
Diploma Thesis
February 20, 2008

RDF Graph
Transformation

Bridging between Ontologies

Matthias Hert
of Messen SO, Switzerland (02-908-879)

supervised by

Prof. Dr. Harald Gall
Dr. Gerald Reif

Department of Informatics software evolution & architecture lab

Diploma Thesis

RDF Graph
Transformation

Bridging between Ontologies

Matthias Hert

Department of Informatics software evolution & architecture lab

Diploma Thesis

Author: Matthias Hert, mhert@access.uzh.ch

Project period: August 27, 2007 - February 27, 2008

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

First of all, I want to express my gratitude to Gerald Reif for his support and the many helpful
discussions we had. He always had time for me and my issues. I was also able to benefit from his
broad knowledge of Semantic Web technology and the many inputs he gave me.

Likewise, I want to thank Professor Harald Gall for giving me the opportunity to carry out my
thesis within his research group.

I am also grateful to Andy Seaborne for helping me with my not so common problems related
to Jena, ARQ, and SPARQL. His answers to my questions were always quick and extensive.

Last but not least, many thanks go to my parents who supported me not only during the
thesis but throughout my entire studies. I thank my brother as well, not only for proofreading the
written part of my thesis but also for everything else.

Abstract

The Semantic Web uses Web page annotations to enable machines to access the semantics of the
pages content. This is done by the use of the data representation languages RDF and OWL to
define ontologies for specific application domains. By the decentralized organization of the Web,
it is not feasible to expect that only one ontology for each domain will be defined and used by
everyone. There already are multiple ontologies that relate to the same or overlapping domains
and this will not change in the future. Thereby, it is getting more and more difficult for devel-
opers of Semantic (Web) applications to support all these existing and future vocabularies. This
problem could be solved with the help of a transformation service that can map between differ-
ent ontologies from related domains. With it, applications would no longer need to understand
unknown ontologies as they could inquire the transformation service to exchange data with other
applications that use different ontologies.

In this thesis, we present an approach to such a transformation service that performs trans-
formations based on mapping definition files expressed in a simple and easy to understand XML
syntax. We introduce a flexible mapping language that is applicable to a wide variety of trans-
formation situations. In addition, we provide a prototype implementation of such a service that
understands the proposed mapping language and therefore demonstrate its feasibility.

The contributions of this thesis are the general applicable mapping language expressed as
an XML application and the prototype implementation of the transformation service that un-
derstands such mappings and uses them to translate between different ontologies. Thereby, it
becomes feasible to create many different mappings in an easy to use definition language. To
further demonstrate the value of our transformation service, we integrate it into an application,
the Semantic Clipboard, that is able to copy semantic data from Web pages to applications which
use different ontologies.

Zusammenfassung

Das Semantic Web bietet grosse Chancen um die Semantik von Daten in einer Form zu annotieren
die von Maschinen direkt verarbeitet werden kann. Im Semantic Web werden Sprachen wie
RDF und OWL verwendet um Ontologien für spezifische Anwendungsdomänen zu definieren.
Durch die dezentralisierte Organisation des Webs ist es nicht plausibel zu erwarten, dass nur eine
einzige Ontologie für jede Domäne definiert und diese von allen verwendet wird. Es gibt bereits
heute mehrere Ontologien, die sich auf dieselbe oder überlappende Domänen beziehen, was sich
auch in Zukunft nicht ändern wird. Deshalb wird es für Entwickler von semantischen (Web-)
Anwendungen immer schwieriger, alle diese jetzt und in Zukunft existierenden Vokabulare zu
unterstützen. Dieses Problem könnte mit einer Zwischenschicht in Form eines Transformations-
services gelöst werden, welcher verschiedene Ontologien aus verwandten Domänen aufeinander
abbilden kann. Damit werden Anwendungen nicht mehr länger alle fremden Ontologien verste-
hen müssen, da sie einfach den Transformationsservice anfragen können um Daten mit Anwen-
dungen auszutauschen, die eine andere Ontologie verwenden.

In dieser Arbeit präsentieren wir einen Ansatz für solch einen Service der Transformationen
durchführt, welche auf Mapping-Definitionsdateien in einer einfach zu verstehenden XML Syn-
tax basieren. Wir führen eine flexible Mapping Sprache ein, die in einer Vielzahl von Transfor-
mationssituationen einsetzbar ist. Zusätzlich implementieren wir einen Prototyp dieses Services,
welcher die vorgeschlagene Mapping Sprache versteht und zeigen dadurch die Machbarkeit
dieser Mappings.

Die Ergebnisse dieser Arbeit sind die allgemein anwendbare Mapping Sprache, definiert als
eine XML Anwendung und der Prototyp des Transformationsservices, welcher diese Mappings
versteht und verwendet um zwischen verschiedenen Ontologien zu übersetzen. Dadurch wird
es möglich viele Mappings in einer einfach zu benutzenden Definitionssprache zu erstellen. Um
den Nutzen unseres Transformationsservices weiter aufzuzeigen, integrieren wir ihn in eine An-
wendung, das Semantic Clipboard, welche es ermöglicht semantische Daten von Webseiten in
Anwendungen zu kopieren welche unterschiedliche Ontologien benutzen.

Contents

1 Introduction 1
1.1 Semantic Web Overview . 1

1.1.1 Today’s Web and the Semantic Web Vision 1
1.1.2 Explicit Metadata . 2
1.1.3 Ontologies . 2
1.1.4 Architecture of the Semantic Web . 2

1.2 RDF as a Graph . 6
1.3 Ontology Alignment and Mapping . 6

1.3.1 Use Cases . 7
1.3.2 Semantic Heterogeneity . 9

1.4 Problem Statement . 10
1.5 Thesis Overview . 11

2 Related Work 13
2.1 Representation of Mappings . 13

3 Requirements for an Ontology Mapping Language 17
3.1 Contact Data . 17

3.1.1 FOAF . 18
3.1.2 vCard (2001) . 18
3.1.3 vCard (2006) . 19
3.1.4 SWRC . 19

3.2 Event Data . 20
3.2.1 RDF Calendar . 20
3.2.2 SWRC . 20
3.2.3 Semantic MediaWiki . 21

3.3 Summary of Requirements and Examples . 21
3.3.1 Simple One to One Mapping . 21
3.3.2 Untyped to Typed Mapping . 22
3.3.3 Extracting Nested Data . 28
3.3.4 Create Substructures . 29
3.3.5 Converting Structures . 29
3.3.6 Literals to URIs . 30
3.3.7 Restoring Implicit Knowledge . 35
3.3.8 Substitution of Class Types . 44

viii CONTENTS

4 Our Approach for an Ontology Mapping Language 45
4.1 General Mapping Format . 45
4.2 Namespaces . 46
4.3 Translation of RDF Documents . 46

4.3.1 Simple One to One Mapping . 47
4.3.2 Untyped to Typed Mapping . 47
4.3.3 Extracting Nested Data . 49
4.3.4 Create Substructures . 50
4.3.5 Converting Structures . 51
4.3.6 Literals to URIs . 52
4.3.7 Restoring Implicit Knowledge . 53
4.3.8 Substitution of Class Types . 54

5 Architecture of the RDF Transformer 57

6 Implementation of the RDF Transformer 61
6.1 Package Overview . 61
6.2 RDF Transformer . 61
6.3 Mapping Storage . 65

6.3.1 Handlers . 67
6.4 Remote Mapping Storage . 70
6.5 Ontology Storage . 72
6.6 SPARQL Extensions . 73
6.7 Configuration File & Security Policy . 74

7 Evaluation 77
7.1 The Involved Ontologies . 77
7.2 Example Data . 77
7.3 Mapping Definition . 81
7.4 Transformation Query . 86
7.5 Application of the Mapping . 91

8 Example Application: Semantic Clipboard 95

9 Conclusion 99

A Additional Java Source Code 101
A.1 datatypeConverter Java Source Code . 101
A.2 removeDatatype Java Source Code . 102

B XML Schemata 105
B.1 XML Schema Definition of Mapping Language . 105
B.2 XML Schema Definition of Mapping Directory File 108
B.3 XML Schema Definition of Ontology Directory File 108
B.4 XML Schema Definition of Configuration File . 109

C Command Line Syntaxes 111
C.1 RDF Transformer: TestConsole . 111
C.2 Remote Mapping Storage: LocalConsole . 112

CONTENTS ix

D Configuration Files 113
D.1 MappingServer Configuration File . 113

x CONTENTS

List of Figures
1.1 A layered approach to the Semantic Web [AvH04] 3
1.2 An RDF triple as a directed graph . 6
1.3 An example of an RDF graph [MM04] . 7

5.1 Overview and architecture of the RDF Transformer 58

6.1 Package overview of the RDF Transformer . 62
6.2 Class diagram of the RDF Transformer component 63
6.3 Class diagram of the Mapping Storage component 66
6.4 Class diagram of the Mapping Storage handlers . 68
6.5 Class diagram of the Remote Mapping Storage component 71
6.6 Class diagram of the Ontology Storage component 73
6.7 Class diagram of the SPARQL extension functions 74

8.1 Overview of the Semantic Clipboard . 95

List of Tables
C.1 Arguments of the RDF Transformer TestConsole class 111
C.2 Arguments of the Remote Mapping Storage LocalConsole class 112

List of Listings
2.1 Excerpt from sample IF-Map mapping [KS03] . 14
2.2 RDF Translator sample rule [Kru] . 14
3.1 Example data for simple one to one mappings . 22
3.2 Example SPARQL query for simple one to one mappings 22
3.3 Example results for simple one to one mappings . 22
3.4 Example data for untyped to typed mappings . 23
3.5 Java source code for property function datatype . 23
3.6 Java source code for property function addDatatype 24
3.7 Example SPARQL query for untyped to typed mappings 27
3.8 Example results for untyped to typed mappings . 27
3.9 Example data for extracting nested data . 28
3.10 Example SPARQL query for extracting nested data 28
3.11 Example results for extracting nested data . 29
3.12 Example SPARQL query for creating substructures 29
3.13 Example SPARQL query for converting structures 30
3.14 Example results for converting structures . 30
3.15 Example data for literals to URIs mappings . 31
3.16 Java source code of mailto class . 31
3.17 Source code of the Java class for the uriConverter property function 32
3.18 Java source code of property function convertURI . 33
3.19 Example SPARQL query for literals to URIs mappings 35
3.20 Example results for literals to URIs mappings . 35
3.21 Example data for restoring implicit knowledge . 35

CONTENTS xi

3.22 Java source code of property function args . 36
3.23 Java source code of property function toDuration . 37
3.24 Example SPARQL query for restoring implicit duration knowledge 39
3.25 Example results for restoring implicit duration knowledge 39
3.26 Example data for restoring implicit knowledge . 40
3.27 Java source code of property function totalPlaytime 41
3.28 Example SPARQL query for calculating implicit total play time 43
3.29 Example results for calculation of total play time . 43
4.1 Example mapping document with namespaces . 46
4.2 Example of resulting SPARQL document with namespaces 46
4.3 Example mapping file fragment with simple one to one mapping 47
4.4 Resulting SPARQL fragment with simple one to one mapping 47
4.5 Example mapping file fragment with untyped to typed mapping 48
4.6 Resulting SPARQL fragment with untyped to typed mapping 48
4.7 Resulting SPARQL fragment with untyped to typed backward mapping 49
4.8 Example mapping file fragment for extracting nested data 50
4.9 Resulting SPARQL fragment for extracting nested data 50
4.10 Example mapping file fragment for creating substructures 51
4.11 Resulting SPARQL fragment for creating substructures 51
4.12 Example mapping file fragment for converting structures 52
4.13 Resulting SPARQL fragment for converting structures 52
4.14 Example mapping file fragment for literal to URI mapping 52
4.15 Resulting SPARQL fragment for literal to URI mapping 52
4.16 Example mapping file fragment for restoring implicit duration knowledge 54
4.17 Resulting SPARQL fragment for restoring implicit duration knowledge (forward) . 54
4.18 Resulting SPARQL fragment for restoring implicit duration knowledge (backward) 54
4.19 Example mapping file fragment for type substitution 55
4.20 Resulting SPARQL fragment for type substitution 55
6.1 Example of a configuration file . 74
6.2 Example of a security policy file . 75
7.1 Example data in SWRC ontology . 78
7.2 Example data in BibTeX ontology . 81
7.3 SWRC to BibTeX ontology mapping definition . 82
7.4 SWRC to BibTeX forward mapping query . 86
7.5 SWRC to BibTeX backward mapping query . 89
7.6 Example BibTeX data transformed back to SWRC 91
A.1 Java source code for property function datatypeConverter 101
A.2 Java source code for property function removeDatatype 102
B.1 XML Schema definition of mapping language . 105
B.2 XML Schema definition of mapping directory file 108
B.3 XML Schema definition of ontology directory file . 108
B.4 XML Schema definition of configuration file . 109
D.1 Example MappingServer configuration file . 113

xii CONTENTS

Chapter 1

Introduction

1.1 Semantic Web Overview
This section introduces the basic principles and mechanisms of the Semantic Web. Starting from
today’s Web it shows the shortcomings that lead to the idea of the Semantic Web.

1.1.1 Today’s Web and the Semantic Web Vision
The World Wide Web has changed the personal and the business world. The way people commu-
nicate with each other and conduct business has changed revolutionary. This transformation has
also changed the role of computers from their original purpose as large numerical calculators to
information processors, like as databases, text editing systems, and games. With the current de-
velopments, there is another transition happening that puts computers towards the role as entry
points to the information highways [AvH04].

The current Web is focusing on the human user and therefore delivers its content in human
readable form, even if it is generated automatically from databases. Unfortunately, this form of
presentation is poorly suited for processing by software tools. With the ever increasing amount of
information from more and different sources, it gets harder to find the intended information for
human users as well. This in turn creates the need for support from software tools, which exists
today in the form of keyword-based search engines such as Google and Yahoo. However, their
use exhibits some serious problems:

High recall, low precision Even if the main relevant pages are retrieved, they are of little use if
thousands other mildly relevant or irrelevant documents were also retrieved.

Low or no recall It happens that important and relevant pages are not retrieved or that in an
extreme case we get no results back at all.

Results are highly sensitive to vocabulary Often we retrieve not the pages we wanted with the
keywords we initially selected, because the relevant documents use different terminology.

Results are single Web pages If our query matches the important and relevant documents, we
only retrieve complete Web pages containing the wanted information. We still have to man-
ually extract the desired parts of information, probably from multiple pages and put them
together.

Therefore, a human user is needed to compose an adequate query and to browse several result
pages to retrieve the actual information in demand. Despite the improvements in search en-
gines, artificial intelligence, and computational linguistic these problems could not been solved

2 Chapter 1. Introduction

so far. The Semantic Web initiative lead by Tim Berners-Lee and the World Wide Web Consor-
tium (W3C) tries to solve these problems with a different approach. The basic idea is to represent
the Web content in a more machine-processable form instead of trying to understand the human-
readable data. Then, software can take advantage of this new representation by using intelligent
techniques to incorporate the semantics of data [AvH04].

It is important to understand that the Semantic Web initiative has not the intention to build a
separate new Web; it will only extend the current Web with explicit metadata for easier machine
processing.

1.1.2 Explicit Metadata
As the term semantic in Semantic Web suggest, the metadata is concerned with the meaning of
an entity, its semantics. It builds a relationship between the object represented in the information
system and the real world object. In order to extract this metadata without the need for sophisti-
cated techniques from artificial intelligence and natural language processing, it must be defined
in an explicit form additionally to the original data. In the Semantic Web, this explicit metadata is
expressed in RDF, which is introduced in Section 1.1.4 [AvH04].

1.1.3 Ontologies
The term ontology originates from philosophy, where it names the subfield concerned with the
study of the nature of existence. However, in recent years computer science has hijacked this
word as many others before and has given it a different technical meaning [AvH04]. T.R. Gruber
defines an ontology as an explicit and formal specification of a conceptualization [Gru93].

In general, an ontology describes formally a domain of discourse. These descriptions typically
consist of terms denoting important concepts (classes of objects) of a domain and relationships
between these terms. The types of these relationships are manifold with the subclass relationship
as one of the most important. The subclass relationship is defined as follows: a class C is a
subclass of another class C’, if every object in C is also an object of C’. Therewith, it is possible
to define entire hierarchies of classes. Apart from subclasses, relationships can take the form of
properties, value restrictions, disjointness statements, and specification of logical relationships
between objects [AvH04].

In the context of the Web, ontologies provide a shared understanding of a domain, which is
necessary to overcome differences in terminology. Ontologies can also be used to improve the
situation in the keyword-based search engines example presented in Section 1.1.1. Instead of just
searching for a keyword, an engine based on ontologies can search for specific concepts. If it
then fails to find any relevant documents or the responses are too numerous, it can exploit the
generalization/specialization information given in the hierarchies to broaden/narrow the search
[AvH04].

1.1.4 Architecture of the Semantic Web
Layered architectures are a widespread principle in computer science to decompose a complex
problem into smaller and less complex subproblems. Each higher layer relies on the services of-
fered by the lower layer and provides services for the next higher layer. Another advantage of
this architecture is that it is easier to achieve consensus on small steps independently on every
layer than on the complete problem. This is necessary, because the Semantic Web still is a rela-
tively young research field and therefore standards and common agreement just start to emerge.

1.1 Semantic Web Overview 3

URIUnicode

XML + NS + XML Schema

Di
gi

ta
l S

ig
na

tu
re

RDF + RDF Schema

Ontology vocabulary

Logic

Proof

Trust

Self-
desc.
doc.

Data

Data

Rules

Figure 1.1: A layered approach to the Semantic Web [AvH04]

The Semantic Web obeys such a layered architecture too as shown in Figure 1.1. This section
introduces the topics of each layer briefly [AvH04].

Basic Layers

The two lowermost layers are not exclusive Semantic Web technologies. They appear in many
fields of computer science and especially the World Wide Web community. Therefore, they are in
widespread use and there exist many tools to work with these technologies.

Unicode is a character encoding system. Before Unicode was developed, there were countless
systems covering only specific parts of what Unicode supports today. For example, one encoding
system would only contain the English characters but not the additional letters of the German and
French alphabet. Unicode solves this problem by providing a unique number for every character
independent of language, platform, and program [Uni07].

A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an ab-
stract or physical resource. They are a generalization of the Universal Resource Locator (URL)
familiar from the current Web. URLs not only identify resources on the Web, they provide a
means of locating the resource by describing its primary access mechanism [BLFM05]. Resources
are a main part of the Semantic Web, so we need a way to identify them. Common URLs are
not well suited for this purpose, because in the Semantic Web we want to describe all kinds of
resources, including those that cannot be accessed through the Web like, for instance, persons. In
that case, a URL would suggest that we can retrieve the person itself from the Web and not only
information about that person. Therefore, URIs are used to uniquely identify resources on the
Semantic Web.

The eXtensible Markup Language (XML) uses tags to add markup to arbitrary text documents.

4 Chapter 1. Introduction

The term ’extensible’ means that there is no predefined set of tags in XML in contrast to HTML.
This makes XML practical as a language for expressing explicit metadata as well as for model-
ing ontologies [BPSM+06]. Regarding the Semantic Web, XML is surely suitable as an exchange
format for metadata due to its wide distribution and its ties to the Web.

XML namespaces provide a simple method for qualifying element and attribute names used
in XML documents by associating them with namespaces expressed as URI references [BHLT06].
XML namespaces and concepts based on them find applications throughout the Semantic Web
technologies.

XML Schema provides a means for defining the structure, content, and semantics of XML doc-
uments. It allows machines to check automatically whether a given XML document conforms to
a set of rules or not [SMT00]. As we will see later in this section, XML Schema is not powerful
enough to define the structure and semantics of the statements in the upper layers of the Semantic
Web architecture, but it is still useful when dealing with XML representations and as supplier for
common data types.

RDF and RDF Schema Layer

XML is indeed a suitable language for defining and exchanging data and metadata, but it pro-
vides no means to define the semantics of this (meta-)data. In XML, it is possible to express the
same facts in different serializations, which causes trouble when sharing data. To resolve this
problem, the Semantic Web needs a standardized way to describe metadata. This is done by the
Resource Description Framework (RDF), which represents the data model of the Semantic Web. The
basic building block of RDF is the statement composed of a subject-predicate-object triple, which
provides a means for describing arbitrary resources. The subject can be any resource identifiable
by an URI, while the predicate defines a property of a resource and is identified with an URI itself.
The object, on the other hand, represents the value of that property and can be either a literal or
a resource identified again by an URI. As RDF itself is only an abstract data model, it needs a
concrete syntax for use in real world applications. There is not one exclusive syntax but several
different ones, which are useful in various circumstances. Probably the most popular serializa-
tion is the XML format called RDF/XML. It is best suited as a form for RDF to exchange metadata
with other Semantic Web tools over the Web. As XML has the reputation of being somewhat
bloated there exist other popular syntaxes like, for instance, N3 which is more compact than XML
and easy to read for human users as well. The important aspect is that despite all these different
syntactical representations the underlying model of the Semantic Web are triples forming a graph
[AvH04]. This fact is covered in more detail in Section 1.2.

RDF is domain-independent, that means there is no predefined terminology for any domain.
The users have to define the desired vocabulary themselves in the schema language RDF Schema
(RDFS). The name RDF Schema is confusing, because RDFS defines the vocabulary and not the
structure of documents, like XML Schema for example. RDFS itself is built on RDF triples, which
means every RDFS document is also an RDF document. RDFS supports the definition of classes,
properties with domain and range restrictions, and the concept of inheritance to form hierarchies
of classes and properties. This describes the most important capabilities of RDFS, which shows
that its expressiveness is too limited to create complex ontologies. Therefore, the Semantic Web
needs a more expressive ontology language to address this issue, which is presented on the next
higher layer: the ontology layer [AvH04].

Ontology Layer

In today’s Semantic Web, the preferred ontology definition language is the Web Ontology Language
(OWL). It adds more capabilities for describing classes and properties along with support for

1.1 Semantic Web Overview 5

reasoning and formal semantics. In contrast to RDF and RDFS, it supports additionally:

Relationships between classes In RDFS we can only state the subclass relationship between two
classes, but sometimes we wish to express different relationships such as disjointness be-
tween classes. OWL gives us a wide number of such inter-class relations.

Boolean combination of classes In some cases, it would be practical to define a new class by
combining other classes using Boolean combinations. While not possible with RDFS, OWL
enables us to define new classes based on the union, intersection, or complement of two or
more other classes.

Local scope of properties If we define the domain or range of a property in RDFS it applies glob-
ally to all classes and thereby restricts the use of a property. In OWL, it is possible to define
the scope of such restrictions in a local and more detailed manner.

Cardinality restrictions OWL allows us to express exact cardinality restrictions on properties,
whereas this is not possible in RDFS at all.

Special characteristics of properties Sometimes it is useful to say that a property is transitive,
unique, or the inverse of another property. Again, RDFS gives us no means to do so, but
OWL does.

Ideally, to be consistent with the layered architecture of the Semantic Web, OWL would be an
extension of RDF Schema. It would use the RDF meaning for classes and properties and would
only add language primitives to support the richer expressiveness. Unfortunately, this would
lead to uncontrollable computational properties and hinder efficient reasoning. Therefore, the
W3C Ontology Working Group decided to define OWL as three different, decreasingly expressive
sublanguages:

OWL Full The entire language is called OWL Full. It uses all the OWL primitives and allows their
combination in arbitrary ways with primitives from RDF and RDFS. The advantage of OWL
Full is that it is fully upward compatible with RDF, both syntactically and semantically. The
disadvantage is that OWL Full is so powerful that it is undecidable, making a complete or
efficient reasoning support unfeasible.

OWL DL In order to regain computational efficiency, OWL DL (which stands for Description
Logic) is a sublanguage of OWL Full that restricts the use of OWL constructors to each
other. Thus, OWL DL corresponds to a well-studied description logic and therein lies its
advantage: efficient reasoning support. The disadvantage is that we lose full compatibility
with RDF. Not every RDF document will be a legal OWL document unless it is extended in
some ways and restricted in others.

OWL Lite OWL Lite is a further restriction of OWL DL. It excludes several language constructors
like arbitrary cardinality and disjointness statements. Compared to the disadvantage of this
restricted expressiveness stands the advantage of a language that is easier to grasp for users
and easier to implement for tool builders.

It is important to note that all three sublanguages are upward compatible, which means every
legal OWL Lite ontology is a legal OWL DL ontology and every legal OWL DL ontology is a legal
OWL Full ontology. The same holds true for valid conclusions from the single sublanguages.
Likewise, every legal OWL document, regardless in what sublanguage it is written, is a legal RDF
document. Summarized, OWL enables us to define complex ontologies and with the help of a
logic reasoner to derive even more (implicit) information from given ontologies [AvH04].

6 Chapter 1. Introduction

Top Layers

The top three layers Logic, Proof, and Trust are not yet in use as much as the other layers and
they are currently rather the subject of research than widespread application. The Logic layer
enhances the ontology language further and allows the writing of application-specific declarative
knowledge. The Proof layer involves the actual deductive process, the proof representation and
validation. In combination with digital signatures, the Trust layer deals with security of opera-
tions and the quality of the provided information for Semantic Web users [AvH04].

1.2 RDF as a Graph
A directed Graph G is defined as G = (V,E) and consists of a set V = {1, 2, ..., |V |} of vertices
(also called nodes) and a set E ⊆ V × V of edges (also called arcs). A pair (v, v′) ∈ E is called an
edge from v to v’, with v named the head and v’ the tail. [OW02]

The basic building block of RDF is a triple consisting of a subject, a predicate, and an object.
The predicate connects the subject with the object and therefore a triple can as well be represented
as a node-arc-node link as depicted in Figure 1.2. Given the definition of a directed graph, such
a triple can be seen as a simple directed graph as well. If we extend this view to multiple triples
belonging together, we still get a graph, although a bigger and more complex one. As any RDF
expression has a collection of triples as its underlying structure, we can understand any RDF
document as a directed graph [KC04].

Subject ObjectPredicate

Figure 1.2: An RDF triple as a directed graph

Let us illustrate this association between statements and graphs in a more concrete example.
Assume the following statements are given: ”There is a Person identified by http://www.w3.
org/People/EM/contact#me, whose name is Eric Miller, whose email address is em@w3.org,
and whose title is Dr.”. From these statements, we can derive the respective RDF triples and they
could be represented in the form of the RDF graph in Figure 1.3. This graph visualizes the RDF
triples in an abstract form independent of any specific syntax. The subjects are displayed as green
ovals with their URI as text written inside them. If the objects represent URIs too, they are shown
likewise as green ovals, but if the represent literals they are depicted as yellow rectangles with
their values written inside the box. At last, the predicates are drawn as arrows connecting the
respective subject with its object and the full URI written next to the arc [MM04].

1.3 Ontology Alignment and Mapping
Given that the Semantic Web is only an extension of the current Web, this new Web shares a lot of
its properties with the old Web. This is especially true in terms of distribution and heterogeneity.
Therefore, it is neither possible nor desirable to create a central control to supervise all develop-
ment of the (Semantic) Web. This implies that one of the main problems of the Semantic Web is the
integration of resources. There will be multiple ontologies for the same domain, defined by dif-
ferent actors and the individual ontologies themselves will become heterogeneous over time with

http://www.w3.org/People/EM/contact#me
http://www.w3.org/People/EM/contact#me
em@w3.org

1.3 Ontology Alignment and Mapping 7

http://www.w3.org/2000/10/swap/pim/contact#personalTitle

http://www.w3.org/2000/10/swap/pim/contact#mailbox

http://www.w3.org/2000/10/swap/pim/contact#fullName

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/People/EM/contact#me

http://www.w3.org/2000/10/swap/pim/contact#Person

mailto:em@w3.org

Dr.

Eric Miller

Figure 1.3: An example of an RDF graph [MM04]

the introduction of new and probably incompatible versions. The emerging of Web and ontology
standards cannot solve this problem completely. There will always be user groups who either do
not want to use a standard ontology or cannot use it, because it does not suit their problem in
an appropriate fashion. Therein lies the need for ontology alignment and possibilities to bridge
between multiple ontologies. The process of such an ontology alignment is defined as finding
relationships between entities belonging to two different ontologies. This alignment can either be
calculated automatically or defined manually through an expert. After this process is completed,
it results in a mapping that can be used to translate between the involved vocabularies or merge
them into a new, integrated ontology [Euz04].

