
Analyzing software repositories to understand
software evolution

Marco D’Ambros1, Harald C. Gall2, Michele Lanza1, and Martin Pinzger2

1 Faculty of Informatics, University of Lugano, Switzerland
2 Department of Informatics, University of Zurich, Switzerland

Summary. Software repositories such as versioning systems, defect tracking systems, and
archived communication between project personnel are used to help manage the progress of
software projects. Software practitioners and researchers increasingly recognize the potential
benefit of mining this information to support the maintenance of software systems, improve
software design or reuse, and empirically validate novel ideas and techniques. Research is
now proceeding to uncover ways in which mining these repositories can help to understand
software development, to support predictions about software development, and to plan various
evolutionary aspects of software projects.

This chapter presents several analysis and visualization techniques to understand software
evolution by exploiting the rich sources of artifacts that are available. Based on the data models
that need to be developed to cover sources such as modification and bug reports we describe
how to use a Release History Database for evolution analysis. For that we present approaches
to analyze developer effort for particular software entities. Further we present change coupling
analyses that can reveal hidden change dependencies among software entities. Finally, we
show how to investigate architectural shortcomings over many releases and to identify trends
in the evolution. Kiviat graphs can be effectively used to visualize such analysis results.

1 Introduction

Software evolution analysis is concerned with software changes, their causes, and
their effects. It uses all sources of a software system to perform a retrospective anal-
ysis. Such data comprises the release history with all the source code and the change
information, bug report data, and data that can be extracted from the running system.
In particular the analysis of release and bug reporting data has gained importance be-
cause they store valuable information for analyzing the evolution of software. While
the recovery of the data residing in versioning systems such as CVS or Subversion
has become a well explored topic, the ultimate challenge lies in the recovered data
and its interpretation.

Some recent topics addressed in the field of analyzing software repositories in-
clude the following:

2 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

• Developer effort and social network analysis. One of the goals in this topic is
to find out the effort that team members are spending on maintaining and evolv-
ing software modules and how they communicate with each other. This allows
a project manager to plan resources and reason about shortcomings in develop-
ment processes and the team structure.

• Change impact and propagation. The main focus of this topic is to assess the im-
pact of a change, such as the addition of a new or change of an existing feature,
on the architecture, design and implementation of a software system. Being able
to assess the impact of changes allows one to estimate the effort for maintenance
and evolution tasks, to determine the impact of a change on the existing archi-
tecture and design of a system. Results are also used to provide guidelines for
programmers such as if changing method a the programmer should also change
method b and c.

• Trend and hotspot analysis. In this topic the trend of software entities is observed
to find out shortcomings in the current architecture, design and implementation
of software systems. Hotspots are the entities that frequently change and there-
fore are critical for the evolution of a system. One of the goals is to find heuristics
and warning mechanisms that alarm project managers and architects of negative
trends of software entities (and in particular of system hotspots) and provide
suggestions to return the system into a stable state.

• Fault and defect prediction. A wealth of information is provided by software
repositories that can be input to data mining and machine learning algorithms to
characterize current and predict future properties of software entities. One prop-
erty of software entities that is addressed by many approaches is the prediction
of the location and number of defects in software entities such as source files.
The result is a list of entities that will likely to be affected by defects which
allows the development team to plan preventive actions such as refactoring.

In this chapter we address the first three topics and present techniques such as
our Fractal Figures to analyze development effort, the Evolution Radar to analyze
the change impact on source files, and Kiviat diagrams to analyze metric trends and
to detect system hotspots. In the next section we present a general approach for
analyzing software repositories to understand software evolution. Examples of how
to model and retrieve the data is presented in Section 3. The modeled data is the input
for the different software evolution analysis techniques we present in Section 4.

2 An Overview of Software Repository Analysis

When mining software repositories one can consider many software artifacts: Source
code from versioning systems, bugs from bug tracking systems, communication from
e-mail lists or any further software artifacts such as documentation. This diversity of
information is the foundation for many kinds of evolution analyses.

Analyzing software repositories to understand software evolution 3

Target Software System

Bug
tracking
system

Versioning
system

Mailing
list

Documen
tation

Tools
Tools

Tools

Model of the software system

An
al

ys
is

Da
ta

 re
tri

ev
al

 a
nd

 m
od

el
in

g

(a) General schema

Bug
tracking
system

Versioning
system

Target Software System

RHDB

BugCrawler

Evolution Radar

Kiviat Graph
Visualizer

An
al

ys
is

Da
ta

 re
tri

ev
al

 a
nd

 m
od

el
in

g

(b) Our approach

Fig. 1: The general approach and our customization to mining software repositories.

2.1 A general approach

Figure 1a shows a sketch of how to analyze software repositories for studying soft-
ware evolution. In the schema we identify three fundamental steps necessary for the
final analysis of the data:

1. Data modeling. The first step of mining consists of creating a data model of an
evolving software system. Various aspects of the system and its evolution can be
modeled: The last version of the source code, the history of files as recorded by
the versioning system, several versions of the source code (e.g., one per release),
documentation, bug reports, developers mailing list archives, etc.
While aspects such as source code or file histories have a direct mapping to the
system, for others like bug reports or mailing list archives the useful information
has to be filtered and linked to software artifacts. When designing the model it
is important to consider the tradeoff between the amount of data to deal with
(in the analysis phase) and the potential benefit this data can have, i.e., not all
aspects of a system’s evolution have to be considered, but only the ones which
can address a specific software evolution problem or set of problems.

2. Data retrieval and processing. Once the model is defined, a concrete instance of
it has to be created. For this, we need to retrieve and process the information from
the various data sources. The processing can include the parsing of the data (e.g.,
source code, log files, bug report etc.), the application of matching techniques
to link different data sources (e.g., versioning system artifacts with bug reports

4 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

[1, 2]), the reconstruction of information not recorded (e.g., reconstruct commit
information from CVS log files [3]) and the application of other techniques such
as data mining.

3. Analysis. The analysis consists of using the modeled and retrieved data to tackle
a software evolution problem or set of problems by means of different techniques
and approaches.

2.2 Our approach

Figure 1b sketches how we approach software evolution analysis through mining
software repositories. As data sources we consider versioning system log files to-
gether with bug report data. We define a data model describing an evolving software
system based on these two data sources (data modeling). Given a system to analyze,
versioning system log files and bug report data are parsed and a concrete instance
of the model is created (data retrieval). All the models are then stored in a Release
History Database (RHDB), which is the starting point for all the subsequent analy-
ses. For the analysis part we use different techniques and tools, aimed at addressing
specific software evolution problems.

In the remainder of this chapter we first introduce the RHDB, the data model
behind it and the way the database is populated. Then we present different types of
software evolution analyses built on top of the RHDB: Developers effort distribu-
tion, change coupling, trend analysis and hot-spot detection. For the RHDB and each
evolution analysis technique we also present related work in the field.

3 Release History

When we refer to the history of a software artifact, we mean the way it was devel-
oped, how it grew or shrank over time, how many developers worked on it and to
which extent. These kinds of information are recorded by versioning systems and
can be reconstructed by parsing their log files. However, when we analyze evolu-
tion our goal is to understand a system’s architecture, the dependencies among its
components and to detect evolutionary hot-spots. To support this kind of analysis,
additional information such as problem bug reports can be used. The problem is to
link this data to the software artifacts to answer specific questions, e.g., which files
were affected by a given bug?

In this section we present our approach for integrating versioning system infor-
mation and bug report data and populating a RHDB [1, 2]. We first introduce the ver-
sioning system and the bug tracking system from which we retrieve the data. Then
we describe the model behind the RHDB, i.e., the model of an evolving software
system and we finally explain how we populate the database.

CVS and Bugzilla. CVS [4] has been the most used versioning system by the
open source community over the last years. Currently it is being replaced by Subver-
sion [5] (SVN).

Analyzing software repositories to understand software evolution 5

Our approach for populating the RHDB is based on the versioning system log
files, thus it can be applied to both CVS and SVN. For each versioned file, the
log file contains the information recorded by the versioning system at commit-time:
The version number (or revision), the timestamp of the commit, the author who per-
formed the commit, the state (whether the file is still under development or removed),
the number of lines added and removed with respect to the previous commit, the
branches having the current version as root and the comments written by the author
during the commit. Listing 1 shows a chunk of a CVS log file.

RCS file: /cvsroot/mozilla/js/src/xpconnect/codelib/Attic/mozJSCodeLib.cpp,v
Working file: codelib/mozJSCodeLib.cpp
head: 1.1
branch:
locks: strict
access list:
symbolic names:

FORMS_20040722_XTF_MERGE: 1.1.4.1
XTF_20040312_BRANCH: 1.1.0.2

keyword substitution: kv
total revisions: 6; selected revisions: 6
description:

revision 1.1
date: 2004/04/19 10:53:08; author: alex.fritze%crocodile-clips.com; state: dead;
branches: 1.1.2; 1.1.4;
file mozJSCodeLib.cpp was initially added on branch XTF_20040312_BRANCH.

revision 1.1.4.2
date: 2004/07/28 09:12:21; author: bryner%brianryner.com; state: Exp; lines: +1 -0
Sync with current XTF branch work.

...

revision 1.1.2.1
date: 2004/04/19 10:53:08; author: alex.fritze%crocodile-clips.com; state: Exp; lines: +430 -0
Fixed bug 238324 (XTF javascript utilities).
===

Listing 1: A CVS log file chunk of mozJSCodeLib.cpp.

