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Abstract 

This diploma thesis addresses the automatic recognition of fraudulent activities in the 

transaction databases of a bank. Therefore, the already existing fraud detection program 

GraphSlider gets extended with new functions. The first function addresses the recognition of 

fraud, based on temporal data in the database, because this data is almost always available but 

very seldom used for fraud detection. The second new function addresses the recognition of 

internal fraud on the employee level. In order to achieve this, our approach tries to track the 

fraudulent actions back to the single employee. At the end, the new approaches are tested with 

synthetic data if they are capable and if they have a good performance. 

 

 

 

 

 

 

 

 

 

 



Zusammenfassung 

Diese Diplomarbeit befasst sich mit der automatischen Erkennung von betrügerischen 

Aktivitäten in den Transaktionsdatenbanken einer Bank. Zu diesem Zweck wird das 

bestehende Betrugserkennungsprogramm GraphSlider mit neuen Funktionen erweitert. Die 

eine Funktion beschäftigt sich mit der Erkennung von Betrug basierend auf temporalen Daten 

in der Datenbank, da diese bisher selten genutzt werden, obwohl sie fast immer verfügbar 

sind. Die zweite neue Funktion beschäftigt sich mit der Erkennung von internen 

Betrugsversuchen auf der Ebene der Angestellten. Zu diesem Zweck wird versucht, die 

betrügerischen Handlungen zu den einzelnen Mitarbeitern zurückzuverfolgen. Die neuen 

Ansätze werden zum Schluss auf synthetischen Daten auf ihre Tauglichkeit und ihre 

Performance hin überprüft. 
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1 Introduction 

In our modern society, almost everything is connected in some or another way, from mobile 

phones to PDAs, from computers to kitchen equipment. And the more things get connected, 

the more activities are handled through these connections. 

This not only applies for the private use, also business transactions are handled this way. But 

this connectivity not only has vantages. The more things get connected, the more vulnerable 

they are for illegal actions, because of the lack of control. 

This especially applies for electronic transactions and bank transactions in particular. The 

more bank transactions are handled through electronic mediums, the more they are vulnerable 

to so called fraudulent actions. These actions can come from the outside of the bank, but they 

also sometimes come from the inside. This is the reason why a lot of work is done in the 

sector of fraud detection and fraud prevention. The later tries to identify fraudulent behaviour 

and to adjust the business model or they way, transactions are handled, to give fraudsters no 

opportunity to commit their crimes. But as every prevention mechanism, this does not work 

with a hundred percent reliability. If the fraud prevention has failed, fraud detection comes 

into account. 

There are many papers and studies on how to detect possibly fraudulent behaviour and 

transactions. These detection mechanisms are not only applied in the banking sector, but in 

the telecommunication or insurance sector, too. Most of these techniques focus on the 

detection of fraud from the outside. But there is also a not so small percentage of fraud 

coming from the inside, which these techniques do not cover. 

1.1 Goal of this Thesis 

With this thesis, we try to approach this problem. The GraphSlider framework is a fraud 

detection system, tuned to find fraudulent chains in a transaction database. We took this 

approach and modified it in two ways. First, it not only should search for external imposed 

fraud, it should also look for internal fraud, caused by the employees of the bank. Therefore 

the GraphSlider was extended to take the registrars of the transactions into account and trace 

fraudulent behaviour back to them. 

The second modification was to take temporal data into account. Normally, temporal data of 

the transactions is available but not used in fraud detection. We tried to set up a new approach 

which takes this unused data into account together with the already used data, like the 

amounts transferred or the involved bank accounts. 
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We modified the GraphSlider to comply with these new requirements. Because we mainly 

wanted to show, that there are other possibilities of detecting fraudulent transactions, the 

GraphSlider is not optimized to be very high-performance or memory-saving. It has to be 

viewed as a proof of concept, and we did in fact prove that this new approach can work. 

1.2 Structure 

This thesis follows the structure of a design science thesis proposed by [Bernstein 2005]. 

First, the motivation behind the actual thesis will be set. A description of the actual work 

follows. The evaluation will show the actual results, followed by a discussion of them. At the 

end, some final remarks will be added. 

 

Chapter 2 contains the definition of the problem and the motivation why this problem should 

be solved and why it is a worthwhile topic. 

 

Chapter 3 contains the description of the original GraphSlider. It shows the concept behind its 

original function and it also shows the concepts that finally lead to the implementation of the 

extended GraphSlider. 

 

Chapter 4 contains the evaluation of our new approach. It covers the measurement of 

computation time, memory usage and the accuracy of the new approach. 

 

Chapter 5 discusses the results of the evaluation. It describes the advantages and the 

disadvantage of the new method. It also covers the drawbacks that were discovered during the 

evaluation. 

 

Chapter 6 contains the conclusion of this thesis. After comparing the results with the initial 

goals, some suggestions for future works are given. Finally a personal résumé is drawn. 
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2 Motivation 

In this section, the motivation behind the whole thesis will be explained. Therefore, the terms 

of fraud and internal fraud are first explained and their impact on the banking business is 

identified. Then, we will have a closer look at the previous work done in this sector. What are 

the different approaches good for, where do they lack something? We will also give a short 

insight into the other fields of research, which are important for this diploma thesis, like 

pattern matching and sequential pattern mining. Finally, an approach to a possible solution 

will be drawn. It will state what the requirements are for a solution and what it should and 

what it shouldn’t do. 

2.1 Fraud, internal fraud and fraud detection 

To develop a method against fraud, we first have to clarify, what fraud is and what it means 

for the business.  

2.1.1 Definition of fraud 

In [Phua et al. 2005] it is stated, that fraud is the “abuse of a profit organisation’s system 

without that abuse leading necessarily to legal consequences”. In [Balton et al. 2002], fraud is 

declared as “the use of false representations to gain an unjust advantage”. So it can be said 

that fraud is the usage of a system in a way out of its intended rules and purpose, but close 

enough to legal use that the chance is high to go undetected and therefore not prosecuted.  

2.1.2 Internal fraud 

A lot of fraud is committed by external entities such as criminal organizations or single 

fraudsters. But there is also a percentage of internal fraud. This means, the fraudulent 

behaviour is shown by someone who has direct access to the system or who is in the system 

itself. Internal fraud is defined in [Phua et al. 2005] as “fraudulent financial reporting by the 

management and abnormal retail transactions done by employees”. 

One problem of fraud is that, as a company, you can never be sure who behaves fraudulent. 

There were surveys which tried to generate a statistical profile about the average fraudster. 

For internal fraudsters, a Federal Bureau of Investigation’s study states, that the average 

female fraudster is 19 to 30 years old, has an employment in the low or mid-level and sees her 

fraudulent behaviour as “borrowing” money. The male fraudster is 25 to 30 years old, is an 

executive or administrator and the financial loss he causes the company is often ten times 
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higher than the one of female fraudsters
1
. Unfortunately, such surveys are not very significant 

for regions and companies other than the one surveyed. So it is not that easy to generate a 

general profile for potential fraudsters, although there exist some indicators that can point to 

suspicious behaviour. 

2.1.3 The problem of fraudulent behaviour 

Fraud is becoming a serious problem in modern times, because a lot of business transactions 

are not handled manually anymore. The more a business switches to wired transfers, the more 

it is exposed to potential fraud. And the development of new technologies has widened the 

area for potential fraud, too. Although this applies for many fields of business, fraud is a 

special problem in the credit-card, e-commerce, insurance, and retail and communications 

business [Phua et al. 2005]. Because not only the transfers of credit-card data are wired 

nowadays, but almost all financial transactions are, the whole banking business is more than 

ever a target of fraudulent behaviour. 

Fraud is becoming business relevant or even critical, because if only a small percentage of the 

transactions committed each day is fraudulent, this can have a big impact not only on the 

financial side, but also on the reputational side. A bank not capable of detecting fraudulent 

behaviour in its transactions can be blamed to be not careful enough. And a loss of customer 

trust can have an impact much bigger than only the financial loss caused by the fraudulent 

transactions committed.  

2.1.4 Fraud prevention and fraud detection 

After Balton and Hund [Balton et al. 2002], it is absolutely necessary to try to prevent fraud 

as good as possible. This can be achieved though several steps of monitoring and designing 

the business system in a way that makes fraudulent behaviour nearly impossible. 

Unfortunately, this rule is not always followed and fraudsters are often as smart as the 

developers of fraud preventions mechanisms. Therefore it is absolutely necessary to also 

implement fraud detection techniques [Balton et al. 2002]. These techniques have to be 

applied continually, because it is not possible to determine, if and when the fraud prevention 

mechanisms have failed. 

Earlier, fraud detection was handled manually. It included manual screening and checking of 

the various transactions. It could only be done to the most suspicious transactions and was not 

only very time consuming it was not fail proof either. Therefore, automated fraud detection 

                                                 
1
 Internal Fraud - http://www.bankersonline.com/articles/bhv03n01/bhv03n01a2.html 
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mechanisms had to be introduced to guarantee a continuous monitoring and to relief the 

workers. 

One of the biggest problems in automated fraud detection is the fact that one can never be 

completely sure, if a transaction is really fraudulent or if it is only by coincidence that the 

fraud detecting mechanism has marked this certain transaction as fraudulent. Transactional 

fraud is normally added to regular transactions to prevent it from discovery [Phua et al. 2005]. 

Therefore it is nearly impossible to handle the fraud detection completely without human 

interaction. Today’s fraud detection mechanisms can make a good pre-sort of suspicious 

transactions, but the results normally have to be reviewed by a specialist nonetheless. This 

means fraud detection mechanisms can only give a hint, which transactions have to be 

investigated further. Although these pre-sort mechanisms can achieve a 99% detection rate, it 

can be very time consuming to find the real fraudulent transactions and to relieve the 

“innocent” transactions. Therefore it is very important to have rules on how to weight false 

positives and false negatives. False negatives are often more costly than false positives [Phua 

et al. 2005], because an undetected fraudulent transaction can cause much more loss than a 

wrongly accused legitimate transaction. This is because the money of the fraudulent 

transaction is really lost, but it is only a matter of personal effort to double-check the non-

fraudulent transaction. Therefore monetary factors often are introduced to measure the 

performance of fraud detection mechanisms. Another potential weak point of the automated 

fraud detection mechanisms is that they are not capable of detecting fraudulent behaviour that 

they are not designed for. If a fraudster finds a way to circumvent the detection system, this 

fraud can go undiscovered, even for years [Balton et al. 2002]. As long as the mechanisms do 

not adapt to the new situation, fraud will most certainly go undetected [Tuyls et al. 2000]. So 

it is a continuing race of the two factions to gain the advantage over the other. The trend in 

newer works is therefore to create mechanisms than can adapt or be adjusted to new situations 

easily. This is not only because the fraudsters tend to adapt to the new detection mechanisms, 

but because the legitimate behaviour tends to shift over time, too. As a remark it is also very 

important for the developer of anti-fraud mechanisms to maintain the old mechanisms to 

prevent fraudsters to switch back or to deny new, inexperienced fraudsters the access to old 

flaws. 

2.1.5 Problem of cooperation in fraud detection 

Unfortunately, most of the work done in fraud prevention and fraud detection is not open to 

the public. This has several reasons. One is, that if the new findings would be accessible by 

anyone, potential fraudsters can inform themselves about the newest development and adapt 
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even faster as they do at the moment. Another important reason, why most of the research 

work is not published is that they often use sensitive data from the particular company. For 

banks these are real transactional data which are under the protection of the banking secrecy. 

Despite the lack of real data there is a good common sense, which attributes are important for 

the development of a good fraud detection mechanism. These attributes are often dates, 

amounts of transferred financial values, locations involved in the transaction, the transactional 

history, the payment history and other information, like the age of the involved accounts 

[Phua et al. 2005]. 

To compensate these non disclosure agreements and the lack of exchange in this sector, most 

studies are using artificially generated data. As with the experience of years of work, this data 

is nearly as realistic as real data would be and can therefore easily be used for further 

development and investigations. There are studies [Barse et al. 2003] with the topic of 

artificially generated data compared to real data and they state, that it is a legitimate approach 

to generate synthetic data to train and implement new fraud detection mechanisms although, 

the results may vary when the simulated data is applied to real data. 

2.2 Earlier work in fraud detection 

As stated in the last section, fraud is a problem in many different businesses today. Quite a lot 

of work has been done to create efficient fraud detecting mechanisms. In this section, a few of 

them will be introduced.  

2.2.1 Fraud detection survey 

In [Phua et al. 2005] Phua and his co-writers were trying to give an overview about the papers 

written by the year 2005. They surveyed 51 unique and published papers in the different areas 

of fraud detection. As this thesis is about fraud detection in the financial sector, it is 

interesting, that the papers with the topic of transactional fraud have the highest count. But 

this thesis is also about internal fraud and remarkably, there is not that much work done. In 

fact, there are only a few papers about fraud at the management level and only one paper 

about fraud at the employee level.  

Phua et al. state in their survey that the methods of modern fraud detection can be roughly 

categorized into four different categories 

2.2.1.1 Supervised approachs with labelled data 

The first category is the supervised approach on labelled data. This seems to be one of the 

most used approaches in this field of science. The goal of it is to get some data from which is 
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known which part is fraudulent and which is regular. Then, various algorithms are used, like 

neural networks, decision trees, case-based reasoning, regression or support vector machines, 

to give a prediction model. As soon as this model is generated and applied to new data, it 

should be able to determine, which part of the new data is fraudulent. The problem with this 

class is that there are some restrictions in the different algorithms. Some can only process 

non-discrete attributes, some need every attribute filled and some are too slow when applied 

to novel data. This category is the typical data mining approach. 

