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Abstract

This thesis aims to analyze the impact of occlusion on the quality of semantic segmentation methods for point
cloud data. Occlusion is a prevalent phenomenon in 3D scenes, where objects often overlap or obstruct each
other. This can significantly compromise the quality and integrity of data, leading to inaccuracies in semantic
segmentation. While the issue of occlusion has garnered attention in 3D data processing, current research on how
different occlusion levels impact the quality of semantic segmentation is rare. Specifically, there is a palpable gap
in understanding how to quantify occlusion in the scene and how this characteristic influence the performance of
advanced semantic segmentation software like the Minkowski Engine. To bridge the research gap, we proposed
a novel metric to quantify the occlusion level of a scene. We then applied this metric to analyze the impact
of occlusion on the quality of semantic segmentation methods for point cloud data. Our results show that the
occlusion level of a scene has limited impact to the quality of semantic segmentation.
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1 Introduction and Related Works

Artificial intelligence has received significant attention in recent research. Fields such as natural language process-
ing, image generation, and autonomous driving have benefited from considerable investments, and some related
applications have been successfully implemented. Currently, the practical implementation of autonomous driving
is still challenging due to the high demands for model performance and safety. To achieve its goals, AI needs to
precisely understand its surrounding environment. Hence, semantic segmentation of scenes has become an essen-
tial topic. In this thesis, as opposed to focusing on outdoor scenes commonly associated with autonomous driving,
we are more interested in understanding indoor environments. The correct classification and comprehension of
indoor objects can assist in various aspects of human life, such as creating intelligent robots to help humans with
a series of tasks. To understand scenes accurately, we need to provide AI with high-precision data, typically
point clouds, which are a collection of data points defined in a three-dimensional coordinate system, represent
the external surface of an object. These data points can capture the shape, and sometimes color, of the physical
entities in a scanned environment. They are usually obtained from laser scanners or multi-view reconstructions.
However, when collecting this type of data, objects are often obstructed due to the viewpoint of the scanner,
leading to occlusions in the data, as shown in Figure 1.1, where part of occlusions in a scene are marked with red
box. Therefore, we aim to explore how occlusion affects AI’s understanding of a scene. More specifically, we
want to propose a metric to reflect the occlusion level of a scene and analyze how this characteristic influences
the performance of semantic segmentation methods.

Figure 1.1: Occlusion in a scene
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1.1. PREVIOUS WORK

1.1 Previous work

To the best of our knowledge currently there is not explicit works that compute occlusion level for an entire indoor
scene. There are some related works handling occlusion of point cloud. In this section, we will briefly introduce
these works, especially the ones that are related to occlusion.

Occlusion Guided Scene Flow Estimation on 3D Point Clouds. This paper [OR21] presents the
OGSF-Net, a novel architecture designed to address the challenges of occlusions in 3D scene flow estimation.
Occlusions, where certain regions in one frame are hidden in another, can hinder accurate flow estimation. The
OGSF-Net uniquely integrates the learning of flow and occlusions, using an occlusion handling mechanism in
its Cost Volume layer to measure frame correlations. This approach aims to enhance both flow accuracy and the
understanding of occluded regions, marking a pioneering effort in 3D scene flow estimation on point clouds. To
make this method robust, it is important to make an accurate occlusion prediction. Therefore, they evaluate the
performance of occlusion estimation on data set FlyingThings3D [MIH+16], which provides the ground truth
occlusion mask of point cloud. For evaluation, they use accuracy and F1 score as metrics. This inspires us to
apply similar metrics to evaluate the result of semantic segmentation.

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion. In this work [WLY+21],
the authors proposed Occlusion Completion, an unsupervised pre-training method. The main idea is to generate
occlusion in a point cloud, then use an encoder-decoder model to reconstruct occluded points, and apply the
encoder weights for downstream tasks. What is interesting for us is how they generate occlusion in a scene. They
view point cloud from a camera, which is placed in different viewpoints. At each viewpoint, points are projected
to a camera reference frame, if some points share the same pixel coordinates, then there might be occlusion. This
could also be an inspiration for us to generate occlusion in a scene.

1.2 Positioning and Contributions

Previous work has shown that occlusion of a point cloud can be estimated based on ground truth occlusion infor-
mation. However, in our work we have to estimate occlusion level of a scene without knowing such information.
To achieve this, we will define occlusion as the amount of area occluded from a particular scan viewpoint. To
estimate occlusion we defined, we propose the metric occluded area ratio to represent occlusion level in the scene
which is represented by a triangulated mesh.

This work is focusing on the data set of point cloud. Since there is no property can quantify area in point cloud
we cannot directly extend the metric occluded area ratio to point-based data structure. Therefore, we have to use
a different metric to estimate occlusion level, here we propose Boundary ray ratio which is the ray that intersect
with boundary points in point cloud. We also defined boundary points based on their semantic labels.

1.3 Technical Background

Based on the introduction in previous sections, we would elaborate on some key concepts in the technical back-
ground of this work.

