
Mining Software
Repositories with

Relational Data Mining
Methods

File

Revision

Revision

Revision

Revision

SomFile

Class

Issue

Release Sonja Näf
of Ittenthal AG, Switzerland

Student-ID: 03-704-194

snaef@dplanet.ch

Diploma Thesis February 15, 2008

University of Zurich
Department of Informatics

Advisor: Jonas Tappolet

Prof. Abraham Bernstein, PhD

Department of Informatics

University of Zurich

http://www.ifi.uzh.ch/ddis

Acknowledgements

I would like to thank to Prof. Bernstein and Jonas Tappolet for their patient and helpful support.

I appreciate that I got the opportunity to work on this interesting topic. Further, I thank André,

Martin, Martina, Mattias, Matthias, Mike and Raphael for spending amusing coffee and lunch

breaks with me and/or for proofreading my thesis. Only thanks to my parents who pushed me

to do my homework when I was in primary school, it was possible to become a student one day.

Abstract

In complex software projects a lot of information about defect, release and source code history

is gathered. Researchers figured out that mining these software repositories could provide valu-

able information about the software development. So far, software repositories were mined with

traditional data mining methods which are suitable for propositional data. Propositional data is

flat and homogeneous, held in a single-table-database. This thesis compares the traditional ap-

proach with relational data mining methods which are able to handle heterogeneous data. First,

an introduction about relational data mining is given and then a few relational data mining tools

are introduced. In a next step we present the data for our experiments and the necessary data

preparations. Finally, we conduct several experiments which show the advantages as well as the

weaknesses of the relational approach.

Zusammenfassung

In komplexen Software Projekten werden viele Daten über die Bug-, Release- und Source Code

History gesammelt. Forscher haben herausgefunden, dass Software Repositories wertvolle Infor-

mationen zur Softwareentwicklung enthalten. Bis anhin wurde in Software Repositories mit tra-

ditionellen Data Mining Methoden nach Mustern gesucht. Traditionelle Data Mining Methoden

sind für propositionale Daten geeignet, die in einer einzigen Tabelle gespeichert werden können

und somit flach und homogen sind. Diese Diplomarbeit vergleicht traditionelle Vorgehensweisen

mit relationalen Data Mining Methoden, welche mit heterogenen Daten umgehen können. Zu

Beginn dieser Arbeit werden das relationale Data Mining sowie Tools vorgestellt. Nachher wer-

den wir die zur Verfügung stehenden Daten beschreiben und die notwendigen Vorkehrungen für

unsere Experimente erklären. Zum Schluss werden die durchgeführten Experimente, sowie die

Stärken und Schwächen des relationalen Ansatzes diskutiert.

Table of Contents

Table of Contents ix

1 Introduction 1

1.1 Motivation . 1

1.2 Goals of this Work . 1

1.3 Area of Application . 2

1.4 Related Work . 3

2 Data Mining 5

2.1 Definitions . 5

2.2 Traditional versus Relational Data Mining . 6

2.3 Relational Data Mining Models . 7

2.3.1 Inductive Logic Programming . 7

2.3.2 Markov Logic Networks . 8

2.3.3 Relational Bayesian Models . 8

2.3.4 Relational Markov Networks . 9

2.3.5 Relational Dependency Networks . 10

3 Analysis Tools 11

3.1 Proximity . 11

3.1.1 Features . 11

3.1.2 Algorithms . 12

3.2 Alchemy . 16

3.3 NetKit . 16

3.4 WEKA . 17

4 Data Preparation 19

4.1 Ontology Models . 19

4.1.1 Software Ontology Model . 19

4.1.2 Version Ontology Model . 21

4.1.3 Bug Ontology Model . 21

4.1.4 Interconnection of the Ontologies . 21

4.2 Data Preparation . 22

4.2.1 Data Selection . 23

x TABLE OF CONTENTS

4.2.2 Data Preprocessing . 23

4.2.3 Data Transformation . 27

5 Evaluation 29

5.1 Comparison Study . 29

5.1.1 Approach . 29

5.1.2 Results . 30

5.2 Data . 31

5.3 Evaluation Methods . 31

5.3.1 Accuracy . 32

5.3.2 ROC . 32

5.3.3 AUC . 33

5.4 Experiments . 33

5.4.1 Experiment 1 . 34

5.4.2 Experiment 2 . 37

5.4.3 Experiment 3 . 40

5.4.4 Experiment 4 . 43

5.4.5 Experiment 5 . 46

5.4.6 Experiment 6 . 48

5.4.7 Experiment 7 . 50

5.4.8 Experiment 8 . 53

5.4.9 Experiment 9 . 56

5.4.10 Experiment 10 . 59

5.4.11 Experiment 11 . 62

5.4.12 Experiment 12 . 64

5.4.13 Experiment 13 . 67

5.4.14 Summary . 70

6 Conclusions 71

6.1 Limitations . 71

6.2 Future Work . 72

A Algorithms 73

A.1 Chi Square Test of Independence . 73

A.2 MCMC/Gibbs Sampling . 74

B Data Preparation Steps 75

C Weka Outputs 77

C.1 Output Weka Ranker Experiment 7 . 77

C.2 Output Weka Ranker Experiment 9 . 78

D CD 81

List of Figures 83

List of Tables 85

TABLE OF CONTENTS xi

List of Listings 87

Bibliography 89

1
Introduction

1.1 Motivation

To withstand the fierce competition, companies need to be supported by highly available and

reliable software. In mid-sized and large companies most of the transactions are accomplished

by computers. This makes clear that defects cost a lot of money, not only for the company that

misses profits while waiting for the fixed release, but also for the software producer that loses a lot

of time and reputation. Unfortunately, avoiding defects is a difficult task to undertake. Software

projects are very complex, consist of several ten thousand lines of code and many people work on

it. For the project leaders it is indispensable to have tools that allow keeping track of the project

and that indicate where problems are expected. One way to support the software engineers is

to find patterns in software repositories that give information about the project status. Software

repositories consist for example of data gathered by source control, defect tracking or versioning

systems. Quite a lot of work was done mining this data with traditional data mining methods and

it was also shown that it is worth doing it. So far, no attempts have been made mining software

repositories with relational data mining methods. In contrast to the traditional approach, these

newer methods can handle relations and unhomogenous data. As the different entities in software

data are inhomogeneous and highly interconnected, we think, it is a promising approach using

relational data mining methods.

1.2 Goals of this Work

The aim of this thesis is to investigate whether relational data mining techniques are suitable for

mining software repositories. With the help of bug, versioning and source code data we want to

predict the location of bugs and compare the findings with the good results achieved by Bernstein

[Bernstein et al., 2007]. This earlier work was a propositional approach where they achieved the

best results with temporal features. As in this thesis the data have a relational nature and in

addition to temporal features also source code features are available, we assume to get even a

better performance.

This thesis is composed of the following chapters: Chapter 2 provides a brief introduction to

the field of data mining and shows what the advantages of relational data mining are in contrast

2 Chapter 1. Introduction

to traditional data mining. At the end, some common relational models are presented. In chapter

3 different analysis tools are described. Chapter 4 covers the data models and the necessary

transformation steps to run mining methods. The evaluation in chapter 5 illustrates the mining

experiments and its results. Finally, in chapter 6 conclusions and future work can be found.

1.3 Area of Application

Parnas [Parnas, 1994] states that due to source code modifications and missed adjustments to

meet new needs software ages during its life cycle. The consequences of aging are [Parnas, 1994]:

1. customers find other, newer and better products

2. Buggy software due to changes

3. Performance loss because of savaged structure

To detect those problems software repositories are analyzed. There are two main approaches:

Software evolution and complexity analysis. The complexity analysis should give insight about

the structure of the source code [Lee et al., 1994]. Typical metrics for the complexity are lines of

code, McCabes Cyclomatic Number [McCabe, 1976], Halstead’s Metrics [Halstead, 1977], etc. The

evolution analysis investigates the release history of a software system to get knowledge about the

entire system, common change behavior, growth rates of modules or logical couplings between

classes 1. Various combinations of software and complexity analysis were conducted. However,

relational data mining methods were never used so far.

Since in many domains data has a relational nature - software repositories as well - relational

data mining methods are used in different areas. Where relational data mining (RDM) is not yet

applied in the field of mining software repositories, biologists or chemists make widely use of it.

In those fields researchers cope with large databases consisting of multiple, interacting relational

tables (as an example see [Page and Craven, 2003]). Perlich et al [Perlic and Huang,] stated that

RDM methods could be very useful for the customer relationship management (CRM). The goal

of CRM is to get to know the customers preferences and behaviors and applying this information

for marketing. This requires relational databases that include all customer information available,

such as demographics, purchases, linkages to products and other customers etc.. Another area of

application is fraud detection. Bernstein et al. 2 try to detect internal fraud in collaboration with a

bank. In fraud cases usually several people and transactions are involved, which makes it useful

to discover this data with relational data mining methods. As web sites are highly interconnected,

in the field of web mining RDM is very common. Goals of web mining tools are for example to

give insight about customer profiles, where to place commercials or creating personalized web

sites.

Since in other fields relational data mining methods are successfully applied, we will try it

out, too.

1http://seal.ifi.uzh.ch/fileadmin/User_Filemount/Vor lesungs_Folien/Evolution/SS07/
SWEvol-4.pdf

2http://www.ifi.unizh.ch/ddis/research/relational-ma chine-learning-etc/
analytical-internal-fraud-detection/

1.4 Related Work 3

1.4 Related Work

In this section we briefly summarize what studies are important or interesting for this thesis.

For mining software repositories, Kiefer et al. [Kiefer et al., 2007] implemented EvoOnt, a soft-

ware repository data exchange format based on the Web Ontology Language (OWL). It includes

data of source code, versioning and bug tracking systems. They created three ontology models

(software, version and bug ontology model) that describe what information of the software repos-

itories are stored. For this thesis this earlier work was very important as this thesis uses their data

models. The models are described later in Chapter 4.1.

Knab et al. [Knab et al., 2006] applied a decision tree learner for predicting defect density.

Interesting to know from this work is that they found that size metrics such as lines of code aren’t

very helpful for predicting defects. This in contrast to evolution data as for example the number

of modification of reports.

Bernstein et al. [Bernstein et al., 2007] predicted the location and number of bugs with the help

of a decision tree learner, respectively with a regression tree learner. They achieved promising

results using these two non-linear models if they were based on temporal features. The results of

this thesis are compared to their results.

Graves et al. [Graves et al., 2000] developed statistical models for exploring characteristics

that indicate large numbers of faults generated in the future development. They used change

management data from a large software system with a long history and found as well that process

measurements are better predictors than product metrics.

Zimmermann et al. [Zimmermann et al., 2007] mapped defects of the Eclipse project to source

code locations. On the basis of complexity measures they built logic regression models to predict

whether a file will have defects. They could show that the more complex a class is the more

defects it will have, but they didn’t succeed in predicting defects reliably.

Neuhaus et al. [Neuhaus et al., 2007] implemented the tool ”Vulture” that predicts vulnurable

components by analyzing the import structure of software components. By this approach they

achieved, analysing the Mozilla project, an average recall of 0.65 and precision of 0.45. In this

thesis no data about the import structure is available.

Nagappan et al. [Nagappan et al., 2005] found that failure-prone software components are

correlated to code metrics. They state that these code metrics aren’t applicapable for every other

project, only to the same or similar projects.

In ”The Top Ten List” Hassan et al. [Hassan and Holt, 2005] present an approach that indi-

cates managers the ten most susceptible subsystems to have faults. They used a combination

of heuristics that consider the recency/frequency (of modifications, fault fixes), the size (of the

modification or the subsystem), code metrics and co-modifications.

2
Data Mining

In this chapter a brief introduction about data mining is given, the differences between tradi-

tional and relational data mining are explained and some common relational mining models are

introduced.

2.1 Definitions

To describe what data mining is, we first introduce Fayyad et al’s [Fayyad et al., 1996] definition

of Knowledge Discovery in Databases (KDD):

”KDD is the nontrivial process of identifying valid, novel, potentially useful, and ultimately under-

standable patterns in data.”

Data

Target Date

---- ----
---- ----
---- ----

Transformed
Data

Patterns

$

Knowledge

Preprocessed
Data

Interpretation/
Evalutaion

Data Mining

Transformation

Preprocessing

Selection

Figure 2.1: Steps in the KDD process [Fayyad et al., 1996]

6 Chapter 2. Data Mining

The goal of this process is to help humans extracting useful information from large databases.

It consists of several steps, one of it is data mining. Data mining is defined as the automatic or

semiautomatic process of discovering patterns in data [Witten and Frank, 2005]. The identified

patterns need to be meaningful and allow us to make predictions on new data. In order to get

useful knowledge, before data mining methods can be applied, some other steps have to be ful-

filled. Since those steps are important as well for this work, they are explained shortly (see Figure

2.1).

