
i-MoCo: Mobile Conference Guide – Storing and
querying huge amounts of Semantic Web data

on the iPhone/iPod Touch

Cathrin Weiss, Abraham Bernstein, Sandro Boccuzzo

University of Zurich
Department of Informatics

CH-8050 Zurich, Switzerland
{lastname}@ifi.uzh.ch

Abstract. Querying and storing huge amounts of Semantic Web data
– this has usually required a lot of computational power. This is no
longer true if one makes use of recent research outcomes like modern
RDF indexing strategies.
We present a mobile conference guide application that combines several
different RDF data sets to present interlinked information about publi-
cations, conferences, authors, locations, and others to the user. With our
application we show that it is possible to store a big amount of indexed
data on an iPhone/iPod Touch device. That querying is also efficient
is demonstrated by creating the application’s actual content out of real
time queries on the data.

1 Motivation

A typical conference scenario: We attend a session and are really interested in a
particular talk. We probably have never seen the speaker before. Thus, we open
our laptop and enter the speaker’s name into the preferred web search engine
and collect the information we are interested in, like, whom she’s collaborated
with before, at which conferences she’s already published, and so on. The search
results may also contain a lot of irrelevant information, especially if the author’s
name is a common one. We have to refine our search with respect to what we
want to know and continue.

Instead of collecting this information manually it would be desirable to have a
system providing us with all conference-/publication-relevant information that
gives us the possibility to browse within this particular topic area. Another
advantage would be if the formerly described application ran on a mobile device
such that a laptop is not needed at all. But preparing all semantically-interlinked
information that can be useful for this particular type of application can sum
up to big amounts of data. Querying big amounts of data and especially big
Semantic Web graphs [1,2,5] is a computationally expensive task. Doing this in
real-time usually requires high-end systems. Therefore our motivation for this
project was it to show that with modern, sophisticated indexing and storing



techniques one does not need much computing power for dealing with lots of RDF
data. We therefore implemented our i-MoCo mobile conference guide application
which runs on the iPhone/iPod Touch and is based on the Hexastore indexing
scheme presented in [4].

The remainder of this paper is structured as follows: Section 2 gives some
background information about the Hexastore index and why it is suitable to be
used on a mobile device. Section 3 describes the i-MoCo tool with the design
decisions made, its architecture, and implementational details. In addition to
that we present some ”application-in-action” screenshots. Last but not least we
conclude with a project summary in Section 4.

2 Theoretical Background

To understand why it is possible to store (and also query) so much of the given
Semantic Web data on a device with limited capacities, we need to give a short
introduction in our indexing and storing scheme.

In [4], we presented Hexastore, a sextuple indexing scheme for Semantic
Web data which enables querying the data efficiently. A Semantic Web triple
< s, p, o > consisting of the graph nodes subject s, and object o, although o can
also be a literal, and the graph edge p, the predicate. The nodes are identified
by a URI. Hexastore maps URI or literal strings onto unique ids to limit the
amount of storage needed. Furthermore, Hexastore recognizes that queries are
constructed by a collection of graph patterns [3] which may (i) bind any of the
three elements of the triples to a value, (ii) may use variables for any of the
triple elements effectively resulting in a join with other graph pattern, and (iii)
define any element with a wild card to be returned. Since any join order between
triple patterns in a query is possible, Hexastore indexes the data in each pos-
sible triple permutation such that efficient joining over every element s, p, or o
becomes possible. This results in six indices designated in the order in which the
triple elements are indexed (e.g., SPO, OSP, etc.). This indexing scheme allows
to retrieval all connected triple components within one index lookup.

Figure 1 demonstrates the structure of the indices. It shows that each index
essentially consists of three different elements: a first-level Type1 index, a second-
level Type2 index, and a third-level Type3 ordered set, where the TypeN’s are
one of the three triple elements {subject, predicate, object}. Given a Type1 key
ai, the first-level index returns a second-level Type2 index. Given a key bj the
Type2 index returns a Type3 ordered set, which lists all the matches to the query
< ai, bj , ? >. Note that this structure has the advantage that every lookup is of
amortized cost of order O(1).

Since this indexing scheme still yields all information contained in the raw
data, it suffices to store just the indices. For that we also provide a customized
concise storage scheme. The combination of both enables highly efficient querying
of huge data with a minimal number of disk accesses.



a1

a2

a3

...

a4

an

b11

b12

b13

c111

b21

b22

c112 c113 ...

Type 1 Type 2 Type 3

.

.

.

. . .

. . .

Type = {subject, predicate, object}

Fig. 1. Sketch of a Hexastore index

3 Tool Description

We wanted to design an application that is helpful during a conference visit.
The idea behind is that every conference can provide customized data starting
from which conference attendees can gather conference- and publication-related
information.

The application we designed has the goal that starting from the publications
published at the particular conference, the user can browse all kinds of related
information:

1. Retrieve all authors related to the particular paper
2. Retrieve all other papers published by a particular author (using SwetoDBLP

data)
3. Retrieve information possibly published on Wikipedia about a particular

author (using DBPedia data)
4. Retrieve information about a location (using Geonames data)
5. Finding a location on the map (using the iPhone/iPod Touch Google Maps

application)
6. Retrieve the PDF file of a particular publication (using Citeseer data)

3.1 Design

Since with a mobile device we are quite limited in the size of the presentation
screen, design decisions have to be made with respect to:

– What information is crucial about the presented data?
– Which relations must necessarily be presented together?
– Short version of information versus long version (i.e., paper title versus paper

represented with all related information)



– How much information should be shown at all and how?