1.3.1 Use Cases

Let us now look at a set of use cases to fortify the importance of ontology alignment and reveal
possible practical applications.

8 Chapter 1. Introduction

Agent Communication

Agents are autonomous computer entities with the ability to interact with other agents. For this
interaction, they need to communicate with each other and they need a way to express their in-
tentions which can be done through ontologies. If two autonomous and independently designed
agents meet, they will be able to exchange messages but are unlikely able to understand each
other, due to the use of different ontologies. To solve this communication problem, an ontology
alignment is needed. This can be realized in several ways, for example in the form of a translation
service offering either direct mappings between different ontologies or mappings from the agents
ontologies into a common standard ontology [Euz04].

Web Service Integration

The identification of Web Services that fulfill a given requester goal is the idea behind automatic
Web Service discovery. Both the requester goal and the Web Service capability must be described
in a declarative and machine-processable way. An all-embracing global ontology will not be
feasible in this case either, so the goal and capabilities are most likely specified in different and
domain-specific ontologies. To enable a maximum degree of interoperability, a mechanism is
required to mediate between the various ontologies, in other words a mapping is needed [Euz04].

Catalog Matching

E-Commerce businesses rely on their electronic catalog to describe the goods on sale. Through
the independence of these enterprises, almost every catalog will have its own format. As long as
the catalog needs only to be used by the original firm this causes no major problems. Not until the
company wants to sell its goods on an e-Marketplace. The operator of this electronic marketplace
dictates his own catalog format, which leaves the interested company with two options. It can
replace its internal catalog format with the one from the marketplace firm, but this is a lot of
work and probably a constraint too. The other option is to create a second catalog in the format
for the e-Marketplace, which means a doubling in work to keep both catalogs up to date. This
problem increases even more if the company wants to participate in multiple e-Marketplaces. We
can evidently see the need for an automatic and ideally dynamic mapping here as well [Euz04].

Information Retrieval from Heterogeneous Multimedia Databases

Multimedia documents like video, audio, and still images have long been stored in databases for
building digital archives. Together with corresponding metadata, it enables easier preservation
and access to this data for the holding organization. With advances in data networks and Web
technologies, these archives open up towards the Web and its users. The original databases were
designed and built independently by the content holding organizations, so were the respective
formats of the metadata. The new users of such databases are now confronted with different
metadata ontologies, which makes retrieval of specific content hard and costly. An agreement
among all content providers to convert their metadata into a single format is hardly feasible,
hence we need to bridge this gap. This can be done with a mediator translating between the
requester and the different data sources [Euz04].

P2P Information Sharing

Peer-to-Peer (P2P) systems have recently received a lot of attention, particularly in the form of
P2P file sharing systems. These systems support only few options to describe the file contents.
Either they provide a simple schema that is shared among all peers and cannot be changed locally

1.3 Ontology Alignment and Mapping 9

by one party or they offer no possibility at all to store additional data about a file, except maybe
within the filename. While this may sound tolerable in the case of simple files, if we extend this
concept to general information, it becomes clear that a more sophisticated annotation mechanism
will be needed. Every peer on the network should be able to define freely the annotations for his
piece of information. However, this would lead again to heterogeneous metadata and therefore
an alignment system must be created to gain the full benefit of this additional data [Euz04].

Personal Information Delivery

Internet radio has become a reality by now, but at the moment it is not really different from con-
ventional radio concerning the content of the radio program. Although we can easily receive
more radio channels then ever before, we do not have more opportunities to influence the pro-
gramming. A smart internet radio analyzes the music taste of its listeners and selects an appro-
priate audio stream. To achieve this goal the internet radio must detect the interests of each user.
This seems to be easy through filtering based on music genres, but the problem herein is that
different people assign the same music to different genres and there is no common agreement on
the correct classification. This problem relates to ontology alignment due to the fact that the inter-
net radio must translate between the styles of music categorization of the users and the content
providers [Euz04].

1.3.2 Semantic Heterogeneity
In a distributed and open system like the Semantic Web, heterogeneity cannot be avoided. Dif-
ferent actors have different backgrounds, intentions, and use different tools to define an ontology.
These are reasons why heterogeneity emerges even if we try to be as objective as possible while
constructing an ontology. The differences can appear in different forms at various levels, therefore
we use this section to classify them into four main levels [Bou05].

The Syntactic Level

Heterogeneity at the syntactic level arises from the choice of the representation format. For in-
stance, there are several languages for ontology representation like OWL and KIF, both based on
their own syntax. Differences at this level are not limited to ontology research as they are common
in computer science in general and therefore well understood [Bou05].

The Terminological Level

At the terminological level, we face all kinds of mismatches related to naming of entities in an on-
tology. There are multiple possible sub-levels of discrepancy imaginable. Two ontologies could
mean the same entity but use synonymous words to represent it in their respective ontology. An
even trickier problem occurs, if ontology engineers use one ambiguous word to name multiple
different concepts. Another pitfall is the use of abbreviations in names or different, but legal
spelling and similar syntactic variations. A last example is the use of words from different lan-
guages to describe things. Due to the different cultural backgrounds and varying experience
among ontology engineers, this level of heterogeneity is widely spread [Bou05].

The Conceptual Level

At the conceptual level, all discrepancies are related to the content of an ontology. We can fur-
ther subdivide these mismatches in two classes. First, there are epistemic differences that have

10 Chapter 1. Introduction

to do with the assertions ontology designers make about the chosen entities. Second, there are
metaphysical differences that have to do with how the world is divided into parts, which means
what concepts from the world are represented as entities, properties, or relations in the ontol-
ogy. The practical forms in which these metaphysical differences can occur are innumerable, but
in accordance with the artificial intelligence literature (in particular [BBG00]) on this topic, we
cluster them in three abstract types. The first type is called coverage and describes the variations
in ontologies as different parties decide to represent different portions of the world or even of
a single domain. An example may be one sports ontology that includes car racing, whereas a
second may ignore it completely as part of the sports domain. The second type is called granu-
larity and concerns the level of detail an ontology exhibits. For instance, a tax ontology may only
offer the generic concept of a document, while a library ontology may differentiate documents
farther into books, articles, and so on. The last type is called perspective and can arise even if the
other two types fit. It takes the form of different points of view on a domain. For example, two
ontologies may represent the same domain and cover the same parts at the same granularity, but
at different points in time. That means, the same property can hold in one time and not hold in
the other. Unfortunately, mappings alone cannot solve all of the heterogeneities described at this
level [Bou05].

The Semiotic/Pragmatic Level

Finally, discrepancies at the semiotic/pragmatic level have to do with different users of one ontol-
ogy interpreting it in various contexts differently. For instance, if the concept of Europe appears
in a multimedia ontology along the path Images/B&W/Europe, we should not conclude that it is
equivalent to the concept of Europe in a geography ontology, because it most likely represents im-
ages taken in Europe in the first ontology and the continent of Europe in the second. This means
that the structure of the classification can play an important role in the creation of mappings
[Bou05].

1.4 Problem Statement
As already described in Section 1.3 the Semantic Web community has in some cases defined more
than one ontology for similar or overlapping domains. It is also evident that these various on-
tologies will not be replaced with one unified ontology, but rather additional ontologies will be
defined deteriorating the situation even more. This causes problems for applications that want to
process this data. Not only would they have to know all of the currently available ontologies, but
they would also need to be modified every time a new ontology is defined. To overcome these
problems, a service is needed that translates RDF graphs from a source ontology into a target
ontology and vice versa. With this solution, an application that receives data expressed in an un-
known ontology can send this data together with the identifier of the desired target ontology to
this service and gets back the translated data. The application then can understand and therefore
process this data. If the original data came from another software program and the processing
application returns the result in its ontology, it may happen that the original application does not
understand the translated data. In that case, it needs to use the transformation service as well to
translate the data back in an understandable vocabulary. Hence, to get the most value out of a
mapping, the transformation service must derive transformations from the source to the target
ontology and the opposite way from the target to the source.

In this thesis, we define an ontology transformation language that enables the definition of
mappings from one ontology into another. Then, we implement a prototype of a transformation
service that will generate and apply transformations from this mapping definition that work in

1.5 Thesis Overview 11

both directions; this means transformations forwards from the source into the target ontology and
backwards from the target into the source.

1.5 Thesis Overview
After the introduction to the Semantic Web and ontology alignment in this first chapter, the re-
mainder of this thesis is structured as follows: Chapter 2 gives an overview of related work. It
briefly describes other mapping approaches and how they represent their mappings. In Chapter 3
we gain the requirements for a mapping language. We do this by first analyzing the two appli-
cation domains ’contact data’ and ’event data’. The outcome of this will be a set of requirements
that are used as the basis for the definition of our mapping language introduced in Chapter 4.
There, we describe the general parts of a mapping and then deal with each requirement from the
prior chapter. Chapter 5 is devoted to the architecture and major relationships of components
in our prototype implementation, whereas Chapter 6 concentrates in more detail on the individ-
ual components and their implementation. In Chapter 7 follows an evaluation of the prototype
and the mapping language with an example not considered in the previous chapters. Chapter 8
describes the integration of our transformation service into a real world application. This appli-
cation is called the Semantic Clipboard and its design and implementation is presented in that
chapter. Finally, Chapter 9 concludes this thesis with a short summary, the mention of the main
results, and ideas for future work.

Chapter 2

Related Work

The principal task of the system developed during this thesis is the automatic translation between
different, but related ontologies. For this purpose, we need to define an appropriate mapping.
This must be represented and saved in a way that we can easily use it in the transformation pro-
cess. Therefore, in the next section we take a look at how other system, with sometimes different
primary goals, make up their mappings.

2.1 Representation of Mappings
Anchor-PROMPT

Anchor-PROMPT [NM01] is an ontology merging and alignment tool that can also be used to
generate mappings between two ontologies. Based on a variety of methods it produces such
mappings in a semi-automatic way. The calculation of the similarity between the entities hap-
pens automatically; the user only provides anchor-pairs at the beginning and accepts or rejects
matches at the end of the comparison. The tool is implemented as a plugin for the ontology editor
and knowledge acquisition system Protégé [Pro]. Therefore, it can use a lot of functionality from
its host to meet the intended purpose. This means also that its representation of the mapping is
aligned with the native formats of Protégé. Consequently, the users are not intended to see the
actual format of the mapping as they are supposed to use the graphical controls to perform trans-
formation and other operations on the ontologies. So any usage of this mapping representation
outside the Protégé environment is not reasonable.

Glue

The goal of Glue [Doa02] is to semi-automatically find schema mappings for data integration. It
uses machine learning techniques to find the appropriate matches. The final results are stored
in a simple XML file with pairs of corresponding objects. Each pair consists of a source element
with the item from the source schema and a mediated element with the matching item from the
destination schema. From this representation, we can clearly see that the primary purpose of this
system lies in the discovery of adequate mappings and not in the actual translation of data.

IF-Map

IF-Map [KS03] is a system for automatic ontology mapping. One of its key strength is the support
for a wide base of ontology languages. For the further processing, IF-Map translates the input

14 Chapter 2. Related Work

ontology into Horn logic. One reason for this conversion lies in the support for multiple input
languages and the resulting need for a common, but independent internal data format. The other
and more important reason is based on the further handling of the data, that is the actual calcu-
lation of the alignment which is done completely in Prolog. The resulting mapping is likewise
expressed in Prolog clauses but can be exported to an RDF/XML format for further usage, espe-
cially on the Web. In this RDF/XML representation an URI is associated with every match found
during the mapping process. This URI serves as the subject in RDF triples defining the mapping
and the elements from the source and destination ontologies are the objects. Listing 2.1 shows an
excerpt from a sample mapping.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:NS0="http://ecs.soton.ac.uk/˜yk1/">

<rdf:Description rdf:about="http://ecs.soton.ac.uk/˜yk1/Infomorph4">

<NS0:type>concept</NS0:type>

<NS0:fromRefOnto>document</NS0:fromRefOnto>

<NS0:toLocalOnto>publication</NS0:toLocalOnto>

</rdf:Description>

</rdf:RDF>

Listing 2.1: Excerpt from sample IF-Map mapping [KS03]

With this representation it is possible to import such mappings back into IF-Map or to use the
won mapping information, probably in different ways, with other Semantic Web applications.

RDFTranslator

RDFTranslator [Kru] is part of the MarcOnt initiative [Mar], which provides a set of tools for
collaborative ontology development. One of this tools is RDFTranslator with the sole purpose
of translating RDF documents from one ontology to another, similar to what XSLT achieves for
XML documents. The RDFTranslator takes as input an RDF model in the N-Triples format and
a mapping in the form of a rule file. These rules are then applied to the input triples and the
resulting RDF graph can be serialized to RDF/XML, N3, or any other format supported by the
Jena Semantic Web Framework [Jen], which is used to manipulate the input. The interesting part
for us in this process is the structure of the rule file. It is represented in an RDF/XML syntax
and besides the usual RDF and namespace declarations it mainly consists of a set of rules. Each
rule is made up of one or more premises, one or more consequences, and optionally a series of
calls to other rules with the possibility of passing values from the current triple as parameters.
The premises are composed of an RDF triple that will be matched against the input triples. The
values of the subject, predicate, and object are defined either as URIs of resources or as regular
expressions and in the case of objects as text of literals. The consequences are composed of an RDF
triple as well, but this triple provides a template for the translated triple. Its subject, predicate,
and object can contain URIs, parameter variables, or one of a number of built-in functions as well
as text for the object values. To reduce the effort of defining rules and to enhance the flexibility of
the transformation, it is possible to call a sequence of other rules from within one rule and pass
them values from the current triple. Listing 2.2 shows an example for such a rule.

<rdft:Rule rdf:about="sample-rules#r1">

<rdft:order>0</rdft:order>

<rdft:premise>

<rdft:Premise rdf:about="sample-rules#r1_premise0">

<rdft:order>0</rdft:order>

2.1 Representation of Mappings 15

<rdft:subject></rdft:subject>

<rdft:predicate>rdf:type</rdft:predicate>

<rdft:object>http://www.marcont.org/ont/Material</rdft:object>

</rdft:Premise>

</rdft:premise>

<rdft:consequent>

<rdft:Consequent rdf:about="sample-rules#r1_consequent0">

<rdft:order>0</rdft:order>

<rdft:subject>{marcont:clone($PS0, ’marcont:’)}</rdft:subject>

<rdft:predicate>rdf:type</rdft:predicate>

<rdft:object>marcont:Book</rdft:object>

</rdft:Consequent>

</rdft:consequent>

</rdft:Rule>

Listing 2.2: RDF Translator sample rule [Kru]

These rule files must be defined by hand for every desired mapping, but the translation happens
automatically without further user interaction.

Chapter 3

Requirements for an Ontology
Mapping Language

Ontology designers employ different approaches to represent similar concepts in their ontologies.
While some use relatively flat structures others build more complex and nested hierarchies. For
the definition of our mapping language we can differentiate between two general cases. In the
first case, we have the similar element represented as a single and independent property in both
the source and in the target ontology. We call this a simple mapping and it can be handled easily
by a one to one mapping. The second case is more complex, because the similar element is nested
in a substructure in at least one of the involved ontologies. If so, to create a mapping we have to
be able to extract individual elements from existing substructures in the source data or construct
a fitting one in the target ontology. In the worst case, if there are substructures on both ends, we
even need to perform both steps and create a new substructure from an existing, but different one.
In addition to this general cases that can be expected in a lot of ontologies, other special cases can
turn up that should be handled in a mapping language as well.

This section explores multiple ontologies from two domains to find the differences in the rep-
resentation of similar concepts. With this knowledge gained, we can derive the requirements for
our ontology mapping language.

3.1 Contact Data

We first take a look at the domain of contact data. Thereby, we present three different ontologies
that, while not covering completely the same aspects, overlap sufficient in this area. One is the
’Friend of a Friend’ (FOAF) project [BM07], which is a collaborative effort among Semantic Web
developers to describe people and their relationships. Although it is still a work in progress
with only parts of the vocabulary considered stable, it is in widely use on the Semantic Web.
Another one is the vCard ontology which comes in two very different versions. Both attempt
to represent the vCard Internet standard (defined by the IETF in RFC 2426 [DH98]) in an RDF
encoding. Because of their many differences they are each addressed in their own section. At
last is the ’Semantic Web for Research Communities’ (SWRC) ontology, that describes knowledge
about researchers and research communities [SBH+05].

In the following subsections we shortly introduce every ontology, then point out its specialties
and analyze their impact on our mapping language.

18 Chapter 3. Requirements for an Ontology Mapping Language

3.1.1 FOAF
The FOAF ontology focuses on the description of people since they are mostly the link between
other kinds of things we describe on the Web. For instance: people create documents, attend
meetings, and are depicted in pictures. Therefore, FOAF provides at its core the class Person with
a set of properties to describe the particular person and to link it with other things as well as other
persons. The outcomes of this are not only descriptions of single persons but a linked information
system, like the Web itself. The details of the FOAF ontology are defined in the FOAF Vocabulary
Specification [BM07].

FOAF defines a relatively flat hierarchy with four top level classes and eight subclasses that
appear as domain restrictions of most FOAF properties. From the over fifty properties defined
by FOAF, currently only a handful are marked stable and are in wide use. They can be coarsely
segmented in two groups, with one being simple properties that either take literals or arbitrary
resources as values and therefore are candidates for simple mappings as described in the intro-
duction of this chapter. An example for such a property is firstName that takes a simple literal as
value. Another noteworthy fact about literals in FOAF is that they are all untyped, for instance
the value of the birthday property has not the date datatype from XML Schema, as we might ex-
pect. This may cause problems if we try to map data from FOAF to an ontology with typed literals
and the string representation in FOAF does not match the representation of the target datatype.
The other group consists of properties with FOAF classes as values. If these value classes are
blank nodes with the only purpose of connecting the primary class with additional metadata, this
creates a substructure situation that needs a more complex mapping to extract this nested data.

3.1.2 vCard (2001)
The first attempt to define an ontology for the representation of vCard objects started in 2001.
Its intention was not to create a separate definition of the vCard schema, but solely a RDF/XML
encoding for it. The RDF vCard ontology stays close to the original vCard specification and does
not introduce any capabilities not expressible in the primary format. It uses special XML and RDF
functionality only to better articulate the original intentions of the vCard authors, for instance in-
stead of the vCard type VERSION it uses XML Namespaces to record version information [Ian01].

RDF vCard defines no classes, but rather all metadata is expressed by properties that are con-
nected with an URI identifying the vCard of a person. The properties have the same names as
the vCard types from the original specification. The majority of them have strings as their values,
except a number of special cases:

Multiple values If an RDF property has multiple values it is not just repeated like in other on-
tologies, instead all values are packed into an RDF Container (that is a Bag, a Sequence or
an Alternative, depending on the context) and this container node acts as the value of the
property. This means that the value of a property can either be a literal, if only one such
element exists, or it can be a resource (the container holding the multiple string values).

Grouping In the original vCard specification it is possible to group arbitrary elements with the
vCard type GROUP. In the RDF vCard ontology exists an equivalent GROUP property with
an RDF Bag as the value. Every entry of the Bag is a blank node connecting it with the
elements forming the group and thus creating deeply nested substructures

Type parameters A number of vCard properties include the ability to indicate one or more so-
called type parameters of a value. For instance, to indicate that a certain telephone number
is a fax number we can save this information along with the value. In RDF vCard this is done
in two separate ways depending of the origin of the type parameters. If they are defined

3.1 Contact Data 19

by the vCard specification, it is done with an rdf:value property for the actual value and a
number of rdf:type properties for the type parameters. These properties are connected by a
blank node to the top level property (TEL in the example). If the parameters are defined by
an external body, only one type parameter is allowed and it is written as an XML attribute.
Therefore, we face the problem that one and the same property can have three kinds of
values: just a literal if no type parameters are given, a blank node with value and type
properties, or a literal as value and a type parameter as attribute to the original property.

Structured properties Three of the vCard properties are defined as structured properties. For
example the property N represents a name structure and is composed of simple properties
for the family name (Family), the first name (Given), and so on. This structure is represented
in RDF as a blank node that acts as a connection element between the top level property and
the secondary properties. The other two such properties are ADR for postal addresses and
ORG for information about organizations.

Inline binary values A number of vCard properties like PHOTO allow either to reference an
external resource using an URI or to store the binary resource in encoded form as a text
string. In this inline form, the type of encoding is captured as an XML attribute in the
PHOTO element. This leads to the problem that the value of such a property can either be a
resource or a literal.

In summary, we can clearly see the lack of best practices in RDF ontology design. Although most
of the properties have simply literals as values and are not nested in any way, the special cases
can cause greater trouble or even impede the mapping of certain information.

3.1.3 vCard (2006)
In 2001, as the first RDF vCard ontology was defined, RDF was a novel technology and a work in
progress. Best practices in designing RDF ontology had not yet evolved, which resulted in the not
so easy to process ontology described in Section 3.1.2. Over the years, this changed as RDF became
a W3C Recommendation in 2004 and RDF best practices emerged through the experiences made
while working with it. Therefore in 2006, Norman Walsh made another attempt to define a vCard
ontology in RDF [Wal05b] [Wal05a] that was later picked up by the W3C for further development
[HSW06]. Like the standard from 2001, the version from 2006 tries to model a subset of the
original vCard standard with the goal of representing existing vCard data in RDF.

Due to the use of modern RDF best practices, this vCard ontology is much simpler to process
than the 2001 version. It consists of only five classes and about fifty properties. The main class
is called VCard and it acts as the subject for most properties. The other classes are only defined
to hold the structured properties known from the vCard specification, like the Name class which
represents the N type in vCard. With the exception of this structured properties, all other proper-
ties are flat either taking a literal or the URI of any resource as value. Adhering to the RDF best
practices, none of the special cases from the 2001 version exist anymore.

3.1.4 SWRC
The SWRC ontology [SBH+05] aims to do the same for researchers as FOAF does for general peo-
ple, of course with a stronger focus on research related concepts. SWRC models knowledge about
researchers, research communities, their publications, and activities as well as their mutual inter-
relations. The ontology consists of the six top level classes Person, Publication, Event, Organization,
Topic, and Project each with several specialization in totally over 40 subclasses. For our purposes

20 Chapter 3. Requirements for an Ontology Mapping Language

here, the Person class is the most important. It is one of the most important in the ontology too,
which is why this class appears in a large number of domain or range restriction of properties.

The ontology makes plenty use of inheritance with the definition of specialized subclasses
and subproperties. This causes no problems, because these subproperties just lead to multiple
individual mappings. As SWRC uses classes to encapsulate concepts as well, we receive similar
substructures like in FOAF and can therefore address those the same way. Another specialty are
properties like homepage and email that have string values, whereas other ontologies use resources
for equal concepts.

3.2 Event Data
In this section, we present ontologies that are suitable to describe events. RDF Calendar is the first
one and it is intended for recording data about events, especially calendar events. While the scope
of the other two ontologies is broader, SWRC and the Semantic MediaWiki contain elements to
depict event data as well.

In the remainder of this section, we first introduce briefly each of the three ontologies and then
try to find its particular specialties that could have an impact on our ontology mapping language.

3.2.1 RDF Calendar
RDF Calendar [CM05] is not a new format of the Semantic Web, but it is an attempt to create an
RDF representation of the popular iCalendar format. iCalendar is an industry standard created
by the Network Working Group of the Internet Engineering Task Force (IETF) and it is defined
in the RFC 2445 [DS98]. The aim of this project was to define a standard for representing and
exchanging calendaring and scheduling data. Today, the standard is mature and widely used in
many applications, so there is a lot of data available that could be useful in the Semantic Web.
Due to the size of the primary standard, the RDF ontology was not defined by hand, but gen-
erated through an automated mapping approach. Unfortunately, this resulted in an ontology
inconsistent with current RDF best practices.

The majority of properties take literals as values, from which only a part are associated with a
datatype. There are also properties with the range restricted to specific classes. These classes are
defined within the same ontology but act only as types for blank nodes that link the initial prop-
erty with further properties. This yields again to data nested in substructures. An example for
this kind of classes is the attendee property which has a range restriction of Value CAL-ADDRESS
class. In example data provided by the creators, the value of this property is always a blank node
with more properties grouped together. Our inspection of the same test data revealed another
detail in the use of this ontology. Several properties are defined as untyped literals, but they use
varying datatypes in real world data. Additionally, RDF Calendar offers two types to express the
time span of an event. We can either use the start (dtstart) and end time (dtend) or the start time
and duration (duration). This flexibility cannot be expected from all ontologies, so this creates
the need to convert between these representations to restore this implicit knowledge in another
ontology.

3.2.2 SWRC
The SWRC ontology as introduces in Section 3.1.4 provides us also with a class Event and a num-
ber of corresponding properties. These are build and used in the same way as the Person class
and its properties. Therefore, the same remarks and conclusions apply.

3.3 Summary of Requirements and Examples 21

3.2.3 Semantic MediaWiki
The Semantic MediaWiki (SMW) is an extension of the MediaWiki1, a widely used wiki-engine
that also powers Wikipedia2 [KVV06]. The goal of SMW is the enhancement of current wikis
with semantic metadata to make their content machine-readable. These extensions need to be
syntactical close to the current elements to accomplish an easy adoption by the users and a gentle
transformation to the Semantic Wiki. For this purpose, SMW employs semantic annotations that
can be viewed as an extension of the existing system of categories in MediaWiki. Categories are
used to classify articles according to certain criteria. SMW extends this mechanism with proper-
ties that enable users to describe the semantics of any link or text on a page in machine-readable
form. This metadata is used by the Semantic MediaWiki itself (for instance in more powerful
search functions) or it can be exported as RDF for processing by external tools [SMW08].

The original MediaWiki has no predefined set of categories, but rather every user can create
his own category by using special markup. Likewise, the Semantic MediaWiki has no given set of
vocabulary terms and users are free to define their own. With the definition of every category or
property a page is created where a description of the term and its use can be placed. This facilitates
reuse and the correct understanding of these terms. Due to the fact that only text or links can be
described with this mechanism, it becomes clear that the resulting RDF graph consists solely of
simple triples with either a literal or an URI as value. This URI refers either to another page in the
wiki or an external resource and the literals can be typed as well as untyped [SMW08].

The first real world application of the Semantic MediaWiki is Ontoworld.org3 which promotes
itself as the wiki for the Semantic Web community. Therefore, one of its main features is the
tracking of events on Semantic Web topics. This description of event data is the reason why we
take a look at it in this section. Two examples of that are the widely used properties Start date and
End date to describe the time span of an event. The values of both are typed literals with the XML
datatype dateTime. Because of the flexible sort of property definition in the Semantic MediaWiki,
it is also possible that other users would represent a time span as a pair of start date and duration
properties, which induces the need for a conversion between these two types of representation
for the same information.

3.3 Summary of Requirements and Examples
In this section, we summarize the requirements found in the analysis of the different ontologies
in this chapter. We first describe each requirement briefly and then illustrate it with an example.

3.3.1 Simple One to One Mapping
As expected, many mappings in various ontologies will be straightforward replacements of the
property terms. These properties stand independent in the source and the target ontologies with
values of literals or simple URIs to resources. Let us illustrate this situation in an example. List-
ing 3.1 shows the base data of our example representing a simple vCard of the person identified
by the URI ex:Bob. It contains two triples of which both feature ex:Bob as subject. The first triple
with the property rdf:type only indicates that this data is a vCard. The second and for our case
more interesting triple is the one with the vCard:fn property. It represents one of the simple prop-
erties that are candidates for one to one mappings, because it is not nested in a substructure in the
source data. To fully qualify for a simple one to one mapping, the concept of the property must

1http://www.mediawiki.org
2http://www.wikipedia.org
3http://ontoworld.org

22 Chapter 3. Requirements for an Ontology Mapping Language

further be represented in a similar unnested way in the target ontology, which is given in the case
of FOAF with the corresponding property foaf:name.

@prefix ex: <http://www.example.net/persons#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix vCard: <http://www.w3.org/2006/vcard/ns#> .

ex:Bob rdf:type vCard:VCard ;

vCard:fn "Bob Miller" .

Listing 3.1: Example data for simple one to one mappings

The transformation from vCard to FOAF can be easily achieved with the simple SPARQL CON-
STRUCT query of Listing 3.2. It mainly extracts the value from the vCard:fn property and puts it
as the value of the foaf:name property. Additionally, the query changes the rdf:type property to the
corresponding value from the FOAF ontology.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vCard: <http://www.w3.org/2006/vcard/ns#>

CONSTRUCT {

?x rdf:type foaf:Person ;

foaf:name ?name .