The first step is to understand the data and to know what kind of information should be ex-

tracted. In a second step the target data on which the discovery will be performed should be

selected. In the third step the data is cleaned. This could, for example, be to decide what to do

with missing data fields. Next, in the transformation step the amount of data is reduced by find-

ing good features that represent the data depending on the task. After that, data mining methods

are chosen and applied. Typical outputs are classification and regression trees and association,

classification and regression rules [Džeroski and Lavrač, 2001]. Finally, the results should be in-

terpreted and the whole process is possibly repeated.

2.2 Traditional versus Relational Data Mining

In traditional data mining the input data is usually stored in a single table where the table headers

consist of attribute names and each row corresponds to an instance. Such data is called proposi-

tional data. Algorithms for propositional data assume that the instances are stored in a homoge-

neous structure where there exist for every object a fixed number of fields. Additionally, it is as-

sumed that the data instances are independent and identically distributed [Neville et al., 2003b].

However, most data is stored in relational databases that consist of several tables with heteroge-

neous data records and relations. When relational databases should be mined with traditional

data mining methods the information is truncated first, to be aggregated into one table. First of

all this is costly and also information is lost.

Example A big shopping center with several selling points keeps account about their customers’

purchases. In a relational database consisting of the two tables customer (see Table 2.1) and pur-

chase (see Table 2.2) information about customers and their purchases is stored. Due to the ag-

gravated competition they want to find out the characteristics of good customers with the goal to

earn more money. As they use traditional mining methods they first aggregate the purchases by

summing up the money the customers spent. This leads to a single table (see Table 2.3). From this

they follow that Mr. Fischer is a much better customer than Mrs. Fischer as he spends more than

three times more than her. However, they do not have any information about what was bought

or how often someone went shopping. With relational mining methods this aggregation is not

necessary. Hence, with the non-aggregated tables it is shown that Mrs. Mueller spends less in

total, but she spends above-average for technical products. It is also seen the preferences when to

go shopping.

Due to the aggregation of customers’ spendings they did not have as much information about

their customers as they would have had in a relational setting and probably miss profits. For

this reason researchers developed relational data mining methods that can handle this kind of

data structure. These methods are also called statistical relational learning methods and should

2.3 Relational Data Mining Models 7

Table 2.1: Customer table

id name city sex nationality age profession

1 Mueller Zurich w CH 28 pilot

2 Fischer Zofingen m D 43 teacher

...

Table 2.2: Purchase table

id customer date article amount price shop

1 1 2007-12-12 notebook 1 2000 Zurich

2 1 2007-12-12 PS 3 1 900 Olten

3 2 2007-01-06 sandwich 3 18 Basel

4 2 2007-01-07 salad 1 2 Basel

...

n 2 2007-x-y z u v Basel

perform at least as well as traditional data mining methods [Neville et al., 2003b]. However, more

computation is needed because of irregular structures and complex dependencies.

2.3 Relational Data Mining Models

As illustrated in the section above, a table with a fixed number of attributes is often not a good

way to model data. Needed are objects described by any number of attributes where those ob-

jects can stand in relation to other objects. In real data uncertainty arises for example about the

attributes of an object, the number of objects or the number of relations [Getoor and Taskar, 2007].

To handle with this uncertainty models based on combinations of graphical models, probabilistic

grammars and logical formulas were built [Getoor and Taskar, 2007].

In this section the most common models are introduced.

2.3.1 Inductive Logic Programming

An example for a logic model is the Inductive Logic Programming (ILP) [Džeroski, 2007]. The

advantage of ILP is that it can deal with data stored in multiple tables. It is possible to combine it

with classification rules, decision trees or association rules to upgrade those propositional models

to relational models. Decision trees combined with ILP are almost the same as propositional trees

with the distinction that the upgraded relational trees have first-order logic queries in the node

to classify the instances. However, finding patterns expressed in first-order logic needs more

computational power than for conventional patterns. Another drawback is that it cannot handle

uncertainty, either a statement is true or not. Since in reality usually it is not possible to distinguish

clearly between true and false, other, more smoother models were built, such as Markov Logic

Networks [Domingos et al., 2006].

8 Chapter 2. Data Mining

Table 2.3: Aggregation table

id name city sex nationality age profession total spendings

1 Mueller Zurich w CH 28 pilot 2900

2 Fischer Zofingen m D 43 teacher 10000

...

2.3.2 Markov Logic Networks

A Markov Logic Network is a set of formulas in first-order logic with attached weights

[Domingos et al., 2006]. Thus, logic is combined with probability and it is possible to have not

only true and false but also more and less probable formulas. When the variables in these formu-

las are replaced by constants a Markov Network can be built. This is a graphical model consisting

of undirected edges and is useful if the direction of the interconnected objects/variables is not

obvious. As ILP MLN can be combined with other models to extend them to relational models.

Methods in the data mining tool Alchemy are based on MLN (see Section 3.2).

2.3.3 Relational Bayesian Models

Another common example for graphical models are Relational Bayesian Models (RBM)

[Getoor et al., 2007]. These extend Bayesian networks (BN) with objects, relations and their at-

tributes in order to allow them to model relational data. BNs are directed acyclic models, repre-

senting probabilistic relationships among attributes.

A RBM consists of a schema of the domain and a probabilistic graphical model that describes

the dependencies in the domain. The schema of the domain is a description of the defined objects,

attributes and relations. It can be presented in an relational schema σr (see Figure 2.2). A relational

skeleton is a partial instantiation of the schema and specifies for each class in the schema the

objects and relations between them, without giving values to the attributes. When the Tables 2.1

and 2.2 are considered, customer Mueller with the id 1 is linked to two purchases. This is shown

in the relational skeleton (see Figure 2.3). In the dependency structure S the dependencies of the

attributes are specified. As shown in Figure 2.4 attributes of an object can depend on attributes

of the same object or on attributes of related objects. If there is a one to many relation as in the

example of Section 2.2 between the tables customer and purchase, the attribute depends on the

aggregated value.

As in BN’s, given the parents an attribute is independent of the other attributes. This results

to the joint distribution in Equation 2.1. X corresponds to objects, A to attributes, I to the instan-

tiation of the schema and Pa to parents.

P (I|σr, S, θS) =
∏

x∈σr

∏
A∈A(x) P (Ix.A|IPa(x.A)

) (2.1)

Here, only the most basic form of RBM was discussed, assuming that there is uncertainty

about the attributes of the objects. However, it is possible to introduce uncertainty about reference

or existence uncertainty. For further explanations see [Getoor et al., 2007].

In PROXIMITY a Relational Bayesian Classifier, based on the theory of BN’s is available (see

3.1.2).

2.3 Relational Data Mining Models 9

id

name
city

sex

nationality
age

profession

id

customer
date

article

amount
price

shop

customer purchase

Figure 2.2: Schema RBM

name ?

city ?

sex ?

nationality ?
age ?

profession ?

date ?

article ?

amount ?
price ?

shop ?

customer 1

purchase 1

date ?

article ?
amount ?

price ?

shop ?

purchase 2

Figure 2.3: Relational Skeleton

customer purchase

profession

sex

age

article

price

shopcity mode

mode

mode

avg

Figure 2.4: Dependency Structure

2.3.4 Relational Markov Networks

Relational Markov Networks (RMN) are an extension of Markov Networks. Contrary to RBN,

RMN are undirected graph models where cycles are allowed [Taskar et al., 2007]. In contrast to

directed models that classify each label separately, in RMN labels are collectively classified. The

10 Chapter 2. Data Mining

idea of this approach is that similar entities are connected. If the shopping center mentioned in

example of Section 2.2 knew the friends of customers, they could assume that these friends are

more likely to buy similar articles. To define this correlation relational cliques are introduced.

This can be done with a SQL query as in Listing 2.1.

SELECT customer1.Article, customer2.Article

FROM Customer customer1, Customer customer2, Link link

WHERE link.hasFriend = customer1.ID and link.isFriendOf = customer2.ID

Listing 2.1: SQL Query for Cliques

The conditional distribution of a RMN is then defined as in Equation 2.2. C corresponds to

the cliques, I to the instantiations and Φ to the potential function. Z(I.x, I.r) is a normalization

function, called partition function (see Listing 2.3).

P (I.y|I.x, I.r) = 1
Z(I.x,I.r)

∏
c∈C

∏
c∈C(I) ΦC(I.xC , I.yC) (2.2)

Z(I.x, I.r) =
∑

I.y′

∏
C∈C

∏
c∈C(I) Φ(I.xC , I.y′

C) (2.3)

2.3.5 Relational Dependency Networks

Relational Dependency Networks (RDN) are an extension of traditional dependency networks

[Neville and Jensen, 2007]. RDN have characteristics of RBN and as well of RMNs. RDN is im-

plemented in the data mining tool PROXIMITY and is further explained there (see Section 3.1.2).

3
Analysis Tools

In the evaluation in Chapter 5 several tools were used that we want to present. For mining the

software repositories primarily PROXIMITY was used. For feature selection we used WEKA and

for drawing diagrams Matlab 1. Since Matlab is well-known, we will not further explain it.

3.1 Proximity

PROXIMITY is an open-source software system for mining relational data. It was designed and

implemented by the Knowledge Discovery Laboratory (KDL) in the Department of Computer

Science at the University of Massachusetts Amherst 2. Proximity supports major research results

of KDL, such as for example the three mining methods mentioned later in Section 3.1.2.

3.1.1 Features

MonetDB In PROXIMITY all the data are hold in MONETDB 3. This is an open-source database

system specially designed for high-performance applications in data mining. In contrast to, for ex-

ample MySQL4, the tables are fragmented vertically instead of horizontally [Ivanova et al., 2007].

Thus, the performance should be improved because most scientific applications access just a few

columns in a table at a time. In this way only the relevant columns have to be fetched from disk.

Java Interface To interact with the database and visualize the data PROXIMITY provides a Java

interface that connects to MonetDB.

QGraph PROXIMITY also provides QGraph [Blau et al., 2002], a visual query language. Users

create a query by drawing a graph consisting of the objects and links that should be considered.

Special for QGraph is that executing a query results in subgraphs which consist of the related

objects and links. For defining the cardinality of objects and links annotations can be added. The

1http://www.mathworks.com/
2http://kdl.cs.umass.edu/proximity/
3http://monetdb.cwi.nl
4http://www.mysql.com/

12 Chapter 3. Analysis Tools

query in Figure 3.1 would result in a container including all subgraphs with a customer that went

shopping once or or more often. The result can be viewed in a textual mode (see Figure 3.2) or

as a visualized graph (see Figure 3.3). Additionally, conditions on the object attributes can be set.

Hence, it is possible to restrict this query to customers which are older than forty.

objtype =
purchases

objtype =
customer

bought
[1..]

[1..]

Figure 3.1: QGraph query

Figure 3.2: Contents of a Subgraph in Text Form

Python Scripts Another point worth mentioning is that PROXIMITY ’s Java API can be invoked

by Python5 scripts or the interactive interpreter built in PROXIMITY . For example with the very

short script in Listing 3.1 a new attribute for the object ”customer” is created that counts for every

customer the number of purchases.

3.1.2 Algorithms

In this section three relational data mining methods implemented using the data mining tool

Proximity are presented. All the three different algorithms have in common that they train and

test on subgraphs which are created by QGraph (see Section 3.1.1). A subgraph is an instance of

a data set including one or more objects with its links and attributes and exactly one class label to

predict which has to be of an non-continuous value.

5http://www.python.org/

3.1 Proximity 13

Figure 3.3: Contents of a Subgraph as a Graph

The Relational Bayesian Classifier (RBC) is a modification of the Simple Bayesian Classifier

(SBC), adapted to relational contexts [Neville et al., 2003b]. The SBC is a typical traditional data

mining method based on Baye’s rule assuming that attributes are independent given the class.

Considering the example in Table 2.3, this means that the probability that someone is a good cus-

tomer given the attributes ”city”, ”sex”, ”nationality”, ”age” and ”profession” can be calculated as

in Equation 3.1. Multiplying the probabilities of the attributes to get the conditioned probability

is only possible because of the independence assumption [Witten and Frank, 2005].

P (C = Y ES|a1−5) = α
∏

P (Ai = ai|C = Y ES)P (C = Y ES) (3.1)

In order to be able to handle with relational data, the RBC flattens first the data into a homo-

geneous set of attributes (see Figure 3.4).