2.2.1.2 Hybrid approaches with labelled data 

In the second category there are the hybrid approaches with labelled data. They are quite 

similar to the non-hybrid ones with the small difference, that more than one algorithm is used 

to generate the rule set. Normally, there are two or more of the data mining algorithms used in 

a sequential way to generate the rule set. This applies for the supervised hybrids. There is also 

a small part of unsupervised hybrids. This method is used especially in the 

telecommunications sector. But two studies state that the supervised approaches excel the 

unsupervised ones. 

2.2.1.3 Semi-supervised approaches with non-fraudulent data 

The third category consists of the semi-supervised approaches with only non-fraudulent data. 

The approach by Kim et al. [Kim et al. 2002] discussed later is of this category. They trained 

their T-detectors only with data known to be non-fraudulent. In other approaches in this 

category, it was tried to identify fraudulent behaviour by supervising the customers known to 

be non-fraudulent and watch for deviances. These deviances would fire an alert and indicate a 

potential fraudulent behaviour. This is achievable especially in the credit card or 

communications sector, where the customer tie is quite strong and long term data is available. 

If for example a customer, who tented to make phone calls only in his vicinity and only 

during daytime, starts to make calls to foreign countries and in the night, his account is very 

likely to be taken over by a fraudster. With these observances of deviations from standard 

behaviour, rules are generated to make predictions about fraudulent behaviour. 

2.2.1.4 Unsupervised approachs with unlabelled data 

The fourth and last category is the one with unsupervised approaches and unlabeled data. 

Link analysis and graph mining are often used here. They are researched especially for anti-

terrorism and similar security areas. But as [Phua et al. 2005] states, the possibilities of graph 

mining seem to be ignored by most of the fraud detection community, as only very few papers 



 

2 Motivation 

14 

use a visual fraud detection system for example. As it will be shown later, this approach 

should be pursued. 

2.2.2 Biological approach 

In their paper, Kim, Ong and Overill [Kim et al. 2002] try to counter internal fraud by a 

system called CIFD (Computer Immune System for Fraud Detection). The paper is set in the 

retail business, where a lot of the transactions are handled electronically. Therefore it is also 

relevant for the banking business, where most of the transactions are handled electronically, 

too. The special thing in this paper is the fact that they try to approach the problem in a 

biological way. With negative and positive selection, they try to train an artificial network to 

detect anomalies in retail transactions. As they state, this is not very easy. They try to take T-

cells as the model for their approach. Biological T-cells are selected via positive and negative 

selection, but as a drawback, it is not yet certain, how this functions in detail. Nevertheless 

they use these two mechanisms to train so called T-detectors. With positive selection, they 

select immature T-detectors that generate the contradiction of the consequences of the two 

strong association rules (“if A than C”) that they where combined from. If the confidence of 

this new rule is above a certain threshold, the rule is selected, otherwise it is eliminated. The 

negative selection is applied thereafter by generating mature T-detectors which have a certain 

self tolerance, i.e. don’t detect themselves. 

2.2.3 Criticism and problems of earlier work 

As an interesting side note, it should be stated that the choice of the method in the real world 

is often not really dependent on the technical restrains implied by the data or the lack thereof. 

It is more often dependent on the practical use and the commitment of the management 

towards the use of fraud detection mechanisms. As noted before, fraud can also be caused at 

the management level. So it seems to exist some sort of tradeoff between guarding the firm 

against losses caused by fraudulent behaviour and the feeling of being monitored by the firms 

own anti-fraud system.  

Besides the fact, that the development of fraud detection systems seems to be hindered by 

firm politics, [Phua et al. 2005] states that there are other criticisms. As declared in the 

previous section, most of the known fraud detection and fraud prevention systems published 

are only based on synthetically generated data, rather than on real data (although studies seem 

to prove that they are similar). This could lead to the claim, that these methods only work 

with synthetic data and that they would never be adaptable to real world applications. This 

seems to be true to a certain extend, because only a few of the proposed methods were 
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actually implemented in a productive system. This could have changed in the meantime, as 

the survey of Phua et al. is from 2005. But it is nearly irreproducible because if some of the 

methods were actually implemented, it will likely not be known in public, because of the 

security issues stated earlier. 

One of the strongest drawbacks of the previous works is that nearly any of them incorporates 

temporal data for fraud detection. As it is known, especially in transactional data, temporal 

information is almost always available. As stated in one of the telecommunication papers, this 

information can, together with other information, give a good hint for fraudulent or non-

fraudulent behaviour. Another drawback is the fact, that spatial information is not used in any 

of the surveyed papers. This may not seems as important for the fraud detection problem, but 

like temporal information, it can give a good hint, especially in bank transactional data. For 

example a lot of transactions from one account in Boston to an account on the Cayman 

Islands can be suspicious (even if this example is a bit of a cliché). 

The last critique on most of the methods is about their complexity. In the sense of science it is 

very nice to have some new and complex methods. With them, one can show that there are 

many possibilities to solve the problem of fraud detection. One can also show that (with 

synthetic data) very high rates of detection are achievable. But on the other hand, the more 

complex the methods, the more difficult they are to handle. As stated before, fraud detection 

is a time critical matter, especially when it comes to adapting to new fraudulent techniques or 

to a shift in regular or legal behaviour. This is because as long as the detecting mechanism did 

not adopt, the fraudulent transactions are processes but not recognised. The second problem 

with complex techniques is that they can indeed be more accurate, but often are slower than 

the less complex ones. Here the potential loss caused by fraud not detected because of the 

lack of accuracy has to be weighted against the potential loss caused by fraud not detected 

because of the mechanism taking to long to detect. A last drawback of the complex 

mechanisms is the fact, that they tend not to scale as well with high amounts of data to be 

processed. Especially in bank transactional fraud, where more than a few millions of 

transactions have to be handled each day, scalability can be crucial. 

2.2.4 Pattern Matching 

In the previous section, we got to know the four different categories of modern fraud 

detection. In the fourth category, there are the so called pattern mining algorithms. In the 

contrary to these data mining algorithms, pattern matching’s main goal is to check for the 

existence of predefined patterns. In this section, we would like to look into the previous work 
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done in this field of research and give a short overview about this important technique as it 

can be used to identify graphs of fraudulent transactions produced by the GraphSlider. 

Pattern matching is a common technique in many areas of computer science. Its most well 

known application is in the field of expert systems [Held et al. 1987]. But graphical pattern 

matching is also used in the field of anti money laundering. The question is why are patterns 

that important? [Kuklas et al. 2005] indicates one possible answer. They state that patterns 

and motifs are very important when it comes to finding, uncovering and analyzing important 

properties of a graph. 

2.2.4.1 Definition 

Before the term pattern can be declared, first the definition of a graph has to be given. 

Formally, a graph consists of a set of nodes (N) and a set of edges (E). Combined, they 

represent the graph (N, E) = G. The term of a sub-graph, which will also be used shortly, is 

defined as the following. N’ is defined as a sub-set of N, E’ is defined as a sub-set of E. 

Combined, they represent the sub-graph S = (N’, E’) of G. It depends on the algorithm, if the 

edges are directed or not [Kuklas et al. 2005, Rome 2002].  

In graph pattern matching, different variables (this depends on the field of research in which 

the pattern matching is used in) are mapped to these nodes and edges. As we will see later in 

this thesis, our program will make use of this to represent the different bank financial 

transactions. An interesting side node is that [Varró et al. 2006] states, that there are some 

pattern matching algorithms that only store the nodes and not the edges. 

One problem is, that the term “pattern” is highly discussed among researchers and that there is 

no real consensus about it [Rode 2005]. One of the more accepted definitions is the one of 

[Kuklas et al. 2005]. “Patterns are labelled, directed graphs”. According to this, graph pattern 

matching is simply defined as “the problem of finding a homomorphic (of isomorphic) image 

of a given graph, called the pattern in another graph, called the target” [Valentine et al. 1997]. 

They state that this “is also known as the sub-graph homomorphism (or sub-graph 

isomorphism) problem”. So to do graph pattern matching, two specific graphs are needed. 

One has to be well known and defined as the pattern to look for. The other graph, most of the 

time, is unknown. So normally it is even not known, if they contain the pattern graph at all.  

2.2.4.2 Problems 

One problem with graph pattern matching is that it is not that simple to find a given sub-graph 

in a much bigger target graph. As [Valentine et al. 1997] states, graph pattern matching is a 

computational complex problem. As to be exact, the finding of a sub-graph in a set of graphs 



 

2 Motivation 

17 

is known to be NP complete after [Giugno et al. 2002]. It is known, that an NP complete 

problem is not easy to solve. The major drawback is that these problems are very complex 

and normally can not be handled in an efficient way. On top of that, there is the problem that 

most of the pattern matching algorithms are not very efficient, aside the NP complete 

problem. Most of them don’t work incrementally and therefore use a lot of time to find the 

same sub-patterns over and over again. Varró et al. gave a good introduction on how to 

circumvent this problem [Varró et al. 2006]. 

One way to simplify the inefficiency problem is the fact, that simple patterns can be combined 

to complex ones. This makes the finding of patterns a bit easier, but it still remains a very 

complex problem. Another way to circumvent the complexity problem is to source it out to 

the underlying database. The problem with this approach is, that most of the relational 

databases and query languages only provide rudimentary pattern matching facilities [Held et 

al. 1987] and therefore are not sufficient for complex patterns. 

2.2.4.3 Solutions 

Because the problem of complexity can not be circumvented that easily, a lot of research has 

been done to find another solution. The reason why most of the optimization efforts come at 

such a late point in the whole discussion, although the problem of NP complete algorithms is 

known long in advance, is the fact that there has to be a well known and researched matching 

algorithm, before optimization can take place. As [Valentine et al. 1997] states, most of the 

effort has been done to find an efficient way to do graph pattern matching or to find new, 

useful heuristics that don’t have the problem of being NP complete. But this is in fact not 

really necessary. In most of the cases, exact pattern matching is far too accurate and therefore 

too complex. Despite of that, one can never be sure that the found pattern is really a match or 

a false positive. Therefore, some of the newer algorithms turn down accuracy on purpose. 

They are much faster and if the accuracy is not turned down too much, the result does not 

significantly differ. 

As we have seen in this section, pattern matching and especially graph pattern matching is not 

a simple problem. But the discovered methods in this field of research can also be applied to 

our problem of fraud detection. Most of the transactions in wired businesses can be described 

as graphs and the fraudulent behaviour can be described as known sub-graphs or –patterns. 

With graph pattern matching, we are able to track these fraudulent transactions and mark them 

for further investigation and processing. 
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2.2.5 Sequential Pattern Mining 

As stated before, most of the known fraud detection techniques don’t use temporal data. This 

seems to be a bit short-sighted, because temporal data is one of the attributes, almost every 

transaction includes. Especially in bank financial transactions, this information is almost 

always available and should therefore be used to support the known fraud detection 

techniques or even to develop a new one, based on temporal data. To show that temporal 

information is very useful, this section will give a short overview about other fields of 

research, where temporal and sequential mining of patterns and data is used. 

2.2.5.1 Earlier work 

As [Pei et al. 2002] states, there are three different classes of sequential pattern mining 

algorithms: 

Apriori-based with a horizontal formatting method 

Apriori-based with a vertical formatting method 

Projection-based pattern growth method 

The earlier work in this field of science came from Agrawal and Srikant [Agrawal et al. 1995, 

Srikant et al. 1996]. They tried to find a method to discover sequential patterns in a database 

with different customer transactions. Their goal was to be able to make predictions about the 

future purchases of a customer e.g. customer A has purchased good D and than good F. How 

likely is it that when customer B purchases good D he will purchase good F in the future. 

They proposed in [Srikant et al. 1996] that their finding in [Agrawal et al. 1995] was too 

simple and discovered that users often want to define the time-gap between adjacent elements 

of a sequence of interest. This means a customer who purchases good D and then waits two 

years to purchase good F will likely not be important for the predictions and the user of the 

system should therefore be able to define this sequence as not being relevant. As we will see 

later, our problem is similar, but we don’t want to define a minimal /maximal time-gap of 

elements to be relevant. We want to define a fixed time-gap between a sequence of elements, 

where elements not matching this sequence will be marked as potential fraud. 

2.2.5.2 Problems 

As [Mannila et al. 1997] states, one of the major problems in sequential pattern mining is to 

discover frequent episodes. Episodes are elements that occur relatively close to each other in a 

given partial order. One of the goals of sequential pattern mining is then to find the 

occurrence of such episodes. As soon as they are known, they can be used to make predictions 

about the next occurring of these elements. As stated above, if good D is always followed by 
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good F, you can predict that after an occurrence of good D, F will follow shortly. And this can 

not only be applied to goods. This can also be applied to other patterns, e.g. financial 

transactions. If one of these patterns is known to be fraudulent, one can eventually make a 

prediction about a future fraudulent behaviour, so one can use this as a fraud prevention 

technique. 

Sequential patter mining algorithms on an apriori base are stated to have one major drawback, 

compared to pattern-growth based algorithms. They are slow i.e. use a lot of execution time. 