}

WHERE {

?x rdf:type vCard:VCard ;

vCard:FN ?name .

}

Listing 3.2: Example SPARQL query for simple one to one mappings

After the execution of the query the resulting document looks like Listing 3.3.

@prefix ex: <http://www.example.net/persons#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ex:Bob rdf:type foaf:Person ;

foaf:name "Bob Miller" .

Listing 3.3: Example results for simple one to one mappings

3.3.2 Untyped to Typed Mapping
In this case, we have an untyped literal in the source ontology but a typed one in the target
ontology. Ideally, a mechanism would be given to convert the source value into the expected
form of the target and type it with the correct datatype. As an example, to illustrate this kind
of mapping we use the FOAF file in Listing 3.4 that uses the property foaf:based near. It takes a
geographical position in the form of a latitude and a longitude from the Basic Geo Vocabulary

3.3 Summary of Requirements and Examples 23

[Bri06] as value. Even though the values of geo:lat and geo:long are represented as doubles, it is
not explicitly stated in the ontology so that they are treated as strings.

@prefix ex: <http://www.example.net/persons#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ex:Bob rdf:type foaf:Person ;

foaf:based_near [

rdf:type geo:Point ;

geo:lat "47.414524" ;

geo:long "8.549832"

] .

Listing 3.4: Example data for untyped to typed mappings

SPARQL does not provide a built-in function to add datatypes to untyped literals. It is not pos-
sible to use rdf:type, because this property can only be used with resources and it states that the
subject of the respective triple is an instance of the class appearing as object. Therefore, we need
to create extensions to SPARQL in the form of property functions to obtain this power. Such func-
tions can be used to extend the functionality of SPARQL in a flexible way. Their biggest drawback
is the loss of interoperability with other SPARQL engines. Normal SPARQL queries, that use only
standard features, can be used with different SPARQL engines, whereas extension functions are
tied to the target engine. In these examples and the rest of this work, we use the SPARQL engine
ARQ4 which is part of the Jena Semantic Web Framework5. Instead of defining different property
functions for every possible datatype conversion, we define three generic property functions to
cover this requirement. The first is called datatype and is used to denote the kind of datatype to
add. This property takes an URI of a datatype as object, which is then stored in the execution con-
text of ARQ, the SPARQL engine. The corresponding Java source code is depicted in Listing 3.5.
If we use this kind of properties to form triples, we create not normal, but virtual triples. Such
triples are not matched against the underlying ontology graph, they are executed as functions and
can thereby modify values and bind variables even with values not present in the graph [KBS07].

package ch.uzh.ifi.rdftransformer.sparqlext;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.sparql.engine.ExecutionContext;

import com.hp.hpl.jena.sparql.engine.QueryIterator;

import com.hp.hpl.jena.sparql.engine.binding.Binding;

import com.hp.hpl.jena.sparql.pfunction.PFLib;

import com.hp.hpl.jena.sparql.pfunction.PFuncSimple;

import com.hp.hpl.jena.sparql.util.Symbol;

/**

* This class is an ARQ property function. It stores the name of the

* datatype in the ARQ execution context. It must be executed prior to

4http://jena.sourceforge.net/ARQ/
5http://jena.sourceforge.net

24 Chapter 3. Requirements for an Ontology Mapping Language

* a call to the addDatatype property function to set the datatype.

* @author Matthias Hert

*

*/

public class datatype extends PFuncSimple {

@Override

public QueryIterator execEvaluated(Binding binding, Node subject,

Node predicate, Node object, ExecutionContext execCxt) {

execCxt.getContext().set(Symbol.create("datatype"),

object.toString(false));

return PFLib.result(binding, execCxt);

}

}

Listing 3.5: Java source code for property function datatype

The second property function is named datatypeConverter and is optionally used to specify a con-
verter class that translates the syntax representation of the input data into the format of the desired
output. It is implemented like the datatype property function as it stores the fully qualified name
of a Java class in the ARQ execution context. Its source code is depicted in Appendix A.1. In our
example, both ontologies use doubles, so we do not need this, but other circumstances are pos-
sible where this functionality becomes beneficial. addDatatype is the third property function and
performs the actual creation of the typed literal from the untyped one. Before we can invoke this
function, we first need to set the desired datatype with the datatype property discussed before and
optionally name a Java class for syntax conversions. After that, the untyped literal is passed as
the subject and serves as value for the new typed literal. The addDatatype function first reads the
datatype and converter class names from the ARQ execution context. If a converter class is set, it
tries to instantiate the class and performs the transformation, else it leaves the input untouched.
In the end, it uses that value to create a new typed literal with a possible language tag carried
over without change and assigns it to the object of this triple for further use in the SPARQL query.
Listing 3.6 depicts the Java source code of this property function.

package ch.uzh.ifi.rdftransformer.sparqlext;

import org.apache.log4j.Logger;

import ch.uzh.ifi.rdftransformer.sparqlext.IDatatypeConverter;

import com.hp.hpl.jena.datatypes.BaseDatatype;

import com.hp.hpl.jena.datatypes.RDFDatatype;

import com.hp.hpl.jena.datatypes.TypeMapper;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.sparql.core.Var;

import com.hp.hpl.jena.sparql.engine.ExecutionContext;

import com.hp.hpl.jena.sparql.engine.QueryIterator;

import com.hp.hpl.jena.sparql.engine.binding.Binding;

3.3 Summary of Requirements and Examples 25

import com.hp.hpl.jena.sparql.pfunction.PFLib;

import com.hp.hpl.jena.sparql.pfunction.PFuncSimple;

import com.hp.hpl.jena.sparql.util.Symbol;

/**

* This class is an ARQ property function. It is used to add a

* datatype to an untyped literal and optionally to convert the

* syntax of the input.

* @author Matthias Hert

*

*/

public class addDatatype extends PFuncSimple {

private static final Logger log = Logger

.getLogger(addDatatype.class);

@Override

public QueryIterator execEvaluated(Binding binding, Node subject,

Node predicate, Node object, ExecutionContext execCxt) {

// return unchanged if subject is no literal

if (!subject.isLiteral()) {

return PFLib.oneResult(binding, Var.alloc(object),

subject, execCxt);

}

// get name of datatype

String datatype = execCxt.getContext().getAsString(Symbol

.create("datatype"));

log.debug("datatype: " + datatype);

// get name of optional datatype converter class

String converter = execCxt.getContext().getAsString(Symbol

.create("datatypeConverter"));

log.debug("datatypeConverter: " + converter);

// remove entries from execution context for further calls

execCxt.getContext().remove(Symbol.create("datatype"));

execCxt.getContext().remove(

Symbol.create("datatypeConverter"));

RDFDatatype type = null;
String resultValue = null;

if (datatype != null) {

// handle XML Schema datatypes

if (datatype.startsWith(

"http://www.w3.org/2001/XMLSchema#")) {

26 Chapter 3. Requirements for an Ontology Mapping Language

type = TypeMapper.getInstance()

.getTypeByName(datatype);

}

// handle all other datatypes

else {

type = new BaseDatatype(datatype);

}

}

// perform syntax conversion if requested

if (converter != null) {

IDatatypeConverter conv = null;
try {

conv = (IDatatypeConverter)Class.forName(converter)

.newInstance();

}

catch (IllegalAccessException ex) {

throw new ClassLoadingException(

"Could not access converter class!");

}

catch (InstantiationException ex) {

throw new ClassLoadingException(

"Could not instantiate converter class!");

}

catch (ClassNotFoundException ex) {

throw new ClassLoadingException(

"Converter class not found!");

}

resultValue = conv.convert(

subject.getLiteralLexicalForm());

}

// apply without conversion

else {

resultValue = subject.getLiteralLexicalForm();

}

// create typed result

Node result = Node.createLiteral(resultValue,

subject.getLiteralLanguage(), type);

return PFLib.oneResult(binding, Var.alloc(object),

result, execCxt);

}

}

Listing 3.6: Java source code for property function addDatatype

3.3 Summary of Requirements and Examples 27

In Listing 3.7 we can see how this self-defined property function is used. In order that we can
access this function, we have to assign it with a namespace. This is done with the pseudo URI
scheme java that looks for the code on the Java classpath and loads it dynamically. After this step,
we can use a property function like any other property.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX fn: <java:ch.uzh.ifi.rdftransformer.sparqlext.>

PREFIX vCard: <http://www.w3.org/2006/vcard/ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT {

?x rdf:type vCard:VCard ;

vCard:geo _:l .

_:l rdf:type vCard:Location ;

vCard:latitude ?latitude ;

vCard:longitude ?longitude .

}

WHERE {

?x rdf:type foaf:Person ;

foaf:based_near ?p .

?p geo:lat ?lat ;

geo:long ?long .

?lat fn:datatype xsd:double ;

fn:addDatatype ?latitude .

?long fn:datatype xsd:double ;

fn:addDatatype ?longitude .

}

Listing 3.7: Example SPARQL query for untyped to typed mappings

With the help of our property functions, a SPARQL engine can transform the untyped literals of
the geo properties into the typed ones of the vCard ontology. The resulting document is shown
in Listing 3.8.

@prefix ex: <http://www.example.net/persons#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix vCard: <http://www.w3.org/2006/vcard/ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ex:Bob rdf:type vCard:VCard ;

vCard:geo [

rdf:type vCard:Location ;

vCard:latitude "47.414524"ˆˆxsd:double ;

vCard:longitude "8.549832"ˆˆxsd:double

] .

Listing 3.8: Example results for untyped to typed mappings

28 Chapter 3. Requirements for an Ontology Mapping Language

3.3.3 Extracting Nested Data
The source ontology may contain data in nested structures, but the target data represents the same
concepts with independent properties. Therefore, we need the ability to extract this data from its
nesting. The transformation from the vCard:n data structure to the corresponding properties in
FOAF is an example for a mapping of this kind. Listing 3.9 shows the data for this example with
the vCard:n property that takes a blank node of the type vCard:Name as value. This blank node
in turn consists of nested properties like vCard:family-name and vCard:first-name as used in the
example data.

@prefix ex: <http://www.example.net/persons#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix vCard: <http://www.w3.org/2006/vcard/ns#> .

ex:Bob rdf:type vCard:VCard ;

vCard:n [

rdf:type vCard:Name ;

vCard:family-name "Miller" ;

vCard:first-name "Bob"

] .

Listing 3.9: Example data for extracting nested data

To translate this data into another ontology, we have to break up the nesting. In our example, the
target is the FOAF ontology where the first and family name concepts are top level properties.
Listing 3.10 depicts a SPARQL query that performs this translation for our example data. It uses
the variable ?n in the WHERE clause to bind the blank node and gets thereby to the real data,
which it assigns then to the respective FOAF properties in the CONSTRUCT clause of the query.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vCard: <http://www.w3.org/2006/vcard/ns#>

CONSTRUCT {

?x rdf:type foaf:Person ;

foaf:family_name ?familyName ;

foaf:firstName ?firstName .

}

WHERE {

?x rdf:type vCard:VCard ;

vCard:n ?n .

?n vCard:family-name ?familyName ;

vCard:first-name ?firstName .

}

Listing 3.10: Example SPARQL query for extracting nested data

The results of this transformation process are shown in Listing 3.11. From the source data, only
the values of the first and family names are preserved, the blank node is no longer needed and
thus eliminated.

3.3 Summary of Requirements and Examples 29

@prefix ex: <http://www.example.net/persons#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ex:Bob rdf:type foaf:Person ;

foaf:family_name "Miller" ;

foaf:firstName "Bob" .

Listing 3.11: Example results for extracting nested data

3.3.4 Create Substructures
This is the reverse of the prior case. The properties in the source data consist of independent
properties, but the target ontology expects a structured representation. Therefore, we need a way
to create such structures. For illustration, we can take the same example as in the previous case,
this time only in the reverse direction. We start with the FOAF data in Listing 3.11 and transform
it back in the form shown in Listing 3.9. To achieve this, we use the SPARQL query depicted in
Listing 3.12. In its CONSTRUCT clause it creates a new blank node of the type vCard:Name and
then attaches the vCard:family-name and vCard:first-name properties to it and fills them with the
values from the respective FOAF properties.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vCard: <http://www.w3.org/2006/vcard/ns#>

CONSTRUCT {

?x rdf:type vCard:VCard ;

vCard:n _:n .

_:n rdf:type vCard:Name ;

vCard:family-name ?familyName ;

vCard:first-name ?firstName .

}

WHERE {

?x rdf:type foaf:Person ;

foaf:family_name ?familyName ;

foaf:firstName ?firstName .

}

Listing 3.12: Example SPARQL query for creating substructures

The execution of the query on the example data reveals that the results are indeed the same as in
Listing 3.9.

3.3.5 Converting Structures
It is also possible that the last two points appear together, that means the data in the source ontol-
ogy is packed into a substructure and must be converted into a different one in the target vocab-
ulary. Ideally, this should not require additional constructs, only the combination of the solutions

30 Chapter 3. Requirements for an Ontology Mapping Language

to the last two problems. To illustrate this case, we use again the example data from Listing 3.9
containing the property vCard:n with the nested properties vCard:family-name and vCard:first-name
as value. We use a fictional ontology as target that basically has the same structure, but with dif-
ferent named properties from another namespace. Listing 3.13 shows the SPARQL query that
transforms our example source data into the target ontology. For that purpose, it extracts the val-
ues of the nested properties from the source data, creates the necessary structures of the target
ontology in the same way as described in the prior case, and then fills it with the corresponding
data values.

PREFIX exont: <http://www.example.net/ontology#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX vCard: <http://www.w3.org/2006/vcard/ns#>

CONSTRUCT {

?x rdf:type exont:Person ;

exont:name _:name .

_:name rdf:type exont:Name ;

exont:familyName ?familyName ;

exont:firstName ?firstName .

}

WHERE {

?x rdf:type vCard:VCard ;

vCard:n ?n .

?n vCard:family-name ?familyName ;

vCard:first-name ?firstName .

}

Listing 3.13: Example SPARQL query for converting structures

In Listing 3.14 we see the result of the translation with the new structured property from the target
ontology and the respective values in its nested properties.

@prefix ex: <http://www.example.net/persons#> .

@prefix exont: <http://www.example.net/ontology#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ex:Bob rdf:type exont:Person ;

exont:name [

rdf:type exont:Name ;

exont:familyName "Miller" ;

exont:firstName "Bob"

] .

Listing 3.14: Example results for converting structures

3.3.6 Literals to URIs
Ontologies may use plain strings for things like email addresses or website URLs, whereas others
represent those concepts as URIs. A mapping language should offer a possibility to convert such

3.3 Summary of Requirements and Examples 31

literals to real URIs and vice versa. In our illustrative example, we use the SWRC ontology in the
source data. It uses plain strings to represent email addresses whereas FOAF, our target ontology
for this example, uses URIs. Listing 3.15 shows the sample RDF document with the swrc:email
property.

@prefix ex: <http://www.example.net/persons#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix swrc: <http://swrc.ontoware.org/ontology#> .

ex:Bob rdf:type swrc:Person ;

swrc:email "bob@example.net" .

Listing 3.15: Example data for literals to URIs mappings

In order to convert the literal value into an URI, we first have to extract the string value from
the source data and prefix it according to the mailto URI scheme. We then have to turn the URI
string into a resource. This is not possible with normal SPARQL operations, but again it can
be achieved with property functions. Email addresses are not the only example for this kind of
conversions, in fact everything represented as URI can as well be described as plain strings in
another ontology. Therefore, our approach to this problem is generic and extendable. We define
the property function convertURI that performs the actual mapping but delegates the creation of
the URI string or the literal in each case to a separate class. Such a class can be written for the
translation of every URI scheme, like mailto in our example. The only precondition for such classes
is that they implement the Java interface IURIConverter that contains only two methods: toURI
for converting literals to URIs and toLiteral for converting URIs back to literals. In Listing 3.16
we see such a class for the URI scheme mailto. It extends the Java class URIConverterBase that is a
convenience class with default implementations of the two converter methods.

package ch.uzh.ifi.rdftransformer.sparqlext;

/**

* Converter class for the mailto URI scheme.

* @author Matthias Hert

*

*/

public class mailto extends URIConverterBase {

/**

* Converts a literal to a mailto URI. Adds the prefix

* ’mailto:’ if not already present.

* @param literal The email address in literal form

* @return The mailto URI String

*/

@Override

public String toURI(String literal) {

if (literal.startsWith("mailto:")) {

return literal;

}

32 Chapter 3. Requirements for an Ontology Mapping Language

else {

return "mailto:" + literal;

}

}

/**

* Converts a mailto URI to a literal. Strips the prefix

* ’mailto:’ if present.

* @param uri The email address in URI form

* @return The email address as String

*/

@Override

public String toLiteral(String uri) {

if (uri.startsWith("mailto:")) {

return uri.substring("mailto:".length());

}

else {

return uri;

}

}

}

Listing 3.16: Java source code of mailto class

We can configure which converter class will be used with the property function uriConverter. It
takes a string with the fully qualified name of a Java class as object and stores this value in the
ARQ execution context, where it is retrieved by the convertURI class to select the right conversion.
Obviously, this property function has to be called before the execution of the convertURI function.
Listing 3.17 shows the Java source code of the uriConverter property function.

package ch.uzh.ifi.rdftransformer.sparqlext;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.sparql.engine.ExecutionContext;

import com.hp.hpl.jena.sparql.engine.QueryIterator;

import com.hp.hpl.jena.sparql.engine.binding.Binding;

import com.hp.hpl.jena.sparql.pfunction.PFLib;

import com.hp.hpl.jena.sparql.pfunction.PFuncSimple;

import com.hp.hpl.jena.sparql.util.Symbol;

/**

* This class is an ARQ property function. It stores the fully

* qualified name of the Java converter class used to convert

* between literals and URIs for a certain URI scheme in the

* ARQ execution context.

* @author Matthias Hert

*

3.3 Summary of Requirements and Examples 33

*/

public class uriConverter extends PFuncSimple {

@Override

public QueryIterator execEvaluated(Binding binding, Node subject,

Node predicate, Node object, ExecutionContext execCxt) {

execCxt.getContext().set(Symbol.create("uriConverter"),

object.toString(false));

return PFLib.result(binding, execCxt);

}

}

Listing 3.17: Source code of the Java class for the uriConverter property function

As already mentioned, the convertURI class performs the actual conversion. Listing 3.18 depicts
the source code of this class. We can see that it first retrieves the name of the converter class from
the execution context and then tries to instantiate that class. If this succeeds, it uses this class to
convert the subject either to an URI resource or to a literal depending on the type of the subject.
The result is then assigned to the object of the triple where this property function is used.

package ch.uzh.ifi.rdftransformer.sparqlext;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.sparql.core.Var;

import com.hp.hpl.jena.sparql.engine.ExecutionContext;

import com.hp.hpl.jena.sparql.engine.QueryIterator;

import com.hp.hpl.jena.sparql.engine.binding.Binding;

import com.hp.hpl.jena.sparql.pfunction.PFLib;

import com.hp.hpl.jena.sparql.pfunction.PFuncSimple;

import com.hp.hpl.jena.sparql.util.Symbol;

/**

* This class is an ARQ property function. It performs the

* transformation from literals to URIs or from URIs to

* literals depending on the input subject. It uses an URI

* scheme specific converter class for the syntax conversion

* of the input.

* @author Matthias Hert

*

*/

public class convertURI extends PFuncSimple {

@Override

public QueryIterator execEvaluated(Binding binding, Node subject,

Node predicate, Node object, ExecutionContext execCxt) {

// get name of converter class

34 Chapter 3. Requirements for an Ontology Mapping Language

String converter = execCxt.getContext().getAsString(Symbol

.create("uriConverter"));

// remove entry from execution context for further calls

execCxt.getContext().remove(Symbol.create("uriConverter"));

String literal = null;
String result = null;
IURIConverter conv = null;

// create an instance of the converter class

try {

conv = (IURIConverter)Class.forName(converter)

.newInstance();

}

catch (IllegalAccessException ex) {

throw new ClassLoadingException(

"Could not access converter class!");

}

catch (InstantiationException ex) {

throw new ClassLoadingException(

"Could not instantiate converter class!");

}

catch (ClassNotFoundException ex) {

throw new ClassLoadingException(

"Converter class not found!");

}

// convert to URI if the subject is a literal

if (subject.isLiteral()) {

literal = subject.getLiteralLexicalForm();

result = conv.toURI(literal);

return PFLib.oneResult(binding, Var.alloc(object),

Node.createURI(result), execCxt);

}

// subject must be an URI -> convert to literal

else {

literal = subject.toString();

result = conv.toLiteral(literal);

return PFLib.oneResult(binding, Var.alloc(object),

Node.createLiteral(result), execCxt);

}

}

3.3 Summary of Requirements and Examples 35

}

Listing 3.18: Java source code of property function convertURI

As already explained earlier in this section, we can use this property function like a normal prop-
erty after the definition of the right namespace. Listing 3.19 depicts how our property function
is used to transform the example SWRC data into the target FOAF ontology. Pay especially at-
tention to the sequence of property usage. First, we set the converter class with the uriConverter
property function and not until then we can call convertURI to execute the conversion.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX fn: <java:ch.uzh.ifi.rdftransformer.sparqlext.>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

CONSTRUCT {

?x rdf:type foaf:Person ;

foaf:mbox ?email .

}

WHERE {

?x rdf:type swrc:Person ;

swrc:email ?m .

?m fn:uriConverter "ch.uzh.ifi.rdftransformer.sparqlext.mailto" ;

fn:convertURI ?email .

}

Listing 3.19: Example SPARQL query for literals to URIs mappings

The output of this query is the transformed RDF graph shown in Listing 3.20 with all email strings
converted to legal URIs.

@prefix ex: <http://www.example.net/persons#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ex:Bob rdf:type foaf:Person ;

foaf:mbox <mailto:bob@example.net> .

Listing 3.20: Example results for literals to URIs mappings

3.3.7 Restoring Implicit Knowledge
Sometimes an ontology contains implicit knowledge that is expressed explicitly in another. To
enable a mapping as complete as possible, we need to be able to make this implicit knowledge
explicit, so that we can store it in the target vocabulary. We explain this problem on the basis of
the following example using the ontology of the Semantic MediaWiki. With the SMW vocabulary
we can represent the start and end date of an event as shown in Listing 3.21. It is obvious that
these two properties contain the implicit knowledge of the duration of the event as well.

@prefix ex: <http://www.example.net/events#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

36 Chapter 3. Requirements for an Ontology Mapping Language

@prefix smw: <http://smw.ontoware.org/2005/smw#> .

@prefix p: <http://ontoworld.org/wiki/Special:URIResolver/Property-3A>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ex:IECC2005 rdf:type smw:Thing ;

p:Start_date "2005-11-06T00:00:00"ˆˆxsd:dateTime ;

p:End_date "2005-11-10T00:00:00"ˆˆxsd:dateTime .

Listing 3.21: Example data for restoring implicit knowledge

Our fictional target ontology only features properties for the start date and the duration of an
event. Therefore, we need to calculate the duration from the original start and end date proper-
ties. SPARQL offers no functionality to meet this requirement and the variants of this case are so
diverse that we abandon a completely generic solution. Instead, we define two property functions
args and toDuration. The first takes a list of nodes as object and stores them in the execution con-
text of ARQ. In our example, it is used to pass the start and end date into the second function but
it has applications in every other situation where property functions need an arbitrary number of
arguments. Its code is shown in Listing 3.22.

package ch.uzh.ifi.rdftransformer.sparqlext;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.sparql.engine.ExecutionContext;

import com.hp.hpl.jena.sparql.engine.QueryIterator;

import com.hp.hpl.jena.sparql.engine.binding.Binding;

import com.hp.hpl.jena.sparql.pfunction.PFLib;

import com.hp.hpl.jena.sparql.pfunction.PFuncSimpleAndList;

import com.hp.hpl.jena.sparql.pfunction.PropFuncArg;

import com.hp.hpl.jena.sparql.util.Symbol;

/**

* This class is an ARQ property function. It is used to store an

* arbitrary number of arguments in the ARQ execution context. They

* are stored in the form of a list and can be used by other property

* functions.

* @author Matthias Hert

*

*/

public class args extends PFuncSimpleAndList {

@Override

public QueryIterator execEvaluated(Binding binding, Node subject,

Node predicate, PropFuncArg objects,

ExecutionContext execCxt) {

execCxt.getContext().set(Symbol.create("args"),

objects.getArgList());

3.3 Summary of Requirements and Examples 37

return PFLib.result(binding, execCxt);

}

}

Listing 3.22: Java source code of property function args

toDuration is the second and more specialized property function for this case. Listing 3.23 depicts
its source code in Java. This property function is only invoked after two arguments are set in
the ARQ execution context via the args property function. It first loads the two parameters rep-
resenting the start and end date and then calculates the duration from those values. After that,
the result is used to create a new typed literal that is lastly assigned to the object of the respective
triple.

package ch.uzh.ifi.rdftext;

import java.util.List;

import javax.xml.datatype.DatatypeConfigurationException;

import javax.xml.datatype.DatatypeFactory;

import javax.xml.datatype.Duration;

import javax.xml.datatype.XMLGregorianCalendar;

import org.apache.log4j.Logger;

import ch.uzh.ifi.rdftransformer.sparqlext.ArgumentSizeException;

import com.hp.hpl.jena.datatypes.TypeMapper;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.sparql.core.Var;

import com.hp.hpl.jena.sparql.engine.ExecutionContext;

import com.hp.hpl.jena.sparql.engine.QueryIterator;

import com.hp.hpl.jena.sparql.engine.binding.Binding;

import com.hp.hpl.jena.sparql.pfunction.PFLib;

import com.hp.hpl.jena.sparql.pfunction.PFuncSimple;

import com.hp.hpl.jena.sparql.util.Symbol;

/**

* This class is an ARQ property function. It is used to calculate

* the duration of an event from the given start and end times.

* @author Matthias Hert

*

*/

public class toDuration extends PFuncSimple {

private static final Logger log = Logger

.getLogger(toDuration.class);

38 Chapter 3. Requirements for an Ontology Mapping Language

@Override

@SuppressWarnings("unchecked")

public QueryIterator execEvaluated(Binding binding, Node subject,

Node predicate, Node object, ExecutionContext execCxt) {

// get arguments from execution context...

List<Node> args = (List<Node>)execCxt.getContext().get(

Symbol.create("args"));

// ...and remove them for future calls

execCxt.getContext().remove(Symbol.create("args"));

// it needs exactly two arguments

if (args.size() != 2) {

throw new ArgumentSizeException(

"Wrong number of arguments! Exactly two are needed");

}

else {

Node start = args.get(0);

Node end = args.get(1);

String durationString = null;

try {

// create objects of XML datatypes

DatatypeFactory datatypeFactory = DatatypeFactory

.newInstance();

XMLGregorianCalendar startCal = datatypeFactory

.newXMLGregorianCalendar(

start.getLiteralLexicalForm());

XMLGregorianCalendar endCal = datatypeFactory

.newXMLGregorianCalendar(

end.getLiteralLexicalForm());

// calculate duration

long durationInMillis = endCal.toGregorianCalendar()

.getTimeInMillis() - startCal.toGregorianCalendar()

.getTimeInMillis();

Duration duration = datatypeFactory.newDuration(

durationInMillis);

durationString = duration.toString();

}

catch (DatatypeConfigurationException ex) {

log.error(ex.getLocalizedMessage());

}

// create result

3.3 Summary of Requirements and Examples 39

Node result = Node.createLiteral(durationString,

start.getLiteralLanguage(),

TypeMapper.getInstance().getTypeByName(

"http://www.w3.org/2001/XMLSchema#duration"));

return PFLib.oneResult(binding, Var.alloc(object),

result, execCxt);

}

}

}

Listing 3.23: Java source code of property function toDuration

Listing 3.24 shows how the just defined property functions are used to translate between the
different representations of our example ontologies. First, we invoke the args property function
with the variables holding the start and end date in a list as the object. Then, we invoke the
toDuration property function with an unbound variable as object that will hold the result after the
completion of the function. This variable can finally be used in the CONSTRUCT clause to build
the target document.

PREFIX exterms: <http://www.example.net/terms#>

PREFIX fn: <java:ch.uzh.ifi.rdftransformer.sparqlext.>

PREFIX func: <java:ch.uzh.ifi.rdftext.>

PREFIX p: <http://ontoworld.org/wiki/Special:URIResolver/Property-3A>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX smw: <http://smw.ontoware.org/2005/smw#>

CONSTRUCT {

?x rdf:type exterms:Event ;

exterms:start ?start ;

exterms:duration ?duration .

