehensive survey of
data mining-based fraud detection research. Artificial Intelligence Review.

[Ribarsky and Dill, 2008] Ribarsky, B. and Dill, J. (2008). Visual analytics science and technology.
Information Visualization, 7(1):1–2.

[Roth et al., 2004] Roth, J., Greenburg, D., and Wille, S. (2004). 9/11 Commission Re-
port. Technical report, The National Commission on Terrorist Attacks. Available from
http://www.911commission.gov. Accessed on 26th July 2009.

[S/CT, 2001] S/CT (2001). Executive Order 13224. Technical report, Office of the Coordinator
for Counterterrorism. Available from http://www.state.gov/s/ct/rls/other/des/122570.htm.
Accessed on 26th July 2009.

[Ullmann, 1976] Ullmann, J. R. (1976). An algorithm for subgraph isomorphism. J. ACM,
23(1):31–42.

[Wells, 2008] Wells, J. (2008). Principles of Fraud Examination. Wiley, New York.

72 BIBLIOGRAPHY

[Weston et al., 2008] Weston, D., Hand, D., Adams, N., Whitrow, C., and Juszczak, P. (2008). Plas-
tic card fraud detection using peer group analysis. Advances in Data Analysis and Classification,
2(1):45–62.

[Yan and Han, 2002] Yan, X. and Han, J. (2002). gspan: Graph-based substructure pattern mining.
Data Mining, IEEE International Conference on, 0:721.

[Yue et al., 2007] Yue, D., Wu, X., Wang, Y., Li, Y., and Chu, C.-H. (2007). A Review of Data
Mining-Based Financial Fraud Detection Research. In Wireless Communications, Networking and
Mobile Computing, 2007. WiCom 2007. International Conference on, pages 5519–5522.

[Ziegler et al., 2007] Ziegler, H., Nietzschmann, T., and Keim, D. (2007). Visual Exploration and
Discovery of Atypical Behavior in Financial Time Series Data using Two-Dimensional Col-
ormaps. In Information Visualization, 2007. IV ’07. 11th International Conference, pages 308–315.