Bettini et al. showed in their survey [Bettini et al. 1998], that with optimization it is possible 

to achieve similar execution times with apriori based algorithms. This means, the drawback is 

in fact none. 

2.2.6 Conclusion 

The past sections should have given some small insights into different methods and fields of 

research, linked to fraud detection. Some of them have a strong link, some of them were never 

really used, although they could provide very interesting and useful information to help 

generate better fraud detection and fraud prevention mechanisms. In the next section we will 

look into how this can be useful for our thesis. 

2.3 Approach to a possible solution 

After the theoretical base set in the last sections, we will now go on to the main topic of this 

thesis. In this section, the problem to be solved will be described. Then, some possible 

approaches will be outlined and finally, we will discuss what a possible solution should and 

what it shouldn’t do. 

2.3.1 Definition of the problem 

The main goal was to find a solution for the fraud detection problem in the banking sector. 

Not only that there are many possibilities for fraudulent behaviour like smurfing or money 

laundering. There are also a lot of transactions per day. One can visualize them and try to 

make predictions or find suspicious patterns manually. But it would take a lot of manpower 

and would not be very failsafe. Therefore it was necessary, to introduce a new system for 

fraud detection, which could do an automatic pre-selection of suspicious transactions. There 

was a small system that could do this, called GraphSlider. One of the Problems with this new 

system was its lack of optimization. So the first goal of this thesis was to find a way to 

optimize the GraphSlider in both, memory usage and computation time. Because of the 

extended graphical capabilities – it drew every transaction as edge in a graph and each 
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involved account as a node – it took far more time for the computation than there was really 

necessary. 

After a few weeks, a new problem was discovered. Although the GraphSlider seemed to do 

well, there were already systems that could do the same. But one other problem of the 

banking sector was not covered by most of the solutions to date. As stated in the survey of 

Phua et al. [Phua et al. 2005] there was only one solution for the detection of internal fraud on 

the employee level. So we decided to shift the main goal of the thesis to implement a new 

version of the GraphSlider (hereafter called extended GraphSlider) to account this new 

problem. 

2.3.2 Approaches to the solution 

The approach to the first problem was to discover, where the extended computational time 

comes from and if there are possible memoryleaks. So it was necessary to go through the 

whole program, step by step, to find potential bottlenecks in the computation. A few were 

discovered but the goal was finally abandoned and the focus was shifted to the other problem. 

The approach to the second problem was a different one. First, it had to be decided, how 

internal fraud should be accounted for. What were the attributes available, what could be done 

to indicate internal fraud? Luckily there was an attribute that described the responsible 

registrator for every transaction. This could be used in the extended GraphSlider to assign the 

transactions with the proper registrator and to monitor each of his actions individually.  

Then, a way to indicate possibly fraudulent behaviour had to be found. As seen in the 

previous sections, there are many possible ways to do that. From pattern matching algorithms 

to data mining approaches to temporal or sequential pattern mining. There where many 

possibilities. As encountered in the literature research, there where only a few papers that 

used a temporal approach. But it seemed, as if there was a lot of information in the temporal 

data stored with each transaction. So it was self-evident to try a new approach and use this 

temporal data along with other information stored with the corresponding transactions to find 

possibly fraudulent behaviour. 

The next step in our approach was to modify the GraphSlider to look for internal fraud. 

Therefore two new methods to handle different aspects of temporal internal fraud had to be 

introduced and developed. The exact functionality will be described in appendix A 

2.3.3 Requirements of the solution 

To give the whole process of development a frame, it had to be decided, what the newly 

extended GraphSlider had to do and what functions would not be necessary. 
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One of the main goals was obviously the detection of (possible) fraud. So the program should 

be able to find some predefined temporal patterns that would indicate possible fraud. 

Therefore two different algorithms should be applied. One that should be able to indicate 

smurfing, i.e. a lot of small transactions in a short period of time to hide the fact that they 

combined are a much bigger transaction that would have been suspicious. The other should 

check all transactions if there are irregular ones between two accounts that normally only 

have regular transactions (e.g. on a monthly base). Both of these algorithms should be 

adjustable in different ways via thresholds, variances in both, temporal and monetary data and 

weightings of the different incidents.  

The program should also be able to indicate suspicious employees, or registrators, that may 

have committed a fraudulent action with their user-ID. This should be achieved by giving 

each registrator an account-score, calculated from the different potential fraudulent actions 

done in his account. The higher the score, the more suspicious transactions were committed 

with this registrator-account and the more likely it is that there are in fact fraudulent 

transactions among them. 

Because of the fact, that normal fraud detection and internal fraud detection use a different 

approach, but the program should be able to handle both, it had to be made sure, that there is 

an easy way to switch between the different detection mechanisms. This had to be done 

through some switches in the program. It also had to be possible to switch between different 

detecting algorithms. This could best be achieved through a strategy pattern. 

The program should also be able to adapt to different databases and different database 

structures. So there had to be a way to easily change the name of the database, the name of 

attributes and different database drivers. 

After the programs run, it should be possible to store the results in a database to preserve the 

data for further processing. Therefore not only a reading database access had to be 

implemented, a writing access was necessary, too. 

Although the main goal of the thesis shifted after a while, optimization was still a topic. So 

there had to be made some decisions on how to handle the graphical visualization, which not 

only used a lot of computation time, but also a lot of memory. It was decided to hide the 

graphical implementation so that the graphs don’t show and the computation gets much faster. 

For several reasons, testing of the new algorithms among them, it however was decided to not 

completely delete the graphical interface, so it can still be reactivated via a switch in the 

configuration file. 
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As for the topic of financial fraud, the program is specialised in this sort of transactions and 

the inherent attributes thereof. The program does not have to be easy adjustable to other 

businesses and therefore, the database-connection only has to satisfy known attribute-counts. 

After declaring the problems, the approach to a possible solution and the requirements for this 

fraud detection program with the main goal to find internal fraud, the next two sections will 

be the description of how the standard GraphSlider worked and how the extensions in the 

extended version were coded. It will also explain the design choices behind the different 

implementations and will give a brief hint of the drawbacks, if necessary. 
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3 Description 

This section contains the description of the two implementations of possible solutions of the 

fraud detection problem. The GraphSlider is the base program, which can handle one sort of 

fraudulent behaviour and provides the framework to implement further detection mechanisms. 

The extended GraphSlider is, as its name states, the improved version, which can also handle 

internal fraud and has wider variety of functions to be used. 

3.1 The GraphSlider 

In this section, the first prototype of the new solution will be introduced. The way, how it 

works will be outlined, key features will be illustrated and the design choices made will be 

declared. The exact functionality can be found in Appendix A. 

3.1.1 Functionality of the GraphSlider 

The GraphSlider’s main purpose is to find fraudulent chains in the transaction database. 

Therefore it iterates sequentially through all transactions in a defined time frame. This is 

given through the START_DATE and END_DATE variables in the configuration. 

A sliding window, whose size can also be defined, propagates through all available 

transactions. Figure 1 shows, how the window propagates forward. Note, that the size of the 

propagation step can also be defined, but it should at most be equal to the size of the sliding 

window itself, or some transactions may be omitted. 

 

 

 

 

 

 

 

 

 

 

 

The transactions within the sliding window are then compared to each other. To be indicated 

as fraudulent, a chain must consist of at least two transactions and three involved bank 

accounts. First, a transaction from account A to account B must take place. All transactions 
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Figure 1: Propagation of the sliding window 
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within the sliding window are then searched to have B as originator for another transaction. 

Say this is the case and a transaction from B to account C takes plate within the window. If 

such a transaction is found, the amounts transferred are compared. If they are within 10% of 

each other, the chain is scored. As the minimal scoring is 1 and the scoring threshold of a 

chain to be marked as fraudulent is also 1, the chain gets marked as fraudulent, as soon, as a 

scoring occurs. 

The scoring takes place on the intermediary account. Depending on the involved accounts, the 

scoring is bigger or smaller. Figure 2 shows some possible scorings of the account B. The 

actual scoring is the incoming transactions meeting the conditions multiplied with the 

outgoing transactions. If the chain of transactions is only between two accounts, they are 

never scored. 

 

 

 

 

 

 

 

 

 

 

 

With this algorithm, it is possible to find bank accounts that only act as intermediaries. The 

possibility is high, that such accounts are only used for money laundering. 

As soon as all transactions are handled and the sliding window reaches the defined 

END_DATE, the GraphSlider terminates. The accounts, that fired an alert and where marked 

as fraudulent are then stored in a separate database for further processing. 

3.1.2 Conclusion 

We showed in this section, how the GraphSlider works. As we have seen, it uses a new 

approach in fraud detection, as it relies on the temporal relationship between the transactions 

and the amounts of money transferred to score the individual transactions and the bank 

accounts involved. With this and the corresponding thresholds it is possible to detect 

suspicious transactions, to indicate them and to store them in a database for further 

processing. 
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3.2 The extended GraphSlider 

As seen in the previous section, the GraphSlider is a pretty neat solution for the problem of 

detecting fraud and money laundering on a temporal base. But it does not more, than some of 

the existing fraud detection programs already do, although it does it in a new way. So we 

came up with a new idea. 

3.2.1 Requirements of the extended GraphSlider 

The survey of existing fraud detection mechanisms showed that there are only a few papers 

about internal fraud and only a single one about internal fraud on the employee level. So the 

decision was made, to modify the GraphSlider to account for internal fraud as well.  

Every transaction in the database has an attribute about its registrar. That means, the 

employee who was responsible for this transaction is known. With this new attribute, it should 

be possible to modify the GraphSlider in a way to account for internal fraud. As internal fraud 

not only consists of the pattern used in the old GraphSlider, it was necessary to formulate the 

new requirements. 

1)  The new attribute of the database should be imported into the program. Alerts should not only 

be fired by accounts, they should also indicate the registrar of the corresponding transaction. 

2)  The transactions on a regular base between two accounts, should not fire an alert. 

Transactions on an irregular base should initiate a scoring. If the scoring gets too high i.e. 

above a certain threshold, an alert should be fired. This should be done to indicate cash flows 

deviating from weekly, monthly or annual payment. 

3)  Transactions on a regular base but with a high deviation in the amount transferred should fire 

an alert anyway. This is to prevent the circumvention of rule 2). 

4) Single transactions between two accounts should not initiate a scoring and therefore should not 

fire an alert. 

5) A lot of single, small transactions between two accounts in a short period of time should 

initiate a scoring. If there are too many, this should fire an alert. 

6) All of the above scorings should be weighted, to be able to give them different relevance for 

the summed up scoring of an account and to have another mechanism to control the firing of 

an alert besides the already present threshold. 

7) At the end, the components of the AlertGraph built during the run of the program should be 

transferred to a new data structure and then be stored in a database for further processing. 

The seven points above set the frame for the new implementation of the GraphSlider. Because 

the GraphSlider is quite modular, some of the new requirements could be implemented with 
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new implementations of the existing interfaces. The remaining requirements had to be met by 

modifying the already existing classes or introducing completely new ones. 

3.2.2 Concepts of the extended GraphSlider 

In this subsection, we would like to take a look at the concepts behind a possible approach to 

the requirements imposed above. As the seven points differ, it is not possible to cover them 

with a single approach, although some of them can be combined. 

3.2.2.1 Concept of the new main methode 

The first requirement is the simplest to comply with. The new attribute of the registrar has to 

be imported into the program. Then, the program should not process the whole time interval 

set by START_DATE and END_DATE anymore. It should go through the whole interval 

several times, once for every registrar. This, unfortunately, can lead to a longer runtime, but is 

in fact inevitable. At the end of each interval, the now build AlertGraph should be scored as a 

whole and the scoring should be assigned to the corresponding registrar. 

3.2.2.2 Concept of the periodicScore() function 

Every Transaction consists at least of a date, the transferred amount, the involved bank 

accounts and the number of the registrar. As a transaction occurs, it will be stored in a 

collection, together with all its attributes. The following transactions will be compared to the 

ones already stored. If one of the new transactions has the same bank accounts as source and 

target as an already stored one, they are considered to be between the same customers. As this 

occurs, the date of the first, already stored transaction will be compared with that of the new 

one and the difference will be stored, together with the new transaction and all its attributes 

(hereafter called the reference transaction). The old transaction will be discarded to save 

memory. As soon as a third transaction with the same source and target occurs, its date will be 

compared to the date of the reference transaction and a new difference will be computed. This 

new difference will be compared to the already stored one. If they do not match or the delta is 

not within a certain threshold, which should be defined by the user, the transactions should be 

considered as irregular. If this occurs, a scoring will be imposed. The amount of the scoring 

depends on the deviation from the difference stored with the reference transaction. The 

scoring will then be multiplied with a weighting factor before it gets distributed to the 

involved accounts.  

The base amount of the scoring depends on the deviation of the two differences in dates. That 

means, the larger the delta between the two differences, the larger the base scoring. The base 
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scoring multiplied with the weighting factor will be stored with both involved accounts, as 

said before. If these accounts already have a scoring, the new one will be added. Together 

with the weight factor, the threshold and the tolerance in the deviation, the user is able to 

make complex adjustments how many deviations it takes to finally fire an alert. 