}

WHERE {

?x rdf:type smw:Thing ;

p:Start_date ?start ;

p:End_date ?end ;

fn:args (?start ?end) ;

func:toDuration ?duration .

}

Listing 3.24: Example SPARQL query for restoring implicit duration knowledge

Finally, Listing 3.25 shows the results of this query applied to our example data. It now represents
the event with the start date and the duration instead of the end date.

@prefix ex: <http://www.example.net/events#> .

@prefix exterms: <http://www.example.net/terms#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

40 Chapter 3. Requirements for an Ontology Mapping Language

ex:IECC2005 rdf:type exterms:Event ;

exterms:start "2005-11-06T00:00:00"ˆˆxsd:dateTime ;

exterms:duration "P4DT0H0M0.000S"ˆˆxsd:duration .

Listing 3.25: Example results for restoring implicit duration knowledge

The case of restoring implicit knowledge is so manifold that we feel the need to provide an-
other example to show this diversity. Our second example is about two fictional ontologies rep-
resenting metadata of music and especially CD records. Our source ontology describes each CD
detailed with its name as well as the name and play time of every track. An example document
with one five track CD is shown in Listing 3.26.

@prefix music: <http://www.example.net/music#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

music:cd1 rdf:type music:CD ;

music:name "Back To Bedlam" ;

music:track _:track1 ;

music:track _:track2 ;

music:track _:track3 ;

music:track _:track4 ;

music:track _:track5 .

_:track1 music:name "High" ;

music:playtime "4:03" .

_:track2 music:name "You’re Beautiful" ;

music:playtime "3:36" .

_:track3 music:name "Wisemen" ;

music:playtime "3:46" .

_:track4 music:name "Goodbye My Lover" ;

music:playtime "4:23" .

_:track5 music:name "Tears And Rain" ;

music:playtime "4:07" .

Listing 3.26: Example data for restoring implicit knowledge

On the other hand, our target ontology serves only as an overlook of CD collections and therefore
stores only the names of CDs and their total play times. It is evident, that a document from the
first ontology contains implicitly all information needed to transform it into the second one. The
total play time of a CD can be easily calculated by aggregating the individual play times of each
track. Keep in mind that part of the information is lost with this transformation, that means a
translation back in the source ontology is not possible. Contrary to the prior example we now
have a varying number of input parameters that cannot all be captured at the same time to pass
them together into a property function. Therefore, we need another means to solve this prob-
lem. After consulting the Jena developers mailing list6, Andy Seaborne, one of the creators of
SPARQL and ARQ, suggested three different possibilities to do this [SH07]. The first alternative
would be to pass the complete CD structure into a property function and use the functionality
of Jena to find the individual play times in the graph, sum them up, and bind the result to a
variable in the query. This way, the whole aggregation is hidden in a property function which
makes it important to give it a descriptive name. The second possibility would be to add a triple

6http://tech.groups.yahoo.com/group/jena-dev/

3.3 Summary of Requirements and Examples 41

with the calculated total play time before the query is executed. We would have to intercept the
data loading process, calculate the total time manually, and add a special triple for the total play
time. The transformation query could then use this extra triple as source for the target property
totalPlaytime and would not need to make calculations itself. This method is essentially the same
as the first with the calculation work moved from query to data loading and preparation time.
The disadvantage of this approach is that we would have to provide a separate extension mech-
anism for data loading to support different kinds of input data. In contrast, the first approach
would only need the already known property functions as extensions. The third way would be
to extend ARQ and implement the SUM aggregation function. In conjunction with the already
implemented GROUP BY function the total playtime could be calculated in the query without the
need of custom property functions. The major drawback of this approach is that the query gets
more complex and we would need to extend ARQ further every time we come across another
kind of aggregation, like calculating an average value. A fourth possibility would be to create a
property function that takes each single play time individually and uses the execution context of
ARQ as a cache for the intermediate aggregation results. Due to the variable number of elements
and the way SPARQL processes queries this approach would be cumbersome to implement and
use. With regard to our requirements, the first approach promises to be the easiest and most
flexible of all the presented possibilities, which is why we will use it and also implemented it
for our current example. Listing 3.27 depicts the code of our property function totalPlaytime. We
first retrieve the active graph containing the CDs from the execution context. Then, we use the
com.hp.hpl.jena.graph.query.QueryHandler class provided by Jena to query for the individual tracks.
Given the structure of our input ontology, we need to find all objects of triples with a given CD as
subject and the track property as predicate. To support multiple CDs per document we pass the
URI of the current CD as a parameter into the function. The ARQ Java method objectsFor looks for
such triples and returns the matching track objects. In a second step, we iterate over the tracks in
the same manner to extract the play times and sum them up. After processing all tracks in this
way, we format the result and bind it to the variable passed as object.

package ch.uzh.ifi.rdftext;

import com.hp.hpl.jena.graph.Graph;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.graph.query.QueryHandler;

import com.hp.hpl.jena.sparql.core.Var;

import com.hp.hpl.jena.sparql.engine.ExecutionContext;

import com.hp.hpl.jena.sparql.engine.QueryIterator;

import com.hp.hpl.jena.sparql.engine.binding.Binding;

import com.hp.hpl.jena.sparql.pfunction.PFLib;

import com.hp.hpl.jena.sparql.pfunction.PFuncSimple;

import com.hp.hpl.jena.util.iterator.ExtendedIterator;

/**

* This class is an ARQ property function. It is an example for a

* function used in a complex mapping. It calculates the total play

* time of a CD from the play times of its single tracks. Every track

* must be attached to the CD subject via a http://www.example.net/

* music#track predicate. Each track is a blank node with a

* http://www.example.net/music#playtime predicate whose object

42 Chapter 3. Requirements for an Ontology Mapping Language

* contains the play time of this track. Those are summed to the total

* play time of a CD.

* @author Matthias Hert

*

*/

public class totalPlaytime extends PFuncSimple {

@Override

public QueryIterator execEvaluated(Binding binding, Node subject,

Node predicate, Node object, ExecutionContext execCxt) {

// get RDF graph

Graph graph = execCxt.getActiveGraph();

// get query handler for this graph

QueryHandler qraphHandler = graph.queryHandler();

int totalMinutes = 0;

int totalSeconds = 0;

// get all tracks of this CD

ExtendedIterator trackIterator = qraphHandler.objectsFor(

subject,

Node.createURI("http://www.example.net/music#track"));

// handle each track separately

while (trackIterator.hasNext()) {

Node track = (Node)trackIterator.next();

// get the play time for each track

ExtendedIterator playtimeIterator = qraphHandler

.objectsFor(track, Node.createURI(

"http://www.example.net/music#playtime"));

while (playtimeIterator.hasNext()) {

Node playtimeNode = (Node)playtimeIterator.next();

String playtime = playtimeNode.getLiteralLexicalForm();

// parse for minutes part

int minutes = Integer.parseInt(playtime.substring(0,

playtime.indexOf(":")));

// parse for seconds part

int seconds = Integer.parseInt(playtime.substring(

playtime.indexOf(":") + 1));

totalMinutes += minutes;

totalSeconds += seconds;

}

}

// calculate total minutes

if (totalSeconds > 59) {

totalMinutes += totalSeconds / 60;

3.3 Summary of Requirements and Examples 43

totalSeconds = totalSeconds % 60;

}

String totalSecondsLit = null;
// prefix single-digit seconds values with a 0

if (totalSeconds < 10) {

totalSecondsLit = "0" + totalSeconds;

}

else {

totalSecondsLit = String.valueOf(totalSeconds);

}

Node result = Node.createLiteral(totalMinutes + ":"

+ totalSecondsLit);

return PFLib.oneResult(binding, Var.alloc(object), result,

execCxt);

}

}

Listing 3.27: Java source code of property function totalPlaytime

Listing 3.28 shows the usage of our totalPlaytime property function. We pass a CD as subject and
an unbound variable as the object. The function gets invoked and calculates the total play time
which it stores afterwards in the passed variable. This value can then be used in the construction
of the target document.

PREFIX cds: <http://www.example.net/cds#>

PREFIX func: <java:ch.uzh.ifi.rdftext.>

PREFIX music: <http://www.example.net/music#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

CONSTRUCT {

?x rdf:type cds:CD ;

cds:name ?name ;

cds:totalPlaytime ?tpt .

}

WHERE {

?x rdf:type music:CD ;

music:name ?name ;

func:totalPlaytime ?tpt .

}

Listing 3.28: Example SPARQL query for calculating implicit total play time

After applying the previously described query on our example data from Listing 3.26, we get the
new document depicted in Listing 3.29. It is expressed in the vocabulary of the target ontology
and contains the results from our custom extension in the property totalPlaytime.

@prefix cds: <http://www.example.net/cds#> .

44 Chapter 3. Requirements for an Ontology Mapping Language

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

music:cd1 rdf:type cds:CD ;

cds:name "Back To Bedlam" ;

cds:totalPlaytime "19:55" .

Listing 3.29: Example results for calculation of total play time

3.3.8 Substitution of Class Types
In the previous cases we only needed to replace the predicates of a triple, subject and object
remained the same or in the case of objects get only converted by property functions. There is
one case where not a conversion of the object, but a substitution is needed. These are class types
expressed in a triple with the rdf:type property. If we transform, for instance, a vCard document
to FOAF, the subjects of the former will have a type of vCard:VCard, but the subjects of the later
need a type of foaf:Person. Therefore, we need the ability to replace the objects of triples that have
rdf:type as its predicate. This simple replacement case may remind the reader of the simple one
to one mapping case described in Section 3.3.1 that also simply replaces one part of the triple.
The difference lies in the replaced part. In the simple one to one mapping, we always replace
the predicate of a triple, but in this case the substitution applies always to the object of a triple.
Therefore, another feature is needed to address this case. For an example of this, take another look
at the previous examples in this section, although never explicitly stated, we used the substitution
of class types in all of those examples.

Chapter 4

Our Approach for an Ontology
Mapping Language

In this chapter, we present our approach for an ontology mapping language. We describe the
syntax of the mapping and show how the individual cases from Section 3.3 are handled. For
every requirement we give an example of how our mapping is translated into a SPARQL query
that performs the forward transformation and likewise describe the generation of the SPARQL
query used for the backward transformation. The chapter is structured as follows: in the first
section we generally introduce the mapping format, then we take a look at the way our mapping
language uses XML Namespaces in the second section. The third section addresses the translation
of RDF documents and covers each case from Section 3.3 in its own subsection.

4.1 General Mapping Format
The mapping is defined in XML with the root element <mappings>. Directly below this root ele-
ment follows a variable number of <namespace> elements and at least one <subject-group>
element. The <namespace> elements are used to define namespace prefixes as described fur-
ther in Section 4.2, while the <subject-group> elements define groups of mappings. Within
such a group every mapped property refers to the same subject. In other words, we create a
subject group for every subject present in a source ontology and are consequently able to list
properties and their mapping separately for each subject. There exist three different kinds of
mappings. First, there is the simple mapping denoted through a <simple-mapping> element
that contains only exactly one <source> and exactly one <target> element. The values of those
elements have to be real properties from the source and target ontology respectively, the use of
property functions is not allowed. However, it is possible to apply conversions with the help
of the XML attributes explained in the Sections 4.3.2 and 4.3.6. The second type of mapping is
called <nested-mapping> and is used if the properties we want to map are nested in the source
or target ontology or both. The third form is the complex mapping represented as the XML el-
ement of the same name. It is used in connection with custom property functions that probably
even need arguments to accomplish their task. These cases are different because they provide a
great deal of flexibility with the downside that it is not possible to reverse these mappings in a
generic way, which means if a reversion is possible and desired, it has to be specified explicitly.
Besides the variable amount of these different mapping elements, a subject group must contain a
<source-type> and a <target-type> element that declare the class type of the subject in the
form of the rdf:type property. Both types are mandatory as they act as the main selection triple in

46 Chapter 4. Our Approach for an Ontology Mapping Language

the generated SPARQL queries. A complete definition in XML Schema of this mapping language
is given in Appendix B.1.

4.2 Namespaces
In RDF as well as in SPARQL queries we can use XML Namespaces to shorten the names of XML
elements. Therefore, we define a prefix that can be used instead of the common part of the ele-
ment URI. During processing of this data the prefix gets substituted back with the original URI
part. In order to provide the same kind of abbreviation in our mapping language, we need the
ability to define namespaces and their prefix as well. Listing 4.1 shows an example of how this
mechanism is implemented in our mapping language. The syntax specifies for every namespace a
<namespace> element with a prefix attribute. That attribute holds the name of the used prefix
and the namespace URI to substitute is stored as the value of the element. Our example defines
two namespaces with the respective prefixes rdf and foaf.

<?xml version="1.0"?>
<mappings>

<namespace prefix="rdf">

http://www.w3.org/1999/02/22-rdf-syntax-ns#

</namespace>

<namespace prefix="foaf">

http://xmlns.com/foaf/0.1/

</namespace>

</mappings>

Listing 4.1: Example mapping document with namespaces

The namespaces defined in this place are not only used to name the entities in the mapping file but
also for naming purposes in the generated SPARQL query. Thereby every <namespace> element
is translated into a PREFIX expression in SPARQL, whereas the name of the prefix is taken from
the value of the prefix attribute in the mapping file and the namespace value from the value of
the XML element. In our example document from Listing 4.1, this yields in the SPARQL fragment
depicted in Listing 4.2.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

Listing 4.2: Example of resulting SPARQL document with namespaces

The forward as well as the backward mapping use the same namespaces and prefixes, therefore
this part is inserted the same way in both queries.

4.3 Translation of RDF Documents
This section addresses the cases defined in Section 3.3 and shows how they are represented and
processed in our mapping. These examples demonstrate each case separately in a simple exam-
ple. A real mapping with multiple cases appearing together would enclose each generated triple
in an OPTIONAL pattern, so that an RDF resource can match even if it contains not all elements
defined in the mapping. Likewise, if a mapping contains more than one subject group, one query

4.3 Translation of RDF Documents 47

is generated for each of them. In order to focus on the essential aspects, we keep the translation
simplified in this section, but we will present a complete and real example in Chapter 7.

4.3.1 Simple One to One Mapping
The simple one to one mapping is represented with a simple mapping as introduced in Section 4.1.
It consists of exactly one <source> and exactly one <target> element and in this case without
attributes. Listing 4.3 shows a fragment of a mapping document with such a mapping. In order to
focus on the actual mapping, only the relevant part of the file is shown in the example. Namespace
definitions and the embedding in a subject group are left out and would need to be added for a
complete and valid mapping document.

...

<simple-mapping>

<source>vCard:FN</source>

<target>foaf:name</target>

</simple-mapping>

...

Listing 4.3: Example mapping file fragment with
simple one to one mapping

Namespace definitions omitted

CONSTRUCT {

?subject foaf:name ?name .

}

WHERE {

?subject vCard:FN ?name .

}

Listing 4.4: Resulting SPARQL fragment with simple
one to one mapping

First, we focus on the generation of the forward mapping from the definition in Listing 4.3. The
<source> element refers to the property from the source ontology we intend to map, therefore its
value is placed in the WHERE clause of the SPARQL query generated for the mapping as shown
in Listing 4.4. The <target> element on the other hand refers to the corresponding property
from the target ontology, which means its value belongs in the CONSTRUCT clause of the query.
In this simple case, we only want to replace the property, the subject and object values remain the
same, which is why we bind those values to variables in the WHERE part and use them unaltered
and in the same position in the CONSTRUCT part.

For the creation of the backward mapping query, all we need to do in this easy case is to swap
the triples in the WHERE and CONSTRUCT clause. In a backward mapping, the value of the
<target> element acts as the source and therefore is placed in the WHERE clause, likewise the
<source> elements describes the new target, which means it belongs in the CONSTRUCT part
of the query.

4.3.2 Untyped to Typed Mapping
In order to support the mapping from untyped to typed literals, we need to add a small extension
to the simple mapping as used in the prior section. In this case, we also map one property onto
another with the distinction that we add a datatype to the object as well. The consequences for
our mapping language are small, we only need to declare what datatype the target has to use.
We do this with an XML attribute named datatype belonging to the <target> element. As
the backward mapping is generated from the same mapping definition, we can specify a datatype
attribute in the <source> element too. This datatype is used if the object of the source property
is also typed and this information needs to be preserved for the backward mapping. Therefore,

48 Chapter 4. Our Approach for an Ontology Mapping Language

we are not only able to add datatypes to untyped literals but also to change already existing ones.
The value of this attribute must be an URI string referencing the datatype to use. Listing 4.5
shows the significant fragment of an example mapping file. The source ontology in this exam-
ple represents birthdays as untyped literals, whereas the target ontology uses the XML Schema
type dateTime which is indicated in the datatype attribute. Additionally, let us assume the syn-
tactical representation of birthdays do not match in the source and target ontology. This means,
we have to convert them with the help of a converter class that is specified with its fully qualified
name in the datatypeConverter attribute. This class provides a method to transform forwards
and backwards between the different syntax forms and it must be on the Java classpath as it is
dynamically loaded during execution.

...

<simple-mapping>

<source>p:birthday</source>

<target

datatype="xsd:dateTime"

datatypeConverter=

"ch.uzh.ifi.bday">

ex:bday

</target>

</simple-mapping>

...

Listing 4.5: Example mapping file fragment with
untyped to typed mapping

Namespace definitions omitted

CONSTRUCT {

?subject ex:bday ?bday .

}

WHERE {

?subject p:birthday ?b .

?b fn:datatype

xsd:dateTime ;

fn:datatypeConverter

"ch.uzh.ifi.bday" ;

fn:addDatatype ?bday .

}

Listing 4.6: Resulting SPARQL fragment with untyped to
typed mapping

The SPARQL query in Listing 4.6 represents the forward mapping and it is generated from the
mapping definition in Listing 4.5. On first sight, it may look confusing that an extension to the
<target> element has an impact on the WHERE clause and not on the CONSTRUCT. The reason
for that lies in the SPARQL grammar which only allows variable bindings in the WHERE clause.
In the CONSTRUCT part, we can only read the values of variables to build new RDF graphs.
Therefore, we need to use property functions that create new bindings in the WHERE part. In
our example, this means that the generated query first binds the object value of the p:birthday
property to a temporary variable ?b. This variable is then used as the subject for our property
functions described in Section 3.3.2 that add a datatype to a literal. As already explained, this
happens in three steps. First, the datatype is set with the datatype property function and the value
from the datatype attribute as object. Then, the converter class is specified with the datatypeCon-
verter property function and the value from the datatypeConverter attribute. At last, the ad-
dDatatype function is called and binds the new typed and converted value to the variable passed
as object. After that, this variable (?bday) can be used in the CONSTRUCT clause to create the
new document expressed in the target vocabulary. The usage of these property functions hap-
pens transparently for the user, so that the mapping file and the resulting RDF document are free
from property functions.

The generation of the backward mapping is not as simple as in the prior case. It depends on
the <source> element and if it has a datatype attribute as well. If so, the generated query is
like the forward query with the predicates of the main triples exchanged and the object of the

4.3 Translation of RDF Documents 49

fn:dataype function is replaced with the corresponding value from the datatype attribute of the
<source> element. However, if the <source> element is untyped and therefore does not fea-
ture a datatype attribute, we need to remove the existing datatype in a backward mapping.
For this, we introduce the property function fn:removeDatatype that acts as a counterpart to the
fn:addDatatype function in the way that it takes the input subject, strips its datatype, and then as-
signs it to the object variable. The source code of this property function is shown in Appendix A.2.
Listing 4.7 shows the backward query for the mapping from Listing 4.5. The predicates of the
main triples are swapped and the datatype converter triple stays the same as each such class
must work for both ways of conversion. As the most important difference is to mention that
fn:datatype is not used and in the last triple of the WHERE clause we use the fn:removeDatatype
property function instead.

Namespace definitions omitted

CONSTRUCT {

?subject p:birthday ?bday .

}

WHERE {

?subject ex:bday ?b .

?b fn:datatypeConverter "ch.uzh.ifi.bday" ;

fn:removeDatatype ?bday .

}

Listing 4.7: Resulting SPARQL fragment with untyped to typed backward mapping

4.3.3 Extracting Nested Data
The simple mapping is not adequate to support nested data, because we need to describe proper-
ties that consist of other properties instead of value objects that can be copied directly. Therefore,
we introduce nested mappings and the concept of containers in our mapping language. There
exist two kinds of containers, one for structured elements in the source and one for the same
in the target ontology. Containers feature a name and an optional type that are represented as
the attributes name and type in the mapping. Every container consists of a variable number
of subelements that are either <source> or <target> elements depending on the kind of con-
tainer. In this example (Listing 4.8), we have nested data in the source ontology, which means we
need a source container that is the container named vCard:N. Our target ontology is flat and there-
fore the <target> elements are listed outside any container before the <source-container>
element. The number of <source> elements must be equal to the number of <target> elements
and they are matched according to the order in that they are listed. In our example, this means the
first <source> element (vCard:Family) is mapped to the first <target> element (foaf:family name)
and the second source (vCard:Given) to the second target (foaf:firstName).

Listing 4.9 shows the generated SPARQL query used for forward translations for this exam-
ple mapping. The two <target> elements map to two elementary triples in the CONSTRUCT
clause. The WHERE part of the query is more complex due to the presence of a source container
in the mapping. Such a container maps onto a main triple with the current subject, the predicate
named by the name attribute of the container, and a variable as object. This variable is bound
to a blank node that connects the property with additional secondary properties. These are the
<source> elements contained in the container and they are each mapped to a triple with the
object from the main triple as subject, the value of the respective <source> element as predi-

50 Chapter 4. Our Approach for an Ontology Mapping Language

...

<nested-mapping>

<target>foaf:family_name</target>

<target>foaf:firstName</target>

<source-container name="vCard:N">

<source>vCard:Family</source>

<source>vCard:Given</source>

</source-container>

</nested-mapping>

...

Listing 4.8: Example mapping file fragment for extracting
nested data

Namespace definitions omitted

CONSTRUCT {

?subject foaf:family_name ?fam ;

foaf:firstName ?first .

}

WHERE {

?subject vCard:N ?n .

?n vCard:Family ?fam ;

vCard:Given ?first .

}

Listing 4.9: Resulting SPARQL fragment for extracting
nested data

cate, and a variable as object. Only these object variables are finally used to build the translated
document, the other ones are solely used to match the structure in the source document.

Although not used in this example, the <source-container> element could have an op-
tional type attribute. This would act as the class type of the connection object and would add
another triple with the connection object as subject, rdf:type as predicate, and the value stated in
the type attribute as the object.

In the generation of the backward query, the roles of the <source> and <target> elements
are reversed. If we closely analyze this situation, we come to the conclusion, that we now have
unnested sources (the original <target> elements) and targets nested in a container (the original
<source> elements). This scenario fits exactly the requirements for the case ’create substructures’
described in the next section. Hence, the backward mapping in this case corresponds to the for-
ward mapping of the next case with inverted sources and targets. We therefore refer the reader to
the next section to get the full details of that query generation.

4.3.4 Create Substructures
In the case of a flat source ontology and a nested target structure, we need the other kind of
container called target container. Its usage is the same as with the source container with the
obvious difference that the subelements are <target> instead of <source> elements. As we see
in Listing 4.10, the unnested <source> elements are listed before the <target-container>
element and they match the enclosed <target> elements in number and position. Of course,
this means that we use a nested mapping again.

This time, the <source> elements are flat and therefore are mapped onto two plain triples
in the WHERE clause for the forward mapping. Both triples consist of the current subject, the
respective predicate, and for each a variable as object that will be used in the CONSTRUCT part.
The target container is mapped similar to the source container in the prior example with the gen-
erated triples appearing now in the CONSTRUCT clause. The container itself is translated into
a triple with the current subject, the name of the container taken from the name attribute, and
a blank node identifier. Although this blank node identifier is always the same in the query,
SPARQL generates a new one for every distinct subject. From this point on, the rest of the gen-
erated triples for this mapping have the blank node as subject. In our example, the container has
a type attribute set that translates into a triple with an rdf:type predicate and the value from the

4.3 Translation of RDF Documents 51

...

<nested-mapping>

<source>

foaf:family_name

</source>

<source>

foaf:firstName

</source>

<target-container name="vc:n"

type="vc:Name">

<target>

vc:family-name

</target>

<target>

vc:given-name

</target>

</target-container>

</nested-mapping>

...

Listing 4.10: Example mapping file fragment for cre-
ating substructures

Namespace definitions omitted

CONSTRUCT {

?subject vc:n _:n .

_:n rdf:type vc:Name ;

vc:family-name ?fam ;

vc:given-name ?first .

}

WHERE {

?subject foaf:family_name ?fam ;

foaf:firstName ?first .

}

Listing 4.11: Resulting SPARQL fragment for creating sub-
structures

type attribute as object. After that, each subelement is mapped to a triple with the same variables
as objects that were bound in the WHERE part. The resulting SPARQL query fragment is depicted
in Listing 4.11.

Inversely to the case described in Section 4.3.3, the generation of the backward query of this
mapping corresponds to the creation of the forward query of the prior case ’extracting nested
data’, again with reversed roles for sources and targets. Therefore, the reader is referred to the
previous section for the details.

4.3.5 Converting Structures
This example, as shown in Listing 4.12, deals with nested structures in both the source and the
target ontology. This translates to a nested mapping with exactly one <source-container>
and one <target-container> element in our mapping. The containers are the same as in the
last two examples, each containing the same number of subelements that get matched in the order
of their appearance. Both containers need one name attribute and can optionally have one type
attribute.

The forward mapping to the query shown in Listing 4.13 is generated the same way like the
respective parts in the previous two examples. The source container is translated into a triple
structure in the WHERE clause as explained in Section 4.3.3 and the target container is trans-
formed into triples of the CONSTRUCT part as described in Section 4.3.4.

The backward mapping query is again generated with reversed roles for the containers as well
as the <source> and <target> elements. This means, the source container acts as the target
container, the sources as targets, and vice versa. Under those premises, the backward query is

52 Chapter 4. Our Approach for an Ontology Mapping Language

...

<nested-mapping>

<source-container name="vc01:N">

<source>vc01:Family</source>

<source>vc01:Given</source>

</source-container>

<target-container name="vc06:n"

type="vc06:Name">

<target>vc06:family-name</target>

<target>vc06:given-name</target>

</target-container>

</nested-mapping>

...

Listing 4.12: Example mapping file fragment for converting
structures

Namespace definitions omitted

CONSTRUCT {

?subject vc06:n _:n .

_:n rdf:type vc06:Name ;

vc06:family-name ?fam ;

vc06:given-name ?first .

}

WHERE {

?subject vc01:N ?n .

?n vc01:Family ?fam ;

vc01:Given ?first .

}

Listing 4.13: Resulting SPARQL fragment for con-
verting structures

generated like its forward counterpart.

4.3.6 Literals to URIs
Mappings belonging to this category are simple mappings with the extension that we need to
convert the object from a literal value into an URI. This means, in addition to the source and tar-
get property, we need to name the Java class responsible for the conversion, so that we can use
the property function defined in Section 3.3.6 to perform the transformation. This information is
stored in the uriConverter attribute of the <target> element. Its value must be the fully qual-
ified name of a Java class that satisfies all requirements defined in Section 3.3.6. In our example
in Listing 4.14, this converter class is ch.uzh.mailto and it must be present on the Java classpath.

...

<simple-mapping>

<source>swrc:email</source>

<target

uriConverter="ch.uzh.mailto">

foaf:mbox

</target>

</simple-mapping>

...

Listing 4.14: Example mapping file fragment for literal to
URI mapping

Namespace definitions omitted

CONSTRUCT {

?subject foaf:mbox ?email .

}

WHERE {

?subject swrc:email ?m .

?m fn:uriConverter

"ch.uzh.mailto" ;

fn:convertURI ?email .