Bugzilla [6] is a bug tracking system that is used heavily in the open source
community. Its core is a customizable database with a web interface which allows
developers, testers as well as normal users to report and keep track of issues detected
in the software system.

A typical bug report contains the following pieces of information: An id which
unequivocally identifies the bug, the bug status composed of status (new, assigned,
reopened, resolved, verified, closed) and resolution (fixed, invalid, wontfix, notyet,
remind, duplicate, worksforme), the location in the system identified by the product
and the component, the operating system and the platform on which the bug was
detected, a short description of the problem and a list of comments about it (long
description). Moreover, each bug refers to several people: The reporter who reported
the bug, a person who is in charge to fix it (assigned to), quality assurance people
who are responsible for ensuring that the software meets certain quality standards
(qa), and a list of people interested in being notified of the bug fixing progress (CC).

6 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

3.1 The RHDB Model

Figure 2 shows the core of the RHDB model.

name
date
usagecount

Aliasrcsfile
workingfile
head
locks
revisions

FileHistory

version
fileHistory
date
author
state
linesAdded
linesRemoved
branches
commitMessage

FileVersionid
severity
shortDescription
OS
priority
product
component
resolution
qaContact
LongDescriptions

BugReport

text
who
when

BugDescription

name
Author

files
subdirectories

Directory
modules

Project directories
files

Module 1
*

1 *
1 * 1 *

1

*

* *

1

*

1*1* * *

*

Fig. 2: The RHDB data model.

In the model a CVS commit corresponds to a file version, having all the commit-
related information: Version associated to the commit, date, author, state (exp or
dead), lines added and removed with respect to the previous commit, branches asso-
ciated with the version and the comment written by the author. A file history, which
corresponds to the actual file in the file system, is composed of a sequence of file
versions, one per commit. It has a filename with (rcsfile) and without (workingfile)
the entire path name. A file history can be associated to many aliases, used for tag-
ging system releases. A project is composed of modules which contain directories
and file histories. A directory can contain sub-directories and file histories. Finally, a
file version can be associated to one or more bug reports. The relationship between
bug reports and file versions is “many to many”, meaning that a file version (and
therefore a file history) can be affected by many bugs and a bug can affect different
file versions and file histories.

3.2 Populating the RHDB

Figure 3 sketches the RHDB populating process. The user needs to enter the url
of the CVS repository and of the Bugzilla database, and then the populating task
(which depending on the size of the system can take several hours) is executed in
batch mode. The main steps of the process are:

1. The latest version of the system is retrieved by means of a CVS checkout com-
mand. Then, for each directory, the log file describing the history of the con-
tained files is retrieved and parsed.

Analyzing software repositories to understand software evolution 7

CVS
Repository

Bugzilla
database

Parsing of
CVS logs

Parsing of
bugs (XML)

RHDB

Store

Looking for
bug

references

CVS
logsDownload

Read Download

Store

Read

Software System

1 2 3

Fig. 3: The RHDB populating process.

2. For each file, the data about all its commits (its history) is stored in the database
as well as a link to the actual file.

3. Every time a reference to a bug is found in the commit message (the comment
written by the author at commit time), the corresponding bug report is retrieved
from the Bugzilla database, parsed and stored in the database, together with the
link to the affected file. Since the link between CVS artifacts and Bugzilla prob-
lem report is not formally defined, we use regular expressions to detect bug ref-
erences.

3.3 Related Work

Several approaches were proposed to create and populate an underlying model of an
evolving software system. These approaches vary according to which information
they consider (e.g., only source code repository or also bug tracking system and mail
archives), which data sources they support (e.g., only CVS or also SVN, ClearCase
etc.) and how these sources are linked to each other.

The previously presented RHDB is based on the CVS versioning system and the
Bugzilla bug tracking system, where the links between the two sources are built as
presented in Section 3.2. The main contribution of the RHDB is that it was the first
to link CVS artifacts and Bugzilla problem reports.

Two other approaches similar to the RHDB, also based on CVS and Bugzilla,
but which also use other sources of information are Hipikat [7, 8, 9] by D. C̆ubranić
et al. and softChange [10, 11] by D. German. Both techniques use information from
mail archives and, in addition, Hipikat also considers data from documentation on
the analyzed project website (if available).

8 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

In both approaches the links between different information sources are inferred
based either on conventions (e.g., in some projects there is a convention to include in
the commit comment a reference to the bug tracking system entry) or heuristics (e.g.,
it is likely that the author of a bug fix has committed a source code revision close to
the time that the problem report was closed in the bug tracking system).

A common problem encountered while linking mail archives with CVS reposi-
tory is that people tend to have multiple e-mail addresses, which might not be the
same as the ones recorded in the CVS log files [12].

Figure 4a shows the Hipikat underlying model and Figure 4b shows the softChange
architecture.

(a) The Hipikat model [9]. (b) The softChange process [11].

Fig. 4: The Hipikat and softChange approaches.

In the Hipikat model (see Figure 4a), a message is a mail in the mail archive, a
file version corresponds to a CVS commit in the repository (a revision), a change
task is a Bugzilla problem report and a document is a design document retrieved, for
example, from the project web site.

In the softChange architecture (see Figure 4b), we see two main components:
The Trail Extractor and the Fact Enhancer. The Trail Extractor retrieves the follow-
ing software trails: CVS logs, Bugzilla problem report, ChangeLogs and releases of
the system (tar files distributed by the software team). The Fact Enhancer uses the
retrieved software trails to generate / infer new facts. For example it reconstructs the
commit-set, since the commit operation in CVS is not atomic, it links CVS artifacts
with Bugzilla problem report or messages from the mail archives, etc.

The information stored by Hipikat forms an “implicit group memory” (where
group stands for group of developers) which is then used to facilitate the insertion of
newcomers in the group, by recommending relevant artifacts for specific tasks. The
data retrieved and processed by softChange is used for two types of software evolu-
tion analysis and visualization: (i) Statistics of the overall evolution of the project,
using histograms where the x axis usually represents the time dimension and (ii)

Analyzing software repositories to understand software evolution 9

analysis of the relationships among files and authors, using graphs where authors
and / or files are represented as nodes and their relationships as edges.

Another approach similar to the RHDB is the Kenyon framework [13] by J. Be-
van et al.. Kenyon provides an extensible infrastructure to retrieve the history of
a software project from a SCM repository or a set of releases and to process the
retrieved information. It also provides a common interface based on ORM (Object-
Relational Mapping) to access to processed data stored in a database.

SCM Repository Filesystem Database

DataManager

<abstract>

FactExtractor

<abstract>

MetricLoader

Fact Extraction

SCMInterface

Configuration Retrieval
Object Data Storage

ORM

(Hibernate)

<invokes>

1 2 3

4

5

Some SCM systems, such as CVS, do not archive files changed

by a single user-issued “commit” command as a single, logical

change. In the case of CVS, files that should be considered as

being part of the same commit “transaction” are actually stored

in the repository with different timestamps. When Kenyon

retrieves data from such systems, it applies a sliding-window

“transaction recovery” algorithm [19] to regroup these files into

a single logical change (Req. 3.a). Kenyon uses the set of times

at which at least one transaction completed (i.e. the latest time at

which a file in a given commit transaction was written to the

repository) to define the set of logical change-based

configurations. When retrieving a configuration from such a

system, Kenyon ensures that any file that was already saved to

the repository at the specification timestamp, but that is also part

of an uncompleted (or, “ongoing”) transaction, is retrieved as it

existed before that ongoing transaction began.

Kenyon supports incremental updates to an existing processed

data set (Req. 5). It can therefore be used to process a

development history, and then keep up with ongoing

development using, for example, nightly updates. It can also be

used in a successive-refinement mode, where a large time interval

is initially used to identify areas of particular interest. What

constitutes “particular interest” is of course analysis-specific.

One scenario where successive refinement is useful occurs when

analysis quality is dependent upon the amount of change that

occurs between two compared configurations. For example, it

may be that as the number of logical changes incorporated

between two compared configurations increases, so does the

difficulty of producing a correct result. If the analysis provides a

result-quality “confidence value”, then an automated successive

refinement process could be configured.

For example, if Kenyon preprocessing is performed at an initial

interval (such as once per week), the analysis tool could run over

those results, generating a set of confidence values for each

successive pair of configurations. For each pair where the

confidence value is below a certain threshold, Kenyon could be

rerun at a smaller time interval (such as once per day or once per

hour). This process could iterate until either the smallest time

interval possible is reached (once per second) or the confidence

value exceeds the threshold. Successive refinement allows

Kenyon users to avoid processing all data at small time intervals,

which reduces part of the computational cost of performing

software evolution analyses (Reqs. 1,2,5).

3.2 Data Flow Architecture
The high-level Kenyon data flow architecture is shown in Figure

1. The DataManager class is the execution entry point; it reads

the configuration files and invokes the configuration retrieval,

fact extraction, and object storage methods. The SCMInterface

class isolates Kenyon from the implementations associated with

each concrete SCM subclass (Req. 3): at this point, Kenyon

supports the CVS, Subversion, and ClearCase SCM systems. It

also supports a “filesystem” implementation that is intended for

use when access to the SCM repository is not available but a

series of pre-downloaded configurations (such as system

releases) are. The FactExtractor and MetricLoader abstract

classes are the API points for research-specific tool invocation

extensions.