The challenge in this relational setting is to find a good estimator for the probabilities of mul-

tivalued attributes, for example for the attribute ”articles”. Neville et al. [Neville et al., 2003b]

found that this works best when an independent value estimator is chosen. This estimator as-

sumes that each value of a multivalued attribute is independently drawn from the same distribu-

tion. As an example the first instance of the attribute ”article” is shown in Figure 3.4. To calculate

bought = DB.getLinks("linktype = ’bought’")

#group o2_id (purchases) by o1_id (customers) and count

numPurchases = bought.aggregate("count", "o1_id", "o2_i d")

prox.objectAttrs.defineAttributeWithData("numPurcha ses",

"int", numPurchases)

Listing 3.1: Python Script

14 Chapter 3. Analysis Tools

the probability P (Y ES|articles) the probabilities of the single values given the class ’YES’ have

to be multiplied (see Equation 3.2).

customer

purchase

purchase

purchase

purchase

purchase

purchase

purchase

purchase

Good

Customer

Customer

Name

Purchase

Article

Purchase

Price

Purchase

Place

YES Fischer
{sandwich,

salad, ...} {18, 2, ...}
{Basel,

Basel, ...}

YES Mueller
{notebook,

PS 3}

{2000,

900}

{Zurich,

Olten}

NO

...

...

...

...

...

...

Article: sandwich

Amount: 3

Price: 18

Place: Basel

...

{Zug, Zug,

Bern}

{6, 2,

100}
{wine,coke

,MP3}
Berger

Figure 3.4: Data Flattened

P (Y ES|articles) = P (wine|Y ES)P (coke|Y ES)P (MP3|Y ES)P (Y ES) (3.2)

Once the probabilities of the attributes are estimated, classification is done by choosing the

label value with the highest probability.

The Relational Probability Tree is a classification tree for relational data [Neville et al., 2003a].

It considers attributes of the target object, related objects and links. Classification trees are eas-

ily interpretable, which makes them to a very popular data mining method. As shown above,

the heterogeneous data has to be flattened somehow. The RPT is doing this by using aggrega-

tion functions. Following aggregations functions are implemented: MODE/AVERAGE, MINIMUM,

MAXIMUM, EXISTS, COUNT, PROPORTION, DEGREE. The RPT is constructing trees by recur-

sively partitioning subgraphs. In each splitting step it chooses one of the seven features with the

best score. This score is based on chi-square to calculate how much the feature depends on the

class label. If a feature is not significant it is dropped. For further explanation about how this

score comes up see Appendix A.1.

In Figure 3.5 an example output tree is shown. The data is the same as for the RBC where it

is predicted whether a customer is a good customer or not. In every node of the tree a feature

was selected. In the first step the data is divided by the feature average . If a customer spends

in average more or equals 100 the data instance traverses the left branch. ”nop” means ”no op-

eration” and is used if no aggregation is needed. In this example every customer has just one

age that is why ”nop” is used. The thicker a branch is the more instances pass this branch down.

The red bars are equivalent to the Yes instances proportional to the No instances (blue bars). In

the leaf nodes the number of instances that arrived at this leaf is depicted. If, for some reasons,

for example due to missing values, an instance could not be properly predicted, an appropriate

percentage of the instance to each path is assigned, this leads to numbers with decimal places.

Relational Dependency Networks As already mentioned before in Chapter 2, Relational De-

pendency Networks (RDN) [Neville and Jensen, 2007] are an extension of Dependency Networks,

3.1 Proximity 15

avg(purchase.price)

>= 100

degree(bought) > 15

Exists(purchase.pric

e) > 1000YES: 15

NO: 1

YES: 10

NO: 2.2
YES: 4.1

NO: 8.1

nop(age) >= 30

Count(purchase.sho

p = Zurich) > 4

Degree(bought) >

30

YES: 20.2

NO: 12.1

YES: 0

NO: 5.0

YES: 0.1

NO: 25.2

YES: 8.0

NO: 2.1

Figure 3.5: RPT output

used in traditional data mining. RDN have characteristics of RBNs and also of RMNs. RDNs are

bidirected models. The most important strength of RDN is that it can learn and reason with cyclic

relational dependencies, this in contrast to RBNs. This means that, as in the case of RMN (see Sec-

tion 2.3.4), inference can be done collectively what makes results more precisely. RMNs are also

able to handle with cyclic relational dependencies, but Neville et al. state that learning in RDNs

is more efficient. RDN learns conditional probabilities independently with for example the RBC

or RPT implemented in PROXIMITY instead of learning it jointly. For inferencing Gibbs Sampling

is used that approximates the joint distribution (see Appendix A.2).

Results of RDNs can be seen in a dependency network (see Figure 3.6). It is shown that ”pro-

fession” depends on ”GoodCustomer”. The loop for ”GoodCustomer” indicates autocorrelation.

This means, it is easier to predict whether someone is a good customer or not when related cus-

tomers (for example friends) are considered, too.

profes

sion

Good
Custo

mer

age

article

shopprice

Customer Purchase

Figure 3.6: Dependency Graph

16 Chapter 3. Analysis Tools

3.2 Alchemy

ALCHEMY is an open software package for statistical relational learning based on Markov Logic

[Domingos and Richardson, 2007]. It is designed to run on Linux platforms. As mentioned in

Chapter 2 Markov Logic consists of first-order logic formulas with attached weights. Predicting

whether someone is a good or bad customer could be expressed by the following formula (see

Equation 3.3). It says that pilots, older than thirty, are good customers.

∀xCustomer(x) ∧ HasProfession(x, y) ∧ y = Pilot ∧ HasAge(x, z) ∧ z > 30

⇒ GoodCustomer(x)
(3.3)

The three main features of ALCHEMY are:

• weight learning

• structure learning

• inference

As it says, weight learning learns the weights for formulas. Since the statement in Equation

3.3 is not true in every case it can be softened by a weight. When structure learning is used, not

only weights are learnt, but it also searches for new clauses. ALCHEMY supports the two basic

types MCMC6 and MAP7/MPE8 for inferencing. Inferencing yields either to the probability or to

the most likely state of the query atoms. ALCHEMY is a command line tool and can be run with

the commands learnweight,learnstruct or infer plus several options.

In this thesis PROXIMITY was preferred for three main reasons. First, PROXIMITY provides

an user-friendly interface for exploring and visualizing the data. In ALCHEMY all the data are

stored in files. Second, it is easier to understand the results if they are presented as a decision tree

or dependency network as it is provided by PROXIMITY . The other point is that in our domain

it is very difficult to construct formulas. We do not know exactly what causes an issue. One

evidence for an issue in the actual file could be if there were several issues in the last two, maybe

also three or five, months. However, such kind of statements are cumbersome to express in first-

order formulas. Nevertheless, in a future work, once good features already exist, it would be very

interesting to know how this tool performs.

3.3 NetKit

NETKIT is a command line toolkit for statistical relational learning, written in Java

[Macskassy and Provost, 2005]. This tool provides three main modules:

• Local classifier

• Relational classifier

6Markov chain Monte Carlo
7Maximum a Posteriori
8Most Probable Explanation

3.4 WEKA 17

• Collective inferencing

The local classifier module is a non-relational classifier, using only the attributes on the target

object. It can be applied to get to know the prior probabilities. It is possible to use WEKA classi-

fiers 9as local classifiers. The following relational algorithms are implemented: weighted-vote Re-

lational Neighbor (wvRN), class-distributional Relational Neighbor (cdRN) and a network-only

Multinomial Bayes Classifier with Markov Random. Similar to PROXIMITY , NETKIT provides

several aggregators. With the combination of those aggregators non-relational WEKA classifiers

can be used as relational classifiers. Currently, for inferencing Relaxation Labeling, Iterative Clas-

sification and Gibbs Sampling are available.

All the data are held in CSV-files and the graph has to be described in an ARFF10 file. NETKIT

can be run with any combination of local/relational classifiers and collective inferencing. An ex-

ample run could look as the following:

java -jar ../NetKit.jar -rclassifier wvrn -showAUC schema .arff

There is a bunch of further useful command line options, all described in the tutorial, found

on the main web page 11.

Important to know is that the relational classifiers in NETKIT are univariate models. Uni-

variate models have the characteristic that they consider only class labels and not local attributes

[Macskassy, 2007]. The idea is that for example friends of a good customer are good customers,

too. However, in our domain it is essential considering as well local attributes. Macksassy states

that univariate relational classifier with local classifier were combined but with limited success.

He suggests to create links between similar entities to eliminate the drawback of ignoring local

attributes. This is an interesting approach but it goes beyond this thesis. Another drawback of

NETKIT is as in the case of Alchemy that there are not any tools for visualizing the data provided.

For this reasons we decided to use PROXIMITY as the main tool. Though, it would be interesting to

know how the aggregators implemented in NETKIT perform together with the WEKA classifiers.

3.4 WEKA

WEKA is a data mining tool of the university of Waikato in New Zealand [Witten and Frank, 2005].

It does not only provide a collection of the standard machine learning algorithms, but it also sup-

ports users for data preparation and analysis. In contrast to PROXIMITY that only provides clas-

sification algorithms, in WEKA classifiers, regression, clustering, association rules and attribute

selection methods are available.

However, WEKA has one big drawback. It is, different to the tools mentioned above, only ap-

plicable to propositional data. Nevertheless, due to the lack of some useful features in PROXIMITY

such as feature selection algorithms in this thesis as well WEKA was used.

9http://www.cs.waikato.ac.nz/ml/weka/
10http://www.cs.waikato.ac.nz/ ˜ ml/weka/arff.html
11http://www.research.rutgers.edu/ ˜ sofmac/NetKit.html

4
Data Preparation

In this chapter the data used is presented and the necessary steps of the KDD process (see Section

2.1) are shown, before data mining methods can be applied. The goal of this procedure is to be

able to use PROXIMITY as the mining tool. An overview of the whole data preparation process is

shown in Figure 4.1.

4.1 Ontology Models

In this thesis history data of the Eclipse project’s compare plugin was used. This data was gath-

ered in an earlier diploma thesis [Tappolet, 2007]. In that diploma thesis a plugin was imple-

mented, which extracts data from source code, versioning and bug tracking systems and which

stores this data in the OWL1/RDF2 format. The data is structured in three models: Software

Ontology Model (SOM), Bug Ontology Model (BOM) and Version Ontology Model

(VOM). So, for each of the three repositories an ontology model was created. In the ontology

model the structure of the data is defined, that is the entities, attributes and linkages. Since dur-

ing the development of a software project the three repositories arise together, the three differ-

ent models are interconnected. As for our purpose not all information stored in the models are

relevant, in the pictures below only the data used by this approach are shown. The rectangles

correspond to objects, the ellipses to attributes and the arrows to the linkages between the objects.

4.1.1 Software Ontology Model

The purpose of the SOMis to represent object-oriented software source code. As in Figure 4.2

depicted, this model consists of a somFile , a class that includes zero or more methods, attributes,

local variables and formal parameters. The name somFile is chosen instead of file because the

VOMalready has an entity called file . The difference between the two files is that the file in the

VOMexists only once and has no information about the source code. Whenever there is a new

revision of this file it receives an additional link to the corresponding revision. The file in the SOM

appears as many times as there were revisions done on this file.

1http://www.w3.org/TR/owl-features/
2http://www.w3.org/RDF/

2
0

C
hapter

4.D
ata

Preparation

File 1

Separated OWL files

File 1

File 2
…

File n

Merged OWL file Data in CSV format

ResultSet

XML File

Merge OWL files
Define SPARQL

queries

Query 1

Query 2
...

Query m

Execute SPARQL
queries

Transform ResultSet

to CSV Format

Query definitions

Convert URI to

Unique Integer

Values

...

Output query execution

Split Data to Train

and Test Set

Import Data to

Proximity

Transformed Data

Filter Data
Convert Files to one

XML File

Feature Generation Building Subgraphs

S
te

p
 1

 -
D

a
ta

S
e
le

c
ti
o
n

S
te

p
 2

 -
D

a
ta

P
re

p
ro

c
e

s
s
in

g
S

te
p

 3
 –

D
a
ta

T
ra

n
s
fo

rm
a
ti
o
n

Proximity

Filled with

Data

MAL

Queries

Python File

Data in CSV Format

QGraph

Query

Proximity

Ready for

Mining

File 2

File n

File 1

...
File 2

File 3

File 1

...
File 2

File 3

File 1

...
File 2

File 3

Fig
u
re

4
.1

:
D

ata
Preparation

4.1 Ontology Models 21

somFile class

method

attribute

local
Variable

formal
Parameter

hasClass hasAttribute

h
a
s
M

e
th

o
d

acc
esse

sA
ttri

bute

hasLocalVariable

hasForm
alParam

eter

invok
es

name
Class

isAbstract

isInter
face

isStatic

isFinal

h
a

sA
n

o
n
y

m
o

u
s
C

la
s
s

name
Method

isAbstract

isInter
face

isStatic

isFinal

Figure 4.2: Software Ontology Model

4.1.2 Version Ontology Model

The data in the VOMwas extracted from CVS3. This model includes information about the entities

revision , release and file (see Figure 4.3). For every file the past revisions are stored. In the

attributes of the revision information about the revision number, author, creation time and how

many lines were added/removed is stored. In versioning systems it is possible to add several

different revisions to one release. That is why for every revision it is stored to which release it

belongs to.