}

Listing 4.15: Resulting SPARQL fragment for literal to
URI mapping

Listing 4.15 depicts the generated SPARQL query for the forward part of this mapping. We

4.3 Translation of RDF Documents 53

notice that the whole transformation of the object happens in the WHERE clause, as this is the
only valid place where we can bind variables to new values. The <source> element is mapped
to a triple in the WHERE part that retrieves the original literal and stores it in a temporary variable
(?m) which acts then as the source for our self-defined property functions. First, a triple is gen-
erated that makes a call to the uriConverter function passing the value from the uriConverter
attribute as object. The subject in this triple is the variable with the literal we want to convert.
This is not absolutely necessary, because the property function only uses the object of the triple,
but it makes the mapping clearer and more readable. In a second step, another triple is generated
that invokes the convertURI property function. This time, the correct subject is needed because the
function uses its value for the conversion and thereafter binds the outcome to the variable passed
as object. The same variable is also used as the object in the only triple of the CONSTRUCT clause
to build the target document.

The property function uriConverter contains methods for both the forward and the backward
conversion of the input, which means this triple is also present in the backward query. Likewise,
the convertURI function is used the same way in both queries as it is build to convert between
literals and URIs depending on the kind of the input as described in more detail in Section 3.3.6.
The only change for the backward query is once again the exchange of the predicates in the main
triples.

4.3.7 Restoring Implicit Knowledge
In this case, we introduce the third kind of mapping: the complex mapping. The requirements
of this case exceed the capabilities of the simple mappings even with the already introduced ex-
tensions. Some kind of nesting is also not given, consequently we cannot use a nested mapping
and thus need the complex mapping. In such a mapping, we can use self-defined property func-
tions with the option of also passing arguments to them. This flexibility comes at the price that
it is no longer possible to reverse the mapping in a generic way. This means, we need to define
the mappings in both directions explicitly. In our mapping language, this is done with the for-
ward mapping for RDF documents enclosed in exactly one <forward-mapping> element and
the backward mapping in at most one <backward-mapping> element, if a backward mapping
is possible and desired.

Our example in Listing 4.16 has a backward mapping and therefore its <complex-mapping>
element consists of one <forward-mapping> element and one <backward-mapping> ele-
ment. Each of them contains two <arg> elements used to pass arguments to the property func-
tion invoked later as well as one <source> and one <target> elements. In both mappings,
the <target> element names the property whose value we want to compute and the <source>
element states the property function to use for that purpose.

Albeit the more complex mapping definition, the generated SPARQL query (Listing 4.17) for
the forward mapping is not that complicated. In the WHERE clause, we first need to get the
objects of all arguments we want to pass, which results in triples with the current subject, the
properties from the <arg> elements, and variables as objects. After all arguments are bound to
variables in this way, we invoke the args property function with a list of the just bound variables.
The last step in the WHERE part is to call the toDuration property function that uses the passed ar-
guments to compute the outcome and binds it to the variable placed as object. The CONSTRUCT
clause is straightforward with only one triple that uses the common subject, the property from the
<target> element in the mapping, and as object the variable that was bound by the toDuration
function.

The backward part of a complex mapping is generated based on the <backward-mapping>
in the same way as the forward mapping. The CONSTRUCT clause contains only one triple
with the predicate listed as the target in the mapping. In the WHERE part, we first bind the

54 Chapter 4. Our Approach for an Ontology Mapping Language

...

<complex-mapping>

<forward-mapping>

<arg>prop:Start_date</arg>

<arg>prop:End_date</arg>

<source>f:toDuration</source>

<target>ex:duration</target>

</forward-mapping>

<backward-mapping>

<arg>ex:start</arg>

<arg>ex:duration</arg>

<source>f:toEndDate</source>

<target>prop:End_date</target>

</backward-mapping>

</complex-mapping>

...

Listing 4.16: Example mapping file fragment for restor-
ing implicit duration knowledge

Namespace definitions omitted

CONSTRUCT {

?subject ex:duration ?duration .

}

WHERE {

?subject prop:Start_date ?start;

prop:End_date ?end ;

fn:args (?start ?end) ;

f:toDuration ?duration .

}

Listing 4.17: Resulting SPARQL fragment for restoring
implicit duration knowledge (forward)

objects matching the predicates from the <args> elements to variables that are then passed as
arguments to the args property function. At last, the function named by the <source> element
is called which computes the result and assigns it to the object variable. Listing 4.18 shows the
resulting query for the backward mapping from Listing 4.16.

Namespace definitions omitted

CONSTRUCT {

?subject prop:End_date ?end .

}

WHERE {

?subject ex:start ?start ;

ex:duration ?duration ;

fn:args (?start ?duration) ;

f:toEnd ?end .

}

Listing 4.18: Resulting SPARQL fragment for restoring implicit duration knowledge (backward)

Needless to say that a backward query can and is only generated if a complex mapping con-
tains a <backward-mapping> element in its definition.

4.3.8 Substitution of Class Types
As identified in Section 3.3.8, this case cannot be handled with one of the other mappings, because
we replace the object and not the predicate of a triple. Additionally, this case is only applied to

4.3 Translation of RDF Documents 55

...

<subject-group>

<source-type>

vCard:VCard

</source-type>

<target-type>

foaf:Person

</target-type>

...

</subject-group>

...

Listing 4.19: Example mapping file fragment for
type substitution

Namespace definitions omitted

CONSTRUCT {

?subject rdf:type foaf:Person .

}

WHERE {

?subject rdf:type vCard:VCard .

}

Listing 4.20: Resulting SPARQL fragment for type substi-
tution

a special kind of triples where the predicate is always known in advance and the same, namely
rdf:type.

Listing 4.19 shows a fragment of a mapping file with the definitions for the source type and
the target type. The types are defined once for every subject group and their definitions are placed
right after the opening tag of a new subject group before any other mappings are defined.

Those type definitions are translated into a SPARQL query for the forward query as depicted
in Listing 4.20. The value of the <source-type> element is placed as the object in a triple in
the WHERE clause of the query. The triple consists of the subject given from the current subject
group and the predicate rdf:type. The value of the <target-type> on the other hand serves as
the object for an identical triple in the CONSTRUCT clause.

In the generation of the backward query, the source and target types reverse their roles. This
leads to a query like in the forward case with the difference that the objects of the rdf:type triples
from the CONSTRUCT and WHERE clauses are exchanged.

Chapter 5

Architecture of the RDF
Transformer

In this chapter, we present the architecture of the RDF Transformer and give an overview of its
usage. We describe the individual components and how they interact with each other to perform
the functionality of transforming RDF data from one ontology into another. Please note that this
chapter covers only a bird’s eye view on the individual components, their detailed structure and
implementation is described in Chapter 6. Further, we highlight the programming interface for
the user with all the possibilities to interact with the RDF Transformer. Figure 5.1 shows this
architecture and overview in a diagram.

The component called RDF Transformer depicted in the center of the figure is the main compo-
nent of the application. It is responsible for controlling and calling the other components during
the process of a transformation. For this purpose, it offers a programming interface to the user,
but in order to fulfill its duty it needs mappings which must be defined and introduced in ad-
vance. The management of those mappings is the task of the Mapping Storage that we inspect
first.

The Mapping Storage component is responsible for all aspects concerning mappings. In a first
step, this includes offering a programming interface for users that enables them to register new
mappings. This operation is labeled as step one ’registerMapping’ in Figure 5.1. For the regis-
tration of a new mapping, a user must submit a mapping definition file as defined in Chapter 4
and Appendix B.1, the namespace URIs of the source and target ontologies, and optionally a JAR
file containing custom property functions, if needed by the mapping. As this JAR file contains
executable code from a possible untrusted third party, it would not be safe to just run the classes
in it. Therefore, we execute such code in a secured environment given by the Java security model
as explained more precisely in Section 6.7. After the mapping storage receives these inputs, it
generates the SPARQL queries that are used for the actual transformation of RDF data. Normally,
this results in a set of queries for both the forward and backward translation. As the generation
of these queries is a time consuming process and needs not to be repeated on every run of the
application, the mapping storage saves these mappings to disk. This also allows the user to first
preload the mapping storage with a series of mappings and then just use the transformer to trans-
late multiple documents. After this digression to the mapping storage, we can now go back and
take a closer look at the RDF Transformer component.

As already stated, the RDF Transformer component is the controller of the whole application.
Its programming interface follows loosely the one of the Model class in the Jena Semantic Web
Framework. This means, it consists of three methods (with some overloaded variants) that deter-
mine the course of the transformation process. These methods are read, transform, and write. Their
roles are explained in the following paragraphs. To start a transformation process the transformer

58 Chapter 5. Architecture of the RDF Transformer

➋ registerOntology

➊ registerMapping

➏ transform

➍ getOntology

➐ getMapping

➒ write

➎ downloadOntology Internet

RDF Transformer

Mapping
Storage

Ontology

RDF data

Transformed
RDF data

Remote
Mapping
Storage

Mapping

➌ read

Ontology
Storage

<Target>

➑ getMapping

Figure 5.1: Overview and architecture of the RDF Transformer

first needs the RDF source data as input. That is obtained with the first of the three methods, the
read function labeled as step three in Figure 5.1. Its responsibility is to read the data from the
given input stream and construct a Jena Model from it. We use a generic input stream as argu-
ment to increase the flexibility of the application as we can apply the same method regardless of
the origin of the input being a file, the memory, or the network. For the syntax, users can use
the same forms supported by the Jena Semantic Web Framework as we use Jena to create the
model. In a next step, the transformer tries to infer more information from the read data with
the help of a reasoner. In order to accomplish this, the reasoner needs the ontology definitions of
the involved vocabularies. The acquisition and management of those is the task of the Ontology
Storage component. This component is similar to the Mapping Storage as it handles every aspect
that has to do with ontologies. The transformer requests the relevant ontology definitions from
the ontology storage (shown in Figure 5.1 as step four ’getOntology’) and if the ontology could be
received, it uses its definition to apply the reasoner to the source data. Typically, the result of this
operation contains more data, whereof the type information is at most importance to us, because
it is later used as the main selection criterion in the transformation. Before we continue with the
description of the RDF Transformer component, let us examine the Ontology Storage component a
little bit closer.

The main function of the Ontology Storage component is to provide and store ontology defini-
tions. It can obtain those on two different ways. The first and mostly preferred way is to let the

59

ontology storage download the ontology file automatically from its namespace URI (see step five
in Figure 5.1). It belongs to the best practices for publishing RDF vocabularies that its ontology
definition can be obtained this way [MBS08] and most ontology designers adhere to this. If the
automatic download for an ontology definition is not possible or not desired, there is a second
way of ontology registration. Users can manually register ontologies prior to the reading of the
input data via the ’registerOntology’ operation labeled as step two in Figure 5.1. In this case, the
user must submit an input stream to the ontology definition that gets read into the application.
After an ontology definition is downloaded from the Internet or read from an input stream, it
is stored on disk so that it can be used in further runs of the application, without the need for
registering and obtaining it again.

After the RDF source data is loaded into the transformer and the reasoning is completed, the
application is ready to transform this data into any target ontology, if a suitable mapping is avail-
able. A transformation is triggered with a call by the user to the transform operation labeled as
step six in Figure 5.1, which takes the desired target ontology as argument. Before it can request
mappings from the mapping storage, it needs to determine which ontologies are actually used
in the source data. To do this, it analyzes the source data and extracts every namespace used
which usually leads to a whole list of source ontologies. For each namespace URI from this list
and the user submitted target ontology, the transformer queries the mapping storage for an ap-
plicable mapping (step seven in Figure 5.1). If no match is made on the local mapping storage,
the Mapping Storage has the possibility to query remote mapping storages, which is depicted as
step eight in Figure 5.1. There can be an arbitrary number of such remote storages and they are
queried one after another until an appropriate mapping is found or there are no remote mapping
storages left. In that case, a transformation of this source ontology is not possible with the current
mappings available and it is continued with the next source-target pair. The addresses of these
remote mapping storages are defined in the configuration file (described in Section 6.7) of the
RDF Transformer. It can contain no entries at all, in which case the querying of remote mapping
storages is disabled or if it contains entries, they are called in the order they appear in the file.
If a matching mapping is retrieved from a remote mapping storage, it is cached locally to serve
further request of the same kind.

The Remote Mapping Storages are self-contained servers on the Web that hold mappings for
RDF Transformers. They cannot create the mapping queries themselves, but they offer mappings
generated in advance by one RDF Transformer to others. It is also possible to add new (previously
generated) mappings to the remote mapping storages at runtime. These servers are queried over
HTTP and return the mapping as a ZIP file containing queries and optional property function
code in a HTTP response to the caller.

Every matching mapping that is found, locally or remote, is applied on the source data and
the results are continuously merged into one combined model that in the end constitutes as the
final result. This result is deposited in the RDF Transformer until the user makes a call to the
write operation that enables him to retrieve the result model (step nine in Figure 5.1). This write
method expects two arguments: an output stream to write to and a syntax form for the output.
The use of a generic output stream permits like in the read operation a great flexibility as one
single method can be used to write to files, memory, or the network. In the same way, every
syntax form supported by the Jena Semantic Web Framework can be used in the write function as
the actual writing is again delegated to Jena.

At this time of execution, the original source data and the transformed target data are still
stored in the RDF Transformer. This implies that we can retrieve the target data again without the
need to transform the source data anew. We can simply call the write method again, even with
a different value for the syntax form argument. Likewise, we can transform the source data into
other target data without the need to repeat the reading and reasoning of the input, but note that
in this case the previously transformed data is overwritten. Of course, it is also possible to read

60 Chapter 5. Architecture of the RDF Transformer

new source data and start over with a new transformation.

Chapter 6

Implementation of the RDF
Transformer

In the last chapter, we presented an overview of the RDF Transformer, its components, and how
they work together. In this chapter, we focus on the individual components and their implemen-
tation. For that purpose, we use the same segmentation of components as already identified in
Chapter 5, namely RDF Transformer, Mapping Storage, Remote Mapping Storage, Ontology Storage,
and in addition the SPARQL Extensions that were already shown in parts in Section 3.3, as well as
the configuration file and security policy.

6.1 Package Overview
Figure 6.1 shows an overview of all packages composing the RDF Transformer. Each package is
addressed in its own section in the remainder of this chapter.

6.2 RDF Transformer
The central class of the RDF Transformer component is the class of the same name. It provides
the programming interface for this module to the user and controls the action of the other classes.
We will first introduce these other classes and explain afterwards how the RDFTransformer class
makes use of them. All classes belonging to this component are depicted in the class diagram in
Figure 6.2.

TestConsole

The RDF Transformer is not intended to be used as a standalone application but as a library linked
into other programs, therefore it would normally not provide a user interface for direct interac-
tion. For testing purposes, we created a class called TestConsole that provides a simple command
line interface for the RDF Transformer that enables us to test every aspect of the transformer
without the need of embedding it into a full program. Therefore, this is an executable class that
reads a set of arguments from the command line, analyzes them, and finally calls the appropriate
methods of the RDF Transformer. The syntax for these command line arguments is described in
Appendix C.1.

62 Chapter 6. Implementation of the RDF Transformer

handler

SimpleMappingExtensions

ComplexMappingHandler

HandlerBase

SimpleMappingHandler

NestedMappingHandler

SubjectGroupHandler

NamespaceHandler

Handler

ElementNumberException

mappingstorage

handler

FatalXPathException

QueryBuilder

MappingStorage

Mapping

MappingElement

ontologystorage

OntologyElement

OntologyStorage

rdftransformer

TestConsole

XmlUtils

ConfigReader

ModelReader

QueryExecutor

FatalIOException

RDFTransformer

FatalXmlException

SourceAnalyzer

sparqlext

ArgumentSizeException

uriConverter

tel

mailto

addDatatype

IDatatypeConverter

convertURI

args

URIConverterBase

datatype

http

datatypeConverter

removeDatatype

DatatypeConverterBase

ClassLoadingException

IURIConverter

Figure 6.1: Package overview of the RDF Transformer

ConfigReader

The ConfigReader class is used as the central access point to the configuration of the whole applica-
tion. It is responsible for reading the configuration file described in Section 6.7, storing the settings
internally, and providing accessor methods to retrieve them. Every other part of the transformer
uses this class if it needs the value of a configuration option. This decreases the access time as not
every module needs to read the configuration file from disk itself and it enables us to control all
application settings in one location. Hence, this class is implemented as a Singleton to ensure that
only exactly one instance exists at all time.

ModelReader

Before we can start a transformation, the RDF Transformer needs input data. The reading of this
data falls under the responsibility of the ModelReader class and more precisely its public, static read
method. It can read data from a variety of sources as it takes a generic input stream as argument
for this purpose. Likewise, it supports for this input data every syntax known to the Jena Semantic
Web Framework trough its third argument. With the second argument, it is possible to specify a
base URI used for converting relative URIs to absolute ones in the input data. The ModelReader
class uses these arguments in conjunction with Jena to read the RDF data in the given syntax
from the input stream and to construct a Jena model containing the source data. In a next step,
it tries to enlarge this data with inferred information generated with the Pellet1 reasoner. For

1http://pellet.owldl.com

6.2 RDF Transformer 63

ModelReader

log

excludes

read

downloadOntology

SourceAnalyzer

log

stdNamespaces

getNamespaces

RuntimeException

FatalXmlException

serialVersionUID

«create»

FatalXmlException

ConfigReader

log

configReader

«create»

ConfigReader

getInstance

excludeOntologies

remoteStorages

ontologyDir

mappingDir

XmlUtils

log

xpath

builder

defaultEncoding

getXMLDocument

getValidatingXMLDocument

getXMLDocument

queryDocument

readStream

readStream

getXPath

getXMLDocumentBuilder

getValidatingXMLDocumentBuilder

RuntimeException

FatalIOException

serialVersionUID

«create»

FatalIOException

RDFTransformer

log

defaultSyntax

sourceModel

transModel

mappingStorage

transform

read

read

write

write

initLogger

QueryExecutor

log

executeQueries

TestConsole

main

Figure 6.2: Class diagram of the RDF Transformer component

this, we first need to know what ontologies are used in the source data in order to obtain the
right ontology definitions. Therefore, the source data is examined by the SourceAnalyzer class
that determines the ontologies used. That class is described in the following section. After the
ModelReader has a list of used ontologies, it queries the ontology storage for each of its definitions.
If a definition is found that way, it is passed together with the source data to the reasoner. If no
definition is available locally the ModelReader tries to download the ontology definition from the
Web with the namespace URI as location address, if it is not on the list of ontologies to exclude
from downloading. This list is defined in the configuration file and its purpose is explained in
Section 6.7. After a successful download, the definition is added to the local ontology storage and
used with Pellet or else no reasoning is done for this source ontology. These steps are repeated for
every entry in the list of ontologies and the inferred models are all merged. Finally, this enriched
model is returned to the caller and used as the source data.

64 Chapter 6. Implementation of the RDF Transformer

SourceAnalyzer

The job of the SourceAnalyzer class is simple, therefore it is a rather short class with only one
static method: getNamespaces. It takes a Jena model as argument and uses methods from the
Jena framework to determine the namespace URIs of all ontologies used in that source model.
From the resulting list it removes the standard namespaces found in every or most RDF resources
that need no transformation. Currently, those are the namespaces of OWL, RDF, RDF Schema
(RDFS), and XML Schema Datatypes (XSD). The remaining ontology URIs represent candidates
for a mapping and are thus returned as a list.

QueryExecutor

The QueryExecutor class is applied much later than the classes described previously. After the
source data is read and a matching mapping is found, the data (in the form of a Jena model)
and the transformation queries from the mapping are passed to the executeQueries method of this
class. First of all, the Jena model is converted into an ARQ DataSet object as the query execution
classes operate with such objects and not with models. Thereafter, each of the queries is executed
separately on the dataset through the ARQ SPARQL engine. The results are continuously merged
and after the last query is processed returned to the caller.

XmlUtils

As its name already suggests, the XmlUtils class consists of a series of static helper methods for
XML processing. Our mapping definition files are expressed in XML which consequently creates
the need of such processing methods. There are three kinds of methods publicly available in this
class with the first being two readStream methods that can be used for reading XML data from
an input stream into a string. One takes an input stream and a string indicating the encoding of
the stream as arguments, whereas the other omits the encoding parameter and uses the default
encoding (UTF-8) instead. The second kind of methods is used for constructing DOM Document
objects either from XML strings or from single DOM nodes. These are needed because most
methods handling XML data expect this data as such an object, but we read and process them
as strings. The method getXMLDocument converts a string to a DOM Document objects without
validating the XML input. The getValidatingXMLDocument method does the same with validation
against an XML Schema whose filename must also be submitted to the method. The schema file
must be present in the ’schemas’ subdirectory of the application directory. There exists a second
getXMLDocument method that expects a DOM Node object as argument and converts it, including
all child nodes, into a full DOM Document. The third kind of methods is the queryDocument
method that allows the caller to evaluate an XPath expression on a given DOM Document. The
purpose of this is explained in more detail in Section 6.3, but let us just say here that XPath is used
to process the mapping definition files.

FatalXmlException & FatalIOException

These two exceptions represent severe error conditions in our application. The FatalXmlException
indicates either that the XML processing subsystem could not be loaded or that the parsing of an
XML resource failed, which should not happen during normal operation and therefore marks a
fatal exception. The FatalIOException is thrown if one of the required files on disk is not found or
cannot be read, which prevents the application from successfully performing.

6.3 Mapping Storage 65

RDFTransformer

The main function of the RDFTransformer class is to provide a programming interface to the user
and to control the course of the application. As already described in Chapter 5, the programming
interface consists of the three methods read, transform, and write.

The read method takes an input stream, the base URI, and a string with the name of the syntax
as arguments. There is also an overloaded version to support calls that do not specify a syntax, in
which case the default syntax RDF/XML is expected. The methods delegate the read request to
the ModelReader class and store the result in an internal variable.

The transform method expects a namespace URI of the desired target ontology as its argument.
It first uses the SourceAnalyzer class to get the ontologies used in the source data and then queries
the mapping storage for every combination of source and target ontology. If a mapping is found, it
is applied by an instance of the QueryExecutor class or else that source is ignored. Each application
of a mapping results in a transformed model that is merged successively into one final model.
This model is also stored internally in the RDFTransformer class for further use.

The write method is the counterpart of read as it writes the result in the target ontology to an
output stream with a syntax requested by the used or the default RDF/XML in the case of the
overloaded version of this method. It uses functionality of the Jena Framework for the actual
serialization of the model and thereby supports again the same syntaxes as Jena.

6.3 Mapping Storage
The Mapping Storage component consists of the MappingStorage class itself that acts as the pro-
gramming interface of this component and its supporting classes. Those are the handler classes
that process a mapping definition file and the QueryBuilder class that assembles the final trans-
formation queries from individual parts generated by the handlers. As these handler classes are
numerous and form their own package, we present them in their own section right after this one,
but first we present the supporting classes and the main class MappingStorage as depicted in the
class diagram in Figure 6.3.

QueryBuilder & Mapping

The task of the QueryBuilder class is to generate the transformation queries from a given mapping
definition. It employs the handler classes described in Section 6.3.1 to generate the query frag-
ments and assembles them to full queries. First, it uses the XmlUtils class to convert the string
representation of the XML mapping file into a DOM Document object as described in Section 6.2.
This Document object is then passed to an instance of the NamespaceHandler class that extracts its
namespace definitions. Thereafter, the subject groups are separated and each of them is handled
individually by a SubjectGroupHandler that performs the further processing. All handlers generate
query fragments that are collected in two instances of the Mapping class (one for the forward and
one for the backward mapping) that the QueryBuilder holds. After the handlers fully processed
the mapping definition, the assembleQuery method builds one final transformation query for ev-
ery subject group and mapping direction. Those are then stored in the class as well and can be
retrieved through the respective accessor methods.

FatalXPathException

The FatalXPathException is thrown if one of the predefined XPath expressions fails to evaluate.
Normally, this would only happen with malformed XPath code and since our expressions are

66 Chapter 6. Implementation of the RDF Transformer

QueryBuilder

log

forwardMapping

backwardMapping

namespacePart

createQueries

assembleQuery

prefixMap

forwardQueries

backwardQueries

MappingElement

«create»

MappingElement

prefixMap

fileName

queries

source

target

jarName

MappingStorage

log

mappingDir

extensionDir

mappingStorage

remoteMappingStorages

mappings

queryBuilder

«create»

MappingStorage

getInstance

registerMapping

registerMapping

removeMapping

getMapping

serializeStorage

loadMapping

extractJar

saveMapping

deleteMapping

RuntimeException

FatalXPathException

serialVersionUID

«create»

FatalXPathException

Mapping

addConstructFragment

addWhereFragment

addConstructFragments

addWhereFragments

reset

constructFragments

whereFragments

Figure 6.3: Class diagram of the Mapping Storage component

fixed this should not happen and would be a severe error situation indicated by this fatal excep-
tion.

MappingStorage & MappingElement

The mapping storage needs exclusive access to the mappings and therefore only one instance
may exists at a time. To ensure this, the MappingStorage class is implemented according to the
Singleton design pattern.

The responsibilities of the mapping storage are to administer mappings and to create new
ones. When the MappingStorage instance is created, it loads a directory file into memory that
contains the information on which mappings are already generated and available from the local
file system. With this knowledge, it fills a hash map so that the actual mappings can be retrieved
from disk on demand. The hash map uses the namespace URIs of the source and target ontolgies
from the respective mapping as key and an instance of the class MappingElement as element. That
class serves as an encapsulation with accessor methods for all the parts of a mapping. Those
are a map with the prefixes and namespaces used in the mapping, the name of the file on disk
the mapping is stored, the transformation queries, the namespaces URIs of the source and target
ontology, and optionally the name of a JAR file that contains custom ARQ property functions
used for this mapping.

The MappingStorage class offers the method getMapping to retrieve a previously registered
mapping. For that, it needs the namespace URIs of the source and target ontology to identify
the mapping. It then checks if such a mapping is available locally and returns the matching

6.3 Mapping Storage 67

MappingElement object on success. It is possible that the mapping must first be loaded from disk
which is done by the loadMapping method. If no mapping is found and there are remote map-
ping storage servers defined in the configuration file, it continues its search on them, one after
the other. For that, it establishes a connection to each server and requests the mapping until it is
found or the last server returns a negative response. If a mapping is found remotely, it is added
to the local storage, so that the next request for this mapping can be satisfied locally, and finally
a MappingElement object from this mapping is returned to the caller. Adding a remote mapping
to the local storage happens in three steps. Firstly, the mapping must be written to a file in the
mapping directory on disk. This is done with the saveMapping method that saves the contents
of the MappingElement object into a ZIP file. Secondly, the mapping directory file on disk must
be updated which is done by the serializeStorage method that serializes the hash map to an XML
file. Thirdly, if the mapping contains a JAR file with custom property functions, those must be
extracted to the extension functions directory. The extractJar method is used for this and ensures
thereby that those methods are on the classpath and can be found during query execution. Else, if
no mapping could be found, the getMapping method reports this to the caller with a return value
of ’null’.

Furthermore, there are two methods called registerMapping to register new mappings based
on a mapping definition file. The only difference between the two methods is that one accepts a
parameter that specifies if the generation of the backward mapping is omitted or not. This can
be useful if users want to declare both mapping directions themselves and therefore need no au-
tomatically generated backward mapping. The method without this parameter always generates
both mappings and is considered the default. Both methods take an input stream to a mapping
definition, the namespace URIs of the source and target ontologies of this mapping, and option-
ally an input stream to a JAR file containing additional property functions. The XmlUtils class is
used to read the stream into a string that is then passed to the QueryBuilder class for query gen-
eration. After the QueryBuilder finished its work, the resulting queries are retrieved and added
to a new MappingElement object, which then joins the other mappings with the source and tar-
get namespace URIs as identifier. After that, the newly created mapping is saved to disk by
the saveMapping method and the storage is serialized to the directory file by the serializeStorage
method. If a JAR file was submitted, it is extracted to the extension directory which is done with
the extractJar method.

Besides the registering of new mappings, it is also possible to remove existing ones with the
removeMapping method. The call of this method removes the mapping from the hash map in
memory and deletes the mapping file on disk through the deleteMapping method.

6.3.1 Handlers

The classes in this package are responsible for decomposing a mapping definition into its different
parts and transfer them into the proper query fragments. The handlers mirror the structure of the
mapping definition format as for every mapping element exists a handler class. This means, there
are handler classes for the namespace part, subject groups, and all three kinds of mappings. The
handlers are also nested like in a definition file, that is the simple, nested, and complex mapping
handlers are controlled by the subject group handler and only that and the namespace handler
are managed by the QueryBuilder class from the mapping storage package. We use the XML Path
Language (XPath)2 for the actual segmentation of the individual parts. These are then passed to
the respective handlers that process them again with the help of XPath expressions and create the
equivalent query fragments. Figure 6.4 shows all classes and interfaces from this package.