Kenyon retrieves each configuration to be processed and places it

in the local filesystem. We do this because program analysis

tools commonly support a filesystem input source and rarely

support direct SCM interaction. The DataManager class then

invokes the series of concrete FactExtractor subclasses specified

by the user in the processing configuration file. These subclasses

are the means by which external, analysis-specific, fact extraction

tools interface with Kenyon. While we expect most users to

provide FactExtractor subclasses, Kenyon does come with two:

one that invokes and loads the data from Grammatech’s

CodeSurfer1, and one that invokes part of the SWAGKIT2

pipeline and reads the resulting TA-formatted files.

Kenyon draws a distinction between programs that produce a

graph representation of the configuration under analysis (such as

1 www.grammatech.com/products/codesurfer
2 www.swag.uwaterloo.ca/tools.html

Figure 1. High-level data flow architecture of Kenyon. The numbers on the solid arrows indicate the processing order.

Fig. 5: The high-level data flow architecture of Kenyon [13].

Figure 5 shows the high-level data flow architecture of Kenyon. The DataMan-
ager class is the execution entry point: It reads a configuration file and invokes the
other components, i.e., the Configuration Retrieval, the Fact Extractor and the Ob-
ject Data Storage. The SCMInterface class isolates Kenyon from the concrete im-
plementation of different SCM systems. The FactExtractor and MetricLoader ab-
stract classes are the API points for specific tool invocation extensions. This means
that users of Kenyon are free to attach their own external Fact Extractor and Met-
ric Loader tools (typically analysis-specific). Besides this extension, Kenyon offers
predefined fact extractor and metric loader tools. Kenyon saves the results from each
processed configuration to a database. An ORM mechanism is provided to help au-
tomate the storage to and retrieval of Java object from the database.

As depicted in Figure 5 Kenyon retrieves information from SCM only (or filesys-
tem, i.e., set of releases), without considering other sources, such as bug tracking
system or mail archives. On the other hand Kenyon supports several SCMs, namely:
CVS, SVN, ClearCase and sets of releases in the filesystem.

A common aspect of Kenyon and the RDHB is that both store the data for later
evolution analyses, while for softChange and Hipikat the task for using the data is
already defined.

10 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

4 Software Evolution Analysis

The RHDB contains a concrete instance of our model of an evolving software sys-
tem. This is the starting point from which, with the support of tools and techniques,
we can do several types of analyses. Each technique we designed and each tool we
implemented considers a particular perspective on software evolution, and addresses
a particular goal. In the following, we present some software evolution analysis prob-
lems and describe our techniques to tackle them.

4.1 Analyzing developer effort

The first software evolution problem we address concerns development effort. We
want to answer questions such as: How many developers worked on an entity? How
was the effort distributed among them? Is there an owner of the entity, based on the
code-ownership principle? Moreover, we also want to be able to categorize entities
in terms of “effort distribution”. For an analyst or a project manager, the answers
to these questions provide valuable information for a possible restructuring of the
development teams.

Versioning systems record the information necessary to answer these questions,
as each ach artifact has a list of versions corresponding to commits, and the list of au-
thors who performed the commits3. The problem is how to represent and aggregate
this large amount of low-level information4 to get an insight into the team struc-
ture and to understand who are the responsible/s of a software entity, scaling from a
module down to the individual file.

Our approach is based on the “Fractal Figure” [14, 2] visualization, which en-
capsulates all the author-related information of a given software artifact. It gives
an immediate view of how, in terms of development effort and distribution among
authors, an artifact has been developed. We can easily figure out whether the de-
velopment was done mainly by one author or many people contributed to it and to
which extent. A fractal figure is composed of a set of rectangles with different sizes
and colors. Each rectangle, and thus each color, represents an author who worked on
the file. The area of the rectangle is proportional to the percentage of commits per-
formed by the author over the whole set of commits. For more details on the layout
algorithm and the expressive power of Fractal Figures see [14].

Fractal Figures allow software entities to be categorized in terms of effort dis-
tribution among developers following the gestalt principle. We defined four visual
patterns representing four development models, depicted in Figure 6: (a) One devel-
oper, (b) few balanced developers, (c) one major developer and (d) many balanced
developers.

3 We only know who performed the commit, i.e., if a commit includes changes done by
several people, those are all mapped to a single developer.

4 As an example: The Mozilla system, on the first of September 2005, had 4656 source code
files with a total number of 326,000 file versions, corresponding to hundreds of thousands
of commit-related data to analyze.

Analyzing software repositories to understand software evolution 11

(a) One developer (b) Few balanced
developers

(c) One major de-
veloper

(d) Many balanced
developers

Fig. 6: Development patterns based on the gestalt of Fractal Figures [14].

Development patterns allow us to categorize entities according to the way they
were developed from an authors’ perspective. However, the visual nature of both the
patterns and the Fractal Figures themselves, is useful to get a qualitative impression
only of the development model. To provide also a quantitative measure, we intro-
duced the Fractal Value, which for a given software artifact is defined as:

Fractal Value = 1−
∑
ai∈A

(nc(ai)
NC

)2

, with NC =
∑
ai∈A

nc(ai) (1)

where A = {a1, a2, . . . , an} is the set of authors and nc(ai) is the number of
commits performed by the author ai with respect to the given software artifact. The
Fractal Value measures how fragmented a Fractal Figure is, that is how much the
work spent on the corresponding entity is distributed among different developers. (1)
is defined such that the smaller the quantity nc(ai)

NC is (always less than 1), the more
it is reduced by the square power, since the square equation is sub-linear between
0 and 1. Therefore, the smaller a rectangle is, the less its negative contribution to
the Fractal Value is. The Fractal Value ranges from 0 to 1 (not reachable). It is 0 for
entities developed by one author only, while it tends to 1 for entities developed by a
large number of authors.

To exploit the expressive power of Fractal Figures we applied them in context
of polymetric views [15]. Figures represent RHDB entities, namely files, directories,
and modules. To apply them on a directory or a module, we sum up the commit
information of all the files belonging to the given directory or module. We map a
metric measurement of the size of the figure. The metric can be structural such as
LOC or evolutionary such as number of commits, number of bugs, number of lines
added etc.

In the following we present different example scenarios which show how to use
Fractal Figures to address the problem of understanding development effort distribu-
tion.

Detecting a major developer

Figure 7 shows the webshell directory hierarchy of Mozilla. Fractal Figures rep-
resent directories containing at least one file, while grey figures represent container

12 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

Fig. 7: Fractal Figures applied to the webshell hierarchy of Mozilla [14]. The size metric
maps the directory size in terms of number of contained files.

directories, i.e., directories containing only subdirectories. The size metric maps the
directory size in terms of number of contained files. We see that the webshell
hierarchy of Mozilla includes all the four development patterns. The sub-hierarchy
marked as 1 has a major developer pattern (the blue author did most of the commits).
The reverse engineer knows whom to ask questions about the design and the code
contained in this sub-hierarchy. On the contrary, the directory marked as 2 shows that
many developers worked on it, and there is no main developer. Modifying code in
these directories will be more effort since there is not a single person to ask questions
about the code. The reverse engineer will need support of other tools such as Code-
Crawler [16] or BugCrawler [17]. This information is not complex or hard to get, but
the value of the Fractal Figure visualization is that it conveys this information in a
context (the hierarchy in this case), easy and fast to read ,and with the same visual
principle for all the software entities to which it is applied.

Re-assessing development team formation

Figure 8 shows an example with the network protocol implementation of Mozilla.
Most of the directories which introduced bugs have a many balanced developer
patterns, but one which has a one major developer pattern: network/proto-
col/http/src. This directory is responsible for most of the bugs generated in the
network/protocol hierarchy. Such a view can be valuable for a project man-
ager or an analyst. It shows that a re-assesment of the formation of the development

Analyzing software repositories to understand software evolution 13

team is needed, given the high number of bugs and one major developer pattern of
the network/protocol/http/src directory.

Fig. 8: Fractal Figures applied to the network/protocol hierarchy of Mozilla. The size
metric maps the number of bug reports.

Related Work

Many software evolution analysis techniques focus more on the developers and their
interaction with software artifacts than on software artifacts themselves. Liu et al.
[18] applied the CVSChecker tool to analyze CVS log files with the aim of un-
derstanding author contributions and identifying patterns. They wanted to study the
open source development process and to understand what activities are carried out in
open source project and by whom. The CVSChecker tool supports the analysis of the
performance of an individual developer and the effort distribution patterns of teams.

CVSChecker has a set of parsers which extract information from the CVS source
code repository and store them in a relational database. The tool then uses this infor-
mation to produce four kinds of visualizations:

1. Temporal distribution of CVS activity, for each developer (see Figure 9a);
2. Distribution of CVS operation types, for each developer;
3. Distribution of CVS operation types, for each file;
4. Added and removed lines of code (LOC) by each developer, on each file (see an

example in Figure 9b).

The visualizations are used in [18] to extract development patterns to characterize
the open source development process.

Gı̂rba et al. [19] defined a measurement for the notion of code ownership in CVS
repositories. They defined that a developer is the owner of a file if he/she owns the
major part of it in terms of lines. He/she owns a line of code if he/she was the last

14 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

developers and its first registration date in
www.sourceforge.com is 2002-07-10. We checked out a
copy of the project’s CVS repository on 2004-12-24.
Coincidentally, it appears that all the project developers
were volunteering university students.

The “CVS log” and “CVS history” data of ProjectA was
extracted and stored in the CVSChecker database under the
same schema as the one used for the previous student
projects. There were two sub-modules under the root node,
which we refer to as module1 and module2. All the six team
members contributed to the development of module1 while
member1 was the only developer for module2. Because we
focus on team collaboration and module2only includes
images or html files instead of program files, we focus on
module1 in this paper.