If the delta is within the defined tolerance, two things should occur. First, a new delta should 

be computed and replace the old one. This is to account for the slight shifting in transaction 

frequencies. Then, another comparison will be made. As the amounts transferred by regular 

transactions between the same accounts normally are in a certain range (e.g. 15% of each 

other), a deviation from this value is suspicious. So even if the transaction is regular in the 

meaning of being frequent, this could be only an adaption to the detection mechanisms by the 

fraudster. Therefore, this second comparison is imposed. It checks regular transactions and 

imposes a scoring, if the amounts transferred are not within this 15% deviation of the amount 

of the reference transaction. Like the deviation from the date, this deviation is first multiplied 

by a weighting factor before it becomes the actual scoring of the two involved accounts. 

With these two mechanisms, it should be possible to track transactions that are not frequent or 

irregular and it should be possible to track transactions that are regular, but have a high 

deviation in the amounts transferred. Figure 3 shows the three possible outcomes of this 

conceptual mechanism. 
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Figure 3: Three possible outcomes of periodicScore( 
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3.2.2.3 Concept of the sequenceScore() function 

To explain the approach to the solution of the smurfing problem, we assume the following 

simplified transactions: 

TRX1   ORIG3   BEN4   DATE1 

TRX2   ORIG3   BEN7   DATE2 

TRX3   ORIG3   BEN4   DATE3 

The algorithm tries to catch the originator- (ORIG) and the benefactor- (BEN) account of 

every transaction within the sliding window. If there are two or more transactions (e.g. TRX1 

and TRX3) that have the same originator (ORIG3) and the same benefactor (BEN4) within 

the timeframe given by the sliding window, a counter will be raised. The counter will be 

multiplied with a weighting factor, so that the user is able to take influence on the severity of 

more than one transaction between the same accounts occurring in a short amount of time. If 

the counter reaches the threshold, the alert will be fired. After a defined amount of time, the 

counter will be reset to zero. This should solve problem 4 as it prevents single transactions 

from firing an alert, if they do not occur all together. This is because a single transaction will 

not be able to raise the counter high enough to trigger the alert. The scoring mechanism is 

illustrated in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

3.2.2.4 Concept of the getSuspiciousPatterns() function 

The components of the AlertGraph should be collected, identified and stored to a database. 

Therefore, a deep first search should go through the single sub-graphs and identify all 

adjacent nodes, which are suspicious bank accounts, interacting with each other. 
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4 Evaluation 

After we have introduced the problem of detecting internal fraud, have made clear our 

intentions to the approach of the solution and have explained the actual concepts behind a 

possible solution, this section will cover the evaluation of the extended GraphSlider. The 

evaluation is based on three main topics. First, we compare the different methods and their 

evolution in the matter of computation time. We then compare the different algorithms in the 

matter of memory usage. For this, we will heavily rely on the JConsole program, which is 

included in the Java SDK (JDK J2SE) distribution since release 5.0. With the JConsole, we 

are able to show the memory usage over time. We are also able to show, where in the memory 

most of the objects reside in. We will also be able to have a comparable value of how much 

computation time is lost to the garbage collection. The last topic is the accuracy of the 

extended GraphSlider. Therefore we will insert fraudulent transactions into a synthetic 

database. The evaluation will then show, if these injected transactions are recognized by the 

program. 

4.1 Test configuration 

As there are many different configurations possible in the Configuration class for the different 

scoring algorithms and many of them have an impact on the results of the different 

evaluations, the standard configuration used for each algorithm will be set and explained in 

this subsection. 

4.1.1 periodicScore() 

The following values are set as the standard values for periodicScore() in the Configuration 

class for the runs on the three databases. 

� START_DATE:  1993-01-01 

� END_DATE:  1993-06-01 

The time period contains 5 complete months. It is to be assumed, that longer time periods will 

lead to longer computation times. 

� SLIDING_WINDOW_SIZE:  15 

There are 15 days within the sliding window. Lowering this value can have an impact on the 

computation time and the results. 

� STEP_SIZE:  1 
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With a step size of 1, we ensure that every transaction is accounted, as the sliding window 

propagates one day forward every step. With a window size of 15 and a 5 month time period, 

this leads to 136 steps, as the first 15 days are loaded in one step. 

� CHAIN_SCORE_THRESHOLD:  1 

As soon as one of the nodes reaches a scoring of 1, an alert is fired. 

� PERIODIC_WEIGHT_FACTOR:  0.1 

Every day off the stored delta in the periodicScoring() will be weighted with the factor 0.1. A 

deviation of 10 days off the delta at once will fire an alert. 

� PERIODIC_AMOUT_WEIGHT_FACTOR:  0.001 

If the transactions are regular, but the amounts transferred have a high deviation from each 

other, a difference of 1000 monetary units will lead to an immediate alert. 

� DIFF_LIMIT:  4 

If the deviation between two computed differences in transaction dates is larger than 4 days, 

the transactions are considered to be not regular and a scoring will be initiated. 

� THRESHOLD_PERCENTAGE:  0.15 

Amounts, that differ more than 15% up or down the last transmitted amount, will lead to a 

scoring, because such a deviation is considered to be suspicious. 

4.1.2 sequenceScore() 

As with the periodicScore() function, the standard values of the constants in the Configuration 

class for the runs with periodicScore() are given here. 

� START_DATE: 1993-01-01 

� END_DATE: 1993-06-01 

Again, the surveyed period is 5 complete months. 

� SLIDING_WINDOW_SIZE:  4 

As the sliding window defines how timely close transactions have to be to get tagged as 

possibly fraudulent, the size of the sliding window has to be much smaller. With a size of 4, 

transactions with the same source and target within 4 days are considered for scoring. 

� STEP_SIZE:  1 

This value is again 1, as we want to cover all transactions and we want the sliding window to 

propagate only one day at once. 

� EDGE_STEP: SLIDING_WINDOW_SIZE 

This value sets the time interval, after which an edge is deleted out of the collection edges. 

This is mainly to prevent edges from bloating. 

� CHAIN_SCORE_THRESHOLD:  1 
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The threshold is again set to 1. If this is exceeded for any node, an alert is fired. 

� INTERNAL: false 

As sequenceScore() is mainly for the detection of normal fraud, the INTERNAL switch is 

turned off. This implies that the registrars are not taken into account and all transactions are 

considered to be committed by the imaginary registrar with the ID -1. 

� SEQUENCE_WEIGHT_FACTOR: 0.2 

A weight factor of 0.2 implies, together with the threshold of 1, that there must be a minimum 

of 5 transactions, meeting the conditions of sequenceScore() within the sliding window to fire 

an alert. 

� AMOUNT_LIMIT: 100'000 

As the amount of the split transactions should be relatively small to be considered as 

smurfing, this constant gives the upper limit for a transaction to be considered by the 

sequenceScore() algorithm. 

4.1.3 Computer specifications 

Especially the computation time, the processing of the various transactions take, is very 

dependent on the hardware. As we used two different computers, which produced 

significantly different results, the hardware configurations of theses two machines will be 

given in this section. As only the CPU and the RAM matter, only these two components are 

listed. To be able to compare the two configurations, the CPU-ranking taken from the 

PassMark website
2
 is also given. This ranking lists the 107 most common CPUs as of 

December 1
st
 2008 and their performance with the PassMark CPU benchmark. Every time, it 

is of relevance, the computer who produced the corresponding values will be indicated. The 

setup of the two computers is as follows. 

 

                                                 
2
 PassMark CPU benchmark - http://www.cpubenchmark.net/common_cpus.html 

CPU (1) 

Intel Core 2 6300 @ 1.86GHz 

3318MB RAM 

PassMark ranking: 27 

PassMark score: 1'058 

 

CPU (2) 

Inter Core 2 Duo E8400 @ 3.00GHz 

2048MB RAM 

PassMark ranking: 9 

PassMark score: 1'997 
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4.2 Computation time measurement 

The first performance measure is the computation time. Therefore we made some tests with 

different databases with different amounts of transactions and registrars. Every fraud 

detection mechanism encountered three databases. These databases are constructed as 

follows: 

1) 34 transactions,   5 registrars   referred to as “small” 

2) 174'723 transactions,   10 registrars   referred to as “medium” 

3) 211'270 transactions,   15'000 registrars  referred to as “large” 

The time computed by the Timer class was the reference for comparison. The following chart 

1 shows the difference in a run on the database with 34 transactions with the visualization 

turned on and off. The runs were only taken on CPU (1), as this was only to show the impact 

of the visualization and not the overall power of the involved computer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Visualization Time 

on 00:03:47.578 

off 00:00:01.500 

true false

00:00:00.000

00:00:43.200

00:01:26.400

00:02:09.600

00:02:52.800

00:03:36.000

00:04:19.200

Time

Visualization

T
im

e

Table 1: Visualization comparison 

Chart 1: Visualization comparison 
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It is evident that the visualization has a very big impact on the computation time. With the 

visualization turned on, the computation takes about 15’000 times longer than without it. We 

know from earlier tries, that the impact gets smaller, the longer the computation without the 

visualization takes. For example with the medium database with 174’000 transactions, the 

computation time goes up from around 15 Minutes to over 3 hours, which still is an increase 

of 1200%. As it is evident, the visualisation takes a lot of computation time and has no impact 

on the actual results. Therefore it is turned off for the following measurements. 

4.2.1 periodicScore(), internal = false 

The first function measured was the periodicScore() with the INTERNAL switch turned off. 

So the registrars were not considered and there was only one pass. This is a good measure of 

how big the impact on the computation time is, just based on the amount of transactions in the 

whole time frame. 

Table 2 shows the different databases with their corresponding computation times on the two 

different CPUs. 

Transactions CPU (1) CPU (2) 

34 00:00:01.470 00:00:00.734 

174’723 05:51:54.360 02:58:15.140 

211’270 11:16:34.291 07:21:34.141 

 

 

As the computation times of the medium and the large database are much bigger than the ones 

of the small database, there are two charts to better display the differences between the two 

CPUs. 

 

 

 

 

 

 

Chart 2 

 

 

 

 

34

00:00:00.000

00:00:00.173

00:00:00.346

00:00:00.518

00:00:00.691

00:00:00.864

00:00:01.037

00:00:01.210

00:00:01.382

00:00:01.555

CPU (1)

CPU (2)

Transactions

T
im

e

Table 2: periodicScore(), internal = false 

Chart 2: periodicScore(), internal = false, small database 
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Chart 2 shows, that with small databases, the difference between the two CPUs is obvious. As 

the PassMark scoring indicated, CPU (2) is nearly twice as fast as CPU (1). 

 

 

 

 

 

 

 

 

 

 

 

Chart 3 shows that the computation time increases with the amount of transactions processed. 

As indicated before, CPU (2) is much faster than CPU (1). However, the gap gets smaller, the 

more transactions are processed. It also shows that the computation time of the small database 

is negligible compared to the two larger ones. 

 

 

 

 

 

 

 

 

 

 

 

Regarding the performance of the actual function, chart 4 indicates, that it does not scale well 

with the amount of transactions processed. It seems as if the computation time grows 

exponentially with the amount of transactions processed. 220’000 transactions seem to be on 

the upper border of amounts processed efficiently by the algorithm. It also has to be 

considered, that on weaker PCs the computation time will increase significantly. 
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Chart 3: periodicScore(), internal = false, all databases 

Chart 4: Increase in computation time 
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4.2.2 periodicScore() internal = true 

The second measurement was periodicScore() with the INTERNAL switch turned on. 

Because of the loops that are involved, as soon as the registrars are considered, they have an 

impact on the overall computation time. As the database with 34 transactions and the database 

with 174’723 transactions have 5, respectively 10 registrars, they can still be compared. The 

database with 211’127 transactions is an exception. It has about 15’000 registrars with about 

10 to 20 transactions per registrar. This has two effects, as we will explain shortly. 

Table 3 shows again the different computation times of the two tested systems. 

 

Transactions CPU (1) CPU (2) 

34 00:00:01.609 00:00:01.141 

174’723 00:24:26.125 00:14:23.828 

211’127 ~62:14:44.000 ~250:00:00.000 

 

 

Chart 5 and 6 show the computation times of the small, respectively the medium database in 

respect to each other in a graphical manner. As the two charts indicate, the power of the 

system still has a big impact on the computation time, although it is not as big as before. This 

can be explained with the fact, that the actual computation does use less time, as there are 

fewer transactions processed simultaneously. 
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00:00:00.000

00:00:00.173

00:00:00.346

00:00:00.518

00:00:00.691
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174723

00:00:00.000

00:02:52.800

00:05:45.600

00:08:38.400

00:11:31.200

00:14:24.000

00:17:16.800

00:20:09.600

00:23:02.400

00:25:55.200

CPU (1)

CPU (2)

Transactions

T
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e

Table 3: periodicScore(), internal = true 

Chart 5: periodicScore(), internal = true, small database Chart 6: periodicScore(), internal = true, medium database 
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As stated before, the database with the 211’127 transactions is a special case. Because this 

was the only database on a server, only reachable though the university network, this had an 

impact on the computation time. This, together with the fact, that there are about 1500 times 

as many registrars in the large database as there are in the medium one. 

The fact, that the single registrars are handled in a sequential instead of a parallel manner has 

an impact on the computation time as soon as there are many registrars with only a few 

transactions per registrar. In this case, most of the computation time is not lost through the 

actual calculation of the function. It is lost through the various iterations in the main class. As 

we will see in the memory usage section, the CPU is not really stressed. 