4.1.3 Bug Ontology Model

The data in the BOMwas gathered from Bugzilla4. In reality the BOMcomposes of more entities.

However, for our evaluation the information in Figure 4.4 is enough.

4.1.4 Interconnection of the Ontologies

With the interconnection of the ontologies more information about the software development

process is added. Hence, there is for example information about which file was changed at which

time and whether in this revision a bug was fixed. For this connection the three following links

3http://www.nongnu.org/cvs/
4http://www.bugzilla.org/

22 Chapter 4. Data Preparation

revision

file

is
R

e
v
is

io
n

O
fF

ile

lines
Removed

lines
Added

number

author
creation

Time

release

name
Release

hasRelase

name
File

Figure 4.3: Version Ontology Model

issue

priority

Figure 4.4: Bug Ontology Model

were needed: isRevisionOfSomFile between revision and somFile , isResolutionOf

between revision and issue and hasSomRelease between somFile and revision (see

Figure 4.5).

revision

somFile

issue

isRevisionOfSomFile

isResolutionOf

hasSomRelease

Figure 4.5: Interconnection of the Three Ontology Models

4.2 Data Preparation

In this section the necessary steps in order to run mining methods over the data are presented.

Doing this, we followed the steps in the KDD process (see Section 2.1).

4.2 Data Preparation 23

4.2.1 Data Selection

As a result in the mentioned diploma thesis above, the needed data is available in separated OWL

files where there is one file for the revision data, one for the bug data and as many files as there

are releases for the software code data.

As not all of this data is needed, the data we are interested in was selected. How this was

done, is explained in this section.

Merge Data First of all we merged all OWL files into a single file to be able to easily query

the data needed afterwards. For this step all the necessary tools were already prepared in the

diploma thesis mentioned before (see Section 4). For every file a unique namespace was defined

and stored in a XML file. They implemented a Java class ”DataModel” with which it is possible

to merge the files, given the path where the files are and a string array including the namespaces

of the files that should be merged (see listing 4.1).

DataModel dm = new DataModel("path/to/datafolder");

OntModel model = dm.getOntology(OntModelSpec.OWL_DL_ME M, namespaces);

Listing 4.1: Merge Data

Define SPARQL Queries To import data into PROXIMITY the data has to be in the XML-format.

In this XML file all the objects, links and attributes that should be imported have to be defined. For

this reason SPARQL 5 queries for every object including its attributes and links we are interested

in were created. Once the data is imported, it is not possible to import additional objects at a

later time. Therefore, it is important to extract all the necessary objects right from the beginning.

SPARQL is a query language for RDF/OWL data with a similar syntax to SQL with the main

difference that SPARQL operates with namespaces. An example query is shown in Listing 4.2

that queries all entities of the type revision with its revision number, creation time, author and if

available the state of the revision.

Execute SPARQL Queries The query defined before is just a string and is not executed yet. For

the execution the class ”QueryExecuter” was constructed that returns the result in a ResultSet (see

Listing 4.3).

Transform ResultSet to CSV Format For further processing steps this ResultSet was parsed and

transformed to the CSV format. For every type of object and link a separated file is generated.

This is necessary for a further step.

4.2.2 Data Preprocessing

Several preprocessing steps were necessary. As it is relational data and the entities are inter-

connected, the easiest way to fulfill the different cleaning tasks is to do it all in the same step.

However, for better understanding, the different steps are explained separately.

5http://www.w3.org/TR/rdf-sparql-query/

24 Chapter 4. Data Preparation

QueryExecuter qe = new QueryExecuter();

String revisions =

" PREFIX vom: <" + Namespace.VOM + "> " +

" PREFIX rdf: <http: //www.w3.org/1999/02/22-rdf-syntax-ns#> " +

" SELECT ?URI ?number ?creationTime ?author ?state " +

" WHERE { " +

"?URI rdf:type vom:Revision . " +

"?URI vom:number ?number . " +

"?URI vom:author ?author . " +

"?URI vom:creationTime ?creationTime . " +

" OPTIONAL { " +

?URI vom:state ?state . " +

" }. " +

"} ";

qe.executeQuery(revisions, "revision");

Listing 4.2: Define SPARQL Queries

public void executeQuery(String query, String queryName) {

OntModel model = ModelFactory.createOnotlogyModel();

Query q = QueryFactory.create(query);

QueryExecution exec = QueryExecutionFactory.create(q, m odel);

ResultSet result = exec.execSelect();

ResultParser parser = new ResultParser();

ArrayList data = parser.parseToProximityData(result);

}

Listing 4.3: Execute SPARQL Queries

4.2 Data Preparation 25

Data Filtering First, the interesting data was selected and stored in CSV files. However, there is

still undesired data or data in the wrong format. The three main filtering tasks were:

• Filtering Files: We are only interested in Java files. However, among the files there are as

well other types of files, such as XML or other configuration files. As those files are linked

as well to revisions, releases, bugs and source code, filtering those files does not only mean

to ignore the unwanted files but also its linked entities. Optionally, a file needs to have at

least one revision in the last six months, otherwise it is ignored.

• Filtering Revisions: When a file is deleted it is connected to a revision with the remark

”dead”. As we are not interested in files that do not exist anymore, those files with all it

connected entities are deleted.

• Filtering somFiles: A revision can be linked to several releases. When there is a new release,

in the current data model the revision is linked to a new source code file, even though it

is the same. By filtering doubled source code files we made sure that every revision is

connected only to one source code file.

Convert URI to Unique Integer Values Important to note is that every object and link must

have a unique identifier. In PROXIMITY this identifier needs to be an integer equal or greater than

zero. In the OWL files, objects and links already have an unique identifier. However, it is in

form of an URI as it is common in the OWL format. For converting the URIs to unique integer

values, all the URIs of the objects are stored in a hash map where the URI is a key and the unique

integer is the value of the corresponding key. The unique integer is created with a counter, which

is increased for every new object added in the hash map. As a result we receive unique integer

values for every object. Every link needs also a unique identifier, however, only among the links

not among the objects. Again, there is a counter whose value is assigned to a link. A link consists

of a source and a destination URI which correspond to objects. These URIs have as well to be

converted to an integer value according to the URI of the objects stored in the hash map.

Specifying Type of Revisions Later, for mining we need to now how the current source code of

a file looks like. That is why the latest revision of a file has to be determined. In the data for the

revisions there is a link hasNextRevision . When a revision does not have a next revision, we

know that this is the latest revision and it contains the information about the actual file. For the

revisions the attribute targetRevision is added with the value one, if it is the latest revision of

a file and zero otherwise.

Convert Files to one XML File It is only possible to import one XML file into PROXIMITY . This

means that all the data that is currently separated on several files have to be merged into one

single file. For this step we made use of a perl file that is provided by PROXIMITY . Thanks to the

steps before, the data is already in the suitable format. We only have to write a specification file

for the objects and one for the links (see Figure 4.4, 4.5). As the objects and links always have iden-

tifiers they do not need to be mentioned in the specification file. Only the attribute names and

their data types are needed. Possible data types are: BIGINT, DATE, DATETIME, DOUBLE,

INTEGER, VARCHAR. If this is done, the perl script can be executed with this command:

26 Chapter 4. Data Preparation

perl text2xml.pl new-db objspec linkspec tab

The four command line parameters are:

1. name of database to be created

2. name of the object specification file

3. name of the link specification file

4. separator character that separates fields in the text files (either comma, tab or space)

As a result of this execution one XML file that includes all the objects, links and attributes is

generated.

revision<eol>

<tab>objecttype<whitespace>VARCHAR<eol>

<tab>number<whitespace>VARCHAR<eol>

<tab>creationtime<whitespace>DATE<eol>

<tab>author<whitespace>VARCHAR<eol>

<tab>removed<whitespace>INTEGER<eol>

<tab>added<whitespace>INTEGER<eol>

filename<eol>

<tab>attributename<whitespace> datatype<eol>

...

Listing 4.4: Object Specification File

hasClass<eol>

<tab>linktype<whitespace>VARCHAR<eol>

hasMethod<eol>

<tab>linktype<whitespace>VARCHAR<eol>

filename<eol>

<tab>attributename<whitespace> datatype<eol>

...

Listing 4.5: Link Specification File

Importing XML File Finally, the XML file can be imported with a script as well provided by

PROXIMITY . To import this file of course the Monet database has to be started first and then the

script, named import-xml.bat , has to be executed. How this works exactly, is nicely explained

in the tutorial of PROXIMITY 6.

6http://kdl.cs.umass.edu/proximity/documentation/Tut orial.pdf/

4.2 Data Preparation 27

4.2.3 Data Transformation

In Section 4.2.2 the necessary steps to import the data in PROXIMITY was shown. However, some

further steps are necessary to run the mining algorithms.

Creating Subgraphs In section 3.1.2 we stated that the mining methods of PROXIMITY need a

container consisting of several subgraphs as an input. As mentioned in section 3.1 these sub-

graphs and containers can be created with QGraph. Therefore, the query shown in Figure 4.6

is executed. It results in a container including all subgraphs with a file, its latest revision and if

available its source code. How QGraph queries are defined is explained in a tutorial provided by

the community of PROXIMITY 7.

objtype

= file

objtype

=revisi

on

objtype

=somFi

le

objtype

=class

objtype

=metho

d

objtype

=attribu

te

[0..1]

Figure 4.6: QGraph Query

Creating Features PROXIMITY provides an interface with which it is possible to query the MON-

ETDB similar to SQL. The query language of MONETDB is called MAL and stands for ”MonetDB

Assembly Language” [Ivanova et al., 2007]. Once a query is executed, its result can be stored in a

new attribute. All MAL queries and attribute generations are defined in a python script and then

executed. As an example Listing 4.6 is shown. In that example the goal is to create an attribute

that stores for every file how many revisions it had in the last month. That is why all revisions

with a creationtime later than 2006-12-30 are joint with the link hasRevision. The result is then

aggregated to count the according links between file and revisions.

As those files without any revisions in the last month are not included, the result is stored as a

intermediate step in the variable temp . In Listing 4.7 an attribute function is defined that creates

the attribute revision1month . If the variable created before (temp) is greater than zero then it

gets this value, else zero. At the end the temporal variable temp is deleted.

Finally, all necessary steps are accomplished and we are now ready to run the data mining

methods.

7http://kdl.cs.umass.edu/proximity/documentation/QGr aphGuide.pdf

28 Chapter 4. Data Preparation

rev = DB.getObjects("creationtime >= ’2006-12-30’")

hasRevision = DB.getObjects("linktype = ’hasRevision’")

nst = rev.join(hasRevision, "id = o2_id")

nst = nst.project("id, o1_id")

numRev = nst.aggregate("count", "o1_id", "id")

numRev = numRev.renameColumns("id, value")

prox.objectAttrs.defineAttributeWithData("temp", "in t", numRev)

Listing 4.6: MAL Query

currentAttrs = prox.objectAttrs

newAttrName = "revision1month"

newAttrFunction = "objtype = \"file\" AND temp > 0 ==> temp, o bjtype =

\"file\" ==> 0"

prox.addAttribute(currentAttrs, newAttrName, newAttrF unction)

currentAttrs.delete("temp")

Listing 4.7: Attribute Function

5
Evaluation

Citation of Nagappan et al [Nagappan et al., 2005]:

”The key idea of using software repositories is that one can map problems (in the bug database) to fixes

(in the version database) and thus to those locations in the code that caused the problem”.

This is exactly the setting in this thesis. The goal of this evaluation is to find out if this relational

combination of data is useful for predicting the location of bugs.

First, the paper of Bernstein [Bernstein et al., 2007] is introduced since we use this work for

comparison. Then the chosen data and evaluating methods are presented. Finally, the conducted

experiments and its results are described and arrived to a conclusion.

5.1 Comparison Study

To know whether the approach with relational data for predicting bugs is a good approach or

not, a traditional approach for comparison is needed. Since in [Bernstein et al., 2007] good results

were achieved, we decided to compare with them. This paper is introduced here briefly.

5.1.1 Approach

Bernstein et al. [Bernstein et al., 2007] argue that using temporal features and non-linear models

is essential for predicting the location of defects and the number of reported bugs. The created

features listed in Table 5.1 are mainly temporal features. For predicting the location of defects

they used WEKA ’s decision tree learner J48 and for predicting the number of defects WEKA ’s

tree regression learner M5P.

CVS and Bugzilla data provided by the MSR Mining Challenge 2007 1 was used. This consists

of the plugins updateui, updatecore, search, dpeui, pdebuild and compare of the

Eclipse project. For learning they extracted features for releases until December 31 2006 and for

testing for releases until January 31 2007.