The student case studies lasted for approximately two
months, with designing and coding as the two main
activities; the requirements were fairly well defined by the
instructor. The project deadline could be considered as
equivalent to the first product release date with stable,
complete end-to-and functionality. Most OSPs usually have
an initial release followed by long maintenance periods with

several new releases. It would have been impractical to
constraint the OSP length to be similar to the student
projects’ length. Therefore, we focused on the initial
development phases leading to the first couple of releases.
The implication is that we had to figure out when the initial
development phase ended and when the maintenance phase
began in the OSP. This information can usually be retrieved
from the supplementary project records, but it is not always
accurately recorded. Fortunately, locating the various
milestones, whether or not they coincide with explicit
releases or documented in project records, based on CVS
data is an important function of CVSChecker.

A. Inferring Development Milestones

CVSChecker generated visualizations for module1 at the
four levels mentioned in Section 2. Fig. 1 shows the
temporal distribution of CVS operations for each member
while Fig. 2 shows the distribution of CVS operation types
for each member for this module.

Fig. 1. ProjectA: temporal distribution of CVS activity from 2002-07-11 to 2004-12-24 for each member

Fig. 2. ProjectA: distribution of operation types from 2002-7-11 to 2004-12-24 for each member

From Fig. 1, we can make two interesting observations.
a) There are several peaks near days 48, 260, 520,

600, 830, etc. These dates should be significant

and they should be examined more closely.
b) Member1 was very active throughout, especially

after day 260. Member4 was very active before
Proceedings of the First International Conference on Open Source Systems

Genova, 11th-15th July 2005
Marco Scotto and Giancarlo Succi (Eds.), pp. 154-161

(a) Temporal distribution of CVS activity for each developer.

members and the heights of the bars modified lines of
code (LOC). Added LOC are plotted above the horizontal
while deleted LOC are plotted below it.

While comparing Fig. 4 with Fig. 2 confirmed our

hypothesis of a handover of leadership, Figs. 5 and 6 also
revealed several other patterns that were identified in the
academic case studies. We discuss these next.

Fig. 4. ProjectA: distribution of operation types for each member from 2002-07-11 to 2002-08-11

Fig. 5. ProjectA: distribution of operations by type, on each file from 2002-7-11 to 2002-08-11

Fig. 6. Added and Deleted LOC of each member, on each file from 2002-7-11 to 2002-08-11

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 154-161

(b) Added and removed LOC for each developer, for each file.

Fig. 9: CVSChecker example visualizations [18].

one that committed a change to that line in the repository. Based on that principle,
they introduced the Ownership Map visualization, which shows the evolution of a
software project, according to the following rules (summarized in Figure 10):

• Each file is represented as a colored line;
• The x axis represents the time dimension, from left to right;
• Each commit of a file in the repository is represented as a colored circle on the

corresponding line;
• Each developer is represented by a color;
• Commits (circles) are colored according to the developer who did them, while

pieces of histories of files (corresponding to pieces of lines) are colored accord-
ing to the owner of the file, during the considered time interval.

In [19] the authors used the Ownership Map visualization to define development
patterns such as monologue (a period where all the changes and most files belong to
the same author), takeover (a developer takes over a large amount of code in a short
amount of time), team work (two or more developers commit a quick succession of
changes to multiple files) etc. The patterns were defined with the aim of characteriz-
ing different developer behaviours.

In [20], Voinea and Telea presented a similar visualization, in which CVS files
are represented as colored lines and the color represents the developer. The visual-
ization is implemented in CVSgrab, a tool which also supports the visualization and
analysis of activities in the repository. In [20] the authors applied a cluster algorithm

Analyzing software repositories to understand software evolution 15

Fig. 10: The principles of the Ownership Map visualization [19].

on the visualizations to put files (lines) with similar development (with respect to
either the authors or the activity) close to each other. The aim of their work was to
allow developers and project managers to visually explore the evolution of a software
project in a way that facilitates the system and process understanding.

Voinea et al. also presented the CVSscan tool [21], based on CVSgrab for ex-
tracting the data from the CVS repository. The tool can visualize the evolution of
CVS files by visualizing the evolution of individual lines. CVSscan provides three
types of color encoding to associate the color of each code line to its author. This
visualization is used in [21] to understand who performed modifications on the code
and where, thus facilitating the development process understanding.

Author information stored in CVS repositories was also used in the context of
social networks. In [22] Bird et al. created social networks or email correspondents
from OSS email archives. They linked emails with CVS accounts to analyze the
relationship of email activity and commit activity and the relationship of social status
with commit activity. The case study they conducted on the Apache HTTP server
project indicated a strong relationship between the level of activity in the source code,
and a less strong relationship with document change activity. They also found out
that developers (people with email and CVS accounts) play a much more significant
social role than other participants in the mail archives.

4.2 Change coupling analysis

Change coupling is the implicit dependency between two or more software artifacts
that have been observed to frequently change together during the evolution of a sys-
tem. This co-change information can either be present in the versioning system, or
must be inferred by analysis. For example SVN marks co-changing files at commit
time as belonging to the same change set while in CVS the files which are change
(i.e., logically) coupled must be inferred from the modification time of each individ-
ual file.

The Evolution Radar [23, 24] is an interactive visualization technique for an-
alyzing change couplings to detect architecture decay and coupled components in

16 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

a given software system. It addresses the following questions: What are the com-
ponents (e.g., modules) with the strongest coupling? Which low level entities (e.g.,
files) are responsible for these couplings?

Fig. 11: The structural principles of the Evolution Radar [23].

Figure 11 shows the structural principles of the Evolution Radar. It visualizes
dependencies between groups of entities, in this specific case dependencies between
modules (groups) as group of files (entities). The module in focus is visualized as
a circle and placed in the center of a pie chart. All the other system modules are
represented as sectors. The size of the sectors is proportional to the number of files
contained in the corresponding module. The sectors are sorted according to this size
metric, i.e., the smallest is placed at 0 radian and all others clockwise (see Figure 11).
Within each sector files are represented as colored circles and positioned using polar
coordinates where the angle and the radius are computed according to the following
rules:

• Radius d (or distance from the center). It is inversely proportional to the change
coupling the file has with the module in focus, i.e., the more they are coupled,
the closer the circle (representing the file) is to the center circle (representing the
module in focus).

• Angle θ. The files of each module are alphabetically sorted considering the entire
directory path, and the circles representing them are then uniformly distributed
in the sectors with respect to the angle coordinates.

Arbitrary metrics can be mapped on the color and the size of the circle figures. In
the Evolution Radar files are placed according to the change coupling they have with
the module in focus. To compute this metric value we use the following formula:

Analyzing software repositories to understand software evolution 17

CC(M,f) = max
fi∈M

CC(fi, f) (2)

CC(M,f) is the change coupling between the module M in focus and a given
file f and CC(fi, f) is the change coupling between the files fi and f . It is also
possible to use other group operators instead of the maximum such as the average or
the median. We use the maximum because it points us to the files with the strongest
coupling, i.e., the main responsible for the change dependencies.

The value of the coupling between two files is equal to the number of transactions
which include both files. Since change transactions are not recorded by CVS we
reconstruct them using the sliding time window approach proposed by Zimmermann
and Weißgerber in [3], which is an improvement of the simpler fixed time window
approach. For further details about the sliding and the fixed time window approach
we refer the readers to [23, 3].

The Evolution Radar is implemented as an interactive visualization. It is possible
to inspect all the entities visualized, i.e., files and modules, to see commit-related
information like author, timestamp lines added and removed etc. Moreover, it is also
possible to see the source code of selected files. Three important features for per-
forming analyses with the Evolution Radar are (1) moving through time, (2) tracking
and (3) spawning.

(1) Moving through Time. The change coupling measure is time dependent.
If we compute it for the whole history of the system we would obtain misleading
results. Figure 12 shows an example of such a situation.

Fig. 12: An example of misleading results obtained by considering the entire history of arti-
facts to compute the change coupling value: We obtain a strong change coupling, while file1
and file2 are not coupled at all during the last year.

Figure 12 shows the history, in terms of commit, of two files, where the time is
on the horizontal axis from left to right and commits are represented as circles. If
we compute the change coupling measure according to the entire history we obtain
9 shared commits on a total of 17, which is an high value because it means that the
files changed together more than fifty percent of the time. Although this result is
correct, it is misleading because it brings us to the conclusion that file1 and file2 are
strongly coupled, but they were so only in the past and they are not coupled at all
during the last year of the system. Since we analyze change coupling information for

18 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

detecting architecture decay and design issues in the current version of the system,
recent change couplings are more important than old ones [25]. In other words, if two
files were strongly coupled at the early phases of a system, but they are not coupled
in recent times (perhaps because the coupling was removed during a reengineering
phase), we do not consider them as a potential problem.

For these reasons the Evolution Radar is time dependent, i.e., it can be com-
puted either considering the entire history of files or with respect to a given time
window. When creating the radar the user can divide the lifetime of the system into
time intervals. For each interval a different radar is created, and the change coupling
is computed with respect to the given time interval. The radius coordinate has the
same scale in all the radars, i.e., the same distance in different radars represents the
same value of the coupling. This makes it possible to compare radars and to ana-
lyze the evolution of the coupling over time. In our tool implementation the user
“moves through time” by using a slider, which causes the corresponding radar to be
displayed. This feature introduced also a problem: How do we keep track of the same
entity over time, i.e., on different radars? To answer this question we introduced a
second feature called tracking.