2http://www.w3.org/TR/xpath20/

68 Chapter 6. Implementation of the RDF Transformer

HandlerBase

forwardMapping

backwardMapping

getForwardConstructFragments

getForwardWhereFragments

getBackwardConstructFragments

getBackwardWhereFragments

reset

process

SimpleMappingHandler

log

process

SimpleMappingExtensions

handleAddDatatype

handleRemoveDatatype

reset

whereFragments

NestedMappingHandler

log

subjectCounter

objectCounter

tempCounter

process

handleSourceContainerTargetsCase

handleTargetContainerSourcesCase

handleSourceContainerTargetContainerCase

handleSimpleMappingExtensions

SubjectGroupHandler

log

process

ComplexMappingHandler

log

subjectCounter

objectCounter

process

handleMapping

RuntimeException

ElementNumberException

serialVersionUID

«create»

ElementNumberException

NamespaceHandler

log

namespacePart

process

reset

prefixMap

«interface»

Handler

process
reset

Figure 6.4: Class diagram of the Mapping Storage handlers

Handler

The Handler interface defines the basic operations that every handler class must support. There-
fore, every handler class implements this interface directly or indirectly by extending a class that
implements the interface. One of those basic operations is the process method that performs the
analysis of the mapping definition part and then generates the adequate query fragments. The
method takes a part of a mapping definition as a DOM Document and two integers. Both num-
bers are used for the unique naming of the variables in the generated triples of the query. The
first is used for subject names and the second for objects. The other method is reset, it clears the
internal state of a handler instance in order to make it reusable.

HandlerBase

HandlerBase is an abstract class that provides common functionality used by all handlers that
process subject groups, simple, nested, or complex mappings. It contains two instances of the
Mapping class from the mapping storage component, one for the forward and one for the back-
ward mapping. These objects are used to cache the generated query fragments and therefore the
HandlerBase class contains getter methods to retrieve those. In addition, this class provides an
implementation for the reset method that simply clears the Mapping objects. Of course, the process
method is not implemented as each mapping needs its own implementation and a default one
would not make any sense.

6.3 Mapping Storage 69

NamespaceHandler

The NamespaceHandler class implements the Handler interface directly as it has no use for the
functions defined in the HandlerBase class. It is used to process the namespace definitions in the
mapping. As already stated in the introduction of this chapter, it uses XPath for the processing,
more precisely it calls the XmlUtil.queryDocument method with the mapping document and the
XPath expression ’/mappings/namespace’ to extract the namespace definitions. This results in a list
of namespace nodes that are further split into the prefix and namespace URI part. These are
finally used to create a query fragment representing a SPARQL namespace definition as shown in
the example in Section 4.2.

SubjectGroupHandler

The SubjectGroupHandler class extends the HandlerBase class and adds its implementation of the
process method. XPath expressions are used again to further dissect the input document. We
remind the reader that every subject group must contain a source and target type and can contain
simple, nested, and complex mappings. The types are treated by the SubjectGroupHandler itself,
but the mappings are only separated and delegated to their respective handlers.

SimpleMappingHandler

As its name reveals, the SimpleMappingHandler class is responsible for processing simple map-
pings. Its process method is called from the SubjectGroupHandler and is only passed the part of
the source document with one simple mapping at once. Consequently, the SubjectGroupHandler
must call this method multiple times in a mapping with more than one <simple-mapping> el-
ement. However, this approach simplifies the task of the handler as it only needs to look for the
<source> and <target> elements and transfer them into query fragments. A simple mapping
generates two fragments if no extensions are used, one triple in the CONSTRUCT clause derived
from the <target> element and one triple in the WHERE clause based on the <source> el-
ement. The triple in the WHERE part is enclosed in an OPTIONAL pattern as not every source
document may contain it, but matches otherwise. If the simple mapping contains extensions, they
are handled by the helper class SimpleMappingExtensions described in the next section.

SimpleMappingExtensions

The SimpleMappingExtensions is a helper class used to process the simple mapping extensions as
described in Sections 4.3.2 and 4.3.6. It does not implement the Handler interface and is thus not
a real handler class. It justifies its existence as a separate class because the simple mapping ex-
tensions can be used both in simple and nested mappings. Therefore, we implemented this class
with two generic handling methods which can be used by the SimpleMappingHandler as well as the
NestedMappingHandler class. The two methods are called handleAddDatatype and handleRemove-
Datatype. They are practically identical with the sole difference that the first is used for adding
a datatype with fn:addDatatype and the second variant is used for remove the datatype with the
fn:removeDatatype property function as described in Section 4.3.2. The job of both methods lies
in generating the query fragments of the WHERE clause that are needed for the extensions and
each takes the same five arguments. The first three are strings called datatype, datatypeConverter,
and uriConverter. They contain the values from the corresponding attributes of the <source>
or <target> elements and can be ’null’ if the respective attribute is not set, in which case they
are ignored. The forth argument, objectCounter, is the same as in the process method of the han-
dlers and is used to name the variables in the query. The fifth parameter is called subjectName
and indicates the name of the subject variable used in the generated triples. This is due to the

70 Chapter 6. Implementation of the RDF Transformer

generic nature of this class as the SimpleMappingHandler class produces top-level triples and the
NestedMappingHandler nested ones that therefore use different names for their subjects. The gen-
erated query fragments are stored inside the class and can be retrieved by the caller with the
getWhereFragments method.

There are three different simple mapping extensions: datatype, datatypeConverter, and uriCon-
verter. Obviously, it is possible to use each one individually, but it is also possible to combine
the datatype attribute with one of the two others. A combination of the two converter extensions
or the use of all three would make no sense as every syntax conversion possible in a datatype
converter can as well be done in an URI converter class.

NestedMappingHandler

Nested mappings are processed by the NestedMappingHandler class. It operates similar to the
SimpleMappingHandler as it only receives the document part of one nested mapping at once. It an-
alyzes the mapping to determine which of the three subcases introduced in Sections 4.3.3 to 4.3.5
it represents and calls the relevant method. Those methods operate all similar and generate query
fragments for the involved containers and, like in a simple mapping, for the sources and targets.
The exact details of those three cases can be found in the respective sections of Chapter 4. Nested
mappings may also contain simple mapping extensions that are handled by the same helper class
(SimpleMappingExtensions) as described in the prior section.

ComplexMappingHandler

Complex mappings can consist of two individual mappings, one for the forward and one for
the backward direction. The process method of the ComplexMappingHandler first divides those
and processes each one separately. As both of those mappings are structured identically, they
are handled by just one method: handleMapping. This method first looks for <args> elements
that get transferred into query fragments as shown in Section 4.3.7. In a second step, it uses the
<target> element to build a normal triple for the CONSTRUCT clause. The <source> element
normally contains a property function, but this results also in just a triple for the WHERE part of
the query.

ElementNumberException

The ElementNumberException is a RuntimeException and is thrown if the number of <source>
and <target> elements in a nested mapping do not match. This is a requirement that cannot be
enforced by the XML Schema and therefore needs to be checked at runtime.

6.4 Remote Mapping Storage
The Remote Mapping Storage shares its functionality with the local Mapping Storage. They serve
the same purpose in managing mappings and providing them on request. The difference is that
the Remote Mapping Storage does not support generating new mappings from mapping definition
files and that the remote version is an independent server process separated from the rest of the
RDF Transformer. It is implemented with the Apache XML-RPC3 library that provides an imple-
mentation of the XML-RPC protocol. Thereby, the communication between the RDF Transformer
client and the Remote Mapping Storage server is based on remote procedure calls that use XML
over HTTP. For more details, see the following sections and the Apache XML-RPC website.

3http://ws.apache.org/xmlrpc/

6.4 Remote Mapping Storage 71

The Remote Mapping Storage is intended to be set up on a server connected to the Internet or
the local network for serving its mappings to several RDF Transformer instances. The classes that
compose the Remote Mapping Storage are presented in Figure 6.5.

MappingServer

log

port

main

MappingElement

«create»

MappingElement

source

file

target

RemoteMappingStorage

log

mappingDir

mappings

«create»

RemoteMappingStorage

processMappingFile

getMapping

importMapping

importMappings

copyFile

serializeStorage

ZipFileFilter

XmlUtils

xpath

builder

defaultEncoding

getXMLDocument

queryDocument

readStream

readStream

getXPath

getXMLDocumentBuilder

ConfigReader

log

configReader

«create»

ConfigReader

getInstance

mappingDir

port

LocalConsole

main

Figure 6.5: Class diagram of the Remote Mapping Storage component

LocalConsole

The LocalConsole is an interface for the local administration of a Remote Mapping Storage server. It
can be used to import a single mapping available as a ZIP file or a complete directory with map-
pings and a directory file. These mappings are added to the already existent mappings at runtime
and can be used instantly afterwards. Its command line syntax is explained in Appendix C.2.

ConfigReader

Due to the fact that the remote mapping storage is an independent application, it has its own
configuration file and therefore needs its own implementation of the ConfigReader class to access
these settings. This class is implemented like the corresponding class described in Section 6.2
with the difference that its configuration file is not an XML, but only a simple Java properties
file called ’config.properties’. An example of such a file with commented settings is presented in
Appendix D.1.

MappingServer

The MappingServer class is the start class of the Remote Mapping Storage server. It first retrieves
the port setting from the ConfigReader instance. After that, a new Apache XML-RPC web server
is started that listens on this port and the request handlers are registered. Those are defined
in the file ’Handler.properties’ whose format is defined by Apache and therefore not part of this
work. Subsequently the Remote Mapping Storage server is ready to accept requests from RDF
Transformers.

72 Chapter 6. Implementation of the RDF Transformer

RemoteMappingStorage & MappingElement

The RemoteMappingStorage class contains a hash map with all known mappings. This map has
the namespace URIs of the source and target ontologies as keys and instances of the class Map-
pingElement as value elements. That class is not equal to the class with the same name of the local
Mapping Storage. Indeed, they share their function as a data structure for mappings, but as the
Remote Mapping Storage does only deliver mappings and not execute them, the contents of the
class differ. This MappingElement class only contains the namespace URIs of the source and target
ontology and the name of the ZIP file embodying the real mapping.

The importMapping and importMappings methods offer the possibility to import existing map-
pings from the local file system as already explained previously in this section. Furthermore,
it is self-evident that this storage needs an equal mechanism to serialize the mapping directory
if mappings are imported. This is provided by the serializeStorage method that is implemented
like its counterpart in the local MappingStorage class. The main difference to that class lies in the
getMapping method. Instead of returning an instance of the MappingElement, it returns the ZIP file
containing the mapping. Thereto, the file is read from disk into a byte array in memory and send
over the HTTP connection to the calling RDF Transformer, where it is locally registered and then
applied. By means of this technique, the RDF Transformer receives the complete mapping and
does not need to query the Remote Mapping Storage again for the same mapping.

XmlUtils

The XmlUtils class is a reduced version of the class with the same name from the RDF Transformer
component. As the Remote Mapping Storage component does not process mapping definition files,
all methods only used for that purpose were removed. For the implementation notes on the
remaining methods consult Section 6.2.

6.5 Ontology Storage

The Ontology Storage component is responsible for the management of all ontology definitions
that are used by the reasoner in the ModelReader class. Figure 6.6 shows that it consists of only
two classes, the main class OntologyStorage and the supporting class OntologyElement. This class
is comparable with the MappingElement class from the mapping storage package as it acts as the
value element in the hash map that holds the ontologies and it is a data structure containing all
the needed information about an ontology. In this case, this information is the ontology itself and
the filename on disk where it is saved to.

The main class OntologyStorage is the equivalence of the MappingStorage class with the excep-
tion that ontologies cannot be generated so that it only stores them. The class is also implemented
as a Singleton since only one instance must exist at any time. It supports three possibilities of
adding ontologies to the storage, expressed as three overloaded methods called registerOntol-
ogy. Those are: adding an ontology from an existing Jena model, reading it from a generic input
stream, or letting it be downloaded automatically from the Web by its namespace URI. In all three
cases, the ontology is saved to disk in a special location and a directory file is written there too.
The mechanisms for those operations are equal to the ones used in the MappingStorage class and
the reader is referred to that description in Section 6.3. Likewise, there exists methods to remove
ontologies permanently (removeOntology & deleteOntology) and to retrieve existing ones (getOntol-
ogy) that are implemented as their mapping storage counterparts.

6.6 SPARQL Extensions 73

OntologyStorage

log

ontologyDir

ontologyStorage

ontologies

«create»

OntologyStorage

getInstance

registerOntology

registerOntolog

registerOntology

removeOntology

getOntology

contains

serializeStorage

loadOntology

saveOntology

deleteOntology

OntologyElement

«create»

OntologyElement

fileName

ontology

Figure 6.6: Class diagram of the Ontology Storage component

6.6 SPARQL Extensions
Figure 6.7 shows the standard set of extensions and ARQ property functions delivered with the
RDF Transformer. The implementation of most classes is explained in Chapter 3 which leaves us
here with the description of the overall interrelation and some notes on the implementation.

URI Converter Classes

The URI converter class hierarchy is depicted in the upper left corner of Figure 6.7. Every such
class must implement the IURIConverter interface either directly or by extending the URIConvert-
erBase base class. The interface defines the two methods used for converting between literals and
URIs. The base class provides a default implementation for both of these methods that return the
input unchanged. Based on this class or the interface, we can define a converter class for every
imaginable URI scheme as shown with the examples of the mailto, tel, and http classes.

Datatype Converter Classes

In the upper right corner of Figure 6.7 stands the class hierarchy for the datatype converter classes.
It is implemented similar to the URI converters with an interface defining a method for forward
and backward transformation. This method performs the conversion between the two formats
based on the form of the input. There is also a base class providing a default implementation that
returns the input unchanged. Actual classes only need to implement the interface or extend the
base class in order to be approved as datatype converter class.

ARQ Property Functions

The lower right corner of Figure 6.7 consists of a series of ARQ property functions that extend the
PFuncSimple or PFuncSimpleAndList class provided by ARQ. They all override the execEvaluated

74 Chapter 6. Implementation of the RDF Transformer

«interface»

IURIConverter

toURI
toLiteral

URIConverterBase

toURI

toLiteral

DatatypeConverterBase

convert

«interface»

IDatatypeConverter

convert

PFuncSimple

addDatatype

log

execEvaluated

PFuncSimple

datatype

execEvaluated

PFuncSimple

removeDatatype

execEvaluated

RuntimeException

ClassLoadingException

serialVersionUID

«create»

ClassLoadingException

RuntimeException

ArgumentSizeException

serialVersionUID

«create»

ArgumentSizeException

httpmailto

toURI

toLiteral

tel

toURI

toLiteral

PFuncSimple

convertURI

execEvaluated

PFuncSimple

uriConverter

execEvaluated

PFuncSimpleAndList

args

execEvaluated

PFuncSimple

datatypeConverter

execEvaluated

Figure 6.7: Class diagram of the SPARQL extension functions

method that gets called if a property function is used. As described in Chapter 3, these functions
can store data in the ARQ execution context or create new objects based on their subjects with the
use of the information in the execution context and other classes.

ClassLoadingException & ArgumentSizeException

Some property functions may need a specific number of arguments to work properly. If the actual
number of arguments differs, the function is called in the wrong manner and an ArgumentSizeEx-
ception is thrown to indicate this.

As a mapping can contain user defined converter classes, they must be loaded into the Java
Virtual Machine. If those classes cannot be found on the classpath or cannot be loaded for any
reason a ClassLoadingException is thrown to inform the user of this failure.

6.7 Configuration File & Security Policy
In this section, we address the possibilities of changing some settings of the RDF Transformer
with the configuration file ’config.xml’ and how we deal with security concerns rising from the
use of third-party code in the form of converter classes and custom ARQ property functions.

config.xml

The configuration file ’config.xml’ enables users to change some selected aspects of the RDF Trans-
former. The file has an XML syntax defined by the XML schema shown in Appendix B.4. An
example ’config.xml’ is depicted in Listing 6.1.

<?xml version="1.0" encoding="UTF-8"?>

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

6.7 Configuration File & Security Policy 75

xsi:noNamespaceSchemaLocation="schemas/config.xsd">

<mappingDir>mappings</mappingDir>

<ontologyDir>ontologies</ontologyDir>

<remote-mapping-storages>

<server>http://127.0.0.1:8090/xmlrpc</server>

</remote-mapping-storages>

<excludes>

<ontology>http://webns.net/mvcb/</ontology>

</excludes>

</config>

Listing 6.1: Example of a configuration file

With the configuration file, a user can change four different settings of the RDF Transformer. The
first is the location of the mapping directory listed in the <mappingDir> XML element. If this
option is changed the security policy file (described in the next section) and the start scripts must
be adjusted accordingly as these files depend on the mappings location as well. Second, the direc-
tory where the ontologies are saved can be changed with the <ontologyDir> option. Enclosed
in the <remote-mapping-storages> element is the third setting, the server addresses of the
remote mapping storages. There can be any number of servers specified and every address is
embedded in its own <server> subelement. Their arrangement in this file determines the order
in which they are called later in the program. The last setting is listed under the <excludes>
element and represents the ontologies that cannot or should not be downloaded automatically
from their namespace URI by the ModelReader. If it encounters a namespace URI from this list, it
knows the download is not desired or would fail and thus does not waste time in trying. This can
happen if the ontology definition is not accessible by its namespace URI. The number of entries is
also unrestricted and every URI is enclosed in its own <ontology> element.

The RDF Transformer contains hard coded default values for all these settings and therefore
each one is optional. Even if the complete configuration file is missing, the application can run
without any difficulty. But, if a configuration file is present the contained settings overwrite the
default ones and only the missing settings remain at the hard coded values.

security.policy

The RDF Transformer is designed to receive mappings from different sources, with the inclusion
of remote mapping storages even from the Internet. Thereby, we will face mappings that are de-
fined by entities we do not know and cannot trust. As a mapping may contain executable code,
we must ensure that this code causes no damage to our system and preserves our privacy. There-
fore, we use the security technology provided by Java itself, namely the Java security manager
with a corresponding security policy, to protect ourselves. Java provides developers with a fine
grained set of permission that can be enabled based on different attributes of the code, among
them the location of code called code base. Thus, we store all extension code from unknown
sources in one directory and grant code originating from there no permissions at all. Listing 6.2
shows an example policy file respecting this rule.

// permissions for RDF Transformer code

grant codeBase "file:rdft.jar" {

permission java.security.AllPermission;

76 Chapter 6. Implementation of the RDF Transformer

};

// permissions for library code

grant codeBase "file:lib${/}-" {

permission java.security.AllPermission;

};

// permissions for third-party extensions code

grant codeBase "file:mappings${/}ext${/}-" {

};

Listing 6.2: Example of a security policy file

The Java security model by default allocates no permission and as soon as we tell Java to use
a security manager, we have to define the permission for all of our code. Hence, as can be seen
in Listing 6.2 we cannot simply revoke certain rights from individual code files, but we have to
grant the right permissions to every code entity that will be executed. More information about
security policies and permissions in Java Standard Edition version 5 can be found in [Inc03] and
[Inc02]. As code who runs without a security manager receives all permissions, we grant the same
to our own code and the code of the libraries located in the ’lib’ subdirectory we use. Code in the
directory where all additional classes are stored receives no permissions. This directory is the sub-
directory ’ext’ in the mapping directory, therefore it becomes clear why a change of that location
in the configuration file must be propagated. Normally started Java application do not use a se-
curity manager, which is why must start our application with the option ’-Djava.security.manager
-Djava.security.policy=security.policy’ to enable the security manager and enforce the security pol-
icy.

Chapter 7

Evaluation

In this chapter, we want to present a full mapping between two real ontologies. On the one hand,
this will show the reader a directly applicable mapping and how it is generated. On the other
hand, it will also show the general practicability of our approach as we will use an ontology
that was not regarded before in this work, not even in the requirements analysis in Chapter 3.
The chapter is structured as follows: first, we introduce the two involved ontologies, then we
present the example data expressed in both the source and target ontology. After that, we show
the definition of the mapping that is used for the generation of the transformation queries which
is shown in part four. At last, we look at how the just defined mapping is applied on the example
data.

7.1 The Involved Ontologies
For the source ontology of our example, we choose the SWRC ontology already introduced in
Section 3.1.4. Unlike in those sections, we focus this time not on the contact or event data but on
the data about publications. This leads us to the target ontology used in this example, the Bib-
TeX ontology. BibTeX itself is a popular and widespread plain text format for bibliographic data.
With the BibTeX ontology, an attempt was made to create a corresponding Semantic Web format
as described in [Kno04]. This ontology adheres closely to the original format and the respective
part of SWRC orients itself at the plain text version of BibTeX as well. Hence, these two ontologies
are ideal candidates for a mapping. There is one major difference between both ontologies and
the plain text format. That is the order in properties describing authors, editors, and the like. In
plain text BibTeX, each of them is represented as a single string that automatically contains and
preserves the order of the individual entities. In both ontology formats, these concepts are imple-
mented as single properties that are repeated for each entity, therefore no order can be assumed.
This problem is not limited to only these ontologies but is a general problem of RDF and ontology
definition as it appears often in situations like this.

7.2 Example Data
In this section, we present the example data that will be used in the evaluation. We show how the
data is expressed in the source and the target ontology. The data is taken from the publications
website of the AIFB institute at the University of Karlsruhe1 and is publicly available. It shows

1http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikationenSorted

78 Chapter 7. Evaluation

the bibliographic data of a research article expressed in the SWRC ontology. For processing with
the RDF Transformer, the relevant data about the authors was inlined in advance, which leads to
the complete example data as shown in Listing 7.1. Although not stated in the SWRC ontology
definition, many real world applications add datatypes to the SWRC properties as can be seen
here too. Therefore, it would be legitimate to use them in our mapping definition as well.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix swrc: <http://swrc.ontoware.org/ontology#> .

<http://www.aifb.uni-karlsruhe.de/Publikationen

/viewPublikationOWL/id989.owl> rdf:type owl:Ontology ;

rdfs:comment "Instance data for publication \"Transforming

Arbitrary Tables into F-Logic Frames with TARTAR\"" ;

owl:imports <http://swrc.ontoware.org/ontology/portal> .

<http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL

/id989instance> rdf:type swrc:Article ;

swrc:abstract "The tremendous success

of the World Wide Web is countervailed by

(...)"ˆˆxsd:string ;

swrc:author <http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL

/id98instance> ,

<http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL

/id57instance> ,

<http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL

/id20instance> ,

<http://www.aifb.uni-karlsruhe.de/Publikationen

/viewExternerAutorOWL/id624instance> ,

<http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL

/id2056instance> ,

<http://www.aifb.uni-karlsruhe.de/Publikationen

/viewExternerAutorOWL/id623instance> ;

swrc:hasProject <http://www.aifb.uni-karlsruhe.de/Projekte

/viewProjektOWL/id50instance> ,

<http://www.aifb.uni-karlsruhe.de/Projekte

/viewProjektOWL/id35instance> ,

<http://www.aifb.uni-karlsruhe.de/Projekte

/viewProjektOWL/id42instance> ,

<http://www.aifb.uni-karlsruhe.de/Projekte

/viewProjektOWL/id49instance> ;

swrc:isAbout <http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id49instance> ,

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

7.2 Example Data 79

/viewForschungsgebietOWL/id79instance> ,

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id71instance> ,

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id81instance> ,

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id102instance> ,

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id137instance> ;

swrc:journal "Data & Knowledge Engineering (DKE)"ˆˆxsd:string ;

swrc:number "3"ˆˆxsd:string ;

swrc:pages "567-595"ˆˆxsd:string ;

swrc:title "Transforming Arbitrary Tables into F-Logic Frames

with TARTAR"ˆˆxsd:string ;

swrc:volume "60"ˆˆxsd:string ;

swrc:year "2007"ˆˆxsd:string .

<http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id20instance>

rdf:type swrc:Person ;

swrc:affiliation <http://www.aifb.uni-karlsruhe.de

/Forschungsgruppen/viewForschungsgruppeOWL

/id3instance> ;

swrc:fax "+49 (721) 608 6580"ˆˆxsd:string ;

swrc:homepage "http://www.aifb.uni-karlsruhe.de/WBS/ysu"

ˆˆxsd:string ;

swrc:name "York Sure"ˆˆxsd:string ;

swrc:phone "+49 (721) 608 6592"ˆˆxsd:string ;

swrc:photo "http://www.aifb.uni-karlsruhe.de/Personen/Bilder

/U1p2l3o4a5d20"ˆˆxsd:string .

<http://www.aifb.uni-karlsruhe.de/Forschungsgruppen

/viewForschungsgruppeOWL/id3instance> rdf:type swrc:ResearchGroup .

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id49instance> rdf:type swrc:ResearchTopic .

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id71instance> rdf:type swrc:ResearchTopic .

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id79instance> rdf:type swrc:ResearchTopic .

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id81instance> rdf:type swrc:ResearchTopic .

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id102instance> rdf:type swrc:ResearchTopic .

<http://www.aifb.uni-karlsruhe.de/Forschungsgebiete

/viewForschungsgebietOWL/id137instance> rdf:type swrc:ResearchTopic .

80 Chapter 7. Evaluation

<http://www.aifb.uni-karlsruhe.de/Projekte/viewProjektOWL

/id35instance> rdf:type swrc:Project .

<http://www.aifb.uni-karlsruhe.de/Projekte/viewProjektOWL

/id42instance> rdf:type swrc:Project .

<http://www.aifb.uni-karlsruhe.de/Projekte/viewProjektOWL

/id49instance> rdf:type swrc:Project .

<http://www.aifb.uni-karlsruhe.de/Projekte/viewProjektOWL

/id50instance> rdf:type swrc:Project .

<http://www.aifb.uni-karlsruhe.de/Publikationen/viewExternerAutorOWL

/id623instance> rdf:type swrc:Person ;

swrc:name "Matjaz Gams"ˆˆxsd:string .

<http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id98instance>

rdf:type swrc:PhDStudent ;

swrc:affiliation <http://www.aifb.uni-karlsruhe.de/Forschungsgruppen

/viewForschungsgruppeOWL/id3instance> ;

swrc:fax "+49 (721) 608 6580"ˆˆxsd:string ;

swrc:name "Philipp Cimiano"ˆˆxsd:string ;

swrc:phone "+49 (721) 608 3705"ˆˆxsd:string ;

swrc:photo "http://www.aifb.uni-karlsruhe.de/WBS/pci/pci_bild.jpg"

ˆˆxsd:string .

<http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id57instance>

rdf:type swrc:FullProfessor ;

swrc:affiliation <http://www.aifb.uni-karlsruhe.de/Forschungsgruppen

/viewForschungsgruppeOWL/id3instance> ;

swrc:fax "+49 (721) 608 6580"ˆˆxsd:string ;

swrc:name "Rudi Studer"ˆˆxsd:string ;

swrc:phone "+49 (721) 608 3923/4750"ˆˆxsd:string ;

swrc:photo "http://www.aifb.uni-karlsruhe.de/Personen/Bilder

/U1p2l3o4a5d57"ˆˆxsd:string .

<http://www.aifb.uni-karlsruhe.de/Publikationen/viewExternerAutorOWL

/id624instance> rdf:type swrc:Person ;

swrc:name "Vladislav Rajkovic"ˆˆxsd:string .

<http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL

/id2056instance> rdf:type swrc:Person ;

swrc:affiliation <http://www.aifb.uni-karlsruhe.de/Forschungsgruppen

/viewForschungsgruppeOWL/id3instance> ;

swrc:fax ""ˆˆxsd:string ;

swrc:name "Aleksander Pivk"ˆˆxsd:string ;

7.3 Mapping Definition 81

swrc:phone ""ˆˆxsd:string .

Listing 7.1: Example data in SWRC ontology

Listing 7.2 depicts the same data in the target ontology BibTeX. It was generated with the
SWRC to BibTeX mapping defined in the next section. Unlike the data in the source vocabulary,
we observe that the property names were substituted with the ones from the target ontology and
each property has the right datatype attached. Furthermore, the nesting of the author names is
broken up as their values appear in the respective properties.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix bibtex: <http://purl.oclc.org/NET/nknouf/ns/bibtex#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix swrc: <http://swrc.ontoware.org/ontology#> .