 

 

 

 

 

 

 

 

 

 

 

Chart 7 shows the graphical representation of the computation times on the large database. 

The bars are faded, as the actual values are only estimations. On CPU (1), the program ran 

exactly 22 hours before it was manually aborted. In this time, 5303 registrars of the 15’000 

were processed. As the time per registrar was constant throughout the whole computation, this 

would have lead to a total computation time of about 62 hours. The interesting thing is that on 

CPU (2), which was faster in every other computation, the transactions were handled at about 

¼ of the speed of CPU (1). As the program terminated after 2:30 hours because of a network 

failure, the end result is also an approximation. Similar to CPU (1), the time per registrar was 

constant in these 2:30 hours. Given this constant time, the computation would have taken 

about 10 days and 10 hours. 

Our guess regarding the much bigger computation time on CPU (2) is that it was because of 

the involved network. As stated before, the large database is housed on a server at the 

University of Zurich. The CPU (1) was directly integrated in the university-network. CPU (2) 

had to connect via a secure channel VPN connection though the Internet. In this special case, 

Chart 7: periodicScore(), internal = true, large database 
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the fetching of the data took much more time then the actual computation, as there were only 

very view transactions per registrar and there were nearly any computations (also indicated by 

a CPU usage of below 3%). As the Round Trip Time (RTT) of the internal university network 

is much smaller than the RTT though several routing points and the en- and decoding because 

of the secure channel VPN connection, this lead to a computation time on CPU (2) about four 

times larger than the one on CPU (1). 

These results lead to the conclusion, that periodicScore() in internal mode is not capable of 

handling too much registrars in a database. As we will explain in the future work section, this 

should be one of the first issues to be handled when improving the extended GraphSlider. 

4.2.3 sequenceScore() internal = false 

As the sequenceScore() algorithm is designed to catch smurfing and should not take the single 

registrars into account, this function was only tested with the INTERNAL switch turned off. 

Table 4 shows the actual results of the computations. Note, that for the 3 values designated as 

NONE, there is no data available. As the computation of the large database took nearly two 

days, we decided to omit the computation of the medium database, as this result already 

showed that the algorithm does not scale well with the amount of transactions in the database. 

Transactions CPU (1) CPU (2) 

34 00:00:00.875 00:00:00.703 

174’723 NONE NONE 

211’127 42:25:28.470 NONE 
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Table 4: sequenceScore(), internal = false 

Chart 8: Computation time comparison, small database 
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Chart 8 shows, that the difference in computation time between the two CPUs is not as big as 

with the periodicScore() algorithm when performed on the small database. The faster CPU (2) 

has nearly the same computation time with both algorithms, which indicates, that at this level, 

the algorithm used does only have a minimal influence and that the whole program can’t get 

much faster than this. As the computation time of CPU (1) is also getting closer to this point, 

this means, that the sequeceScore() algorithm is not as CPU dependent as periodicScore(). 

This may be because there are not that many collections to be searched. 

4.3 Memory usage measurement 

As the original goal was to improve the GraphSlider in terms of memory usage, this section 

shows the actual usage after the new algorithms were introduced. As it was no longer a main 

goal, the usage is not really optimized. Nevertheless, this section gives a good insight into the 

advantages and flaws of the new algorithms. 

All the screenshots are taken from the JConsole. This is a JAVA program capable of 

connecting to any running virtual machine and displaying the actual values of memory usage, 

classes loaded, CPU percentage used and threads active. All measurements were taken 

simultaneously with the recording of the computation time. 

After the first implementation, the extended GraphSlider had some problems with the actual 

heap space. It was set to 60 MB by default. This resulted in heap space overflows and the 

termination of the program. We tried to set the heap space to 512 MB, as we thought that this 

should be enough for the program to be efficient. The first tries resulted in the following 

JConsole chart (chart 9). 

 

 

 

 

 

 

 

 

 

 

 

 
Chart 9: JConsole, Heap overflow 
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The three fully filled green bars in the lower right corner indicate, that all three heap spaces 

were filled and therefore, with 512 MB, there was still a memory overflow. We discovered 

after an intense search, that this was caused by a database connection not closed after fetching 

data from the database and therefore was only a bug. 

As the memory usage did not differ on the two used CPUs, only the charts made with CPU 

(2) will be showed in this section. Because of the fact, that the memory was constrained by 

the committed 512 MB and the actual physical memory available does have no impact as long 

as it is larger than the committed heap space, the smaller RAM of CPU (2) made no 

difference. 

4.3.1 periodicScore() internal = false 

Because the computation of the periodicScore() function with the small database with only 34 

transactions took less than a second, there is no graph available. 

The medium database showed the following behaviour. 

 

 

 

 

 

 

 

 

 

 

 

As chart 10 shows, a bit less than half of the maximum memory gets used by the program. 

Because of the fact that the transactions are all handled as if there were only one (imaginary) 

registrar, the stored transactions sum up. The CPU usage is at the allowed maximum (50%) 

most of the time, because there are a lot of transactions to be compared and scorings to be 

computed. 

The charts of the large database show a quite similar situation. The only real difference is that 

the memory usage increased a lot, as chart 12 shows, and is near the magical border of 512 

MB. This means, a few more transactions, and the program would have run into a memory 

overflow. 

 

Chart 10: periodicScore(), internal = false, 

medium database 

Chart 11: periodicScore(), internal = false, 

medium database 
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4.3.2 periodicScore() internal = true 

Like the periodicScore() with the INTERNAL switch turned off, the computation of the small 

database was again much too quick to get an actual graph with the JConsole. 

The charts of the medium database show some interesting details. Although the collections 

are cleared after every registrar, some objects were not deleted and stacked up in the so called 

tenured space. This section of the heap space contains objects that survived several passes of 

the garbage collection. It is not completely clear, why these objects persisted, especially as 

there seems to be a correlation between this persistence and the amount of transactions per 

registrar, as the charts of the large database will show.  

Because there are fewer transactions to be compared with each other per registrar, the CPU 

usage drops, as chart 15 indicates. But the more transactions there have to be searched, the 

more CPU time is used. There are 10 registrars in this database, so the 10 peaks in the CPU 

usage chart indicate the end of the computation of each registrar. 

 

 

 

 

 

 

 

 

 

 

Chart 12: periodicScore(), internal = false, 

large database 

Chart 13: periodicScore(), internal = false, 

large database 

Chart 14: periodicScore(), internal = true, 

medium database 

Chart 15: periodicScore(), internal = true, 

medium database 
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The charts 16 and 17 show the results of the run on the large database. Although there are 

more transactions in this database than in the medium one, the memory usage is a lot smaller. 

There are 15’000 registrars in this database, so the collections get cleared a lot more often. 

But although this is similar to the case in the medium database, there seems to be no 

“stacking” problem here. It is not completely clear, why this is the case. Our guess is that the 

underlying y-files are the problem. The y-files offer some special collection classes. These are 

specially designed to contain nodes and edges, but have no function to clear them. The reason 

for this is not evident and does not really make sense in our eyes. Nevertheless, they are used 

in the alert graph. As there are alerts in the medium database, but none in the large one, it 

seems evident, that this bloating of the program is an effect of these special collection classes 

and they should be replaced. 

 

 

 

 

 

 

 

 

 

 

As there are only very few transactions per registrar, there are nearly any comparisons or 

computations. Therefore, the CPU usage is very low (below 3%). The peak at the end of chart 

17 comes from the before mentioned network failure. When the network failed, the program 

tried to get a connection to the database, but could not reach it and therefore began to throw 

exceptions. This had an impact on the CPU usage. 

4.3.3 sequenceScore() internal = false 

With the sequenceScore() algorithm, the small database was handled too fast to get a chart, as 

with the two periodicScore() variants. 

The only existing chart is that of the sequenceScore() performed on the large database on the 

Merlin server. The very interesting fact in chart 18 is, that it looks similar to the charts 10 and 

12, although sequenceScore() is a quite different algorithm. This is another indicator of the 

fact, that the y-files have some design flaws that are problematic for our approach.  

 

Chart 16: periodicScore(), internal = true, 

large database 

Chart 17: periodicScore(), internal = true, 

large database 
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As expected, chart 19 shows that the CPU usage is again at the maximum mark of 50%. This 

because of the many transactions handled simultaneously as the program is not in the internal 

mode. This leads to the conclusion, that as soon as the program is not in internal mode i.e. 

does handle a lot of transactions at once, the CPU is heavily used and other programs running 

simultaneously can have an impact on the performance of the extended GraphSlider. 

This section showed that the extended GraphSlider is not very well optimized on behalf of 

memory usage. This, together with the parallelism of the transaction handling, should be the 

first thing to improve. It is assumed, that omitting the y-files and replacing them with a 

simpler class with similar functions can really boost the overall memory performance. 

4.4 Accuracy measurement 

To test the accuracy of the two functions, based on the results of the two previous sections, 

two new databases were introduced. The new databases are: 

• test_ss with 2053 transactions and 10 registrars 

• test_ps with 2762 transactions and 10 registrars 

These two databases were generated synthetically with random data. The suffixes stand for 

the functions, the databases are made for. The ss stands for sequenceScoring() and the ps 

stands for periodicScoring(). 

4.4.1 Approach 

The main goal of this section is to test, if the functions are able to indentify possibly 

fraudulent transactions in a database with other transactions. As the functions are designed to 

make a pre-sort of suspicious transactions, the main goal lies in producing no false negatives. 

False positives are possible, as they only indicate that these transactions are suspicious in the 

way that they match the given conditions. 

Chart 18: sequenceScore(), internal = false, 

large database 

Chart 19: sequenceScore(), internal = false, 

large database 
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To test the functions, fraudulent patterns were manually introduced in the previously 

generated new databases.  

Three chains were injected into test_ps, whereof two are fraudulent, and one is regular and 

should not be indicated at all. One of the two fraudulent chains is irregular in terms of 

temporal shifting. The other is irregular in terms of the amounts transferred. In the generated 

database, registrars 3, 4 and 5 have a scoring of zero. In order to facilitate the test, the 

fraudulent chains were injected into these three registrars. If a scoring occurs, it can easily be 

identified. 

To test the sequenceScore() algorithm, two chains were injected into test_ss. As the standard 

search algorithm has a sliding window of four days and the weighting factor is set to 0.2, one 

chain will have 6 transactions between the same accounts within 4 days and the other will 

have 6 transactions but within 5 days. If the sequenceScore() algorithm works as intended, the 

first chain should be scored and the second should be ignored. 

4.4.2 Preparations 

We injected the following transactions into test_ps. 

Transaction-

ID 
Originator 

O-

Account 
Benefactor 

B-

Account 
Date Amount Type Registrator 

2733 1 9999 2 9998 
1993-01-

01 
2000 T 5 

2734 1 9999 2 9998 
1993-02-

01 
2000 T 5 

2735 1 9999 2 9998 
1993-03-

01 
2000 T 5 

2736 1 9999 2 9998 
1993-01-

01 
2000 T 3 

2737 1 9999 2 9998 
1993-02-

01 
2000 T 3 

2738 1 9999 2 9998 
1993-02-

15 
2000 T 3 

2739 1 9999 2 9998 
1993-01-

01 
2000 T 4 

2740 1 9999 2 9998 
1993-02-

01 
2000 T 4 

2741 
1 9999 2 9998 

1993-03-

01 
200000 T 4 

Table 5: Injected transaction, test_ps 
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Because there are no accounts with the numbers 9999 and 9998 we chose this numbers to 

nullify the possibility of an interference with already existing transactions. To identify the 

manually injected transactions, they were marked as from type T like “test”. 

To test the periodicScore() algorithm, we injected the following transactions into test_ss. 

Transaction-

ID 
Originator 

O-

Account 
Benefactor 

B-

Account 
Date Amount Type Registrator 

2017 1 7777 2 7778 
1993-03-

01 
200 T 11 

2018 1 7777 2 7778 
1993-03-

01 
200 T 11 

2019 1 7777 2 7778 
1993-03-

01 
200 T 11 

2020 1 7777 2 7778 
1993-03-

01 
200 T 11 

2021 1 7777 2 7778 
1993-03-

01 
200 T 11 

2022 1 7777 2 7778 
1993-03-

01 
200 T 11 

2023 1 9999 2 9998 
1993-04-

01 
200 T 12 

2024 1 9999 2 9998 
1993-04-

01 
200 T 12 

2025 1 9999 2 9998 
1993-04-

01 
200 T 12 

2026 1 9999 2 9998 
1993-04-

01 
200 T 12 

2027 1 9999 2 9998 
1993-04-

05 
200 T 12 

2028 1 9999 2 9998 
1993-04-

05 
200 T 12 

 

 

Like in test_ps, the accounts 9999 and 7777 were chosen to avoid conflicts with already 

existing accounts. The registrars 11 and 12 do not have an actual impact on the computation, 

as the registrars are not considered in sequenceScore(). But they help to identify the two 

chains. 

Table 6: Injected transaction, test_ss 
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4.4.3 Test 

We tested the algorithms with their corresponding databases and came to the following 

conclusions. 

4.4.3.1 periodicScore() 

Screenshot 1 shows the actual scoring of periodicScore(). The scoring takes place in registrar 

3, because the injected transactions are not regular. 