(2) Tracking. It allows the user to keep track of files over time. When a file
is selected for tracking in a visualization related to a particular time interval, it is
highlighted in all the radars (with respect to all the other time intervals) in which
the file exists. The highlighting consists in using a yellow border for the tracked
files and in showing a text label with the name of the file. Like this it is possible to
detect files with a strong change coupling with respect to the latest period of time
and then move backward in time and analyze the coupling in the past. This allows
the distinction between persistent change coupling, i.e., always present, and recent
change coupling, i.e., present during the last time intervals only.

(3) Spawning. The spawn feature is aimed at inspecting the change coupling de-
tails. Outliers indicate that the corresponding files have a strong coupling with certain
files of the module in focus, but we ignore which ones. To uncover this dependency
between files we spawn a secondary Evolution Radar as follows: The outliers are
grouped to form a temporary module Mt represented by a circle figure. The module
in focus (M) is then expanded, i.e., a circle figure is created for each file composing
it. Finally, a new Evolution Radar is created. The temporary module Mt is placed in
the center of the new radar. The files belonging to the module previously in focus
(M) are placed around the center. The radius coordinate, i.e., the distance from the
center, is inversely proportional to the change coupling they have with the module
in the center Mt. For the angle coordinate alphabetical sorting is used. Since all the
files belong to the same module there is only one sector.

We use the Evolution Radar to answer the questions mentioned at the beginning
of this section: Which are the modules with the strongest coupling in a given soft-
ware system? Which files are responsible for these evolutionary dependencies? In
the following we apply the radar on ArgoUML, a large and long-lived open source
software system. We first present example scenarios of how to study change coupling
at different levels of abstraction, detecting architecture decay and design problems

Analyzing software repositories to understand software evolution 19

and performing impact analysis. We finally use the radar to analyze the evolution of
couplings and to identify phases in the history of the system.

Detecting design issues and architecture decay

From the documentation of ArgoUML we know the system decomposition in mod-
ules5. We focused our analysis on the three largest modules Model, Explorer and
Diagram. From the documentation we know that Model is the central module that
all the others rely and depend on. Explorer and Diagram do not depend on each
other.

We created a radar for every six months of the system’s history. We started the
study from the most recent one, since we are interested in problems in the current
version of the system. Using a relatively short time interval (six months) ensures that
the coupling is due to recent changes and is not “polluted” by commits far in the
past. As metrics we used the change coupling for both the position and the color of
the figures. The size (the area) is proportional to the total number of lines modified
in all the commits performed during the considered time interval.

Figure 13b shows the Evolution Radar for the last six months of history of the
Explorer module. From the visualization we see that the coupling with Diagram
is much stronger than the one with Model, although the documentation states that
the dependency is with Model and not with Diagram. The most coupled files in
Diagram are FigActionState.java, FigAssociationEnd.java, Fi-
gAssociation.java. Using the tracking feature, we found out that these files
have only been recently coupled with the Explorer module. In Figure 13a show-
ing the previous six months, they are not close to the center. This implies that the
dependency is due to recent changes only.

To inspect the change coupling details, we used the spawning feature: We
grouped the three files and generated another radar, shown in Figure 14 having this
group as the center. We now see that the dependency is mainly due to Explor-
erTree.java. The high-level dependency between two modules is thus reduced
to a dependency between four files. These four files represent a problem in the sys-
tem, because modifying one of them may break the others. The fact that they belong
to different modules buries this hidden dependency.

The visualization in Figure 13b shows that the file GeneratorJava.java is
an outlier, since its coupling is much stronger with respect to all the other files in the
same module (CodeGeneration). By spawning the group composed of Gener-
atorJava.java we obtained a visualization very similar to Figure 14, in which
the main responsible for the dependency is again ExplorerTree.java. Reading
the code revealed that the ExplorerTree class is responsible for managing mouse
listeners and generating names for figures. This explains the dependencies with Fi-
gActionState, FigAssociationEnd and FigAssociation in the Dia-
gram module, but not the dependency with GeneratorJava.

5 We did not consider some modules for which the documentation says “They are all in-
significant enough not to be mentioned when listing dependencies” [26].

20 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

(a) January to June 2005.

(b) June to December 2005.

Fig. 13: Evolution Radars for the Explorer module of ArgoUML in 2005 [23].

The past (see Figure 13a and Figure 15a) reveals that GeneratorJava.java
is an outlier since January 2003. This long-lasting dependency indicates design prob-
lems.

A further inspection is required for the ExplorerTree.java file in the Ex-
plorer module, since it is the main responsible for the coupling with the modules
Diagram and CodeGeneration.

Analyzing software repositories to understand software evolution 21

Fig. 14: Details of the change coupling between the Explorer module
and the files FigActionState.java, FigAssociationEnd.java and
FigAssociation.java [23].

The radars in Figure 13b and Figure 13a show that during 2005 the file NSUMLMod-
elFacade.java in the Model module had the strongest coupling with Ex-
plorer (module in the center). Going six months back in time, from June to De-
cember 2004 (see Figure 15a), we see that the coupling with NSUMLModelFa-
cade.java was weak, while there was a very strong dependency with ModelFa-
cade.java. This file was also heavily modified during that time interval, given
its dimension with respect to the other figures (the area is proportional to the total
number of lines modified). ModelFacade.java was also strongly coupled with
the Diagram module (see Figure 15b). By looking at its source code we found
out that this was a God class [27] with thousands of lines of code, 444 public and
9 private methods, all static. The ModelFacade class is not present in the other
radars (Figure 13b and Figure 13a) because it was removed from the system in Jan-
uary 2005. By reading the source code of the most coupled files in these two radars,
i.e.,NSUMLModelFacade.java, we discovered that it is also a very large class
with 317 public methods. Moreover, we found out that 292 of these methods have
the same signature of methods in the ModelFacade class6, with more that 75%
of the code duplicated. ModelFacade represented a problem in the system and
thus was removed. Since many methods were copied to NSUMLModelFacade, the
problem has just been relocated.

This example shows how historical information can reveal problems, which are
difficult to detect with only one version of the system. Knowing the evolution of
ModelFacade helped us in understanding the role of NSUMLModelFacade in
the current version of the system.

6 With the difference that in NSUMLModelFacade the methods are not static and that it
contains only two attributes, while ModelFacade has 114 attributes.

22 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

(a) Explorer module.

(b) Diagram module.

Fig. 15: Evolution Radars of the Explorer and Diagram modules of ArgoUML from June
to December 2004 [23].

We showed examples of how to use the Evolution Radar to detect problematic
parts of the ArgoUML system, which represent good candidates for reengineering.
The main findings of the discussed example scenario are:

• The Diagram and Explorermodules are the most coupled. Since this depen-
dency is not mentioned in the module relationships page in the documentation,

Analyzing software repositories to understand software evolution 23

either the modules should be restructured to decrease the coupling or at least the
documentation should be updated. We identified the four files mainly responsible
for this hidden dependency.

• The files GeneratorJava.java in the CodeGeneration module and
ExplorerTree.java in the Explorer module should be further analyzed
and, if possible, refactored. GeneratorJava.java has a persistent coupling
with the Explorer module, while ExplorerTree.java is coupled with
both CodeGeneration and Diagram.

• Two problematic classes were detected: ModelFacade and NSUMLModelFa-
cade. Most of the methods of the first class were copied to the second one, and
then ModelFacade was removed from the system.

Related Work

The concept of change (i.e., logical) coupling was first introduced by Gall et al. [28]
to detect implicit relationships between modules. They used logical coupling to ana-
lyze the dependencies between the different modules of a large telecommunications
software system and showed that the approach can be used to derive useful insights
on the architecture of the system. Later the same authors revisited the technique to
work at a lower abstraction level. They detected logical couplings at the class level
[29] and validated it on 28 releases of an industrial software system. The authors
showed through a case study that architectural weaknesses such as poorly designed
interfaces and inheritance hierarchies could be detected based on logical coupling
information.

Ratzinger et al. [30] used the same technique to analyze the logical coupling
at the class level with the aim of learning about, and improving the quality of the
system. To accomplish this, they defined code smells based on the logical coupling
between classes of the system.

Other work has been performed at finer granularity levels. Zimmermann et al.
[31] used the information about changes that are occurring together to predict enti-
ties (classes, methods, fields etc.) that are likely to be modified when one is being
modified. Breu and Zimmermann [32] applied data mining techniques on co-changed
entities to identify and rank cross-cutting concerns in software systems. Ying et al.
applied data mining techniques to the change history of the code base to identify
change patterns to recommend potentially relevant source code for a particular mod-
ification task [33] Bouktif et al. [34] improved precision and recall of co-chancing
files detection with respect to previous approaches. They introduced the concept
of change patterns in general and the particular Synchrony change-pattern for co-
changing files. They proposed an approach to detect such change-patterns in CVS
repositories based on dynamic time warping.

Similar to the Evolution Radar the EvoLens visualization technique can be used
to analyze the change coupling relationships between source files and software mod-
ules. Instead of radar views it uses a graph-based visualization that allows the user
to navigate the change coupling information from the level of modules down to the
source files. It allows the user to reveal detailed change couplings to the cost of

24 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

always having a radar view of the whole system. The basic ideas and underlying
concepts of the EvoLens Views have been developed by Ratzinger et al. [35].