<http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL

/id989instance> rdf:type bibtex:Article ;

bibtex:hasAbstract "The tremendous success of the World Wide

Web is countervailed (...)"ˆˆxsd:string ;

bibtex:hasAuthor "Vladislav Rajkovic"ˆˆxsd:string ,

"Rudi Studer"ˆˆxsd:string ,

"Aleksander Pivk"ˆˆxsd:string ,

"York Sure"ˆˆxsd:string ,

"Matjaz Gams"ˆˆxsd:string ,

"Philipp Cimiano"ˆˆxsd:string ;

bibtex:hasJournal "Data & Knowledge Engineering (DKE)"ˆˆxsd:string ;

bibtex:hasNumber "3"ˆˆxsd:string ;

bibtex:hasPages "567-595"ˆˆxsd:string ;

bibtex:hasTitle "Transforming Arbitrary Tables into F-Logic Frames

with TARTAR"ˆˆxsd:string ;

bibtex:hasVolume "60"ˆˆxsd:nonNegativeInteger ;

bibtex:hasYear "2007"ˆˆxsd:nonNegativeInteger .

Listing 7.2: Example data in BibTeX ontology

7.3 Mapping Definition
As both the source and the target ontology adhere closely to the plain text format, a lot of map-
pings are simple ones that only substitute the namespace parts and the local names. Before we
introduce the mapping definition, we first must mention another detail of the original BibTeX
format and the implementation in the two ontologies we use in this example. Plain text BibTeX
uses classes that describe the kind of bibliographic object it collects information about and each
of those can have a series of properties. The classes themselves range from articles over books to
unpublished work, with altogether over a dozen of such classes. Each can have more or less the
same set of properties like author, the year in that it was published, how many pages it has, and so

82 Chapter 7. Evaluation

on. In both our studied ontologies those classes are mapped to OWL classes and the properties to
OWL properties.

In Listing 7.3, we see the mapping definition for the Article class used to generate the trans-
formations from SWRC to BibTeX and back. Due to the peculiarities of BibTeX described in the
prior paragraph and as this mapping definition is already quite long, we renounce to repeat basi-
cally the same definition for every BibTeX class. Let us just say that for a complete mapping from
SWRC to BibTeX, we would need to replicate the mapping of the properties for every class in its
own subject group. Nevertheless, the mapping in Listing 7.3 is fully functional and can at least be
used to transform data about SWRC Articles as demonstrated in this chapter.

<?xml version="1.0" encoding="UTF-8"?>

<mappings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schemas/mapping.xsd">

<namespace prefix="swrc">

http://swrc.ontoware.org/ontology#

</namespace>

<namespace prefix="bibtex">

http://purl.oclc.org/NET/nknouf/ns/bibtex#

</namespace>

<namespace prefix="xsd">

http://www.w3.org/2001/XMLSchema#

</namespace>

<subject-group>

<source-type>swrc:Article</source-type>

<target-type>bibtex:Article</target-type>

<!-- simple mappings with datatype extension -->

<simple-mapping>

<source>swrc:abstract</source>

<target datatype="xsd:string">bibtex:hasAbstract</target>

</simple-mapping>

<simple-mapping>

<source>swrc:address</source>

<target datatype="xsd:string">bibtex:hasAddress</target>

</simple-mapping>

<simple-mapping>

<source>swrc:booktitle</source>

<target datatype="xsd:string">bibtex:hasBooktitle</target>

</simple-mapping>

<simple-mapping>

<source>swrc:chapter</source>

<target datatype="xsd:nonNegativeInteger">

bibtex:hasChapter

</target>

</simple-mapping>

7.3 Mapping Definition 83

<simple-mapping>

<source>swrc:edition</source>

<target datatype="xsd:string">bibtex:hasEdition</target>

</simple-mapping>

<simple-mapping>

<source>swrc:isbn</source>

<target datatype="xsd:string">bibtex:hasISBN</target>

</simple-mapping>

<simple-mapping>

<source>swrc:journal</source>

<target datatype="xsd:string">bibtex:hasJournal</target>

</simple-mapping>

<simple-mapping>

<source>swrc:keywords</source>

<target datatype="xsd:string">bibtex:hasKeywords</target>

</simple-mapping>

<simple-mapping>

<source>swrc:location</source>

<target datatype="xsd:string">bibtex:hasLocation</target>

</simple-mapping>

<simple-mapping>

<source>swrc:month</source>

<target datatype="xsd:string">bibtex:hasMonth</target>

</simple-mapping>

<simple-mapping>

<source>swrc:note</source>

<target datatype="xsd:string">bibtex:hasNote</target>

</simple-mapping>

<simple-mapping>

<source>swrc:number</source>

<target datatype="xsd:string">bibtex:hasNumber</target>

</simple-mapping>

<simple-mapping>

<source>swrc:pages</source>

<target datatype="xsd:string">bibtex:hasPages</target>

</simple-mapping>

<simple-mapping>

<source>swrc:price</source>

<target datatype="xsd:string">bibtex:hasPrice</target>

</simple-mapping>

<simple-mapping>

<source>swrc:series</source>

<target datatype="xsd:string">bibtex:hasSeries</target>

</simple-mapping>

<simple-mapping>

84 Chapter 7. Evaluation

<source>swrc:title</source>

<target datatype="xsd:string">bibtex:hasTitle</target>

</simple-mapping>

<simple-mapping>

<source>swrc:type</source>

<target datatype="xsd:string">bibtex:hasType</target>

</simple-mapping>

<simple-mapping>

<source>swrc:volume</source>

<target datatype="xsd:nonNegativeInteger">

bibtex:hasVolume

</target>

</simple-mapping>

<simple-mapping>

<source>swrc:year</source>

<target datatype="xsd:nonNegativeInteger">

bibtex:hasYear

</target>

</simple-mapping>

<!-- nested mappings with datatype extension -->

<nested-mapping>

<target datatype="xsd:string">bibtex:hasAffiliation</target>

<source-container name="swrc:affiliation">

<source>swrc:name</source>

</source-container>

</nested-mapping>

<nested-mapping>

<target datatype="xsd:string">bibtex:hasAuthor</target>

<source-container name="swrc:author">

<source>swrc:name</source>

</source-container>

</nested-mapping>

<nested-mapping>

<target datatype="xsd:string">bibtex:hasEditor</target>

<source-container name="swrc:editor">

<source>swrc:name</source>

</source-container>

</nested-mapping>

<nested-mapping>

<target datatype="xsd:string">bibtex:hasInstitution</target>

<source-container name="swrc:institution">

<source>swrc:name</source>

</source-container>

</nested-mapping>

7.3 Mapping Definition 85

<nested-mapping>

<target datatype="xsd:string">bibtex:hasOrganization</target>

<source-container name="swrc:organization">

<source>swrc:name</source>

</source-container>

</nested-mapping>

<nested-mapping>

<target datatype="xsd:string">bibtex:hasPublisher</target>

<source-container name="swrc:publisher">

<source>swrc:name</source>

</source-container>

</nested-mapping>

<nested-mapping>

<target datatype="xsd:string">bibtex:hasSchool</target>

<source-container name="swrc:school">

<source>swrc:name</source>

</source-container>

</nested-mapping>

</subject-group>

</mappings>

Listing 7.3: SWRC to BibTeX ontology mapping definition

After the analysis of the two ontologies, we can identify three main differences. First, both
ontologies use basically the same names for the properties with the small difference that the Bib-
TeX ontology prefixes all with ’has’. This poses no problem as this kind of translation is achieved
with each of our mappings, but it makes our job of finding them easier. Second, SWRC does
not define typed properties, but the BibTeX ontology does. Therefore, we need to specify the
datatype attribute in each <target> element to add a datatype in the transformation. Mappings
embodying this difference are arranged as the group of simple mappings in Listing 7.3. The third
and most problematic difference is that some properties of the SWRC ontology use other SWRC
classes as their range, whereas BibTeX uses plain strings. An example for that is the property
representing the author of a work. In SWRC this is author that takes an object as its value. Mostly,
this object will be an instance of the Person class also from SWRC. Otherwise, the hasAuthor prop-
erty from the BibTeX ontology uses a literal as value that contains only the name of the author
as a string. To overcome this discrepancy, we can use a nested mapping as the swrc:Person class
contains a name property with the equivalent content for the BibTeX author property. Likewise,
we can find such properties for all the similar cases as shown in the group of nested mappings
in Listing 7.3. Please note, that with the current implementation of the RDF Transformer, this so-
lution only works if the additional data of the nested classes is stored in the same RDF resource.
If it is only linked, it cannot be found as the Transformer does not automatically reload linked
data. We think, the download of additional data lies in the responsibility of the superordinate
application as it is impossible for a generic library as the RDF Transformer to know which links
should be followed and how deep. An application that uses our component should therefore first
aggregate all needed data before it passes all of it to the RDF Transformer.

86 Chapter 7. Evaluation

7.4 Transformation Query
After a mapping definition is developed, the RDF Transformer uses it to create the forward and
backward transformation queries. The one for the forward mapping is depicted in Listing 7.4.
We can see that except the rdf:type triple, every triple is enclosed in an OPTIONAL to enable the
matching of resources that do not contain all properties. In addition, we see how the datatype is
added for every mapping and towards the end of the query how nested mappings are handled.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX fn: <java:ch.uzh.ifi.rdftransformer.sparqlext.>

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

PREFIX bibtex: <http://purl.oclc.org/NET/nknouf/ns/bibtex#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT {

?subject1 rdf:type bibtex:Article .

?subject1 bibtex:hasAbstract ?object1 .

?subject1 bibtex:hasAddress ?object2 .

?subject1 bibtex:hasBooktitle ?object3 .

?subject1 bibtex:hasChapter ?object4 .

?subject1 bibtex:hasEdition ?object5 .

?subject1 bibtex:hasISBN ?object6 .

?subject1 bibtex:hasJournal ?object7 .

?subject1 bibtex:hasKeywords ?object8 .

?subject1 bibtex:hasLocation ?object9 .

?subject1 bibtex:hasMonth ?object10 .

?subject1 bibtex:hasNote ?object11 .

?subject1 bibtex:hasNumber ?object12 .

?subject1 bibtex:hasPages ?object13 .

?subject1 bibtex:hasPrice ?object14 .

?subject1 bibtex:hasSeries ?object15 .

?subject1 bibtex:hasTitle ?object16 .

?subject1 bibtex:hasType ?object17 .

?subject1 bibtex:hasVolume ?object18 .

?subject1 bibtex:hasYear ?object19 .

?subject1 bibtex:hasAffiliation ?object20 .

?subject1 bibtex:hasAuthor ?object23 .

?subject1 bibtex:hasEditor ?object26 .

?subject1 bibtex:hasInstitution ?object29 .

?subject1 bibtex:hasOrganization ?object32 .

?subject1 bibtex:hasPublisher ?object35 .

?subject1 bibtex:hasSchool ?object38 .

}

WHERE {

?subject1 rdf:type swrc:Article .

OPTIONAL { ?subject1 swrc:abstract ?temp1 .

7.4 Transformation Query 87

?temp1 fn:datatype xsd:string .

?temp1 fn:addDatatype ?object1 }

OPTIONAL { ?subject1 swrc:address ?temp2 .

?temp2 fn:datatype xsd:string .

?temp2 fn:addDatatype ?object2 }

OPTIONAL { ?subject1 swrc:booktitle ?temp3 .

?temp3 fn:datatype xsd:string .

?temp3 fn:addDatatype ?object3 }

OPTIONAL { ?subject1 swrc:chapter ?temp4 .

?temp4 fn:datatype xsd:nonNegativeInteger .

?temp4 fn:addDatatype ?object4 }

OPTIONAL { ?subject1 swrc:edition ?temp5 .

?temp5 fn:datatype xsd:string .

?temp5 fn:addDatatype ?object5 }

OPTIONAL { ?subject1 swrc:isbn ?temp6 .

?temp6 fn:datatype xsd:string .

?temp6 fn:addDatatype ?object6 }

OPTIONAL { ?subject1 swrc:journal ?temp7 .

?temp7 fn:datatype xsd:string .

?temp7 fn:addDatatype ?object7 }

OPTIONAL { ?subject1 swrc:keywords ?temp8 .

?temp8 fn:datatype xsd:string .

?temp8 fn:addDatatype ?object8 }

OPTIONAL { ?subject1 swrc:location ?temp9 .

?temp9 fn:datatype xsd:string .

?temp9 fn:addDatatype ?object9 }

OPTIONAL { ?subject1 swrc:month ?temp10 .

?temp10 fn:datatype xsd:string .

?temp10 fn:addDatatype ?object10 }

OPTIONAL { ?subject1 swrc:note ?temp11 .

?temp11 fn:datatype xsd:string .

?temp11 fn:addDatatype ?object11 }

OPTIONAL { ?subject1 swrc:number ?temp12 .

?temp12 fn:datatype xsd:string .

?temp12 fn:addDatatype ?object12 }

OPTIONAL { ?subject1 swrc:pages ?temp13 .

?temp13 fn:datatype xsd:string .

?temp13 fn:addDatatype ?object13 }

OPTIONAL { ?subject1 swrc:price ?temp14 .

?temp14 fn:datatype xsd:string .

?temp14 fn:addDatatype ?object14 }

OPTIONAL { ?subject1 swrc:series ?temp15 .

?temp15 fn:datatype xsd:string .

?temp15 fn:addDatatype ?object15 }

OPTIONAL { ?subject1 swrc:title ?temp16 .

88 Chapter 7. Evaluation

?temp16 fn:datatype xsd:string .

?temp16 fn:addDatatype ?object16 }

OPTIONAL { ?subject1 swrc:type ?temp17 .

?temp17 fn:datatype xsd:string .

?temp17 fn:addDatatype ?object17 }

OPTIONAL { ?subject1 swrc:volume ?temp18 .

?temp18 fn:datatype xsd:nonNegativeInteger .

?temp18 fn:addDatatype ?object18 }

OPTIONAL { ?subject1 swrc:year ?temp19 .

?temp19 fn:datatype xsd:nonNegativeInteger .

?temp19 fn:addDatatype ?object19 }

OPTIONAL { ?subject1 swrc:affiliation ?temp20 .

OPTIONAL { ?temp20 swrc:name ?innertemp20 .

?innertemp20 fn:datatype xsd:string .

?innertemp20 fn:addDatatype ?object20 }

}

OPTIONAL { ?subject1 swrc:author ?temp23 .

OPTIONAL { ?temp23 swrc:name ?innertemp23 .

?innertemp23 fn:datatype xsd:string .

?innertemp23 fn:addDatatype ?object23 }

}

OPTIONAL { ?subject1 swrc:editor ?temp26 .

OPTIONAL { ?temp26 swrc:name ?innertemp26 .

?innertemp26 fn:datatype xsd:string .

?innertemp26 fn:addDatatype ?object26 }

}

OPTIONAL { ?subject1 swrc:institution ?temp29 .

OPTIONAL { ?temp29 swrc:name ?innertemp29 .

?innertemp29 fn:datatype xsd:string .

?innertemp29 fn:addDatatype ?object29 }

}

OPTIONAL { ?subject1 swrc:organization ?temp32 .

OPTIONAL { ?temp32 swrc:name ?innertemp32 .

?innertemp32 fn:datatype xsd:string .

?innertemp32 fn:addDatatype ?object32 }

}

OPTIONAL { ?subject1 swrc:publisher ?temp35 .

OPTIONAL { ?temp35 swrc:name ?innertemp35 .

?innertemp35 fn:datatype xsd:string .

?innertemp35 fn:addDatatype ?object35 }

}

OPTIONAL { ?subject1 swrc:school ?temp38 .

OPTIONAL { ?temp38 swrc:name ?innertemp38 .

?innertemp38 fn:datatype xsd:string .

?innertemp38 fn:addDatatype ?object38 }

7.4 Transformation Query 89

}

}

Listing 7.4: SWRC to BibTeX forward mapping query

Listing 7.5 shows the automatically generated backward query for this mapping. The WHERE
clause shows that every datatype is removed again by the fn:removeDatatype property function and
in the CONSTRUCT clause, we see how the nested mappings translate into the creation of blank
nodes containing the swrc:name property.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX fn: <java:ch.uzh.ifi.rdftransformer.sparqlext.>

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

PREFIX bibtex: <http://purl.oclc.org/NET/nknouf/ns/bibtex#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT {

?subject1 rdf:type swrc:Article .

?subject1 swrc:abstract ?object1 .

?subject1 swrc:address ?object2 .

?subject1 swrc:booktitle ?object3 .

?subject1 swrc:chapter ?object4 .

?subject1 swrc:edition ?object5 .

?subject1 swrc:isbn ?object6 .

?subject1 swrc:journal ?object7 .

?subject1 swrc:keywords ?object8 .

?subject1 swrc:location ?object9 .

?subject1 swrc:month ?object10 .

?subject1 swrc:note ?object11 .

?subject1 swrc:number ?object12 .

?subject1 swrc:pages ?object13 .

?subject1 swrc:price ?object14 .

?subject1 swrc:series ?object15 .

?subject1 swrc:title ?object16 .

?subject1 swrc:type ?object17 .

?subject1 swrc:volume ?object18 .

?subject1 swrc:year ?object19 .

?subject1 swrc:affiliation _:temp20 .

_:temp20 swrc:name ?object21 .

?subject1 swrc:author _:temp23 .

_:temp23 swrc:name ?object24 .

?subject1 swrc:editor _:temp26 .

_:temp26 swrc:name ?object27 .

?subject1 swrc:institution _:temp29 .

_:temp29 swrc:name ?object30 .

?subject1 swrc:organization _:temp32 .

_:temp32 swrc:name ?object33 .

90 Chapter 7. Evaluation

?subject1 swrc:publisher _:temp35 .

_:temp35 swrc:name ?object36 .

?subject1 swrc:school _:temp38 .

_:temp38 swrc:name ?object39 .

}

WHERE {

?subject1 rdf:type bibtex:Article .

OPTIONAL { ?subject1 bibtex:hasAbstract ?temp1 .

?temp1 fn:removeDatatype ?object1 }

OPTIONAL { ?subject1 bibtex:hasAddress ?temp2 .

?temp2 fn:removeDatatype ?object2 }

OPTIONAL { ?subject1 bibtex:hasBooktitle ?temp3 .

?temp3 fn:removeDatatype ?object3 }

OPTIONAL { ?subject1 bibtex:hasChapter ?temp4 .

?temp4 fn:removeDatatype ?object4 }

OPTIONAL { ?subject1 bibtex:hasEdition ?temp5 .

?temp5 fn:removeDatatype ?object5 }

OPTIONAL { ?subject1 bibtex:hasISBN ?temp6 .

?temp6 fn:removeDatatype ?object6 }

OPTIONAL { ?subject1 bibtex:hasJournal ?temp7 .

?temp7 fn:removeDatatype ?object7 }

OPTIONAL { ?subject1 bibtex:hasKeywords ?temp8 .

?temp8 fn:removeDatatype ?object8 }

OPTIONAL { ?subject1 bibtex:hasLocation ?temp9 .

?temp9 fn:removeDatatype ?object9 }

OPTIONAL { ?subject1 bibtex:hasMonth ?temp10 .

?temp10 fn:removeDatatype ?object10 }

OPTIONAL { ?subject1 bibtex:hasNote ?temp11 .

?temp11 fn:removeDatatype ?object11 }

OPTIONAL { ?subject1 bibtex:hasNumber ?temp12 .

?temp12 fn:removeDatatype ?object12 }

OPTIONAL { ?subject1 bibtex:hasPages ?temp13 .

?temp13 fn:removeDatatype ?object13 }

OPTIONAL { ?subject1 bibtex:hasPrice ?temp14 .

?temp14 fn:removeDatatype ?object14 }

OPTIONAL { ?subject1 bibtex:hasSeries ?temp15 .

?temp15 fn:removeDatatype ?object15 }

OPTIONAL { ?subject1 bibtex:hasTitle ?temp16 .

?temp16 fn:removeDatatype ?object16 }

OPTIONAL { ?subject1 bibtex:hasType ?temp17 .

?temp17 fn:removeDatatype ?object17 }

OPTIONAL { ?subject1 bibtex:hasVolume ?temp18 .

?temp18 fn:removeDatatype ?object18 }

OPTIONAL { ?subject1 bibtex:hasYear ?temp19 .

?temp19 fn:removeDatatype ?object19 }

7.5 Application of the Mapping 91

OPTIONAL { ?subject1 bibtex:hasAffiliation ?innertemp21 .

?innertemp21 fn:removeDatatype ?object21 }

OPTIONAL { ?subject1 bibtex:hasAuthor ?innertemp24 .

?innertemp24 fn:removeDatatype ?object24 }

OPTIONAL { ?subject1 bibtex:hasEditor ?innertemp27 .

?innertemp27 fn:removeDatatype ?object27 }

OPTIONAL { ?subject1 bibtex:hasInstitution ?innertemp30 .

?innertemp30 fn:removeDatatype ?object30 }

OPTIONAL { ?subject1 bibtex:hasOrganization ?innertemp33 .

?innertemp33 fn:removeDatatype ?object33 }

OPTIONAL { ?subject1 bibtex:hasPublisher ?innertemp36 .

?innertemp36 fn:removeDatatype ?object36 }

OPTIONAL { ?subject1 bibtex:hasSchool ?innertemp39 .

?innertemp39 fn:removeDatatype ?object39 }

}

Listing 7.5: SWRC to BibTeX backward mapping query

If we had created the complete mapping covering all classes from BibTeX, we would get such
a query pair for each class or rather each subject group.

This mapping was only an example, it is not meant to be the one and only SWRC to BibTeX
mapping. Other users may decide that the generation of blank nodes in the backward query is not
satisfying. As an alternative, those users could instruct the RDF Transformer to only generate the
forward query and then define a BibTeX to SWRC mapping with different content for the back-
ward query generation. Furthermore, complex queries, that would conserve more information
about the nesting object, could be used as well.

7.5 Application of the Mapping
After we have defined the mapping and the RDF Transformer has generated transformation
queries based on that definition, we can use the Transformer to apply it to data. As already
mentioned in the presentation of the example data in Section 7.2, we used the RDF Transformer
to create the BibTeX ontology version of this data shown in Listing 7.2. For that, we took the
SWRC data in Listing 7.1 as the input data and the mapping depicted in Listing 7.3. Note that the
data contains not all elements from the mapping (for instance there are no editor, month, or pub-
lisher properties), but thanks to the OPTIONAL keyword used in the transformation queries the
mapping still works. Furthermore, there are properties in the example data (like isAbout) which
are not present in the mapping as there are no corresponding properties in the BibTeX ontology.
This information is lost in the transformation and will not be available in a backward mapping.

Based on this generated BibTeX data, we apply the backward query to transform our example
data back into its original SWRC vocabulary. The result of this operation can be seen in List-
ing 7.6. As just explained, the data does not match the original source data completely as some
information was not transferred in the first mapping. Another noteworthy fact is that there are
numerous properties referring to empty blank nodes. Those are caused by the way the trans-
formation queries are implemented. They can appear for elements defined in the mapping but
not occurring in the data. They do not falsify the result and should not cause any trouble in
subsequent processing.

@prefix dc: <http://purl.org/dc/elements/1.1/> .

92 Chapter 7. Evaluation

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix units: <http://zeitkunst.org/fontomri/0.01/units.owl#> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix wot: <http://xmlns.com/wot/0.1/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix bibtex: <http://purl.oclc.org/NET/nknouf/ns/bibtex#> .

@prefix dctype: <http://purl.org/dc/dcmitype/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix swrc: <http://swrc.ontoware.org/ontology#> .

<http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL

/id989instance> rdf:type swrc:Article ;

swrc:abstract "The tremendous success of the World Wide

Web is countervailed (...)" ;

swrc:title "Transforming Arbitrary Tables into F-Logic Frames

with TARTAR" ;

swrc:volume "60" ;

swrc:year "2007" ;

swrc:journal "Data & Knowledge Engineering (DKE)" ;

swrc:number "3" ;

swrc:pages "567-595" ;

swrc:author [swrc:name "Rudi Studer"] ;

swrc:author [swrc:name "York Sure"] ;

swrc:author [swrc:name "Vladislav Rajkovic"] ;

swrc:author [swrc:name "Matjaz Gams"] ;

swrc:author [swrc:name "Aleksander Pivk"] ;

swrc:author [swrc:name "Philipp Cimiano"] ;

swrc:affiliation [] ;

swrc:affiliation [] ;

swrc:affiliation [] ;

swrc:affiliation [] ;

swrc:affiliation [] ;

swrc:affiliation [] ;

swrc:editor [] ;

swrc:editor [] ;

swrc:editor [] ;

swrc:editor [] ;

swrc:editor [] ;

swrc:editor [] ;

7.5 Application of the Mapping 93

swrc:institution [] ;

swrc:institution [] ;

swrc:institution [] ;

swrc:institution [] ;

swrc:institution [] ;

swrc:institution [] ;

swrc:organization [] ;

swrc:organization [] ;

swrc:organization [] ;

swrc:organization [] ;

swrc:organization [] ;

swrc:organization [] ;

swrc:publisher [] ;

swrc:publisher [] ;

swrc:publisher [] ;

swrc:publisher [] ;

swrc:publisher [] ;

swrc:publisher [] ;

swrc:school [] ;

swrc:school [] ;

swrc:school [] ;

swrc:school [] ;

swrc:school [] ;

swrc:school [] .

Listing 7.6: Example BibTeX data transformed back to SWRC

In conclusion, we have shown in this chapter that our mapping language can be applied to
ontologies different from the ones analyzed in Chapter 3 as well. Furthermore, we presented how
the definition of a mapping is done and how the RDF Transformer generates the transformation
queries from it. Those queries were depicted as well and used to transform example data to a
target ontology and back again.

Chapter 8

Example Application: Semantic
Clipboard

In order to further demonstrate the usefulness of the RDF Transformer, we embedded it into a
directly usable example application. This application is called Semantic Clipboard and is the topic
of this chapter. The general idea of this application and the scripts used for the copy and paste
(on MacOS X) operations are adapted from [Lau07]. The Semantic Clipboard has the same ele-
mentary functions like a normal clipboard as it allows data to be copied from one application to
another. The big difference is that the data is semantic data expressed in RDF and that the Seman-
tic Clipboard can transform it into different ontologies, of course by using the RDF Transformer.
Figure 8.1 shows a schematic overview of the Semantic Clipboard.

PasteCopy

Web Browser

RDF Transformer

Semantic
Clipboard

XSLT

Calendar

Address Book

...

➊ ➋ ➌

➎

➏

➍

Figure 8.1: Overview of the Semantic Clipboard

As every other clipboard, the Semantic Clipboard supports two operations to interact with it.
The first is the copy operation that is used to read the source data from the input application into

96 Chapter 8. Example Application: Semantic Clipboard

the clipboard. The second operation is paste that writes the stored data to the output application.
The main distinction to a normal clipboard lies in the transformation of the data in-between with a
call to the RDF Transformer. The application that issues a paste passes the namespace of the target
ontology with the request. The Semantic Clipboard then converts the already stored input data
with the help of the RDF Transformer and returns the translated data to the calling application.

There are two possibilities to integrate this clipboard into an existing system. The first would
be to modify all source and target applications, so that they use the Semantic Clipboard directly.
This would be a great deal of work and not even possible at all times, particularly in closed source
systems. Thus, we implemented the second alternative that provides tools at clearly defined ex-
tension points of several applications. In this way, the Semantic Clipboard may not be deeply
integrated into the operating system which makes its use slightly different, but it becomes easily
portable across multiple systems. In our implementation, we achieve the copy mechanism through
a bookmarklet in a browser that enables us to copy semantic data from Web pages. The extension
of other application would be possible as well, but we focus in this example solely on Web pages
as they are an important part of the Semantic Web. On the other side is the paste mechanism that
is implemented as a script associated with a system wide keyboard shortcut. The script identi-
fies the current foreground application and uses this information to determine the target format.
Our implementation comes preconfigured with support for the address book, the calendar, and
a BibTeX management software, but it is easy to add other applications. With the information of
the target format, the script makes a paste request to the Semantic Clipboard and then writes the
result data to a temporary file on disk. At last, the system is instructed to open that file, which
brings the data into the application. Although, this is not the most elegant way of integration, it
shows nicely how the RDF Transformer can be used in a real world application.