 

 

 

 

 

 

 

 

 

 

 

The screenshot was taken before the scoring is accounted to both nodes. The red arrow on the 

left side, in the visualized search graph, indicates the transaction triggering the scoring. 

Table 7 shows two excerpts of the accounts database, which stores the overall scores of the 

registrars. As it is shown, registrar 3 and 4, in which fraudulent chains where injected, in fact 

have a scoring after the injection. Registrar 5, in which a non-fraudulent chain was injected 

for cross checking, does still have a scoring of zero. This results indicate, that periodicScore() 

is indeed capable of detecting fraudulent chains and it ignores non-fraudulent ones. 

 

Registrar Before injection After injection 

3 0 3.4 

4 0 396 

5 0 0 

 

Screenshot 1: periodicScore() 

Table 7: Scorings before and after injection 
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4.4.3.2 sequenceScore() 

Besides the already existing scoring from the original database, only the chain between the 

accounts 7777 and 7778 was scored. The following screenshot shows the actual scoring. 

 

 

 

 

 

 

 

 

 

 

 

On the left side, the search graph is displayed. The red arrow indicates the actual scored 

transactions. The blue ellipse, which was manually inserted into the screenshot, surrounds the 

two accounts and the six simultaneous transactions. The right side shows the alert graph with 

the two scored nodes. 

Table 8 shows an excerpt from the component database. There are only the already existing 

node and the two new scored nodes, which implies, that the sequenceScore() algorithm 

worked as intended and did not score the second injected chain. 

 

ComponentRegistrator ComponentNumber ComponentNode 

-1 1 72 

-1 2 7778 

-1 2 7777 

 

4.4.4 Remark about the accuracy measurement 

The actual test of the two newly introduced algorithm showed, that they are in fact capable of 

detecting the suspicious chains in their databases. The test also showed that the algorithms 

ignore non-suspicious chains, even if they are close to be suspicious. With other parameters, it 

is likely, that other chains would have been detected. This implies that it is very important to 

make good decisions on which values to be set in the Configuration class. 

Screenshot 2: sequenceScore() 

Table 8: Final component database 
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This concludes the evaluation section. In the next section, we will talk about the advantages 

of our new approach, but also about the drawbacks which were already known or which 

where showed by this evaluation. 
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5 Discussion 

In this section, we will discuss the advantages and disadvantages of our new approach to the 

fraud detection problem. This section will also cover the limitations and drawbacks of the 

methods, mainly showed by the evaluation. 

5.1 Advantages of the new method 

As we showed, the new methods are capable of finding two different forms of possibly 

fraudulent transactions. 

sequenceScore() is a good method to find smurfing transactions. It is capable of identifying 

the involved nodes and marking them as possibly fraudulent for further investigation. With 

the different customizations, the user is capable of detecting different forms of smurfing. He 

can detect a lot of small transactions within a certain timeframe or he can search a whole time 

interval for a certain amount of transactions below a defined threshold. The different 

configuration values can be adjusted to the actual situation and the effects on the result can 

vary. 

Unlike the manual identification of such transactions, our method is much faster for small 

amounts of transactions and quite accurate. Because of the fact that the new methods are only 

responsible for a presorting, false positives are not as bad as false negatives. It was showed in 

the evaluation, that the sequenceScore() algorithm is capable of finding the suspicious 

transactions, depending on the values set in the configuration. The evaluation also showed, 

that transactions, that are close to be suspicious are ignored, so false positives can happen, but 

are not likely. False negatives are not produced, as the algorithm is capable of dependably 

finding the injected fraudulent patterns. 

It is hard to say, if this is a real advantage, but it is nevertheless a special feature, that the 

algorithm also works on a temporal base. Instead of just finding a pattern that matches a given 

subpattern, sequenceScore() decides, if the transactions meet certain conditions in the given 

timeframe. This makes the program more flexible and the user is able to define the 

configuration values based on data that can change with experience gained. 

periodicScore() on the other hand, is a special method of finding possibly fraudulent 

transactions and chains in the way that it is tuned for internal fraud detection. As we have 

seen in the survey [Phua et al. 2005], internal fraud on the employee level is a problem not 

addressed by most of the papers published till now. Here lies its big advantage. The user is 

able to use it as a normal fraud detection algorithm for all transactions in the database or in 
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the specified time interval. But it is that flexible that it can be switched to internal mode, 

where it only surveys the transactions of the single registrars. With this, the fraudulent 

transactions can be tracked and assigned to the registrars. These results can then be used, to 

make further investigations to try to uncover fraudulent behaviour committed by this 

employee. 

Other than normal pattern matching algorithms, periodicScore() tracks the regularity of the 

surveyed transactions. This is a new approach, as it uses the temporal data, available in almost 

every transaction database, to uncover possibly fraudulent chains. It also has a fallback 

mechanism, if fraudsters were able to discover the method behind the monitoring. If the 

temporal pattern matcher is discovered, the fraudsters will still have to comply with the ±15% 

rule, or the transaction and the corresponding accounts still get marked as possibly fraudulent. 

5.2 Disadvantages of the new method 

Although our approach shows a new way of detecting fraud in banking transactions, there are 

some disadvantages implied by the way, the detection mechanisms work. 

sequenceScore() is only capable of detecting smurfing chains between the same two accounts. 

If the transactions are split among several accounts and thereafter recombined on a third level 

account, the algorithm is not capable of detecting them. sequenceScore() would only detect 

them, if there are enough transactions between the initial and one of the intermediary accounts 

to trigger an alert. 

One of the advantages, the customizability, is also some sort of disadvantage. Even if the 

algorithm is capable of detecting most of the fraudulent chains with the proper settings in the 

configuration, wrongly set values can lead to the algorithms not detecting any suspicious 

chains at all. 

One of the major disadvantages of periodicScore() is the lack of the capability to adapt to a 

shift in regular payment. For example, if someone pays its rents always at the first of each 

month, his transactions are not scored. As soon as he shifts to a payment in the middle of the 

month, all his transactions after that shift get marked as possibly fraudulent, because of the 

deviation from the stored value. 

Another disadvantage is the fact, that February only has 28 or 29 days. Depending on the 

value set in the configuration, this can lead to a false scoring, as the difference between the 

dates gets to big and it will be considered as not being regular. This happens because the 

algorithm does calculate with absolute rather than relative values. 
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5.3 Drawbacks of the new methods 

Unfortunately, the new methods have some drawbacks, some of them discovered in the 

evaluation, some of them already known at the beginning of the thesis. 

The y-files are a good framework for graphs in many situations. They provide specific 

operations and graphical representations to handle graphs. The y-files are even used in 

commercial programs, like the DB Visualizer. Unfortunately, the y-files are not suited for the 

use in our new methods. We were not able to completely discover why, but they have some 

issues with objects, that don't get deleted because of still existing references. We presume that 

the problem arises in the collections provided by the y-files. Unlike the built in collection 

classes of Java, these collections do not provide a way to clear all contained elements. We 

presume that this is one of the reasons for the high memory usage discussed later in this 

section. 

Another drawback of the y-files is that they are a proprietary framework. As soon as our new 

methods would be used in the praxis, they would have to be replaced by other methods to 

avoid licensing problems. As the y-files are a proprietary framework, they are like a black 

box. If it would be necessary to extend the framework, this would be hardly possible. 

The second, not very severe, drawback is the GUI. It is nice to have a graphical interface, 

especially for error detection and for better comprehension. But the GUI of the extended 

GraphSlider has the drawback to be very slow. This is also a limitation of the y-files, as they 

require pauses between the drawing of some of the elements to prevent the program from 

running into null pointer errors. These pauses have to be hard-coded and are set to 0.3 

seconds. Whenever there are many elements to be drawn, the program slows down 

significantly. Nevertheless, the program still runs into errors based on the GUI as soon as the 

user tries to manipulate something in the GUI during the runtime. Normally, these errors have 

no impact, but they can sometimes lead to a termination of the program. As soon as the GUI 

is disabled, the errors disappear. 

The method how the single nodes are scored seems to have a side effect. If there is an edge, 

that produces a scoring, both attached nodes get the scoring as intended. But if there is 

another edge from the originator node within the time frame, that normally would not be 

scored a all, this edge and its benefactor node get a scoring, too. This scoring is 0.0 and can 

easily be deleted or ignored, but it can be confusing to have nodes with a zero scoring in the 

graph. 

As mentioned before, the memory usage of the extended GraphSlider is one of its major 

drawbacks. As seen in the evaluation section, the memory usage rises with the amount of 
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transactions processed. It is possible to circumvent a memory overflow by addressing more 

memory to the program via the Xmx and Xms parameters, but with the data produced in the 

evaluation, we can assume, that the memory usage will grow further. 

The other big drawback is the exponential increase in computation time. As long as 

periodicScore() is in internal mode and the number of registrars is small, the computation 

time is moderate. But because of the sequential manner the transactions and registrars are 

processed, the computation time increases to an intolerable extent. The same goes for the 

computation time of sequenceScore(). If there are only few transactions (a few thousand) the 

performance is good. As soon as there are more transactions, the computation time goes up. 

In this section, we discussed the advantages and disadvantages of our new approach over. We 

showed that with our approach, we are able to reliably detect possibly fraudulent transactions 

in a database. But this section also showed that there are some major drawbacks, which 

should be addressed. The next section will deal with this topic. 
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6 Final remarks 

This section contains the final remarks of the thesis and the practical work behind it. First a 

conclusion over the whole work will be given. It should give a brief overview of what was 

discovered during the thesis and the programming of the extended GraphSlider. Then, 

suggestions for future work will be given. As we discovered some advantages but also some 

drawbacks in our approach, this section will give a hint, what to do next. The section will be 

concluded with some final personal remarks about the work, included in a short résumé. 

6.1 Conclusion 

This thesis was started with the goal of optimization in mind. We wanted to optimize the 

already existing framework of the GraphSlider to use less memory and to make its 

computations faster. After a short time, we discovered, that in the actual literature there is a 

fascinating part of fraud detection, not yet covered by many papers. So we decided to switch 

to a new topic. The new goal was to prove, that it is possible to detect fraud with temporal 

data, available with almost every bank transaction and that this data can also be used to 

discover fraudulent behaviour on the employee level. 

The first thing to do was to discover the possibilities of the already existing framework and to 

find a way to implement the new functions. Because of the fact, that the GraphSlider already 

was very extendible, the new functions could be relatively easy integrated. We decided to take 

two different approaches. One should cover smurfing and not take the registrars into account. 

This method should prove, that it is possible to discover fraudulent behaviour based on 

temporal data and the accounts involved in the transactions. 

As the evaluation showed, our new method was in fact capable of detecting this kind of 

fraudulent transactions. Unfortunately, the evaluation also showed that the new function 

needs a lot of optimization. 

The second approach was to take the regularity of transactions into account. Non fraudulent 

transactions are often made at the same time of the month and are from approximately the 

same amount. Our approach should be able to find transactions deviating from this fact and 

mark them as possibly fraudulent. This, combined with the capability to indicate the registrar 

in whose account the transactions were committed, resulted in the implementation of 

periodicScore(). 
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Again, the evaluation showed that this approach is capable of doing what it was intended for. 

But again, the evaluation also showed that the implemented functions were by no means 

optimal. 

To cover the two approaches, the GraphSlider framework had to be heavily extended. 

Although it provided the before mentioned extensibility, mainly based on the fact, that most 

of the existing parts were implemented in a strategy pattern, some parts had to be modified. 

These modifications, together with the not optimized new functions lead to the contrary of the 

original goal. The computation time went up for certain configurations of the underlying 

databases and so did the memory usage. 

Therefore, we would like to point out, that the extended GraphSlider should be viewed more 

as a proof of concept rather than an actual applicable and optimized solution. It should be 

possible to extend and optimize these new approaches, but this would require more time than 

this diploma thesis grants. 

Finally it is to say, that our new approaches show a new, interesting way to cover the problem 

of fraud detection, especially on the internal and employee level. But it also shows in some 

sort of a painful way, what can happen, if programs are not optimized. 

6.2 Future work 

The base set with the extended GraphSlider provides many possibilities for future work. One 

of the most pressing issues is the optimization of the GraphSlider in terms of computation 

time and memory usage. These two issues prevent the actual program from being really 

efficient.  

The first step towards optimization should be the replacement of the y-files. As many useful 

features they may provide, they cause some serious issues. Not only that they are suspected to 

cause some of the high memory usage, they are also not capable of visualize the processed 

transactions without errors, if the processing is too fast. 

The next step should be the optimization of the main functionality of the extended 

GraphSlider. As of now, all transactions and registrars are handled sequentially. For the 

transactions, this is not a problem, as they have to be handled that way because of the sliding 

window. But if the registrars are handled sequentially, the computation time rises with the 

amount of registrars in the database. As long as there are many transactions per registrar, there 

should be not big difference between if they are handled sequentially or in parallel. As soon 

as there are only a few transactions per registrar, the processor is idle most of the time, but the 

program takes as long as if there were many transactions. This is because even if there are no 
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transactions in a registrar account at all, it still would move the sliding window through all 

possible dates. Therefore, the first optimization step should be to find a way to handle all 

transactions and registrars in parallel. 

The actual optimization of the two approaches should be the next step in a future work. 

Especially the way, the collections of sequenceScore() are handled is not optimal. There 

should be a better way to find transactions with matching originator and benefactor nodes 

than iterate through the whole collection of already stored transactions. 