Beyer and Hassan in [36] presented the Evolution Storyboards, a visualization
technique for software evolution that offers dynamic views. The storyboards em-
phasizes the history of a project using a sequence of panels, each representing a
particular time period in the life of the project. To create each panel they compute
a co-change graph and use a layout in which the stronger the coupling between two
files is, the closer they are placed, thus revealing clusters of frequently co-changed
files. They showed two main applications of the tool: First they analyzed how the
structure of a software system decayed or remained stable over time, by comparing
the clusters of co-changed files with the authoritative system decomposition. In the
second application, they detected files which implement cross-cutting concerns, by
detecting the files which are always moving from panel to panel, meaning that these
files are coupled (close in the layout) with many others during the life of the project.

In [37] Fischer and Gall presented EvoGraph, a lightweight approach based on
the RHDB data to evolutionary and structural analysis of software systems. They
compounded change history and source code information spaces in a single ap-
proach, to support the comprehension about the interaction between evolving re-
quirements and system development. The EvoGraph technique is composed of five
phases: (1) File selection: Source files which exhibit an extraordinary logical cou-
pling with respect to cross-cutting change transactions are selected. (2) Co-change
visualization. (3) Fact extraction: For the selected files in the preceding step, the
detailed change transaction information is collected from the RHDB and as result
change vectors are created for every file within a transaction. (4) Mining: The change
vectors are the input to mining of change transaction data step; The output is a de-
scription of the longitudinal evolution of structural dependencies of selected files.
(5) Visualization: The structural dependencies are visualized in an electrocardiogram
style diagram.

4.3 Trend analysis and hot-spots detection

In this section we present the ArchView approach used to create different higher-level
views on the source code. Views visualize the software modules which stem from the
decomposition of a system into manageable implementation units. Such units, for ex-
ample, are packages, source code directories, classes, or source files. The objective of
ArchView is to point out implementation specific aspects of one and multiple source
code releases. For instance, highlighting modules that are exceptionally large, com-
plex, and exhibit strong dependency relationships to other modules. They are the
so called hot-spots in the system. Furthermore, modules with a strong increase in
size and complexity, or modules that have become unstable are highlighted. Such
views can be used by software engineers, for instance to 1) get a clue of the im-
plemented design and its evolution; 2) to spot the important modules implementing
the key-functionality of a software system; 3) to spot the heavily coupled modules;
4) to identify critical evolution trends. The basic ideas and underlying concepts of
ArchView have been developed in the work of Pinzger et al. [38].

Analyzing software repositories to understand software evolution 25

m’1m’4

m’2 MAX

5
m’6

m’3

m’

M2

M4

M5 M6

M1

moduleA

M3

(a) One release.

MAX

M2

M4

M5 M6

M1

moduleA

M3

(a) Two releases.

Fig. 16: Kiviat diagram of moduleA representing measures of six source code metrics
M1, M2,, M6 of one release.

ArchView obtains metric values of each module and dependency relationship
from the RHDB and assigns them to a feature vector m. Feature vectors are tracked
over the selected n releases and composed to the evolution matrix E. The values in
the matrix quantify the evolution of a software module:

Ei×n =

m′1 m

′′
1 .. mn

1

m′2 m
′′
2 .. mn

2

.

.
m′i m

′′
i .. mn

i

The matrix contains n feature vectors with measures of i metrics. Evolution ma-

trices are computed for each module. They form the basic input to our ArchView
visualization approach that we will present next.

The ArchView approach uses the Polymetric Views visualization technique pre-
sented by Lanza et al. [15]. Instead of using rectangles to present modules and met-
ric values ArchView uses Kiviat diagrams which are also known as Radar diagrams.
These diagrams are suited to present multiple metric values available for a module
as described next.

Figure 16 (a) shows an example of a Kiviat diagram representing measures of six
metrics M1,M2,,M6 of one release of the module moduleA. The underlying
data is from the following evolution matrix E:

E6×1 =

m′1
.
.
m′6

In a Kiviat diagram the metric values are arranged in a circle. For each metric

there is a straight line originating in the center of the diagram. The length of this line

26 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

is fixed for all metrics and each metric value is normalized according to it. In the
examples presented in this section we use the following normalization:

l(m
′

i) =
m

′

i ∗ cl
max(m′

i)
(3)

where cl denotes the constant length of the straight line, andmax(m
′

i) the maximum
value for a metric m

′

i across all modules to be visualized. With the normalized value
and the angle of the straight line denoting the metric the drawing position of the point
on the line is computed. To make the metric values visible in the diagram adjacent
metric values are connected forming a polygon such as the one shown in Figure 16.

When visualizing the metric values for a number of subsequent releases our main
focus is on highlighting the change between metric values. Typically, increases in
metric values indicate the addition and decreases the removal of functionality. The
addition of functionality is a usual sign of evolving software systems so it repre-
sents no particular problem. In contrast, the removal of functionality often indicates
changes in the design. For instance, methods are moved to a different class to re-
solve a (bidirectional) dependency relationship and improve separation of concerns
or methods are deleted because of removal of dead code (i.e., code that is not used
anymore).

To highlight the changes in metric values we use the Kiviat diagrams as described
before. The n values of each metric obtained from the multiple releases are drawn
on the same line. Again the adjacent metric values of the same release are connected
by a line forming a polygon for each release. Then the emerging area between two
polygons of two subsequent releases are filled with different colors. Each color indi-
cates and highlights the change between the metric values of two releases. The larger
the change the larger the polygon.

Figure 16 (b) depicts the same set of measure for moduleA but this time of two
releases. By filling the area between the releases the change of metric values are
highlighted. To distinguish the changes between different source code releases we
use the color gradient of the rainbow. This allows the user to spot trends in metric
values as we will show in the following two analysis scenarios.

Analyzing the Size and Complexity of Software Modules

The first scenario concerns an analysis of the growth in size and program complexity
of software modules. We demonstrate this by visualizing typical size and program
complexity metrics taken from three releases 0.92, 1.3a, and 1.7 of Mozilla content
and layout modules. We configure ArchView with the following set of metrics: Hal-
stead intelligent content (HALCONT), Halstead mental effort (HALEFF), Halstead
program difficulty (HALDIFF), McCabe Cyclomatic Complexity (CYCL), and lines
of code (LOC). The resulting view is depicted in Figure 17.

The interesting modules are represented by Kiviat diagrams with large, filled,
green and read polygons. They indicate strong increase and decrease in the size
and program complexity of software modules whereas small polygons represent

Analyzing software repositories to understand software evolution 27

0:HALCONT

1:HALEFF2:HALDIFF

3:CCMPLX
4:LOC

DOM

0:HALCONT

1:HALEFF2:HALDIFF

3:CCMPLX
4:LOC

NewHTMLStyleSystem

0:HALCONT

1:HALEFF2:HALDIFF

3:CCMPLX
4:LOC

NewLayoutEngine

0:HALCONT

1:HALEFF2:HALDIFF

3:CCMPLX
4:LOC

XML

0:HALCONT

1:HALEFF2:HALDIFF

3:CCMPLX
4:LOC

XPToolkit

0:HALCONT

1:HALEFF2:HALDIFF

3:CCMPLX
4:LOC

XSLT

Fig. 17: Kiviat graph of six Mozilla content and layout modules showing the growth in pro-
gram size and complexity. Green polygons indicate changes between releases 0.92 and 1.3a.
Red polygons show changes between 1.3a and 1.7.

more stable modules. Following this guideline we can easily see that NewLayout-
Engine and DOM (Document Object Model) are the two largest and most complex
modules in the Mozilla content and layout implementation. For instance, in release
1.7 DOM comprises 197.498 and NewLayoutEngine 156.438 lines of C/C++ code.
In contrast, the XML module comprises 23.471 lines of code.

Large red and green polygons are contained by the Kiviat diagrams of the mod-
ules DOM, NewHTMLStyleSystem, and XML indicating that the implementation
of these three modules changed the most. Looking at the selected size and program
complexity metric values we found out that the values of the three modules first in-
creased from release 0.92 to 1.3a and then decreased from release 1.3a to 1.7. For
instance, the HALCONT metric of the DOM module from release 0.92 to release 1.3a
increased from 15.167 to 18.228 followed by a decrease to 14.714 in release 1.7.
Apparently, from release 0.92 to 1.3a functionality was added to these three modules
which during the implementation of the last release then was refactored or removed.
In comparison to these three modules the metric values of the other modules indicate
only minor changes in size and program complexity hence they are stable. Based on
the assumption that modules that changed in a past release will be likely to change
in future releases the three modules DOM, NewHTMLStyleSystem, and XML are
the candidates who are critical for the evolution of the content and layout implemen-
tation of Mozilla.