The interface of the Semantic Clipboard is realized via the HTTP protocol. After startup, the
clipboard acts as a HTTP server and listens on a given port for incoming connections. A copy
operation is initiated from the Web browser with a click on the copy bookmarklet (step one in
Figure 8.1). This bookmarklet loads additional JavaScript code from a web server which analyzes
the source Web pages for links to RDF data. These URLs are extracted and each is send separately
by a HTTP request to the Semantic Clipboard (marked as step two in Figure 8.1). The clipboard
takes this URL from the request string and stores it internally until a paste request is received or
it is overwritten with data from a new copy operation. That completes the copy request and the
Semantic Clipboard waits again for new connections. Now a paste request can be send (step three)
that must contain an identifier for the desired target format. This can either be the namespace URI
of an ontology or an identifying URI, if the target format should be plain text. Unfortunately, the
support for RDF data in popular application is still limited, which is why we need to transform
the RDF data into their plain text counterpart for those application. This is done with Extensible
Stylesheet Language Transformations (XSLT)1 and specific stylesheets defined for the ontologies
that have a plain text equivalent. After the clipboard received the paste request, the source data
URL is feed into the RDF Transformer that downloads the data for processing and the target
URI is extracted from the request string. As this URI can refer to either an ontology or a plain
text format, the clipboard consults a mapping table that contains all known plain text formats
and maps them to corresponding ontology namespace URIs. This mapping table is constructed
from the file ’ontologies.map’ that contains matching pairs of plain text identifiers and ontology
namespaces. If the plain text format has a corresponding ontology, this operation yields an URI
suitable as target parameter for the RDF Transformer. If an RDF format was requested, we get
such an URI directly and need no intermediate mapping step. The RDF Transformer now has all
information it needs and can execute the translation of the input data, which is depicted as step
four in Figure 8.1. The resulting data, expressed in the target vocabulary, is then cached in the
Semantic Clipboard until a new transformation is executed. Depending on the requested output

1http://www.w3.org/TR/xslt20/

97

format, this data is directly returned as a HTTP response to the caller (step six) or the plain text to
ontology mapping must first be reversed. As already mentioned, this is done with XSLT (in step
five) that generates the plain text form from the RDF data with the help of stylesheets. Those are
selected from a second mapping table that is created from the file ’stylesheets.map’ which contains
pairs of identifying URLs and the names of the appropriate stylesheet files in the ’stylesheets’
subdirectory of the application directory. The return of the transformed data marks the end of
this paste request. It is now possible to retrieve the same data again with an identical request,
transform the original data into a different format with another paste request containing a new
target URI, or start over with a new call to the copy operation.

Chapter 9

Conclusion

The Semantic Web provides great prospects to describe the semantics of data with languages like
RDF and OWL. As a secondary effect, this creates the problem that there are multiple ontologies
developed that relate to the same or overlapping domains. Thereby arises the need for a trans-
formation service that enables different application to exchange data even if they do not use the
same ontology.

In this thesis, we introduced such a transformation service. First, we investigated in Chap-
ter 3 how ontologies covering at least parts of the same domain can differ in representing that
information. This yielded in a set of requirements for a mapping language which was presented
in Chapter 4. Our approach was to define a mapping in a simple XML format and use SPARQL
for the actual transformation. The CONSTRUCT queries in SPARQL, as a powerful mechanism
for such transformations of RDF data, turned out to be ideal for this purpose. That way, we were
able to reuse existing Semantic Web technology and could benefit from its power and functional-
ity. The big challenge then lay in the definition of the mapping format and the generation of the
transformation queries from those files. Based on the findings from Chapter 3, we defined three
different kinds of mappings as presented in Chapter 4 as well. Each of these mappings received
its own handler class responsible for transferring mapping definitions in transformation queries.
Those handler classes and the rest of the prototype implementation were described in Chapter 6.
In Chapter 7, we demonstrated the usefulness of our approach and the prototype in a longer ex-
ample with real world ontologies and data. In order to achieve its full potential, a transformation
service like this needs to be embedded in another application which was done exemplary in the
form of a simple Semantic Clipboard in Chapter 8.

The major contribution of our thesis is that we can map more information between more
diverse ontologies. Our approach is more powerful than former attempts of ontology map-
ping that tried to declare equivalence between individual properties. For instance, the use of
owl:equivalentClass in combination with a reasoner enables only direct mappings from one iso-
lated element onto another. This corresponds to our simple one to one mappings introduced in
Section 3.3.1, but as shown in the same section, even our simple mappings provide more flex-
ibility with datatype modification, typing, and conversions between URIs and literals. Beyond
that, our approach offers mappings involving nesting of elements, both on the source and target
side of a transformation and almost arbitrary processing possibilities with complex mappings.
They enable, for example, the restoring of implicit knowledge that would otherwise be lost in a
transformation as explained in Section 3.3.7. Admittedly, this flexibility comes at the cost of ad-
ditional programming effort on the part of the user, but even without utilizing this functionality,
our mapping language is very powerful and applicable to a broad number of mapping cases. In
addition, it is in most cases possible to generate usable mappings in both directions from only
one mapping definition. This can cut the effort to define a round-trip mapping in half as only one

100 Chapter 9. Conclusion

mapping must be defined.
Future work could be done in integrating the transformation service in different applications

and operating systems. In the case of extensible, open systems it could even be implemented so
that the average user does not notice any difference in usage and experiences only the advan-
tages it brings. Furthermore, domain experts will need to define more mappings and distribute
them, for example via a publicly available Remote Mapping Storage server on the Internet, so that
mappings between many ontologies become easily possible.

Appendix A

Additional Java Source Code

A.1 datatypeConverter Java Source Code

The class shown in Listing A.1 defines an ARQ property function that can be used in the conver-
sion of untyped to typed literals described in Section 3.3.2. Its use is optional and only needed if
the syntax of the source and target ontology do not match.

package ch.uzh.ifi.rdftransformer.sparqlext;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.sparql.engine.ExecutionContext;

import com.hp.hpl.jena.sparql.engine.QueryIterator;

import com.hp.hpl.jena.sparql.engine.binding.Binding;

import com.hp.hpl.jena.sparql.pfunction.PFLib;

import com.hp.hpl.jena.sparql.pfunction.PFuncSimple;

import com.hp.hpl.jena.sparql.util.Symbol;

/**

* This class is an ARQ property function. It stores the fully

* qualified name of the Java converter class used for syntax

* conversions by the addDatatype and removeDatatype property

* functions in the ARQ execution context.

* @author Matthias Hert

*

*/

public class datatypeConverter extends PFuncSimple {

@Override

public QueryIterator execEvaluated(Binding binding, Node subject,

Node predicate, Node object, ExecutionContext execCxt) {

execCxt.getContext().set(Symbol.create("datatypeConverter"),

object.toString(false));

102 Chapter A. Additional Java Source Code

return PFLib.result(binding, execCxt);

}

}

Listing A.1: Java source code for property function datatypeConverter

A.2 removeDatatype Java Source Code
The class shown in Listing A.2 defines an ARQ property function that is used in the backwards
mapping of the untyped to typed literal case. For that purpose, it removes the datatype of a typed
literal and therefore transforms it into an untyped one.

package ch.uzh.ifi.rdftransformer.sparqlext;

import ch.uzh.ifi.rdftransformer.sparqlext.IDatatypeConverter;

import com.hp.hpl.jena.graph.Node;

import com.hp.hpl.jena.sparql.core.Var;

import com.hp.hpl.jena.sparql.engine.ExecutionContext;

import com.hp.hpl.jena.sparql.engine.QueryIterator;

import com.hp.hpl.jena.sparql.engine.binding.Binding;

import com.hp.hpl.jena.sparql.pfunction.PFLib;

import com.hp.hpl.jena.sparql.pfunction.PFuncSimple;

import com.hp.hpl.jena.sparql.util.Symbol;

/**

* This class is an ARQ property function. It is used to remove

* the datatype of a typed literal and optionally to convert

* the syntax of the input.

* @author Matthias Hert

*

*/

public class removeDatatype extends PFuncSimple {

@Override

public QueryIterator execEvaluated(Binding binding, Node subject,

Node predicate, Node object, ExecutionContext execCxt) {

// get name of optional datatype converter class

String converter = execCxt.getContext().getAsString(Symbol

.create("datatypeConverter"));

// remove entry from execution context for further calls

execCxt.getContext().remove(

Symbol.create("datatypeConverter"));

String resultValue = null;

A.2 removeDatatype Java Source Code 103

// perform syntax conversion if requested

if (converter != null) {

IDatatypeConverter conv = null;
try {

conv = (IDatatypeConverter)Class.forName(converter)

.newInstance();

}

catch (IllegalAccessException ex) {

throw new ClassLoadingException(

"Could not access converter class!");

}

catch (InstantiationException ex) {

throw new ClassLoadingException(

"Could not instantiate converter class!");

}

catch (ClassNotFoundException ex) {

throw new ClassLoadingException(

"Converter class not found!");

}

resultValue = conv.convert(

subject.getLiteralLexicalForm());

}

// apply without conversion

else {

resultValue = subject.getLiteralLexicalForm();

}

// create untyped result

Node result = Node.createLiteral(resultValue,

subject.getLiteralLanguage(), false);
return PFLib.oneResult(binding, Var.alloc(object),

result, execCxt);

}

}

Listing A.2: Java source code for property function removeDatatype

Appendix B

XML Schemata

B.1 XML Schema Definition of Mapping Language

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="mappings">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" ref="namespace"/>

<xs:element maxOccurs="unbounded" ref="subject-group"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="namespace">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:anyURI">

<xs:attribute name="prefix" use="required" type="xs:NCName"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="subject-group">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="1" maxOccurs="unbounded"

ref="source-type"/>

<xs:element minOccurs="1" maxOccurs="unbounded"

ref="target-type"/>

<xs:choice maxOccurs="unbounded">

<xs:element ref="nested-mapping"/>

106 Chapter B. XML Schemata

<xs:element ref="simple-mapping"/>

<xs:element ref="complex-mapping"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="source-type" type="xs:NMTOKEN"/>

<xs:element name="target-type" type="xs:NMTOKEN"/>

<xs:element name="nested-mapping">

<xs:complexType>

<xs:choice>

<xs:sequence>

<xs:element maxOccurs="unbounded" ref="target"/>

<xs:element ref="source-container"/>

</xs:sequence>

<xs:sequence>

<xs:element maxOccurs="unbounded" ref="source"/>

<xs:element ref="target-container"/>

</xs:sequence>

<xs:sequence>

<xs:element ref="source-container"/>

<xs:element ref="target-container"/>

</xs:sequence>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="source-container">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" ref="source"/>

</xs:sequence>

<xs:attribute name="name" use="required" type="xs:NMTOKEN"/>

<xs:attribute name="type" type="xs:NMTOKEN"/>

</xs:complexType>

</xs:element>

<xs:element name="target-container">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" ref="target"/>

</xs:sequence>

<xs:attribute name="name" use="required" type="xs:NMTOKEN"/>

<xs:attribute name="type" type="xs:NMTOKEN"/>

</xs:complexType>

</xs:element>

<xs:element name="simple-mapping">

B.1 XML Schema Definition of Mapping Language 107

<xs:complexType>

<xs:sequence>

<xs:element ref="source"/>

<xs:element ref="target"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="complex-mapping">

<xs:complexType>

<xs:sequence>

<xs:element ref="forward-mapping"/>

<xs:element minOccurs="0" ref="backward-mapping"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="forward-mapping">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="arg"/>

<xs:element ref="source"/>

<xs:element ref="target"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="backward-mapping">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="arg"/>

<xs:element ref="source"/>

<xs:element ref="target"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="source">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:NMTOKEN">

<xs:attribute name="datatype" type="xs:anyURI"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="target">

<xs:complexType>

<xs:simpleContent>

108 Chapter B. XML Schemata

<xs:extension base="xs:NMTOKEN">

<xs:attribute name="datatype" type="xs:anyURI"/>

<xs:attribute name="datatypeConverter" type="xs:NCName"/>

<xs:attribute name="uriConverter" type="xs:NCName"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="arg" type="xs:NMTOKEN"/>

</xs:schema>

Listing B.1: XML Schema definition of mapping language

B.2 XML Schema Definition of Mapping Directory File

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="mappings">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="mapping"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="mapping">

<xs:complexType>

<xs:attribute name="file" use="required" type="xs:NMTOKEN"/>

<xs:attribute name="source" use="required" type="xs:anyURI"/>

<xs:attribute name="target" use="required" type="xs:anyURI"/>

</xs:complexType>

</xs:element>

</xs:schema>

Listing B.2: XML Schema definition of mapping directory file

B.3 XML Schema Definition of Ontology Directory File

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="ontologies">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded"

ref="ontology"/>

B.4 XML Schema Definition of Configuration File 109

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ontology">

<xs:complexType>

<xs:attribute name="file" use="required" type="xs:NMTOKEN"/>

<xs:attribute name="name" use="required" type="xs:anyURI"/>

</xs:complexType>

</xs:element>

</xs:schema>

Listing B.3: XML Schema definition of ontology directory file

B.4 XML Schema Definition of Configuration File

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="config">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" ref="mappingDir"/>

<xs:element minOccurs="0" ref="ontologyDir"/>

<xs:element minOccurs="0" ref="remote-mapping-storages"/>

<xs:element minOccurs="0" ref="excludes"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="mappingDir" type="xs:anyURI"/>

<xs:element name="ontologyDir" type="xs:anyURI"/>

<xs:element name="remote-mapping-storages">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="server"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="server" type="xs:anyURI"/>

<xs:element name="excludes">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded"

ref="ontology"/>

</xs:sequence>

</xs:complexType>

110 Chapter B. XML Schemata

</xs:element>

<xs:element name="ontology" type="xs:anyURI"/>

</xs:schema>

Listing B.4: XML Schema definition of configuration file

Appendix C

Command Line Syntaxes

C.1 RDF Transformer: TestConsole
The TestConsole class acts as a local command line interface to the RDF Transformer as described
in Section 6.2. It supports a number of arguments that are explained in Table C.1.

Option Description
--mapping This option is used for registering new mappings. It specifies the file contain-

ing the mapping definition.
--jar This option is used for registering new mappings. It specifies the file contain-

ing the custom property functions.
--source This option is used for registering new mappings. It specifies the namespace

URI of the source ontology.
--target This option is used for registering new mappings as well as for transforming

data. It specifies the namespace URI of the target ontology.
--ontology This option is used for registering a new ontology. It specifies its namespace

URI.
--ontology-file This option is used for the local registration of a new ontology. It specifies the

file containing the ontology definition.
--data This option is used for transforming data. It specifies the file containing the

input data.
--base This option is used for transforming data. It specifies the base URI used for

converting relative to absolute URIs in the input data.
--in-syntax This option is used for transforming data. It specifies the syntax of the input

data. If omitted, the default syntax RDF/XML is used.
--out-syntax This option is used for transforming data. It specifies the syntax of the trans-

formed data. If omitted, the default syntax RDF/XML is used.
--result This option is used for transforming data. It specifies the file where the trans-

formed output data is written to.

Table C.1: Arguments of the RDF Transformer TestConsole class

Each option must be followed directly with its value only separated through a blank. The
arguments can be submitted in any order as long as all needed options for a specific operation are
present. The TestConsole supports the following three operations:

Registering a new mapping In order to register a new mapping, the options --mapping, --source,

112 Chapter C. Command Line Syntaxes

and --target must be set.

Registering a new ontology A new ontology can be registered in two ways. Either, we use only
the --ontology argument and the RDF Transformer tries to download the ontology from the
namespace URI or we specify the --ontology-file option too, in which case the ontology defi-
nition is read from that local file and not from the Internet.

Transforming data The main operation is transforming data which needs at least the --target and
--data arguments. If only those two are given, the input is assumed to be in the RDF/XML
syntax and the transformed output is written to the command line in the same syntax.
Therefore, it is optionally possible to specify the syntax of the input with --in-syntax and
the one of the output with --out-syntax as well as a filename for the output with --result. Ad-
ditionally, the base URI used for converting relative URIs to absolute ones in the input data
can be specified with the --base option. If it is omitted and the data contains relative URIs, it
will not be possible to write it in the RDF/XML syntax.

The TestConsole supports the combination of those operations as well. All that is needed for
this is setting the necessary arguments and every operation is executed in the order as listed
above.

C.2 Remote Mapping Storage: LocalConsole
The LocalConsole class acts as a local command line interface to the Remote Mapping Storage as
described in Section 6.4. It supports a number of arguments that are explained in Table C.2.

Option Description
--source This option is used for importing one new mapping. It specifies the namespace

URI of the source ontology.
--target This option is used for importing one new mapping. It specifies the namespace

URI of the target ontology.
--file This option is used for importing one new mapping. It specifies the file contain-

ing the mapping.
--directory This option is used for importing a whole mapping directory. It specifies the

directory containing the mappings and the mapping directory file.

Table C.2: Arguments of the Remote Mapping Storage LocalConsole class

Each option must be followed directly with its value only separated through a blank. The
arguments can be submitted in any order as long as all needed options for a specific operation are
present. The LocalConsole supports the following two operations:

Importing one new mapping To import one specific mapping we need to provide the --source,
--target, and --file options.

Importing a whole mapping directory For the import of a whole mapping directory we only
need to set the --directory option.

Those two options are exclusive and therefore cannot be combined.

Appendix D

Configuration Files

D.1 MappingServer Configuration File
The configuration file used by the MappingServer class of the Remote Mapping Storage is a simple
Java property file. An example file with comments is shown in Listing D.1.

directory where the mappings are stored

mappingDir=mappings

port

port=8090

Listing D.1: Example MappingServer configuration file

It can contain the two entries ’mappingDir’ to specify a different mapping directory and ’port’ to
change the port on which the server listens for incoming connections.

114 Chapter D. Configuration Files

References

[AvH04] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT Press,
2004.

[BBG00] Massimo Benerecetti, Paolo Bouquet, and Chiara Ghidini. Contextual reasoning dis-
tilled. Journal of Theoretical and Experimental Artificial Intelligence, 12(3):279–305, 2000.

[BHLT06] Tim Brady, Dave Hollander, Andrew Layman, and Richard Tobin. Namespaces in
xml 1.0 (second edition). http://www.w3.org/TR/xml-names/, August 2006.
Last visited February 2008.

[BLFM05] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform resource identifier (uri):
Generic syntax. http://tools.ietf.org/html/rfc3986, January 2005. Last
visited February 2008.

[BM07] Dan Brickley and Libby Miller. Foaf vocabulary specification 0.91. http://xmlns.
com/foaf/spec/, November 2007. Last visited February 2008.

[Bou05] Paolo Bouquet. D2.2.1v2: Specification of a common framework for characterizing
alignment. http://knowledgeweb.semanticweb.org/semanticportal/
deliverables/D2.2.1v2.pdf, 2005. Last visited February 2008.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois Yergeau.
Extensible markup language (xml) 1.0 (fourth edition). http://www.w3.org/TR/
xml/, September 2006. Last visited February 2008.

[Bri06] Dan Brickley. Basic geo (wgs84 lat/long) vocabulary. http://www.w3.org/2003/
01/geo/, February 2006. Last visited February 2008.

[CM05] Dan Connolly and Libby Miller. Rdf calendar - an application of the resource descrip-
tion framework to icalendar data. http://www.w3.org/TR/rdfcal/, September
2005. Last visited February 2008.

[DH98] Frank Dawson and Tim Howes. vcard mime directory profile. http://www.ietf.
org/rfc/rfc2426.txt, September 1998. Last visited February 2008.

[Doa02] AnHai Doan. Learning to Map between Structured Representations of Data. PhD thesis,
University of Washington, 2002.

[DS98] Frank Dawson and Derik Stenerson. Internet calendaring and scheduling core object
specification (icalendar). http://www.ietf.org/rfc/rfc2445.txt, November
1998. Last visited February 2008.

http://www.w3.org/TR/xml-names/
http://tools.ietf.org/html/rfc3986
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.2.1v2.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.2.1v2.pdf
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://www.w3.org/2003/01/geo/
http://www.w3.org/2003/01/geo/
http://www.w3.org/TR/rdfcal/
http://www.ietf.org/rfc/rfc2426.txt
http://www.ietf.org/rfc/rfc2426.txt
http://www.ietf.org/rfc/rfc2445.txt

116 REFERENCES

[Euz04] Jérôme Euzenat. D2.2.3: State of the art on ontology alignment. http:
//knowledgeweb.semanticweb.org/semanticportal/deliverables/
D2.2.3.pdf, 2004. Last visited February 2008.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifi-
cations. http://ksl.stanford.edu/knowledge-sharing/papers/
ontolingua-intro.rtf, April 1993. Last visited February 2008.

[HSW06] Harry Halpin, Brian Suda, and Norman Walsh. An ontology for vcards. http:
//www.w3.org/2006/vcard/ns, November 2006. Last visited February 2008.

[Ian01] Renato Iannella. Representing vcard objects in rdf/xml. http://www.w3.org/TR/
vcard-rdf, February 2001. Last visited February 2008.

[Inc02] Sun Microsystems Inc. Permissions in the java 2 standard edition develop-
ment kit (jdk). http://java.sun.com/j2se/1.5.0/docs/guide/security/
permissions.html, 2002. Last visited February 2008.

[Inc03] Sun Microsystems Inc. Default policy implementation and policy file syn-
tax. http://java.sun.com/j2se/1.5.0/docs/guide/security/
PolicyFiles.html, September 2003. Last visited February 2008.

[Jen] Jena - a semantic web framework for java. http://jena.sourceforge.net. Last
visited February 2008.

[KBS07] Christoph Kiefer, Abraham Bernstein, and Markus Stoker. The fundamentals of is-
parql - a virtual triple approach for similarity-based semantic web tasks. In Proceed-
ings of the 6th International Semantic Web Conference (ISWC), Lecture Notes in Com-
puter Science, pages 295–309. Springer, 2007.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource description framework (rdf): Con-
cepts and abstract syntax. http://www.w3.org/TR/rdf-concepts/, February
2004. Last visited February 2008.

[Kno04] Nick Knouf. bibtex definition in web ontology language (owl) version 0.1. http:
//zeitkunst.org/bibtex/0.1/, 2004. Last visited February 2008.

[Kru] Sebastian Ryszard Kruk. Rdftranslator. http://wiki.corrib.org/index.php/
RDFTranslator. Last visited February 2008.

[KS03] Yannis Kalfoglou and Marco Schorlemmer. If-map: An ontology-mapping method
based on information-flow theory. The Knowledge Engineering Review, 18(1):1–31, 2003.

[KVV06] Markus Krtzsch, Denny Vrandecic, and Max Vlkel. Semantic mediawiki. In Proceed-
ings of the 5th International Semantic Web Conference (ISWC06), volume 4273 of Lecture
Notes in Computer Science, pages 935–942. Springer, November 2006.

[Lau07] Gian Marco Laube. Semclip - ontology mediation and content negotiation for the
semantic clipboard. Master’s thesis, University of Zurich, 2007.

[Mar] Marcont initiative. http://www.marcont.org. Last visited February 2008.

[MBS08] Alistair Miles, Thomas Baker, and Ralph Swick. Best practice recipes for publishing
rdf vocabularies. http://www.w3.org/TR/swbp-vocab-pub/, January 2008.
Last visited February 2008.

http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.2.3.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.2.3.pdf
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.2.3.pdf
http://ksl.stanford.edu/knowledge-sharing/papers/ontolingua-intro.rtf
http://ksl.stanford.edu/knowledge-sharing/papers/ontolingua-intro.rtf
http://www.w3.org/2006/vcard/ns
http://www.w3.org/2006/vcard/ns
http://www.w3.org/TR/vcard-rdf
http://www.w3.org/TR/vcard-rdf
http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html
http://jena.sourceforge.net
http://www.w3.org/TR/rdf-concepts/
http://zeitkunst.org/bibtex/0.1/
http://zeitkunst.org/bibtex/0.1/
http://wiki.corrib.org/index.php/RDFTranslator
http://wiki.corrib.org/index.php/RDFTranslator
http://www.marcont.org
http://www.w3.org/TR/swbp-vocab-pub/

REFERENCES 117

[MM04] Frank Manola and Eric Miller. Rdf primer. http://www.w3.org/TR/
rdf-primer/, February 2004. Last visited February 2008.

[NM01] Natalya Noy and Mark Musen. Anchor-prompt: Using non-local context for seman-
tic matching. In IJCAI 2001 workshop on ontology and information sharing, pages 63–70,
2001.

[OW02] Thomas Ottmann and Peter Widmayer. Algorithmen und Datenstrukturen. Spektrum
Akademischer Verlag, 2002.

[Pro] Protégé - the ontology editor and knowledge acquisition system. http://
protege.stanford.edu. Last visited February 2008.

[SBH+05] York Sure, Stephan Bloehdorn, Peter Haase, Jens Hartmann, and Daniel Oberle. The
swrc ontology - semantic web for research communities. In Proceedings of the 12th
Portuguese Conference on Artificial Intelligence - Progress in Artificial Intelligence (EPIA
2005), volume 3803 of LNCS, pages 218–231, 2005.

[SH07] Andy Seaborne and Matthias Hert. Calculate total time from variable number of
single times in a property function. http://tech.groups.yahoo.com/group/
jena-dev/message/31211, October 2007. Last visited February 2008.

[SMT00] C. M. Sperberg-McQueen and Henry Thompson. Xml schema. http://www.w3.
org/XML/Schema, April 2000. Last visited February 2008.

[SMW08] Semantic mediawiki - help:annotation. http://semantic-mediawiki.org/
index.php/Help:Annotation, January 2008. Last visited February 2008.

[Uni07] What is unicode? http://www.unicode.org/standard/WhatIsUnicode.
html, 2007. Last visited February 2008.

[Wal05a] Norman Walsh. Extracting vcards from hcard markup. http://norman.walsh.
name/2005/12/12/vcard, December 2005. Last visited February 2008.

[Wal05b] Norman Walsh. Modelling vcards in rdf. http://norman.walsh.name/2005/
12/05/vcard, December 2005. Last visited February 2008.

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://protege.stanford.edu
http://protege.stanford.edu
http://tech.groups.yahoo.com/group/jena-dev/message/31211
http://tech.groups.yahoo.com/group/jena-dev/message/31211
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://semantic-mediawiki.org/index.php/Help:Annotation
http://semantic-mediawiki.org/index.php/Help:Annotation
http://www.unicode.org/standard/WhatIsUnicode.html
http://www.unicode.org/standard/WhatIsUnicode.html
http://norman.walsh.name/2005/12/12/vcard
http://norman.walsh.name/2005/12/12/vcard
http://norman.walsh.name/2005/12/05/vcard
http://norman.walsh.name/2005/12/05/vcard

	Introduction
	Semantic Web Overview
	Today's Web and the Semantic Web Vision
	Explicit Metadata
	Ontologies
	Architecture of the Semantic Web

	RDF as a Graph
	Ontology Alignment and Mapping
	Use Cases
	Semantic Heterogeneity

	Problem Statement
	Thesis Overview

	Related Work
	Representation of Mappings

	Requirements for an Ontology Mapping Language
	Contact Data
	FOAF
	vCard (2001)
	vCard (2006)
	SWRC

	Event Data
	RDF Calendar
	SWRC
	Semantic MediaWiki

	Summary of Requirements and Examples
	Simple One to One Mapping
	Untyped to Typed Mapping
	Extracting Nested Data
	Create Substructures
	Converting Structures
	Literals to URIs
	Restoring Implicit Knowledge
	Substitution of Class Types

	Our Approach for an Ontology Mapping Language
	General Mapping Format
	Namespaces
	Translation of RDF Documents
	Simple One to One Mapping
	Untyped to Typed Mapping
	Extracting Nested Data
	Create Substructures
	Converting Structures
	Literals to URIs
	Restoring Implicit Knowledge
	Substitution of Class Types

	Architecture of the RDF Transformer
	Implementation of the RDF Transformer
	Package Overview
	RDF Transformer
	Mapping Storage
	Handlers

	Remote Mapping Storage
	Ontology Storage
	SPARQL Extensions
	Configuration File & Security Policy

	Evaluation
	The Involved Ontologies
	Example Data
	Mapping Definition
	Transformation Query
	Application of the Mapping

	Example Application: Semantic Clipboard
	Conclusion
	Additional Java Source Code
	datatypeConverter Java Source Code
	removeDatatype Java Source Code

	XML Schemata
	XML Schema Definition of Mapping Language
	XML Schema Definition of Mapping Directory File
	XML Schema Definition of Ontology Directory File
	XML Schema Definition of Configuration File

	Command Line Syntaxes
	RDF Transformer: TestConsole
	Remote Mapping Storage: LocalConsole

	Configuration Files
	MappingServer Configuration File