1http://msr.uwaterloo.ca/

30 Chapter 5. Evaluation

Table 5.1: Features

Name Description

1 LOC Number of lines of code

2 LineAddedIRLAdd Number of lines added to fix a bug relative

to total number of lines added

3 LineAddedIRLDel Number of lines deleted to fix a bug relative

to total number of lines deleted

4 AlterType Amount of modification done relative to LOC

5 AgeMonths Age of a file in months

6 RevisionAge Number of revisions relative to the age of a file

7 DefectReleases Number of releases of a file from Dec 1 to 31 of 2006

8 Revision1Month Number of revisions of a file from Dec 1 to 31 of 2006

9 DefectAppearance1Month Number of releases of a file with defects

from Dec 1 to 31 of 2006

10 ReportedI1Month Number of revisions of a file with defects

from Dec 1 to 31 of 2006

11 Revision2Month Number of revisions of a file from Nov 1 to 31 of 2006

12 DefectAppearance2Month Number of releases of a file with defects

from Nov 1 to 31 of 2006

13 ReportedI2Month Number of revisions of a file with defects

from Nov 1 to 31 of 2006

14 Revision3Month Number of revisions of a file from Oct 1 to 31 of 2006

15 DefectAppearance3Month Number of releases of a file with defects

from Oct 1 to 31 of 2006

16 ReportedI3Month Number of revisions of a file with defects

from Oct 1 to 31 of 2006

17 Revision5Month Number of revisions of a file from Aug 1 to 31 of 2006

18 DefectAppearance5Month Number of releases of a file with defects

from Aug 1 to 31 of 2006

19 ReportedI5Month Number of revisions of a file with defects

from Aug 1 to 31 of 2006

20 ReportedIssues Total Number of revisions of reported problems

21 Releases Total Number releases

22 RevisionsAuthor Number of revisions per author

5.1.2 Results

For selecting the best features they used a feature selection algorithm provided by WEKA . The

significant features for predicting the location of defects in all five plugins were 2, 3, 8, 11, 16, 19

of Table 5.1. With an accuracy (ACC) of 99.164% and the area under curve (AUC) of 0.9251% the

location of defects was predicted.

5.2 Data 31

5.2 Data

In this thesis only the compare plugin was used as the OWL format is very memory consuming.

We used as well the phase until 2006-12-31 to train and predicted bugs to the end of January 2007.

For more comparison possibilities the same time range, just eleven months later (2007-06-30 to

2007-12-30) was considered as well.

The main set up is the same as in the earlier work mentioned before, however there are some

differences. First, instead of propositional data relational data was used. Second, in addition to

the evolution data as well source code data was considered (see Ontology Models in Section 4.1).

To know whether a file has an issue or not and how the current source code looks like those

revisions that do not have a link hasNextRevision (meaning that this is the last revision of

a file) were marked as target revisions (see Figure 5.1). In a first step we only considered

files that have at least one revision in the time range. Later, also files with no revision during the

selected time range were considered.

2006-07-31 2007-01-312006-12-31

Predict Issue

file

h
a
sR

e
vi

si
o
n

hasR
evis

ion

h
a
s
R

e
v
is

io
n

h
a
s
R

e
v
is

io
n

ha
sR

ev
is
io
n

Target Revision

Training

Target Revision

Testing

Figure 5.1: Time Range

In this thesis, in addition to the features of the comparison study, the features in Table 5.2 were

available. In Table 5.3 some distributions of the data are shown. It shows the number of files

considered in a time range. Note that for the phase from 2006-07-31 to 2007-01-31 only files were

considered that had at least one revision during the time range. This in contrast to the phase in

2007 where all files are included. Further, the number of issues and the resulting expectation that

a file will not have an issue are shown. In the last column the number of files with a target revision

linked to a SOM file is listed. From there we know that in the time range 2006/07 quite a lot of

target revisions have missing links. That is why we expect worse results for SOM features than in

the time range 2007.

5.3 Evaluation Methods

For evaluating the experiments different measures were used which are briefly explained in this

section.

32 Chapter 5. Evaluation

Table 5.2: Source Code Features

Name Entity Description

1 AccessControlQualifier Method public, private or protected

2 isAbstract Method true, false

3 isFinal Method true, false

4 isInit Method true, false

5 isInterface Method true, false

6 isStatic Method true, false

7 numForeignMethInv Method num of methods of another class a method invokes

8 numFormalParam Method num of parameters

9 numLocalVar Method num of local variables

10 numMethInv Method num of methods a method invokes

11 prevRevHasIssue Revision true, if revision before of that file had an issue

12 invClassHasIssue Method true, if class of invoked method has issue

Table 5.3: Distribution Data

Time range Num files Num files Prior no issue Num target revisions

with issue with SOM file

train: 2006-12-31 88 13 85.2% 78

test: 2007-01-31 84 14 83.3% 60

train: 2007-11-30 161 16 90.06% 161

test: 2007-12-30 161 15 90.06% 161

5.3.1 Accuracy

The ACC measures how many instances were correctly classified in proportion to the total num-

ber of instances. When the values of the class label are not equally distributed, it might mistakenly

seem that a good result was achieved. On 2007-11-30 in Table 5.3 only 16 of 161 files have an issue.

When a mining method returns an accuracy of 90% for this data set, this is just what was expected

and could have been achieved without data mining.

5.3.2 ROC

ROC stands for receiver operating characteristics and measures as well the performance of clas-

sifiers [Witten and Frank, 2005]. In comparison to the accuracy, beside the true positive rate also

the false positive rate is considered. The false positive rate is the number of instances wrongly

classified as positive divided by the total number of negative instances. In Figure 5.2 a ROC curve

is depicted. The goal is to receive curves that are close to the point (0,1). The diagonal between

the points (0,0), (1,1) is achieved when the instances are randomly classified.

5.4 Experiments 33

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Figure 5.2: ROC Curve

5.3.3 AUC

AUC stands for area under curve and is a related measurement to ROC [Witten and Frank, 2005].

The larger the area under the ROC curve the larger is AUC and the better the result.

5.4 Experiments

In this section the experiments conducted with PROXIMITY are presented. For every experiment

the RPT and RBC were tested ten times and then the ACC/AUC averaged. RPT was run with the

default setting, this is with pValue = 0.05 (see Appendix A.1) and maxTreeHeight = 5. For time

reasons RDN was just run once. The conditional probabilities, used by RDN, are learnt with RPT.

For inference in RDN, Gibbs Sampling was 2000 times repeated with a burn in of 100.

The different experiment runs differ in five points: Features, time range, files, aggregators

and revisions considered. Some key words are defined that are used later in the experiment

descriptions:

1. Features

(a) COM features: features of the comparison study in Table 5.1

(b) SOM features: source code features in Table 5.2

2. Time range

(a) 2006/07: training phase up to 2006-12-31 and the test phase on 2007-01-31

(b) 2007: training phase up to 2007-11-30 and the test phase on 2007-12-31

34 Chapter 5. Evaluation

3. Files

(a) All files: all files, no matter they had a revision during the time range considered or

not

(b) Files with revision: only files that had at least one revision during the time range con-

sidered

4. Revisions

(a) All target revisions: all files, no matter if they have a SOM file or not

(b) Target revisions with SOM file: only target revisions that have a link to a SOM file

5.4.1 Experiment 1

The first experiment is run to see what happens and so all features available are considered.

Features COM and SOM features

Time range 2006/07

Files Files with revision

Revisions All target revisions

Aggregators All

Result In the decision tree created by RPT two COM features were selected to the two top fea-

tures of the tree (see Figure 5.3). When a file did not have a defect in the last five months it is

very likely not to be defect one month later. The tree shows that if a file had defects and not a lot

of revisions were done, the file is very likely to be buggy in the future, too. This means that files

are not debugged within a few revisions. In the rest of the nodes SOM features were chosen. The

more complex a class is, that is the more entities a class has, the higher the probability that the

file has defects. Methods with protected modifiers are less fault-prone than methods with public

or private modifiers. The performance of all the three methods is worse than in the comparison

study. Either the relational methods are not as good as WEKA ’s J48 or the fact that all features

were used, disturb the result. This has to be tested in another experiment (see experiment 4). RBC

performed clearly better than the other two methods (see Table 5.4) what can be seen as well in

the ROC curves (see Figures 5.4 and 5.5). This means that the splitting nodes created by RPT are

not significant enough.

Table 5.4: Result Experiment 1

Model ACC AUC

RBC 0.8090 0.8446

RDN 0.8427 0.6577

RPT 0.8426 0.6086

5.4 Experiments 35

nop([file.defectappe

arance5month]) > =
1

nop([file.revision5m
onth]) > = 5

avg([method.numfor

malparameters]) > =
1

prop([method.acces

scontrolqualifier] =
protected) > = 0.2

prop([method.numlo

calvariables] > 1) >=

0.12121212

0: 59.0

0: 3.03

0: 0.07

1: 6.0
0: 1.8

0: 11.1

1: 7.0

Figure 5.3: RPT Experiment 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

ROC HasIssue

 RBC
 RPT
 RDN

Figure 5.4: ROC HasIssue Experiment 1

36 Chapter 5. Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RPT
 RDN

Figure 5.5: ROC HasNoIssue Experiment 1

5.4 Experiments 37

5.4.2 Experiment 2

Experiment 2 should give insight what performance SOM features alone can achieve.

Features SOM features

Time range 2006/07

Files Files with revision

Revisions All target revisions

Aggregators All

Result In Table 5.5 and also in the ROC curves in Figures 5.6 and 5.7 it is shown that the clas-

sification in this experiment is pure random. The resulted tree in Figure 5.8 is larger than the

one in experiment 1. There are a lot of small numbers of instances reached the leaves, indicating

that there is not a real significant feature found. However, this is not really astonishing, as in the

training data only about 78 of 88 files and in the test data only 60 of 84 files have a target revision

connected to a SOM file.

Table 5.5: Result Experiment 2

Model ACC AUC

RBC 0.8539 0.4725

RDN 0.8427 0.4333

RPT 0.8427 0.4159

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.6: ROC HasIssue Experiment 2

38 Chapter 5. Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.7: ROC HasNoIssue Experiment 2

5.4
Experim

ents
3

9

count([method.numf

ormalparameters]>0

) > = 16

prop([method.numlo

calvariables] > 0) >=
0.34482

prop([method.numfo
reignmethinv] > 0)

>= 0.033898

avg([method.numfor

malparameters]) >=

1.375

prop([method.numfo
reignmethinv] > 0)

>= 0.200000

0: 0.0

1: 2.0

0: 0.02

1: 1.0

0: 8.9

0: 0.24

1: 4.0

0: 3.02

count([method.numf

ormalparameters]>1
) > = 3

degree([method]) >=

7

0: 27.12

1: 1.0

count([method.num

methodsinvoked] >

1) >= 4

count_distinct([meth
od.accesscontrolqu

alifier]) >= 2

1: 3.0 0: 2.0

0: 15.0

1: 2.0

0: 8.9

0: 18.7

Fig
u
re

5
.8

:
R

PT
Experim

ent
2

40 Chapter 5. Evaluation

5.4.3 Experiment 3

The SOM features in the experiment before came off badly. It might be that this was because of

missing links between target revisions and SOM files. That is why this experiment is repeated

and this time only files with target revision linked to a SOM file are considered.

Features SOM features

Time range 2006/07

Files Files with revision

Revisions Target revisions with SOM file

Aggregators All

Result The results for RDN and RPT are this time even worse (see Table 5.6) than in the experi-

ment before. Looking at the decision tree in Figure 5.11 shows that not very meaningful splitting

nodes were found. As an example, the node stating that if there are more methods invoked the

file is less likely to have an issue (see Figure 5.11). The outcome of this experiment implies that

the missing links to source code files, mentioned in the experiment before, were in the case of RPT

and RDN not the reason for the bad results. Instead, it indicates that the existing SOM features

are not expressive enough to predict defects. However, RBC could improve its result compared

to the experiment before, meaning that in this case the missing links had some influence.

Table 5.6: Result Experiment 3

Model ACC AUC

RBC 0.8166 0.7049

RDN 0.7666 0.4161

RPT 0.7833 0.4159

5.4 Experiments 41

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.9: ROC HasIssue Experiment 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.10: ROC HasNoIssue Experiment 3

4
2

C
hapter

5.Evaluation

count([method.numf

ormalparameters] >

0) >= 16

prop([method.numlo

calvariables] > 0) >=

0.3448

avg([method.numm
ethodsinvoked]) >=

4.25

prop([method.numm
ethodsinv] > 1) >=

0.181818

0: 3.0

1: 2.0
0: 7.0 1: 1.01: 4.0

prop([method.numfo

rmalparameters] >

0) >= 0.6666

0: 38.0

1: 6.0
0: 17.0

Fig
u
re

5
.1

1
:

R
PT

Experim
ent

3

5.4 Experiments 43

5.4.4 Experiment 4

As in experiment 1 already remarked, it should be tested if relational methods perform as good

as WEKA ’s J48. In this experiment only the significant COM features created in the comparison

study are used.