Detecting System Hot-spots

System hot-spots are modules with high activity indicated by different measures such
as the number of problems affecting a module or the number of changes in a mod-

28 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

0:UNSPEC

1:BLOCKER
2:CRITICAL

3:MAJOR

4:MINOR

5:NORMAL
6:TRIVIAL

7:ENHANCE

DOM

0:UNSPEC

1:BLOCKER
2:CRITICAL

3:MAJOR

4:MINOR

5:NORMAL
6:TRIVIAL

7:ENHANCE

NewHTMLStyleSystem

0:UNSPEC

1:BLOCKER
2:CRITICAL

3:MAJOR

4:MINOR

5:NORMAL
6:TRIVIAL

7:ENHANCE

NewLayoutEngine

0:UNSPEC

1:BLOCKER
2:CRITICAL

3:MAJOR

4:MINOR

5:NORMAL
6:TRIVIAL

7:ENHANCE

XML

0:UNSPEC

1:BLOCKER
2:CRITICAL

3:MAJOR

4:MINOR

5:NORMAL
6:TRIVIAL

7:ENHANCE

XPToolkit

0:UNSPEC

1:BLOCKER
2:CRITICAL

3:MAJOR

4:MINOR

5:NORMAL
6:TRIVIAL

7:ENHANCE

XSLT

Fig. 18: Kiviat graph of six Mozilla content and layout modules showing criticality and sta-
bility. Green polygons indicate changes between releases 0.92 and 1.3a. Red polygons show
changes between 1.3a and 1.7.

ule. In this scenario of analyzing system hot-spots we focus on providing answers
to the following three questions: Which are the modules with frequent bugs? Which
are the most critical modules? Which modules became stable? The answers to these
questions can be found in the RHDB in particular in the Bugzilla data. We quantify
the criticality and stability of a software module by the number of source code mod-
ifications (i.e., CVS log entries) performed for fixing bugs that were reported during
a given observation period such as the time between two releases. To further detail
criticality and stability we take the different severity levels of bugs ranging from
blockers, to minor and trivial bugs into account (severity levels are taken from the
Bugzilla repository). This leads to the following set of measures: number of modi-
fications for bugs with unspecified severity (UNSPEC), number of modifications for
blocker bugs (BLOCKER), number of modifications for critical bugs (CRITICAL),
number of modifications for major bugs (MAJOR), number of modifications for mi-
nor bugs (MINOR), number of modifications for normal bugs (NORMAL), number
of modifications for trivial bugs (TRIVIAL), and number of modifications for sug-
gested enhancements (ENHANCE). We configured ArchView with these measures
and selected six Mozilla content and layout modules from release 0.92, 1.3a, and
1.7. The resulting system hot-spot view is depicted by Figure 18.

The large polygons of the DOM and NewLayoutEngine indicate that these two
modules got the highest number of CVS log entries for fixing bugs. For instance, up
to release 1.7 DOM got 254 modifications from 130 bugs rated as blocker and 904
modifications from 487 bugs rated as critical. NewLayoutEngine got 309 CVS
log entries from 121 blocker and 1.097 log entries from critical bug reports. Inter-
estingly, most of the modifications in the implementation of these two modules were

Analyzing software repositories to understand software evolution 29

due to bugs of high severity and only few due to trivial bugs. This fact is indicated by
the cut of the TRIVIAL measure occurring in both Kiviat diagrams. Compared with
these two modules the other content and layout modules needed less modifications to
fix bugs. For instance, XSLT got 7 modifications due to 3 blocker bugs and 48 mod-
ifications due to 12 critical bugs. Interestingly, the Kiviat of XSLT shows a peak in
the number of trivial bugs (TRIVIAL). 123 modifications due to 3 trivial bugs were
performed which is more than twice as much as the values of the other five modules
(e.g., DOM got 55 and NewLayoutEngine 43 modifications). Apparently, a large
number of files had to be touched to fix the three trivial bugs. For instance, 56 files
were modified to fix bug #88623. This raises the question about how “trivial” this
bug was when modifications had to be done in 56 source files.

Concerning the criticality and stability of software modules we investigated the
trend of these measures. More specifically, stable modules are indicated by small red
polygons meaning less bugs and modifications during the development of release
1.7. According to Figure 18 the modules NewHTMLStyleSystem and XML were
affected by almost zero changes. They represent the most stable content and layout
modules. The other four modules seem to be more critical as indicated by larger
green and red polygons whereas the green polygons dominate the diagrams. This
means that a large amount of bug fixing took place in the time period from release
0.92 to 1.3a which then decreased in the time of developing release 1.7. For instance,
the number of modifications for fixing blocker bugs decreased from 65 between the
releases 0.92 and 1.3a to 8 modifications between 1.3a and 1.7. That is a clear indi-
cator that the other four modules were critical in previous releases but became stable
in release 1.7.

Related Work

A number of approaches have been developed that address the visualization of data of
several software releases. For instance, Riva et al. use 2D and 3D graphs to visualize
and navigate the release history of a software system [39]. Time is visualized on
the z coordinate expressed in release sequence numbers (RSN). The structure of
each software release is visualized using 3D graphs with a tree layout. Each graph is
spatially positioned along the z-coordinate showing the sequence of releases. A cube
denotes a subsystem or a software module. Edges indicate the decomposition of each
release into subsystems and modules. One measure can be mapped to the 3D-graphs
using the color attribute. For instance, they mapped the version number of a module
such that a module that is not present in a release is represented by a black cube, a
module in version 1 is represented by a red cube, in version 2 by a blue cube, etc.

An approach similar to the approach of Riva et al. is presented by Collberg et al.
in [40]. They developed GEVOL, a graph-based system for visualizing the evolution
of software systems. Each state of a system is represented by a graph. Colors are
applied to indicate change over time such as when particular parts of the program
were first created and modified, which programmer modified which parts, or which
parts have grown in complexity. All nodes start out being red, then grow paler for
every time they have remained unchanged. When a node changes again it return

30 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

Last Version

First Version

Major Leap

Removed Classes

Growth Stabilisation

Added
Classes

Time

Fig. 19: Evolution Matrix with four typical characteristics of an evolving software system [41].

to red. When a user notices an interesting event, such as a code segment changes
frequently, he can click on a node to examine the set of authors who have affected
these changes.

Lanza developed an approach called the Evolution Matrix [41]. Instead of using
a tree layout Lanza uses a matrix layout. The Evolution Matrix displays the evolution
of the classes of a software system. Each column of the matrix represents a version
of the software, while each row represents the different versions of a class. Figure 19
shows an example of an Evolution Matrix with typical characteristics of a system
such as the classes of the first version, removed classes, a major leap in the evolution,
and the last version of the system.

Following the Polymetric View principle a number of measures can be mapped
to the width, height, and color of rectangles that represent classes. Recurring pat-
terns in the matrix arise that led to a categorization of the evolution of classes. For
instance, a class that is alternately growing and shrinking in size is called Pulsar.
Pulsar classes can be seen as hot-spots in the system: for every new version of the
system changes on a pulsar class must be performed. Other categories of classes, for
instance, are Supernova (class suddenly explodes in size) or Dayfly (class with
a short life-time).

In [42] Wu et al. present Evolution Spectographs, a visualization technique that
combines metrics and gradient colors to portray the evolution of software systems.
A spectograph is shown as a matrix similar to the Evolution Matrix in which time
is presented on the X axis and the dimension of files is presented on the Y axis. A
row in the matrix represents the change history of a file and a column stores change
metrics for all the files during a particular time period. Each cell represents a file in a
particular period. After a file is changed its color becomes lighter and lighter as long
as there is no change made to that file. In other words, the file starts to cool down if
no future change occurs to it. Using this color function Evolution Spectographs can
be used to highlight system growth and dependency change in one chart.

Analyzing software repositories to understand software evolution 31

5 Conclusion

Mining software repositories is a fairly recent research topic that has been embraced
by both the software evolution and the empirical software engineering community.
As we have seen in this chapter there are two major challenges:

• Technical challenge. The challenge resides in modeling and handling various
kinds of informations. The sheer amount of information available in source
repositories also poses scalability problems that have however been tackled to
a large extent. As we have seen, in most cases researchers have chosen to use
relational databases to handle the data as they allow for easy querying.

• Conceptual challenge. Once the data is retrieved and modeled, a major challenge
resides in doing something meaningful with the available data. As we have seen
in the various approaches, at the beginning there is always a number of research
questions that need to be answered, and subsequently researchers develop the
necessary mechanisms to answer those questions. A heavily used technique in
this case is visualization, as it allows (if well chosen) to detect patterns in the sea
of data that one has to navigate.

As a major future challenge we see the current dichotomy between forward en-
gineering and software evolution. We believe that software repositories, currently
mostly used for retrospective analyses, need to become an integral part of any soft-
ware project, and as such should not be separated from the most recent version, which
is usually the focus of all maintenance efforts.

1

List of Acronyms

This appendix contains a list of acronyms that have been used throughout the various
contributing chapters.

ADL Architectural Description Language.
AOP Aspect-Oriented Programming.
AOSD Aspect-Oriented Software Development.
API Application Programming Interface.
ASF Algebraic Specification Formalism.
AST Abstract Syntax Tree.
CASE Computer-Aided Software Engineering.
DBMS Database Management System.
DDL Data Description Language.
DML Data Manipulation Language.
DMS Data Management System.
ERCIM European Research Consortium on Informatics and Mathematics.
FEAST Feedback, Evolution And Software Technology.
IEEE Institute of Electrical and Electronics Engineers.
ISO International Standards Organisation.
L-CARE Legacy Computer Aided Reengineering Environment.
LOC Lines of Code.
MDA Model-Driven Architecture
MDE Model-Driven Engineering. Sometimes, the acronym MDD or MDSD is used

in literature, for Model-Driven (Software) Development, but both terms are
largely interchangeable.

OMG The Object Management Group.
OSS The Open Source Software.
RDBMS Relational Database Management System.
SDF Syntax Definition Formalism.
SOA Service-Oriented Architecture.
SQL Structured Query Language.
SWEBOK The IEEE Software Engineering Body of Knowledge [43].

34 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

UML The Unified Modeling Language [44].
XP Extreme Programming.