With the iPhone/iPod Touch we are bound to particular UI components that
can be used. How we actually implemented the application will be described in
Section 3.3.

3.2 Architecture

The application consists of several layers. The UI layer, representing the actual
results, a query layer, which maps the UI’s requests onto the underlying index,
and the index layer itself which contains the data. The architecture is depicted
in Figure 2. First of all we need to create the Hexastore indices out of the
RDF- (or in general: Semantic Web-) data. These indices are the application’s
lowest layer and are implicitly stored. On top of the index there is a query layer
that communicates with the actual iPhone UI. Thus, the content within the
application is dynamically created on demand by posing a request to the query
layer which then fetches the requested information from the index layer.

Hexastore indices Hexastore indices Hexastore indices

Query Engine

RDFRDFRDFRDFRDF

String - ID mapping

iPhone UI

Preprocessing

Fig. 2. The Application Architecture



3.3 Implementation

We implemented the application in Objective C with the Apple iPhone SDK 1

for the UI and programming logics. The index/database layer was implemented
in C and could therefore easily be integrated within the Objective C Framework.
For a minor part of the string-id-mapping we used sqlite databases which are
supported by the iPhone SDK.

For the UI we mostly used TableViews within TouchLists, as well as (in case
of only one option) simple buttons and included Images. For retrieval of PDFs or
actual Wikipedia entries, we did URL calls in Mobile Safari. Geodata is shown
within the integrated Google Maps application or – in case this application is
not integrated – in Mobile Safari as well.

3.4 Data amount stored

Given our indexing and storing method, a full-indexing – full means with all
possible indices and all string mapping information, which we usually do not need
completely – requires approximately 100MB per million triples. This depends on
the nature of the underlying data but that was the average space requirement for
the data sets we used. Therefore, we can store and query about 250−300 million
fully indexed triples on an 32GB iPod Touch . If we don’t store all indices, the
whole billion is possible.

Efficient querying means that the construction of the application parts runs
in real time. The necessary information is retrieved quickly and the user does
not realize any lags.

3.5 Result

The application ”in-action” is presented in Figures 3 to 8. In Figure 3 we see the
application start: a list of all publications at the actual conference. By clicking
on a particular publication we get a detailed description of the paper, like shown
in Figure 4. There we have the paper title again, all authors, possible links to
download the PDF file of the paper, and the conference at which it was published.
If the particular fields contain information, they are clickable. If we have a link
to a PDF file, we can download it as shown in Figure 5.

Continuing with a click on an author, we are forwarded to the author infor-
mation table, here shown in Figure 6. This part contains – if available – a photo,
the name and two links exchanging by clicking on the photo : (i) a link to all
publications of the author, (ii) a link to a possible wikipedia entry – if available.
We have (a) implicit Wikipedia data that can be requested from the data stored
if no web access is available or (b) online access like shown in Figure 7.

Since conferences as well as people can be related to locations (conference
location or birth location), we can upon this information retrieve a particular
location in Google Maps via the location name or Geonames data (c.f. Figure 8).

1 http://developer.apple.com/iphone/



4 Summary

We decided to use the iPhone/iPod Touch as our underlying platform, because
applications need to fulfill some requirements to succeed on such a device, i.e.
they need to be (i) memory efficient, (ii) storage efficient, and (iii) fast.

With our i-MoCo mobile conference guide we have demonstrated that it
is possible to store and query a big amount of Semantic Web data on a mobile
device like the iPhone/iPod Touch. Thus, we provide a convenient tool to browse
quickly through conference and publication contents. i-MoCo combines so far
data from DBLP, DBPedia, Citeseer, and Geonames. More data sets can easily
be added if additional features require that.

We think that i-MoCo is a demonstration of, first, the improvement on Se-
mantic Web data management achieved by modern methods, and second, the
scalability of the indexing and storing techniques used.

References

1. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In ISWC, pages 54–68, 2002.

2. R. V. Guha. rdfDB : An RDF database. http://www.guha.com/rdfdb/.
3. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL basic

graph pattern optimization using selectivity estimation. In WWW ’08: Proceeding
of the 17th international conference on World Wide Web, pages 595–604, New York,
NY, USA, 2008. ACM.

4. C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Semantic
Web Data Management. In Vol. 1 of JDMR (formely Proc. VLDB) 2008, Auckland,
New Zealand, 2008.

5. K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient RDF Storage and
Retrieval in Jena2. In SWDB, pages 131–150, 2003.



Ranking Ontologies with 

Three Semantics for Dist

Semantics and Complexit
Ontology-Driven Automat

Augmenting Navigation fo

On the Semantics of Linki

Augmenting Navigation fo

RS2D: Fast Adaptive Sear

: Semantic Annotatation f

Fig. 3. Application start (all publications
of particular conference)

Three Semantics for Distri..

Antoine Zimmermann

Jérôme Euzenat

5th International Semantic Web..

None

Fig. 4. Extended information about publi-
cation

Fig. 5. Find paper as PDF

Tim Berners-Lee

Fig. 6. Information about an author



Fig. 7. Retrieve Wikipedia information Fig. 8. Show a location in Google Maps