Features Significant COM features (2,3,8,11,16,19 in Table 5.1)

Time range 2006/07

Files Files with revision

Revisions All target revisions

Aggregators All

Result The AUC (see Table 5.7) and the ROC curve (see Figures 5.13/5.14) in this experiment

are comparable to the AUC/ROC curve in the comparison study. However, the ACC is clearly

smaller. As in the comparison study the features reportedI5months and revision2months

belong to the top features. Here, the most top feature DefectAppearance1Month was not

chosen, but instead PROXIMITY selected the feature degree[class] . This feature does not make

any sense, since every file should have one class, unless there is a missing link between revision

and SOM file. This means this features was just chosen due to missing values. To solve this

problem either the degree features are prohibited or only target revisions with a SOM file are

considered. This is tried out in the next two experiments.

Table 5.7: Result Experiment 4

Model ACC AUC

RBC 0.7865 0.8525

RDN 0.8539 0.9234

RPT 0.8539 0.9300

44 Chapter 5. Evaluation

nop([file.reportedi5
month]) > = 1

degree([class]) >= 1

nop([file.revision2m

onth)] >= 1

0: 57.0

0: 1.0

1: 6.0

0: 7.0

0: 10.0

1: 7.0

Figure 5.12: RPT Experiment 4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.13: ROC HasIssue Experiment 4

5.4 Experiments 45

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.14: ROC HasNoIssue Experiment 4

46 Chapter 5. Evaluation

5.4.5 Experiment 5

As in the last experiment explained, the generated feature degree[class] does not make sense.

That is why the same experiment is done again, but this time we prohibit PROXIMITY to create

features with the aggregator degree .

Features Significant COM features (2,3,8,11,16,19 in Table 5.1)

Time range 2006/07

Files Files with revision

Revisions All target revisions

Aggregators All, without degree

Result This results to the same decision tree as in experiment 4 without the feature

degree[class] (see Figure 5.15). As RBC does not use the degree aggregator the result remains

the same as in the experiment before (see Table 5.8). While RDN could keep its performance, the

result of RPT is slightly worse. One strength of RPT is to build small trees. However, in this case

the question arises whether this tree is not too small. This is tested later in experiment 10 and 11. It

is not possible to prohibit the generation of the degree feature just on the entity ”class”. Therefore,

we will not apply this solution to avoid the feature degree[class] in further experiments.

Table 5.8: Result Experiment 5

Model ACC AUC

RBC 0.7865 0.8524

RDN 0.8539 0.9225

RPT 0.8539 0.8952

nop([file.reportedi5
month]) > = 1

nop([file.revision2m
onth]) >= 2 0: 57.0

0: 9.0

1: 11.0

0: 9.0

1: 2.0

Figure 5.15: RPT Experiment 5

5.4 Experiments 47

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.16: ROC HasIssue Experiment 5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.17: ROC HasNoIssue Experiment 5

48 Chapter 5. Evaluation

5.4.6 Experiment 6

Experiment 4 is repeated again, this time only with target revisions that are linked to a SOM file

in order to get rid of the feature degree[class] .

Features Significant COM features (2,3,8,11,16,19 in Table 5.1)

Time range 2006/07

Files Files with revision

Revisions Revisions with SOM file

Aggregators All

Result The same tree as in the experiment before was build. The AUC is slightly higher than

in the comparison study but the ACC is smaller. As the results are similar to the results in ex-

periment 4 we prefer this solution to the problem of the feature degree[class] as the solution in

experiment 5 prohibits the degree feature for all entities.

Table 5.9: Result Experiment 6

Model ACC AUC

RBC 0.8333 0.9084

RDN 0.8000 0.9550

RPT 0.7999 0.9286

nop([file.reportedi5
month]) > = 1

nop([file.revision2m
onth]) >= 1 0: 54.0

0: 1.0

1: 6.0

0: 10.0

1: 7.0

Figure 5.18: RPT Experiment 6

5.4 Experiments 49

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.19: ROC HasIssue Experiment 6

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.20: ROC HasNoIssue Experiment 6

50 Chapter 5. Evaluation

5.4.7 Experiment 7

So far we have seen that using all COM features combined with all SOM features or only SOM

features results in bad results. In this experiment it is tested whether there exists a combination of

COM and SOM features that beat the results of experiments where only COM features are used.

That is why, first all COM features and some aggregated SOM features were exported to WEKA

to find the best features with the feature selection algorithm Ranker (Output of WEKA is shown

in Appendix C). Using this selected features we started a new PROXIMITY experiment. As there

are many target revisions with no SOM file we decided to use only files that have a target revision

with a SOM file. Otherwise the SOM features have a smaller chance to be selected.

Features 2, 3, 7, 12, 13, 15, 16, 18, 19, 20 from Table 5.1

1, 8, 9, 11 from Table 5.2

Time range 2006/07

Files Files with revision

Revisions Target revisions with SOM file

Aggregators All

Result This time the results of the AUC (see Table 5.10) exceed the results achieved in the com-

parison study. However, the ACC is still worse. Again a COM feature is chosen as the top node

(see Figure 5.23). In comparison to experiment 6 where there were the same constraints like in

this experiment but with the difference that only COM features were used, slightly better results

due to the combination of COM and SOM features were achieved in this experiment. Especially,

the ACC was improved. In this experiment it is shown that the right combination of both sorts

of features is able to improve the results. However, the top node is still dominated by a temporal

feature.

A totally different remark we want to add here: In different studies it is proved that collectively

inferencing gives better results than predicting each instance separately. In our case the class

label is ”hasissue” which we attached as an attribute to the revisions. In every subgraph created,

the information whether the previous revision had an issue or not is available in an attribute.

However, this feature was never selected in the experiments conducted so far. On one hand, this

means that all methods whose strength is collectively inferencing (for example RDN and RMN)

cannot improve the results. On the other hand, knowing whether a file had a defect in the revision

before does not help at all predicting bugs.

Table 5.10: Result Experiment 7

Model ACC AUC

RBC 0.9000 0.9549

RDN 0.9166 0.9534

RPT 0.9166 0.9442

5.4 Experiments 51

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.21: ROC HasIssue Experiment 7

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.22: ROC HasNoIssue Experiment 7

5
2

C
hapter

5.Evaluation

nop([file.defectappe
arance5month]) > =

1

count([method.isstat

ic] = false) >= 11

nop(file.defectappea

rance2month]) >= 2

prop([method.acces

scontrolqualifier] =

private) >= 0.200

0: 56.0

1: 4.0

0: 5.0

1: 6.0

prop([method.numfo

rmalparameters] >

0) >= 0.6666666

1: 2.0
0: 4.0

1: 1.0

Fig
u
re

5
.2

3
:

R
PT

Experim
ent

7

5.4 Experiments 53

5.4.8 Experiment 8

The same experiment as in experiment 7 is conducted again with the difference that some more

SOM features are added to know if this worsens the result.

Features 2, 3, 7, 12, 13, 15, 16, 18, 19, 20 from Table 5.1

1, 2, 5, 6, 8, 11, 12 from Table 5.2

Time range 2006/07

Files Files with revision

Revisions Target revisions with SOM file

Aggregators All

Result The results of AUC and ACC are about the same as in experiment 7 although not the

same SOM features were selected (see Figure 5.26). This indicates that it does not exist a that

important SOM feature that is chosen in every case. The COM feature nop(file.defectappea

rance2month]) >= 2 was dropped. Although, so far no very significant SOM features was

found, it points that a combination of COM and SOM features perform better than COM features

alone, since the results in the comparable experiment 6 are worse.

Table 5.11: Result Experiment 8

Model ACC AUC

RBC 0.9000 0.9549

RDN 0.9333 0.9611

RPT 0.9333 0.9437

54 Chapter 5. Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Figure 5.24: ROC HasIssue Experiment 8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.25: ROC HasNoIssue Experiment 8

5.4
Experim

ents
5

5

nop([file.defectappe

arance5month]) > =
1

nop(file.defectappea
rance2month]) >= 2

prop([method.acces

scontrolqualifier] =

protected) >= 0.0

0: 56.0

1: 6.0

1: 4.0

prop([method.numlo

calvariables] > 1) >=

0.2380

0: 3.0
0: 1.0

1: 3.0

prop([method.acces

scontrolqualifier] =
public) >= 0.5714

0: 5.0

Fig
u
re

5
.2

6
:

R
PT

Experim
ent

8

56 Chapter 5. Evaluation

5.4.9 Experiment 9

In this experiment the time range 2007 was tested. As in experiment 7 some features were, if

necessary, aggregated and exported to WEKA to rank the features (for the output see Appendix

C.2). As only 24 of 161 files have at least one revision in the time range, we decided also to

consider those files without a revision in that time range. All target revisions are connected to a

SOM file.

Features 2, 3, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20 of Table 5.1

1, 10, 11 of Table 5.2

Time range 2007

Files All target revisions

Revisions All files

Aggregators All

Result The result of AUC and ACC in the case of RBC is very high (see Table 5.12). The decision

tree in Figure 5.29 is again quite small and no SOM features were chosen at all. This means that

all other features were dropped by RPT as they were not significant enough. This is not the case

for RBC as it does not calculate any dependency levels, but only conditional probabilities. In this

experiment it is shown that the method of RBC is better than the one of RDN and RPT. It might

be that the pValue, which is the threshold to decide whether a feature is significant or not, is too

restrictive. As Neville et al. (see [Neville et al., 2003a]) state that the current implementation of the

pValue might need some more exploration, in the next experiment this value is slightly changed.

Table 5.12: Result Experiment 9

Model ACC AUC

RBC 0.9627 0.9771

RDN 0.9316 0.8735

RPT 0.9316 0.9009

5.4 Experiments 57

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.27: ROC HasIssue Experiment 9

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.28: ROC HasNoIssue Experiment 9

58 Chapter 5. Evaluation

nop([file.defectrelea
ses]) > = 0.0166666

nop([file.defectappe
arance3month]) > =

2

nop([file.revision5m

onth]) >= 3

0: 104.0

0: 1.0 1: 6.0

0: 40.0

1: 10.0

Figure 5.29: RPT Experiment 9

5.4 Experiments 59

5.4.10 Experiment 10

As the tree of the experiment before is quite small and no SOM features at all were chosen, we

decided to increase the pValue to 0.06 (see Appendix A.1). This means, it is easier to depend on

the class label and the tree should become larger.

Features 2, 3, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20 of Table 5.1

1, 10, 11 of Table 5.2

Time range 2007

Files All target revisions

Revisions All files

Aggregators All

Result As expected, the tree became larger and the performance of RPT and RDN is better (see

Table 5.13). However, it seems that the resulted decision tree is overfitted. As an example see

Figure 5.32 where the node prop([method.numformalparameters] >1) >= 0.4 is found.

If this condition is true no issue is expected. Only one instance passes the left (true) branch. This

experiment showed that increasing the pValue was not useful and not more significant features

can be found this data set.

Table 5.13: Result Experiment 10

Model ACC AUC

RBC 0.9440 0.9671

RDN 0.9440 0.9511

RPT 0.9565 0.9700

60 Chapter 5. Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.30: ROC HasIssue Experiment 10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.31: ROC HasNoIssue Experiment 10

5.4
Experim

ents
6

1

nop([file.defectrelea

ses]) >= 0.01666

nop([file.defectappe

arance3month]) >=
2

prop([method.numfo

rmalparameters] >

1) >= 0.4

count([method.isabs
tract] = true) >= 1

1: 6.00: 1.0

0: 104.0

nop([file.defectappe
arance5month]) >=

3

prop([method.acces

scontrolqualifier] =

public) >= 0.7142

0: 19.0

1: 6.0
0: 19.0

0: 2.0

1: 3.0

0: 1.0

Fig
u
re

5
.3

2
:

R
PT

Experim
ent

10

62 Chapter 5. Evaluation

5.4.11 Experiment 11

In experiment 10, by increasing the pValue a higher ACC and AUC was achieved, but the tree

was overfitted. Nevertheless, we want to test the same experiment on the data set 2006/07.

Features 2, 3, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20 of Table 5.1

1, 2, 5, 6, 8, 11, 12 of Table 5.2

Time range 2006/07

Files Files with revision

Revisions Target revisions with SOM file

Aggregators All

Result The decision tree (see Figure 5.35) is smaller than in the experiment before and the cre-

ated nodes in the tree are also meaningful. However, compared to the achieved results in experi-

ment 8, the performance is now worse (see Table 5.14) and increasing the pValue did not help to

improve the performance as well here.