Analyzing software repositories to understand software evolution 35

References

1. Fischer, M., Pinzger, M., Gall, H.: Populating a release history database from version
control and bug tracking systems. In: Proc. Int’l Conf. Software Maintenance (ICSM),
Los Alamitos CA, IEEE Computer Society Press (2003) 23–32

2. D’Ambros, M.: Software archaeology - reconstructing the evolution of software systems.
Master thesis, Politecnico di Milano (2005)

3. Zimmermann, T., Weißgerber, P.: Preprocessing CVS data for fine-grained analysis. In:
Proc. Int’l Workshop on Mining Software Repositories (MSR), Los Alamitos CA, IEEE
Computer Society Press (2004) 2–6

4. CVS: Concurrent versions systems. http://www.nongnu.org/cvs (2006)
5. Subversion: subversion.tigris.org. http://subversion.tigris.org (2006)
6. Bugzilla: Bugzilla. http://www.bugzilla.org (2007)
7. C̆ubranić, D., Murph, G.C.: Hipikat: recommending pertinent software development ar-

tifacts. In: Proc. Int’l Conf. Software Engineering (ICSE), Portland, Oregon, IEEE Com-
puter Society Press (2003) 408–418

8. C̆ubranić, D., Murphy, G.C., Singer, J., Booth, K.S.: Hipikat: A project memory for
software development. IEEE Computer Society Trans. Software Engineering 31 (2005)
446–465

9. C̆ubranić, D., Murphy, G.C., Singer, J., Booth, K.S.: Learning from project history: a case
study for software development. In: Proc. ACM Conf. on Computer supported cooperative
work (CSCW), New York, NY, USA, ACM Press (2004) 82–91

10. German, D., Hindle, A., Jordan, N.: Visualizing the evolution of software using
softchange. In: Proc. Int’l Conf. on Software Engineering & Knowledge Engineering
(SEKE 2004), New York NY, ACM Press (2004) 336–341

11. German, D.: Mining cvs repositories, the softchange experience. In: Proc. Int’l Workshop
on Mining Software Repositories (MSR). (2004) 17–21

12. German, D.M.: A study of the contributors of postgresql. In: MSR ’06: Proceedings of
the 2006 international workshop on Mining software repositories, New York, NY, USA,
ACM Press (2006) 163–164

13. Bevan, J., E. James Whitehead, J., Kim, S., Godfrey, M.: Facilitating software evolution
research with kenyon. In: Proc. European Software Engineering Conf. and Foundations
of Software Engineering (ESEC/FSE), New York, NY, USA, ACM Press (2005) 177–186

14. D’Ambros, M., Lanza, M., Gall, H.: Fractal figures: Visualizing development effort for
cvs entities. In: Proc. Int’l Workshop on Visualizing Software for Understanding (Vis-
soft), IEEE Computer Society Press (2005) 46–51

15. Lanza, M., Ducasse, S.: Polymetric views – a lightweight visual approach to reverse
engineering. IEEE Computer Society Trans. Software Engineering 29 (2003) 782–795

16. Lanza, M., Ducasse, S., Gall, H., Pinzger, M.: Codecrawler – an information visualization
tool for program comprehension. In: Proc. Int’l Conf. Software Engineering (ICSE),
ACM Press (2005) 672–673

17. D’Ambros, M., Lanza, M.: Software bugs and evolution: A visual approach to uncover
their relationship. In: Proc. European Conf. Software Maintenance and Reengineering
(CSMR), IEEE Computer Society Press (2006) 227–236

18. Liu, Y., Stroulia, E., Erdogmus, H.: Understanding the open-source software development
process: a case study with cvschecker. In: Proc. Intl’l Conf. on Open Source Systems.
(2005) 154–161

19. Gı̂rba, T., Kuhn, A., Seeberger, M., Ducasse, S.: How developers drive software evolution.
In: Proc. Int’l Workshop on Principles of Software Evolution (IWPSE), IEEE Computer
Society Press (2005) 113–122

36 Marco D’Ambros, Harald C. Gall, Michele Lanza, and Martin Pinzger

20. Voinea, L., Telea, A.: Cvsgrab: Mining the history of large software projects. In: Euro-
graphics / IEEE VGTC Symposium on Visualization (EuroVis), Lisbon, Portugal, IEEE
VGTC,EG,, Eurographics (2006) 187–194

21. Voinea, L., Telea, A., van Wijk, J.J.: Cvsscan: visualization of code evolution. In: Proc.
ACM Symp. Software Visualization, New York, NY, USA, ACM Press (2005) 47–56

22. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social
networks. In: Proc. Int’l Workshop on Mining Software Repositories (MSR), New York,
NY, USA, ACM Press (2006) 137–143

23. D’Ambros, M., Lanza, M.: Reverse engineering with logical coupling. In: Proc. Working
Conf. Reverse Engineering (WCRE). (2006) 189 – 198

24. D’Ambros, M., Lanza, M., Lungu, M.: The evolution radar: Integrating fine-grained
and coarse-grained logical coupling information. In: Proc. Int’l Workshop on Mining
Software Repositories (MSR). (2006) 26–32

25. Gı̂rba, T., Ducasse, S., Lanza, M.: Yesterday’s weather: Guiding early reverse engineering
efforts by summarizing the evolution of changes. In: Proc. Int’l Conf. Software Mainte-
nance (ICSM), Chicago, Illinois, IEEE Computer Society Press (2004) 40–49

26. ArgoUML: Cookbook for developers of argouml.
http://argouml.tigris.org/files/documents/4/0/argouml-0.14/cookbook-0.14.pdf (2006)

27. Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley Publishing Company,
Boston MA (1996)

28. Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on product release
history. In: Proc. Int’l Conf. Software Maintenance (ICSM), IEEE Computer Society
Press (1998)

29. Gall, H., Jazayeri, M., Krajewski, J.: CVS release history data for detecting logical
couplings. In: Proc. Int’l Workshop on Principles of Software Evolution (IWPSE), Los
Alamitos CA, IEEE Computer Society Press (2003) 13–23

30. Ratzinger, J., Fischer, M., Gall, H.: Improving evolvability through refactoring. In: Proc.
Int’l Workshop on Mining Software Repositories (MSR), New York, NY, USA, ACM
Press (2005) 1–5

31. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide
software changes. In: Proc. Int’l Conf. Software Engineering (ICSE), Los Alamitos CA,
IEEE Computer Society Press (2004) 563–572

32. Breu, S., Zimmermann, T.: Mining aspects from version history. In: Proc. Int’l Conf.
Automated Software Engineering (ASE), Washington, DC, USA, IEEE Computer Society
Press (2006) 221–230

33. Ying, A.T.T., Murphy, G.C., Ng, R., Chu-Carroll, M.C.: Predicting source code changes
by mining change history. IEEE Computer Society Trans. Software Engineering 30
(2004) 574–586

34. Bouktif, S., Gueheneuc, Y.G., Antoniol, G.: Extracting change-patterns from cvs repos-
itories. In: Proc. Working Conf. Reverse Engineering (WCRE), Washington, DC, USA,
IEEE Computer Society Press (2006) 221–230

35. Ratzinger, J., Fischer, M., Gall, H.: Evolens: Lens-view visualizations of evolution data.
In: Proc. Int’l Workshop on Principles of Software Evolution (IWPSE), Lisbon, Portugal,
IEEE Computer Society Press (2005) 103–112

36. Beyer, D., Hassan, A.E.: Animated visualization of software history using evolution sto-
ryboards. In: Proc. Working Conf. Reverse Engineering (WCRE), Washington, DC, USA,
IEEE Computer Society (2006) 199–210

37. Fischer, M., Gall, H.: Evograph: A lightweight approach to evolutionary and struc-
tural analysis of large software systems. In: Proc. Working Conf. Reverse Engineering
(WCRE), Washington, DC, USA, IEEE Computer Society (2006) 179–188

Analyzing software repositories to understand software evolution 37

38. Pinzger, M., Gall, H., Fischer, M., Lanza, M.: Visualizing multiple evolution metrics. In:
Proc. ACM Symp. Software Visualization, St. Louis, Missouri, ACM Press (2005) 67–75

39. Gall, H., Jazayeri, M., Riva, C.: Visualizing software release histories: The use of color
and third dimension. In Yang, H., White, L., eds.: Proc. Int’l Conf. Software Maintenance
(ICSM), Oxford, UK, IEEE Computer Society (1999) 99–108

40. Collberg, C., Kobourov, S., Nagra, J., Pitts, J., Wampler, K.: A system for graph-based
visualization of the evolution of software. In: Proc. ACM Symp. Software Visualization,
New York, NY, USA, ACM Press (2003) 77–86

41. Lanza, M.: The evolution matrix: Recovering software evolution using software visualiza-
tion techniques. In: Proc. Int’l Workshop on Principles of Software Evolution (IWPSE),
Vienna, Austria, ACM (2001) 37–42

42. Wu, J., Spitzer, C.W., Hassan, A.E., Holt, R.C.: Evolution spectrographs: Visualizing
punctuated change in software evolution. In: Proc. Int’l Workshop on Principles of Soft-
ware Evolution (IWPSE), Kyoto, Japan, IEEE Computer Society Press (2004) 57–66

43. Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L.L.: Guide to the Software
Engineering Body of Knowledge (SWEBOK). IEEE (2004)

44. (OMG), O.: Unified Modeling Language: Superstructure version 2.0. formal/2005-07-04
(2005)