Maybe this could be done by a smarter implementation of the database query. So that only the 

transactions are loaded into the program, that meet certain conditions. This would lead to less 

transactions in the actual program, what would have an impact on both, computation time and 

memory usage. 

periodicScore() should be optimized in a similar manner, even if the problem of too many 

iterations is not as imminent as with sequenceScore(). A second thought for future work on 

the periodicScore() algorithm could be the optimization of the comparisons. Now, they are 

some sort of crude. It would be an idea to not compare the fixed differences between the 

dates. Instead, some sort of standard deviation could be used. And a moving average should 

also be introduced, as this would cover the possibility of a shift in payment behaviour. 

As already declared, the actual implementation of the GraphSlider is only capable of marking 

possibly fraudulent transactions. The built alert graphs are then stored in a database for further 

processing. One possible future work could be to process the built alert graphs directly in the 

GraphSlider program. This would require to process the graphs with a pattern matching 

algorithm so find the real fraudulent chains.  

As seen, the actual GraphSlider provides many possibilities for future work. It would also be 

possible to implement another fraud detection mechanism, e.g. on a spatial base. But the main 

goal should be, to optimize the existing program and take it from it's actual state as proof of 

concept to an actual productive and efficient system. 

6.3 Résumé 

This is my personal résumé about this thesis. 

I took this thesis, because it gave me the opportunity to do something praxis oriented. As a 

student, most of the time, the matter you learn is very theoretical. Sometimes you have to do 

some practical work, but at the end, it is not really used, as it is something that already exists. 

With this thesis, I had the opportunity to develop something new, not yet present. 
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The actual work was very interesting, as I discovered new ways to use my Java skills and 

improve them. I also had the opportunity to work with a already existing framework, based on 

patterns I only knew theoretically.  

During the work, I found out what it means to be looking for a needle in a haystack, or to look 

for bugs in other words. I discovered, that bug tracking can be very time consuming and that 

the actual bug can be not more than a singe line omitted in the code. 

During the evaluation, I discovered that sometimes, programs behave other than they are 

intended to do. I always tested my implementations with a small amount of data in a manually 

written database. These tests all performed pretty well and the injected fraudulent patterns 

were always discovered. As soon as the program got hands on a bigger database, things 

changed a little. The fraudulent patterns were still discovered, but at the price of a high 

memory usage and computation times sometimes that big, that I had to suspend the actual 

computation and make some extrapolations instead. 

At the end, I wish I had done some of the implementations and decisions in an other way, 

because as soon as you can see the whole picture (which you can hardly see at the beginning) 

there are always things that could have been done better, like the parallel handling of the 

registrars instead of the chosen sequential handling. 

Finally I have to say, that it was fun after all and I have learned much about fraud detection 

and the implementation and ideas behind fraud detection systems. 
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Appendix A – Implementations 

A.A GraphSlider 

A.A.A Introduction to the classes and packages 

The GraphSlider is a program implemented in the SUN Java programming language. This 

implies an object oriented approach. To cover this, the different classes and their functions as 

well as the corresponding packages will be explained here. 

As in every Java program, the anchor lies in the Main class in the package main. The Main 

class is quite small. All it does is instantiate the class ChainFinderAll of the package algo and 

than goes into a while loop until a certain condition is met. As soon as the while loop is left, 

the program finishes. Every method invocation in the Main class is passed to the 

ChainFinderAll object, so there are no other methods implemented in the Main class. It is 

only responsible for the program flow. 

The class ChainFinderAll is a very special class. As noted before, it can be found in the algo 

package. It is the only real class in this package. The other five classes are simple interfaces, 

used for the implementation of a strategy pattern. We will come to that shortly. The 

ChainFinderAll is not defined as an interface, but its behaviour is quite similar. All the 

method calls from the Main class are not really handled here. They are only passed through to 

various other classes. So ChainFinderAll is some sort of a distributor. 

One of the most important packages is conf with its class Configuration. Configuration 

contains no methods. Its purpose is to store different constants. In it, the database connection 

and the corresponding drivers can be set. It also contains some constants for thresholds, SQL 

queries, general parameters and the ability to turn the graphical representations of the 

different graphs on or off. 

In the package db, the class DBConnector is resided. It contains all the necessary methods to 

establish a connection to the transaction database with all the financial transactions to be 

monitored. 

In the package search, one of the most important classes can be found. YSearchGraph 

contains all the important methods for the program except the pattern matching algorithms for 

scoring. This class handles most of the program flow as most of the invocation calls caused 

by the Main class and distributed by ChainFinderAll finally invoke a method of 

YSearchGraph. 
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The package alert contains two classes. Alert is, as the name states, the class who stores all 

the alerts invoked by the fraud detection mechanism. In fact, every alert is an object generated 

out of this class. Alert has also the ability, to store itself in a database for further processing. 

The second class in the package alert is YAlertGraph. It handles all the functions on the alert 

side of the graph, like adding edges and nodes for graphs that caused an alert. 

One of the packages not that important is vis. It contains the two classes 

YAlertGraphVisualizer and YSearchGraphVisualizer. These two classes are responsible for 

the visualization of the two different graphs. They only contain the graphical information and 

do not have any computational algorithms, important for the detection of fraud. 

The last package in the whole program is chain. It contains the classes with the different 

algorithms to detect fraud. They have some special purposes. ChainScoreAndSpread is 

responsible for the scoring and spreading algorithms. It contains the strategies on how the 

fraudulent behaviour is scored and how the scoring is divided to the different bank accounts 

involved. ChainAlertAndAge is responsible for the firing of alerts, if necessary. It also is 

responsible for the ageing of the score on the different accounts. These two classes heavily 

rely on the other classes in chain. The other classes are the actual strategies and it is possible 

to switch between them to achieve other distributions or other scorings and ageings. 

With this, we have completed the introduction to the different classes and packages and can 

go on with the actual description of their functionality. 

A.A.B Functionality of the GraphSlider 

First of all, we have to declare, that the GraphSlider heavily relies on the y-Files for Java. 

With them it is relatively easy to manage different sorts of graphs as they provide a lot of 

methods for the edges and nodes. This can be the ability to find all adjacent nodes in an 

undirected graph or the successor or predecessor nodes in a directed graph. They also provide 

different functions to cover the graphical representation of the graphs with different layouts 

and other properties. 

The main functionality can be explained as follows. At the beginning, the start of the sliding 

window is similar to the START_DATE defined in the Configuration class. The 

SLIDING_WINDOW_SIZE is also given in the Configuration class and can be adjusted if 

needed. At the start of the program, every transaction in the sliding window is loaded into the 

program. With these transactions, the graph in the SearchGraph area is built, with transactions 

being edges and the involved accounts being nodes. 

As soon as this first chunk of data is loaded, the while loop comes into account. It checks, if 

the sliding window already has reached the date defined as END_DATE. If the two dates do 
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not match, the program enters the loop and invokes calculateAndSpread(). This function call 

is passed through to the class defined as scoringAndSpreadingBehaviour. 

This is one of the major advantages in the design of the GraphSlider. In order to achieve an 

easy adjustable program, the strategies for scoring or spreading of the scores, the way an alert 

is invoked and how the alert-scores are aged, are all implemented in a strategy pattern. This 

means, the functions are not programmed against the actual classes, they are programmed 

against interfaces. As interfaces define certain function signatures and all classes that 

implement an interface must also implement these functions, the invoking class never has to 

be changed, even if the class behind the interface is a completely different one than before. 

This is called a strategy pattern and with it, the GraphSlider gets very flexible. 

So at the moment, the class behind scoringAndSpreadingBehaviour is ChainScoreSpread. 

This class goes through all nodes in the actual graph and checks, if they are actually 

connected to other nodes. If they are not, they are removed from the graph, as there is no 

longer a transaction in the actual sliding window coming from or leading to that node and 

therefore it is not relevant for the following calculation. 

The main calculation takes place in the class ChainScoring01. This class also can be replaced 

by another scoring algorithm. We will use that fact in the extended GraphSlider. In 

ChainScoring01, the incoming and outgoing edges of each node are collected. If a node only 

has incoming edges or outgoing edges, nothing happens. If a node has both types of edges, the 

algorithm looks for the dates of the transactions corresponding to the edges. If they are both 

within the dates defined by the actual position of sliding window, they are marked for further 

processing. In this, the amounts of the two transactions are compared with the fuzzyEquals() 

method of YSearchGraph, which returns a boolean. This method compares the two amounts 

of the transactions with each other. If they are within a certain range (standard is ±10% of the 

incoming amount), defined in the Configuration class, the method returns a true and the 

scoring function enters its last processing state. This contains the comparison of the source 

and the target of the edges. If they are similar i.e. the money is transferred from account A to 

account B and then back to A, there will be no scoring. Otherwise, a scoring is applied, equal 

to the amount of incoming edges meeting the conditions times the amount of outgoing edges.  

After the calculation for every node is done, the scores are spread among the adjacent nodes, 

as defined in the spreadingBehaviour. At the time being, the spreading is set to NoSpreading, 

so no spreading takes place and the scorings do not change. 

With the scoring and spreading done, the main method enters its next state, the alarmAndAge 

state. Here, another important part of the fraud detection process takes place. As with 
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calculateAndSpread, alarmAndAge is passed to an interface with many possible alerting 

behaviours behind it. At the moment, this is the class ChainAlertAndAge in the chain 

package. 

The first thing done is the summing up of the newly computed score with the past scorings for 

every node (if there are any past scorings). Then, the triggerAlert() function is invoked. This 

is the most important function and it is responsible if a node is marked as suspected for fraud 

or not. The key lays in the CHAINSCORE_THRESHOLD defined in the Configuration class. 

It is important to adjust it to the proper value. At the moment, it is set to 1, which means, as 

soon as a scoring occurs (because 1 is the minimum scoring that can occur) an alert is 

triggered. This is because as soon as the summed up scorings reach the defined value or 

exceed it, an alert is fired. The alert causes the program to create a new instance of the Alert 

class, which stores the node that fired the alert, its scoring and its type (in this case it is of the 

type “chain”). 

The invocation of an alert leads to the creation of a new graph, this time in the YAlertGraph. 

This new graph consists of the node, that caused the alert, plus its adjacent nodes. So the 

graph has a minimum of three nodes. 

After the alert is indicated and stored, the ageing function comes into account. As with the 

other functions in the chain package, it also implements an interface and is part of a strategy 

pattern. So it can be easily replaced by another ageing mechanism. In its original form, the 

ageing function is quite simple. It takes the scoring of each node in the YSearchGraph and 

divides it by two. This way, it prevents a node with a scoring of 1 to trigger an alert again in 

the next iteration of the while loop in the main class. Nodes with a scoring higher than 1 will 

trigger another alert in the next iteration and the scoring will be added to the actual alertScore. 

If the scoring of a node drops below a certain amount (0.1 at the moment) the score is set to 0 

to prevent an ongoing ageing of this node, since it can not trigger an alert with such a small 

scoring. This is mainly to save computation time and resources. 

Now, the program is nearly done. It moves on in its main method to the last function invoked. 

This is moveSlidingWindow(). As simple as this function may seems, there is more behind it. 

Like nearly all of the flow-control methods, this one is implemented in the YSearchGraph. 

The first thing it does is obvious. It moves the sliding window forward. In the Configuration 

class, it can be defined, how many days forward the window will be moved. It is possible to 

move the window more than it actually covers (through the WINDOW_SIZE) and to leave 

some of the transactions unprocessed. Therefore, the STEP_SIZE should always be smaller 
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than the WINDOW_SIZE. At the time being, STEP_SIZE is set to 1, so the sliding window 

moves one day forward, after every iteration in the loop. 

The next thing moveSlidingWindow() does, is to get rid of transactions that are no longer 

covered by the sliding window. This deletes the corresponding edges from the graph, what 

can lead to nodes having no neighbour anymore. These nodes will then be deleted in the next 

iteration of the while loop. 

After this is all done, the method loadDataBetween(), which was already invoked at the very 

beginning of the program, is invoked again. It gets the data that is in the now moved sliding 

window. 

After this last function, the while loop will start anew until the sliding window reaches the 

date defined in END_DATE. As soon as the while loop is left, the whole program terminates. 

A.B Extended GraphSlider 

A.B.A Implementation of the extended GraphSlider 

In this subsection, the composition of the implementation of the extended GraphSlider will be 

explained. In order to do that, some special new or heavily modified classes are picked out to 

show their actual function and the design decisions behind them. 

A.B.A.A Class Timer 

As the extended GraphSlider still should be optimized in terms of memory usage and 

computation time, a possibility to measure these two values had to be one of the first things to 

be implemented. For the memory usage, Java itself already delivers a capable tool, the 

JConsole. 

For the measurement of computation time, the class Timer in the package timer was 

introduced. At the beginning of the program, in the Main class, a new object of the type Timer 

will be instantiated. Timer requires a long in its constructor, encoding the actual time in 

milliseconds. This can be achieved in passing the value of 

Calendar.getInstance.getTimeInMillis() to the constructor. The Timer object stores this value 

in its start variable and does nothing more with it. Should it be necessary, Timer has the 

method setNewStart(long start) to pass a new value to the object, but normally, this method 

should not be used. 

At the end of all computations in the Main class i.e. after the still present while loop and other 

computations, introduced later, the Timer object is addressed again. First the method 
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setEnd(long end) is called, again with the actual time encoded as milliseconds. This value is 

stored in the variable end. 