Table 5.14: Result Experiment 11

Model ACC AUC

RBC 0.9000 0.9503

RDN 0.9166 0.9347

RPT 0.9166 0.9436

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.33: ROC HasIssue Experiment 11

5.4 Experiments 63

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.34: ROC HasNoIssue Experiment 11

nop([file.defectappe

arance5month]) > =
1

count([method.isstat
ic] = false) >= 11

nop([file.defectappe

arance2month]) >=
2

prop([method.acces

scontrolqualifier] =

private) >= 0.2

0: 56.0

1: 4.0

0: 5.0

1: 6.0

prop([method.numfo

rmalparameters] >
0) >= 0.6666

0: 4.0

1: 1.0
1: 2.0

Figure 5.35: RPT Experiment 11

64 Chapter 5. Evaluation

5.4.12 Experiment 12

As in various experiments so far conducted either the feature reportedI5month or

defectappearance5month were the top node of the decision tree, in this experiment the time

span is extended to seven, ten and twenty months back.

Features 2, 3, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20 of Table 5.1

1, 10, 11 of Table 5.2

plus the new features: revision7month , reprotedI7month ,

defectappearance7month

revision10month , reprotedI10month , defectappearance10month

revision20month , reprotedI20month , defectappearance20month

Time range 2007

Files All target revisions

Revisions All files

Aggregators All

Result This time, there is a new top node selected, namely defectappearance10month . The

feature defectappearance20month is chosen as well, but it does not belong to the most im-

portant features. This means that looking even more than twenty months back will not improve

the classification result. Again no SOM features were significant. The feature

defectAppearanceXmonth is similar to the feature reportedIXmonth . The difference is that

in the former the number of defect releases and in the latter the number of defect revisions is

counted. It might be thought that this is not an important difference, however, in this experiment

and also in the experiments before the number of defect releases was more significant. The fre-

quent appearance of the feature defectXappearance implies that when a released file is bug

free for some months it is very likely to be stable in the future.

Table 5.15: Result Experiment 12

Model ACC AUC

RBC 0.9503 0.9803

RDN 0.9006 0.9621

RPT 0.9006 0.9496

5.4 Experiments 65

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.36: ROC HasIssue Experiment 12

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.37: ROC HasNoIssue Experiment 12

6
6

C
hapter

5.Evaluation

nop([file.defectappe

arance10month]) >

= 3

nop([file.revision7m
onth]) >= 3

nop([file.defectappe

arance3month]) >=
1

nop([file.revision5m

onth]) >= 2

0: 134.0

1: 6.0

0: 2.0

Nop([file.defectappe

arance20month]) >=

12

0: 3.0

1: 1.0

0: 1.0

1: 9.0

0: 5.0

Fig
u
re

5
.3

8
:

R
PT

Experim
ent

12

5.4 Experiments 67

5.4.13 Experiment 13

In this experiment the same temporal features as in the experiment before are added, but applying

it on the time range 2006/07.

Features 2, 3, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20 of Table 5.1

1, 8, 9, 11 of Table 5.2

plus the new features: revision7month , reprotedI7month ,

defectappearance7month

revision10month , reprotedI10month , defectappearance10month

revision20month , reprotedI20month , defectappearance20month

Time range 2006/07

Files Target revisions with SOM file

Revisions File with revision

Aggregators All

Result This time, the new features with the extended time period did not have any influence.

Remember that the difference between the data set 2006/07 and 2007 is that in 2006/07 only

files with at least one revision during the time range were considered. Thus, the reason why

the new features did not influence the results in this experiment, might be that there is more

current information available than it is in the phase 2007. This implies that older information

gets pointless in case newer information exists. However, this contradicts the fact that in the

experiment before better results were achieved. This shows that more studies have to be done on

this issue.

Table 5.16: Result Experiment 13

Model ACC AUC

RBC 0.8666 0.9557

RDN 0.9333 0.9425

RPT 0.9333 0.9456

68 Chapter 5. Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.39: ROC HasIssue Experiment 13

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

 RBC
 RDN
 RPT

Figure 5.40: ROC HasNoIssue Experiment 13

5.4
Experim

ents
6

9

nop([file.defectappe
arance5month]) >=

1

nop([file.defectappe

arance2month]) >=

2

prop([method.acces

scontrolqualifier] =

public) >= 05714
1: 6.0

0: 56.0

count([method.acce

sscontrolqualifier] =
protected) >= 1

prop([method.numlo

calvariables] >= 1)

>= 0.12121

0: 5.0

0: 3.0
0: 1.0
1: 3.0

1: 4.0

Fig
u
re

5
.4

1
:

R
PT

Experim
ent

13

70 Chapter 5. Evaluation

5.4.14 Summary

Relational data mining methods implemented in PROXIMITY were evaluated on two data sets.

In the first test set (2006/07), only files with at least one revision during the time range were

considered. In the second test set (2007), all files were considered, since the number of files having

at least one revision during the time range was too small.

In all experiments where only significant features were provided, the value for the AUC was

higher than in the comparison study. However, the value for the ACC was clearly smaller as in

the comparison study. Even though these results are promising, it has to be done more work for

finding better source code features.

For both test sets it can be stated that for predicting the location of bugs, temporal features play

the main role, more precisely it depends on how many defect releases there were in the past and

how many revisions were done. Files with no defect releases within the last five months are very

likely to have no defects in the future. When a file had defect releases in the past but also revisions

were done, it is less likely to have defects in the future than a file that had defect releases but only

a few or no revisions. Furthermore, it was discovered that COM features alone can achieve good

results, but SOM features alone have no chance. By providing all features available and letting

the classifier choose resulted in bad results. Although RPT and RDN are selective classifiers, they

achieved a worse performance than the RBC. In all experiments where only significant features

were provided, a small decision tree was created. Assuming that these trees might be too small

for a proper classification the pValue was increased by 0.01. However, the results in experiments

with artificially enlarged trees had either a poorer performance than the smaller trees or were

overfitted.

There were also differences observed between the two data sets. For the data set 2006/07 the

results were slightly better if some selected SOM features were added. This in contrast to the data

set 2007 where no SOM features were selected if the pValue was set to 0.05. In the data set 2006/07

better results with SOM features were achieved, but no SOM feature was so important that its

replacement by another SOM feature had a big influence on the result. So, any combination of

SOM features helped to improve the overall result. Since in many experiments temporal features

that consider the last five months were chosen, new temporal features with an extended period

were added (revisionXmonth , reportedIXmonth and defectappearancesXmonth , where

X is 7, 10 or 20). In the data set 2006/07 these new features did not have any influence. This

in contrast to the data set 2007. There, the feature defectappearance10month was selected

as the top splitting node and revision7month was selected as the second node. The feature

defectappearance20month appeared as well in the tree but played a minor role. The fact that

in the data set 2006/07 the new features do not play a role and in 2007 it does, makes sense. In

2007 more files did not have any revision in the last five months, meaning that for those temporal

features the value is set to zero and that is why older information is used for predicting.

6
Conclusions

In this thesis software repositories were mined with the data mining tool PROXIMITY in order

to predict the location of bugs. This was already tried with various other approaches, however

never before with relational data mining methods. The goal was to test, whether a relational

combination of revision, bug and source code data yields a better performance than traditional

approaches. To measure our approach, we compared the results with a successful traditional

study.

First, common relational data mining models and different data mining tools were introduced.

Then, we presented the data for our experiments and the necessary data preparations. In the eval-

uation we showed that if a good combination of temporal and source code features is available,

a higher AUC value is achieved compared to the the traditional study mentioned above. The

evaluation also reveals different weaknesses. Using only source code features led to very bad

results. By providing all available features and letting the classifier choose, resulted in poor re-

sults although the classifier itself is selective. In addition, the very high accuracy achieved in the

comparison study could not be reached by this approach.

6.1 Limitations

One big limitation of our approach is that we only tested the compare plugin of the Eclipse

project.

All of our preparation steps were run in memory which used up to 11GB of main memory.

For further experiments with more plugins we would have to consider the memory shortage.

The WEKA Ranker algorithm was applied to find the best features. As WEKA only handles

propositional data, we first had to aggregate the data with MAL queries. This is time intensive

and time was tight and so we did not aggregate every feature with all of the seven aggregators

provided by PROXIMITY . This implies that the ranking of the features might be suboptimal since

not all possible versions were available.

The revisions with no assigned link of the name hasNextRevision were marked as target

revisions in order to define the actual source code state of a file. In CVS it is possible to branch

revisions, meaning that it is possible that there exist several revisions for a file without the link

hasNextRevision . In this case only the revision with the latest date was considered.

72 Chapter 6. Conclusions

6.2 Future Work

This was just a first attempt at using relational data mining methods for predicting bugs from

software data. Future studies could deal with the following issues:

• Significant features created in the comparison study plus the features already available in

the source code were used. We tested the applicability of these features to relational models.

A next step would be to find better source code features. In other studies, there were various

metrics proposed for describing the complexity of source code. So, for starting, in addition

to the features utilized in this thesis, other existing measures could be added and further

improved.

• Only the compare plugin was considered. In future experiments more projects should be

tested. Thus, it is examined whether the significant features are project specific or if they

can be applied to other projects as well.

• In our opinion PROXIMITY seems to be the most user friendly tool for relational data mining.

However, it might be worth investigating the other tools mentioned in this thesis as they

cover other models which might lead to better results.

A
Algorithms

A.1 Chi Square Test of Independence

The Chi Square Test measures if two categorical (or categoricized) variables are dependent or not.

For explanation an example is added here 1.

In this example there are two variables, author and issue . Author has the values ”Mr.

Bauer” and ”Others”, issue has the values ”HasIssue” and ”NoIssue”. It should be find out

whether Mr. Bauer is a worse programmer than the others.

Therefore, the two Hypotheses:

H0: HasIssue and Mr. Bauer are independent

H1: HasIssue and Mr. Bauer are dependent

In a contigency table the number of observations (file has issue/no issue and files programmed

by Mr. Bauer/others) are summarized and summed up (Total).

Table A.1: Number of files with issues

Mr. Bauer Others Total

HasIssue 5 10 15

NoIssue 10 80 90

Total 15 90 105

Putting the numbers of this example into the formula for χ2 (see Equation A.1

[Fahrmeir et al., 2003]) results to the following value (Equation A.1):

χ2 =
∑k

i=1

∑m

j=1
hij−h̃ij

h̃ij
, with h̃ij =

hi.h.j

n
(A.1)

χ2 = 105[5∗80−10∗10]2

15∗90∗15∗90 = 5.18

1http://math.hws.edu/javamath/ryan/ChiSquare.html , visited 2008-01-30

74 Appendix A. Algorithms

Assuming the significance level to be 0.05 (called pValue in Proximity) whose probability level

is 3.841 (from Chi square table). In this examples 5.18 exceeds 3.841 which means H0 is rejected

and H1 is accepted.

For splitting, PROXIMITY chooses the features with the highest score, this is the highest χ2

value, the one that depends mostly on the class label (issue). If χ2 were smaller than 3.841 Mr.

Bauer would not depend on issue and this feature would be dropped.

A.2 MCMC/Gibbs Sampling

Gibbs sampling is a simplified form of Markov Chain Monte Carlo Methods [Neal, 1993]. It is is a

very popular inference algorithm for estimating joint distributions. Approximations are needed

because calculating joint distributions often leads to computational difficulties. Gibbs Sampling

as well as MCMC methods are based on sampling Markov Chains. When a Markov Chain is long

enough it can be used to estimate a distribution. In Markov Chains variables depend only on the

current state, everthing before can be forgotten.

As Neal [Neal, 1993] explains, the main procedure of generating a Markov Chain, done by

Gibbs Samplers, works as follows:

Pick X
(t)
1 from distribution for X1 given Xt−1

2 ,Xt−1
3 , ...,Xt−1

n

Pick X
(t)
2 from distribution for X2 given Xt−1

1 ,Xt−1
3 , ...,Xt−1

n

...

Pick X
(t)
n from distribution for Xn given Xt−1

2 ,Xt−1
3 , ...,Xt−1

n−1

(A.2)

Every variable Xi is updated by picking it from the conditional distribution P (Xi|Xother). The

challenge is to find suitable starting values for the variables Xi (referenz suchen). This procedure

is repeated several times, in our experiments 2000 times.

For a more formal explanation of MCMC/Gibbs sampling methods [Neal, 1993] is a good

reference.

B
Data Preparation Steps

One way of preparing the data for PROXIMITY is explained here, started from the separated OWL

files.

Note: Step 3 to 7 has to be run twice, once for the training data and once for the testing data.