1.3.1 Point Cloud Data

A point cloud is a discrete set of data points in space. The points may represent a 3D shape or object. Each point
position has its set of Cartesian coordinates (X, Y, Z), in some cases it can also include color(RGB) or intensity
information. Point clouds are generally produced by 3D scanners or by photogrammetry software, which measure
many points on the external surfaces of objects around them.

2



1.4. MOTIVATION

Point cloud can be used in different areas. One usage is for rendering and modeling. Typically 3D objects are
modeled using polygon meshes, and polygons are the rendering primitives in the graphics pipeline. However, rep-
resenting all objects with point sampling allows easy mixing of objects in a scene without specialized algorithms
for different geometry types. Other applications include depth sensing, perception, scientific computing etc.

1.3.2 Semantic Segmentation

Semantic segmentation for point cloud data has rapidly became a pivotal research domain, given its profound
implications in many applications. From the intricate pathways navigated by autonomous driving to the precise
movements of robotics and the detailed analysis of 3D scenes, the ability to accurately segment and categorize
each data point in a 3D environment is important.

At the heart of this research lies the challenge of dealing with occlusions. In real-world scenarios, objects within
a scene often overlap or obstruct each other, leading to partial or even complete occlusions. Such occlusions can
significantly distort the spatial distribution of data points, making it challenging to distinguish the structure and
category of the obstructed objects. For instance, in an urban driving scenario, a pedestrian might be partially
hidden behind a parked car, or in an indoor scene, a chair might be obscured by a table. These occlusions can lead
to misclassifications, reducing the overall accuracy of the segmentation.

Minkowski Engine. The Minkowski Engine [CGS19] is an auto-differentiation library specifically designed
for sparse tensors. In the area of deep learning, where dense tensors are commonly used, the Minkowski Engine
brings a fresh perspective by focusing on sparse tensors. This is particularly beneficial for 3D data, which often
exhibits spatial sparsity. The engine supports all standard neural network layers, including convolution, pooling,
unpooling, and broadcasting operations, but tailored for sparse tensors. Such capabilities make it an ideal choice
for semantic segmentation tasks, especially when dealing with point cloud data. [Minkowski]

Figure 1.2: Minkowski Engine Indoor Scene Segmentation

1.4 Motivation

Among the many factors influencing the semantic segmentation of point cloud data, the level of occlusion stands
as one of the major challenges. Occlusions, a prevalent phenomenon in 3D scenes, can significantly compromise
the quality and integrity of data. When objects are partially or entirely obscured by others, semantic segmentation

3



1.5. OUTLINE

might lead to inaccuracies in segmentation. While the issue of occlusion has garnered attention in 3D data pro-
cessing, current research on how different occlusion levels impact the quality of semantic segmentation remains
fragmented. Specifically, there is a palpable gap in understanding how to quantify occlusion levels and how these
levels influence the performance of advanced tools like the Minkowski Engine. Thus, the primary motivation be-
hind this research is to systematically evaluate level of occlusion and delve deep into their impact on point cloud
data semantic segmentation.

1.5 Outline

In this thesis we will first briefly mention related works and discuss the part which bring us inspirations. We will
also introduce related technical concepts to give reader richer background information. Then our contributions
and motivations will be stated. In the next Chapter we elaborate on problems which we have to solve in order to
compute metrics proposed before correctly. Our technical solution are listed and explained in detail with figures
and formulas in Chapter 3. Once we have the solution, we will start to implement concrete codes. Thus, in Chapter
4 implementation details of our algorithm are explained together with the technical stack applied to support our
computational pipeline. In the end of this part we will introduce the structure of our software to give insights on
how the whole pipeline works.

For this thesis it is crucial to present our experimental results in a meaningful way. Hence, in Chapter 5 we
need to first validate that those metrics we proposed can accurately reflect the level of occlusion of a point cloud.
With successful validation we can then apply them to correlate with the performance of semantic segmentation.
In the final step, we discuss the result of experiments and conclude this thesis.

4



2 Problem Statement

In this thesis we aim to find the correlation between occlusion level and performance of semantic segmentation.
Given a data set include mesh and point cloud, we have to first prove that occluded area ratio can be computed
correctly in a mesh. To extend this metric to point cloud, we would estimate a mesh from the cloud and we
compute its occluded area ratio. Then we would directly generate a set of occluded point clouds to apply the
Boundary ray ratio to estimate level of occlusion. To validate Boundary ray ratio is a reliable metric in estimation,
its value should be close to the value of occluded area ratio. After the validation we can compute occlusion level
of point cloud together with the performance of semantic segmentation, then we compare performance of point
cloud with different occlusion level to see if these metrics can correlated with each other.

These problems are addressed in following points. Each of them will be provided with more detailed explana-
tion in the next chapter where our technical solutions are given.

• Compute occluded area ratio of mesh.

• Estimate a mesh from the given point cloud.

• Compute the occluded area ratio for the estimated mesh and generate a new point cloud by sub-sampling
the original point cloud.

• Apply the Boundary ray ratio metric to the new point cloud to estimate the level of occlusion and validate
the reliability of the Boundary ray ratio metric by comparing its value with the occluded area ratio

• Compute the occlusion level and the performance of semantic segmentation of the point cloud, then com-
pare these metrics between different clouds to find correlation.