As soon as start and end are stored, the most important method of Timer is called. 

calculateTime() is the main function of this class. First, it only computes the difference in 

milliseconds between the start value and the end value. This new value, called diff, could 

already be printed out, but it would be a large number with not much significance, as people 

normally don’t calculate with milliseconds. Therefore, the calculateTime() method partitions 

the value of diff into its specific values of hours, minutes, seconds and milliseconds. These 

four values are combined into one string and than printed out to the console. With this new 

value, it is possible to compare different runs of the program on different computers, with 

different values of the Configuration class or with different algorithms for fraud detection. 

A.B.A.B Class Account 

The name of this class may be mistaken as a class responsible for the bank accounts of the 

customers. In fact, this class refers to the accounts of the employees in the transaction system. 

For internal fraud, it is important to monitor the transactions of a single employee. The 

GraphSlider was not able to differ between the transactions initiated by different employees. 

Therefore this new class was introduced.  

The class Account has two class variables. The variable accNumber stores the ID of the 

employee, which is attached to every transaction in the database. The accSum variable stores 

the final scoring of this account by summing up all the scorings of the nodes present in the 

AlertGraph. 

Besides the getter and setter methods for the two class variables, Account has one important 

method to store its values into a database. The method saveToDB() is called at the end of each 

turn with each registrar and saves the values of the two class variables into a database 

A.B.A.C Class Main (modified) 

To be able to account for internal fraud, the main() method of the Main class had to be 

modified. The while loop of the old GraphSlider, which loops through all the transactions 

from the START_DATE to the END_DATE, was not appropriate, as it did not account for 

the different registrars. So this while loop (hereafter called inner while loop) was enveloped 

into another while loop (hereafter called outer while loop). Before this new outer loop starts, 

the method getRegistrators() in YSearchGraph is called. This method returns a vector with an 

Account object for every registrar-number found in the database. So if there are for example 

the registrars 1 to 10, a vector with 10 Account objects is returned. The outer while loop 
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checks, if this returned vector is not empty. Should there be no registrars at all (which implies, 

that there are no transactions) the program will terminate at once. If there is at least one 

Account object in the vector, the object at index 0 is taken. 

The program then goes through the inner while loop, as it did in the original version of the 

program. The main difference is, that initWindow(acc) and moveSlidingWindow(acc) are 

modified so that only transactions are loaded into the program, whose registrar ID in the 

database is exactly the same as the one stored in the accNumber variable of the actual 

Account object.  

As the inner while loop in the Main class reaches the date defined in END_DATE, this time 

the program does not terminate. First, there are some final calculations explained in the 

section of SearchForPatterns. Then, the function sumUpAlerts(acc) is called. This function 

leads to all the scorings being present in the nodes of the AlertGraph at this moment being 

summed up and stored in the accSum variable of the actual Account object. Then, the 

saveToDB() function is invoked and the contents of the Account object are stored into a 

database. After this, the first element in the vector with all the Account objects is deleted, 

which leads to a new element with index 0. If there are still elements in the vector after this 

deletion, the outer while loop is accessed again and the whole program starts anew. Before 

entering the inner while loop it only has to reset the sliding window back to the value of 

START_DATE. If there are no more elements in the vector after the deletion, the program 

terminates. 

A.B.A.D Class ChainScoring02 

To account for the new requirements imposed through the internal fraud detection, the old 

scoring mechanism had to be replaced. As of the modular architecture of the GraphSlider, this 

could easily be done by introducing a new ChainScoring class. It only had to be replaced in 

the strategy pattern of the class ChainScoreSpread. As every ChainScoring class must 

implement the ScoringFunction interface, two methods must be inherited. There methods are 

score(Node n) and the newly introduced method resetCollections(). The first method is 

responsible for the actual scoring of the different nodes. It is the most important function and 

contains all the actual scoring information. The resetCollection() function had to be 

introduced as there is more than one pass through all dates, as the sliding window is reset with 

every registrar. If the resetCollections() function would not be there, results from the last 

passes would interfere with the actual computation, what would lead to completely false 

results. 
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The problem here is, there is only one method for the scoring, but we have two different 

situations when something has to raise the score, as described in the concept and approach 

subsection. As we want to be able to switch between the two different scoring mechanisms 

without changing the whole class in the strategy patterns, some sort of switch had to be 

implemented. 

With this switch in the score(Node n) function of the ChainScoring02 class it is possible to 

chose, which of the two new scoring mechanisms should be used via two booleans in the 

Configuration class. These two mechanisms are periodicScore(Node n) and 

sequenceScore(Node n) and will be explained en detail in the next sections. 

A.B.A.E sequenceScore(Node n) 

This method is the solution of the so called smurfing problem. Smurfing means, that a large 

transaction is divided into a lot of smaller transactions. As a matter of simplicity, we assumed 

that these transactions are between the same two accounts and in a short, to be defined, period 

of time. This period is given by the sliding window and can be, if necessary, adjusted to cover 

all transactions between START_DATE and END_DATE. 

The function score(Node n) is invoked by ChainScoreSpread for every node actually loaded 

in the YSearchGraph. ChainScoreSpread iterates through all the nodes and passes them to 

score(Node n) and with this to the contained function sequenceScore(Node n). The 

sequenceScore(Node n) function takes the committed node and tries to get a List of all the 

outgoing transactions of this node, that are within the sliding window (in the standard setting 

the past four days). 

It then iterates through this list of edges. The edges are then saved in a HashSet to be able to 

access them and compare them with other edges, as explained later in this section. In three 

HashMap objects, every edge gets it source-node (sources), its target-node (targets) and its 

transaction-IDs (trxIds) saved together, with the edge object as its respective key. As soon as 

this is done, the new edge is compared to all edges that are already stored in the collection 

edges. 

If source-node and target-node are the same, there is a similar edge still in the collection. This 

means that there is already a transaction between these two bank accounts within the defined 

sliding window. As it could be possible, that a finding is a self-reference, the transaction-IDs 

are compared, too. If they are the same, it is a self-reference and nothing happens, as the 

algorithm only has found the same transaction it had stored in the collection a few moments 

ago. With this mechanism, self-reference is prevented. But this also leads to the prevention of 

single transactions triggering a scoring. However, if the transaction-IDs are not the same, the 
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algorithm has found a different transaction within the sliding window and between the same 

bank accounts. If that should be the case, a last test is executed. As the big transactions are 

normally divided into quite small ones as implied by the term “smurfing”, the algorithm 

should only respond to amounts transferred, that do not exceed a certain user defined 

threshold, the AMOUNT_LIMIT.  

If the found transaction meets all the conditions and is below the threshold, a scoring is 

applied. This scoring is 1.0 times a user defined factor, called 

SEQUENCE_WEIGHT_FACTOR. With it, the user of the fraud detection system is able to 

define, how many similar transactions have to be within the sliding window to accumulate a 

scoring high enough to exceed the threshold and trigger the alert. This is another mechanism 

to prevent single transactions from triggering an alert. As soon as all the transactions from one 

node within the sliding window are handled and compared, the sequenceScore(Node n) 

function is terminated and the weighting function is handled next. 

A.B.A.F periodicScoring(Node n) 

The function should compare different transactions in the meaning of their periodic 

appearance, in other words, if they are on a regular base.  

The first thing this function does, is to get all the outgoing transactions or edges of the node n 

within the sliding window and store them in a List. This is quite similar to what 

sequenceScoring(n) does. Then, it iterates through all the edges fetched. The very first edge 

only gets stored in the HashSet edges2. It is not named the same as the HashSet of 

sequenceScoring(n) as it is possible to run both scoring algorithms at the same time (although 

this is not advised) and the two collections should not interfere with each other. 

As soon as the second edge gets processed, the method calculateNodeScores(Edge e) is 

invoked. This method was outsourced to make the code better readable and easier to maintain. 

Its main purpose is to fork the program flow. It first invokes the method compareEdges(Edge 

e), which compares the new edge with all edges still in the edge2 HashSet. If there is an edge 

with the same source and target-node as the new edge, the function compareEdges(Edge e) 

returns true, else it returns false. If a false is returned, calculateNodeScores(Edge e) does 

nothing more than to store the new edge in the edges2 HashMap and then returns to 

periodicScore(Node n) 

But if compareEdges(Edge e) returns true, the two main scoring functions are invoked. First, 

calculateDifference(Edge e) calculates, as its name says, the temporal difference between the 

first edge and the actual edge with the same source and target nodes. It then stores this 

difference together with the newer node in the HashMap diffs. It also stores the newer node 
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together with its amount transferred in the HashMap amounts. This is important as the 

amounts in periodic transactions should not differ too much and the HashMap amounts will 

be use to ensure this. 

As soon as this is done, the main scoring function comes into play. It is called 

scoreDifference(Edge e) as the scoring is mainly based on the difference in the transaction 

dates or the amounts transferred. The method gets the difference between the actual 

transaction and the last one and, if possible, the stored difference between the last transaction 

and the one before that. These two differences are then compared by subtracting the one from 

the other and taking the absolute value of the result. Then, the modulus of this result 

compared with the stored difference is taken. This modulo calculation is done for the 

following reason. Assumed, someone pays its cheques on a monthly base and one month, 

there is nothing to pay. The modulus ensures that, if the difference between the transactions is 

normally 30 days and one time it is 60 days, this is still considered as a regular transaction. If 

the modulus is greater than a user defined threshold called DIFF_LIMIT, a scoring is applied. 

Normally, the greater the deviation between the differences is, the more irregular the 

transactions are. This is accounted for by making the scoring dependent on this deviation. The 

absolute deviation multiplied with a user defined weighting factor called 

PERIODIC_WEIGHT_FACTOR results in the final scoring for the accounts involved in 

these transactions. 

If the deviation is smaller than the DIFF_LIMIT, what means that the transactions are 

considered to be regular, the amounts of the actual and the last transaction are compared. If 

they are within a certain limit, which also is user defined and pre-set to ±15% of the last 

transferred amount, nothing happens and the transactions are considered to be regular and 

unsuspicious. If the limits are exceeded, this transaction is suspicious and a scoring has to be 

applied. This is done by calculating the absolute difference between the two transferred 

amounts, weighting it with a user defined factor 

PERIODIC_AMOUNT_WEIGHT_FACTOR and storing the result as score for the involved 

bank accounts. 

If one of the two possible scorings occurs, the last saved transaction together with the stored 

difference and the amount, is replaced by the newer one. As soon as the whole process 

described above is done to all edges of the node passed by score(Node n), the algorithm is 

terminated and the program returns to the ChainScoreSpread class where it fetches the next 

node in the YSearchGraph and continues the calculation. 
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A.B.A.G Class SearchForPatterns 

As soon as the inner while loop in the Main class is left, the whole AlertGraph with all the 

suspicious nodes which have a scoring above the threshold has been built in YAlertGraph. As 

these nodes only mark the suspicious bank accounts, but it is not yet sure, which are the real 

fraudulent ones, a new algorithm has to be applied, capable of finding fraudulent patterns in 

this AlertGraph. This could be done by an external program or by another extension of the 

GraphSlider. In order to enable this, all the components of the AlertGraph have to be stored 

outside of the program in a persistent manner. SearchForPatterns should provide this. The 

name is a bit misleading, as is first was intended to do the actual pattern search. As there was 

not enough time anymore, it was decided to only enable other programs to do the actual 

search, but the name was kept. 

When the inner while loop is left, the function getSuspiciousPatterns(Account acc) is invoked. 

This is passed through to the YAlertGraph. It has a method with the same signature. In this 

method, a new instance of the class SearchForPatterns is created. This class has quite a big 

signature, as most of the collection classes that store elements of the YAlertGraph have to be 

handed over to this new class for its calculations. 

The first thing, SearchForPattern does, is to invoke its own method createMappings(). This 

method takes all nodes in the YAlertGraph i.e. all suspicious bank accounts. For every node, 

it creates a List of all its direct successors and its direct predecessors. This is important to be 

able to build the connected components. Nodes that have an empty list of predecessors are 

considered as root nodes for the following deep first search. 

As soon as all the available nodes are handled, the function createComponents() is invoked. 

This is in fact a deep first search algorithm. It takes the nodes marked as root nodes and starts 

its deep first search. Every node connected directly or indirectly to one of the root nodes is 

considered to be of the same component. There is a special class called GraphComponents(int 

compNR), which stores all the connected nodes. For every root node, a new instance of 

GraphComponents(int compNR) is created. It contains the number of the actual component 

and the IDs of all the connected nodes of this component. It provides three important 

functions. With getComponentNodes() a caller is able to receive a Set of all nodes contained 

in this component. With getNodeCount() it is possible to get the amount of nodes stored in 

this component and with getDensity() it is possible to get the density of this GraphComponent 

, that means, how many different transactions there are between the nodes of this component. 
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As soon as all the GraphComponents are built, the function saveToDB() of SearchForPatterns 

is invoked, which leads to all the data saved in the GraphComponent objects to be saved to a 

database for further processing. 

As soon as this is done, the main() method in the Main class removes the actual account from 

its vector and restarts the outer while loop, if there are more accounts available. If the vector is 

empty, the performance measure method of the class Timer is invoked and thereafter, the 

extended GraphSlider terminates. 

 

 

 