1. Merge OWL files: run DataMerge.java, run with ca. -Xms10000m -Xmx10000m

2. SPARQL queries: ReducedQueries.java, run it with ca. -Xms11000m -Xmx11000m

3. Data Transformation: DataTransformation.java, ca. -Xms2000m -Xmx2000m

4. Generating Proximity XML file: perl script by Proximity: text2xml.pl

5. Import Data: import-text.sh, provided by Proximity

6. Creating Subgraphs: Run python script: createSubgraphs.py, name it learn respectively ap-

ply

7. Generate features: COM features: comfeatues.py, SOM features: somfeatures.py

8. Run Mining Methods

(a) learning scripts: learn rbc.py/learn rpt.py/learn rdn.py

(b) switch to the apply database

(c) applying scripts: apply rbc.py/apply rpt.py/apply rdn.py

9. Output features for WEKA: run according outputfeature script: e.g. revision1monthOut.py

(ARFF file has to be created by yourself)

C
Weka Outputs

C.1 Output Weka Ranker Experiment 7

Ranked attributes:

0.3747 28 defectappearance5month

0.3439 8 reportedi5month

0.3299 24 defectreleases

0.3251 27 defectappearance3month

0.2769 30 lineAddedIRLAdd

0.2502 29 reportedissues

0.2493 6 reportedi3month

0.2253 26 defectappearance2month

0.221 31 lineDeletedIRLDEL

0.1617 4 reportedi2month

0.1086 15 numlocalvariables1

0.1053 14 numformalparameters0

0.0369 10 modeaccesscontrolqualifier

0.0118 16 prevrevisionwithissue

0 23 releases

0 5 revision3month

0 22 propprotectedmethod

0 7 revision5month

0 2 reportedi1month

0 1 revision1month

0 25 defectappearance1month

0 3 revision2month

0 19 numforeignmethodsinvoked

0 20 nummethodsinvoked

0 17 invclasswissue

0 18 numattributes

0 21 proplocalvariable

78 Appendix C. Weka Outputs

0 9 revisionauthor

0 13 countisstaticfalse

0 11 avgnumformalparam

0 12 countforeignmethinvoked0

Listing C.1: Weka Output Experiment 7

C.2 Output Weka Ranker Experiment 9

Ranked attributes:

0.17297 30 defectreleases

0.15523 35 reportedissues

0.10964 33 defectappearance3month

0.10666 34 defectappearance5month

0.10358 36 lineAddedIRLAdd

0.09734 9 reportedi5month

0.09566 7 reportedi3month

0.08426 37 lineDeletedIRLDEL

0.07133 24 nummethodsinvoked

0.06451 32 defectappearance2month

0.05865 6 revision3month

0.05814 8 revision5month

0.04513 5 reportedi2month

0.00969 11 accesscontrolqualifier

0.00482 19 prevrevwithissue

0 27 proppublicmeth

0 28 sumnumformalparameters

0 25 proplocalvariable

0 26 propprotectedmethods

0 10 revisionauthor

0 3 reportedi1month

0 2 revision1month

0 29 releases

0 4 revision2month

0 31 defectappearance1month

0 23 nummethods

0 18 numlocalvar1

0 22 numforeignmethinvoked

0 20 countinvclasswissue

0 21 numattributes

0 14 numforeignmethodinvoked0

0 12 avgnumformalparameters

0 13 countisstatictrue

0 17 numformalparameter0

C.2 Output Weka Ranker Experiment 9 79

0 15 countisinterfacefalse

0 16 countisstaticfalse

Listing C.2: Weka Output Experiment 9

D
CD

On this CD all files produced in this thesis are available.

• PDF and Latex source code

• Java Source Code

• Proximity Scripts

• Protocols of conducted experiments

List of Figures

2.1 Steps in the KDD process . 5

2.2 Schema RBM . 9

2.3 Relational Skeleton . 9

2.4 Dependency Structure . 9

3.1 QGraph query . 12

3.2 Contents of a Subgraph in Text Form . 12

3.3 Contents of a Subgraph as a Graph . 13

3.4 Data Flattened [Neville et al., 2003b] . 14

3.5 Relational Probability Tree output . 15

3.6 Dependency Graph . 15

4.1 Data Preparation . 20

4.2 Software Ontology Model . 21

4.3 Version Ontology Model . 22

4.4 Bug Ontology Model . 22

4.5 Interconnection of the Three Ontology Models . 22

4.6 QGraph Query . 27

5.1 Time Range . 31

5.2 RPT . 33

5.3 RPT . 35

5.4 ROC HasIssue Experiment 1 . 35

5.5 ROC HasNoIssue Experiment 1 . 36

5.6 ROC HasIssue Experiment 2 . 37

5.7 ROC HasNoIssue Experiment 2 . 38

5.8 RPT Experiment 2 . 39

5.9 ROC HasIssue Experiment 3 . 41

5.10 ROC HasNoIssue Experiment 3 . 41

5.11 RPT Experiment 3 . 42

5.12 RPT Experiment 4 . 44

5.13 ROC HasIssue Experiment 4 . 44

5.14 ROC HasNoIssue Experiment 4 . 45

84 LIST OF FIGURES

5.15 RPT Experiment 5 . 46

5.16 ROC HasIssue Experiment 5 . 47

5.17 ROC HasNoIssue Experiment 5 . 47

5.18 RPT Experiment 6 . 48

5.19 ROC HasIssue Experiment 6 . 49

5.20 ROC HasNoIssue Experiment 6 . 49

5.21 ROC HasIssue Experiment 7 . 51

5.22 ROC HasNoIssue Experiment 7 . 51

5.23 RPT Experiment 7 . 52

5.24 ROC HasIssue Experiment 8 . 54

5.25 ROC HasNoIssue Experiment 8 . 54

5.26 RPT Experiment 8 . 55

5.27 ROC HasIssue Experiment 9 . 57

5.28 ROC HasNoIssue Experiment 9 . 57

5.29 RPT Experiment 9 . 58

5.30 ROC HasIssue Experiment 10 . 60

5.31 ROC HasNoIssue Experiment 10 . 60

5.32 RPT Experiment 10 . 61

5.33 ROC HasIssue Experiment 11 . 62

5.34 ROC HasNoIssue Experiment 11 . 63

5.35 RPT Experiment 11 . 63

5.36 ROC HasIssue Experiment 12 . 65

5.37 ROC HasNoIssue Experiment 12 . 65

5.38 RPT Experiment 12 . 66

5.39 ROC HasIssue Experiment 13 . 68

5.40 ROC HasNoIssue Experiment 13 . 68

5.41 RPT Experiment 13 . 69

List of Tables

2.1 Customer table . 7

2.2 Purchase table . 7

2.3 Aggregation table . 8

5.1 Features . 30

5.2 Source Code Features . 32

5.3 Distribution Data . 32

5.4 Result Experiment 1 . 34

5.5 Result Experiment 2 . 37

5.6 Result Experiment 3 . 40

5.7 Result Experiment 4 . 43

5.8 Result Experiment 5 . 46

5.9 Result Experiment 6 . 48

5.10 Result Experiment 7 . 50

5.11 Result Experiment 8 . 53

5.12 Result Experiment 9 . 56

5.13 Result Experiment 10 . 59

5.14 Result Experiment 11 . 62

5.15 Result Experiment 12 . 64

5.16 Result Experiment 13 . 67

A.1 Number of files with issues . 73

List of Listings

2.1 SQL Query for Cliques . 10

3.1 Python Script . 13

4.1 Merge Data . 23

4.2 Define SPARQL Queries . 24

4.3 Execute SPARQL Queries . 24

4.4 Object Specification File . 26

4.5 Link Specification File . 26

4.6 MAL Query . 28

4.7 Attribute Function . 28

C.1 Weka Output Experiment 7 . 77

C.2 Weka Output Experiment 9 . 78

Bibliography

[Bernstein et al., 2007] Bernstein, A., Ekanayake, J., and Pinzger, M. (2007). Improving Defect

Prediction Using Temporal Features and Non Linear Models.

[Blau et al., 2002] Blau, H., Immermann, N., and Jensen, D. (2002). A Visual Language for Query-

ing and Updating Graphs.

[Domingos et al., 2006] Domingos, P., Kok, S., Poon, H., Richardson, M., and Singla, P. (2006).

Unifying Logical and Statistical AI.

[Domingos and Richardson, 2007] Domingos, P. and Richardson, M. (2007). Markov Logic: A Uni-

fying Framework for Statistical Relational Learning, volume Introduction to Statistical Relational

Learning, pages 339–371. MIT Press, Cambridge.

[Džeroski, 2007] Džeroski, S. (2007). Inductive Logic Programming in a Nutshell. volume Intro-

duction to Statistical Relational Learning, pages 58 – 92. MIT Press.

[Džeroski and Lavrač, 2001] Džeroski, S. and Lavrač, N. (2001). Relational Data Mining. Springer,

Ljubljana.

[Fahrmeir et al., 2003] Fahrmeir, L., Knsteler, R., Pigeot, I., and Tutz, G. (2003). Statistik: Der Weg

zur Datenanalyse. Springer, Berlin Heidelberg New York.

[Fayyad et al., 1996] Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). Mining to Knowl-

edge Discovery: An Overview. MIT Press.

[Getoor et al., 2007] Getoor, L., Friedmann, N., Koller, D., Pfeffer, A., and Taskar, B. (2007). Prob-

abilistic Relational Models. volume Introduction to Statistical Relational Learning, pages 129 –

174. MIT Press.

[Getoor and Taskar, 2007] Getoor, L. and Taskar, B. (2007). Introduction to Statistical Relational

Learning. MIT Press.

[Graves et al., 2000] Graves, T., Karr, A., Marron, J., and Siy, H. (2000). Predicting Fault Incidence

Using Software Change History.

[Halstead, 1977] Halstead, M. H. (1977). Elements of Software Science, Operating, and Programming

Systems. Elsevier, Berlin Heidelberg New York.

90 BIBLIOGRAPHY

[Hassan and Holt, 2005] Hassan, A. and Holt, R. (2005). The Top Ten List: Dynamic Fault Predic-

tion.

[Ivanova et al., 2007] Ivanova, M., Nes, N., Goncalves, R., and Kersten, M. (2007). MonetDB/SQL

Meets SkyServer: the Challenges of a Scientific Database.

[Kiefer et al., 2007] Kiefer, C., Bernstein, A., and Tappolet, J. (2007). Mining Software Repositoires

with iSPARQL and a Software Evolution Ontology.

[Knab et al., 2006] Knab, P., Pingzer, M., and Bernstein, A. (2006). Predicting Defect Densities in

Source Code Files with Decision Tree Learners.

[Lee et al., 1994] Lee, A. T., Gunn, T., Pham, T., and Ricaldi, R. (1994). Software Analysis Hand-

book: Software Complexity Analysis and Software Reliability Estimation and Prediction. National

Aeronautics and Space Administration.

[Macskassy, 2007] Macskassy, S. A. (2007). Improving Within-Network Classification with Local

Attributes.

[Macskassy and Provost, 2005] Macskassy, S. A. and Provost, F. (2005). NetKit-SRL: A Toolkit for

Network Learning and Inference.

[McCabe, 1976] McCabe, T. J. (1976). A Complexity Measure. Technical report, Department of

Defense, National Security Agency.

[Nagappan et al., 2005] Nagappan, N., Ball, T., and Zeller, A. (2005). Mining Metrics to Predict

Component Failures. Technical report, Microsoft Research Redmond, Washington.

[Neal, 1993] Neal, R. M. (1993). Probabilistic Inference Using Markov Chain Monte Carlo Meth-

ods. Technical report, Department of Computer Science, University of Toronto.

[Neuhaus et al., 2007] Neuhaus, S., Zimmermann, T., and Zeller, A. (2007). Predicting Vulnerable

Software Components. Technical report, Universitt des Saarlandes, Saarbrcken, Germany.

[Neville and Jensen, 2007] Neville, J. and Jensen, D. (2007). Relational Dependency Networks, vol-

ume Introduction to Statistical Relational Learning, pages 239 – 268. MIT Press.

[Neville et al., 2003a] Neville, J., Jensen, D., Friedland, L., and Hay, M. (2003a). Learning Rela-

tional Probability Tree.

[Neville et al., 2003b] Neville, J., Jensen, D., Gallagher, B., and Fairgrieve, R. (2003b). Simple Esti-

mators for Relational Bayesian Classifiers. Technical report, Knowledge Discovery Laboratory,

University of Massachusetts.

[Page and Craven, 2003] Page, D. and Craven, M. (2003). Biological Applications of Multi-

Relational Data Mining.

[Parnas, 1994] Parnas, D. L. (1994). Software Aging. Technical report, McMaster University,

Hamilton, Canada.

[Perlic and Huang,] Perlic, C. and Huang, Z. Relational Learning for Customer Relationship

Management.

BIBLIOGRAPHY 91

[Tappolet, 2007] Tappolet, J. (2007). Mining Softwawre Repositories - A Semantic Web Approach.

Master’s thesis, University of Zurich.

[Taskar et al., 2007] Taskar, B., Abbeel, P., Wong, M.-F., and Koller, D. (2007). Relational Markov

Networks. volume Introduction to Statistical Relational Learning, pages 175 – 199. MIT Press.

[Witten and Frank, 2005] Witten, I. and Frank, E. (2005). Data Mining: Practical Machine Learning

Tools and Techniques. Elsevier, New York.

[Zimmermann et al., 2007] Zimmermann, T., Premraj, R., and Zeller, A. (2007). Predicting Defects

for Eclipse.