2.1 Occluded Area Ratio of Mesh

In this part we have to prove that as the number of viewpoints increase, there will be more visible area. In another
word, there is less occluded region and thus lower occlusion. As shown in figure 2.1, which is generated by
simulating a scene with multiple light sources in blender [Ble23], the scene with 2 viewpoints has more bright
area and less shadow, this also matches our intuition in real life.

To determine which area is visible and which is not is the key point here to compute occluded area ratio
correctly. Obviously, the visible region to a viewpoint is where rays from viewpoint can reach. Hence, ray-tracing
based algorithm will play an important role in computation of occlusion level.
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2.2. MESH ESTIMATION FROM POINT CLOUD

(a) 1 viewpoint

(b) 2 viewpoints

Figure 2.1: Scene with Light Sources

2.2 Mesh Estimation from Point Cloud

If we want to compute occluded area ratio from a point cloud, we have to first generate mesh from it. This mesh is
certainly only an estimation. Algorithm such as region growing [Rus23b] can segment points into clusters based
on their properties. With these clusters we can estimate a plane for each of them, then we have a mesh composed
by a set of planar primitives. The accuracy of estimation in this step will also affect subsequent process, hence, it
is crucial for us to improve the result of mesh estimation.

In case of region growing, we need to tweak its input parameters. An example of a code snippet is shown in List
2.1, with many parameters to adjust, the result of region growing can be unstable, which also makes subsequent
process difficult to control. Therefore, it is essential to find a more accurate way to estimate mesh.
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2.3. SUB-SAMPLE ORIGINAL POINT CLOUD

Listing 2.1: Region Growing

1 pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg;
2 reg.setMinClusterSize(min_cluster_size);
3 reg.setMaxClusterSize(max_cluster_size);
4 reg.setSearchMethod(tree);
5 reg.setNumberOfNeighbours(num_neighbours);
6 reg.setInputCloud(cloud);
7 reg.setInputNormals(normals);
8 reg.setSmoothnessThreshold(smoothness_threshold / 180.0 * M_PI);
9 reg.setCurvatureThreshold(curvature_threshold);

10 reg.extract(rg_clusters);

2.3 Sub-sample Original Point Cloud

We would like to generate point clouds from the original cloud since for the validation of our metric we will need
a set of comparable point clouds in terms of the proposed metric, where the comparable means that these clouds
come from the same scene and thus they share the same structural information, hence, it’s comparable and can be
used for computation of the metric. This can be done by applying different strategies to sub-sample the original
point cloud.

2.4 Boundary Ray Ratio of Point Cloud

A common way to generate point cloud is conducted by casting lasers from scanner. Since lasers cannot pass
through objects, occlusion is then generated on those obscured surfaces. And they are mostly shown on the
exterior structure of an indoor scene such as walls, floors and ceilings etc, as they are located in the outermost
layer of the room. Items such as chairs and tables, they can also be obscured by other things, but it is difficult
to estimate how much they are occluded since their structure is more complex compared to large structures like
walls. An example of exterior and interior structure of point cloud is shown in Figure 2.2.
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(a) Exterior

(b) Interior

Figure 2.2: Scene with Light Sources

Based on what we stated above, we choose Boundary ray ratio as the metric to estimate occlusion in point
cloud. A set of rays will be cast to detect if it intersect with points identified as exterior structure, in this work
we define these external points as boundary. With ground truth labeling of points, the classification of points can
easily be done. Finally, we can compute a ratio related to ray that intersects boundary to represent occlusion level
of a point cloud.

2.5 Performance Evaluation of Semantic Segmentation

This step is to find correlation between occlusion level and performance of semantic segmentation. From previous
steps we can already compute occlusion level of a point cloud. The problem here is to use some metrics to evaluate
the performance of segmentation. In Section 1.1, the author of the related work about scene flow, applied F1 score
to evaluate their results. This will be considered as one of the options for evaluation. With metrics we computed
before we can finally investigate how would the evaluation metrics change with different occlusion level.
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3 Technical Solution

In this chapter we will introduce our technical solution to the problem stated in Chapter 2 in a detailed way. The
overall workflow is shown below in Figure 3.1.

Figure 3.1: Overall Flowchart of Technical Solution

3.1 Compute Occluded Area Ratio

It is difficult to accurately compute occluded area of a triangle, since we don’t exactly know which part is visible
or occluded geometrically. The method applied here is to sample triangle, with samplings we can have a good
coverage of the area. Next step is to compute each sampling’s visibility to viewpoints in the scene. Then we are
able to compute the ratio by counting how many points are occluded. A flow chart of the whole pipeline is shown
below in Figure 3.2.
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3.1. COMPUTE OCCLUDED AREA RATIO

Figure 3.2: Flowchart of Computing occluded area ratio

3.1.1 Sample Triangles

In order to make samplings cover the area of triangle uniformly, we take 2 sampling algorithms into consideration.
There are uniform sampling and halton sampling. The only difference of these methods is the way they generate
random numbers. With these number we calculate barycentric coordinates based on vertices of triangle.

Uniform Sampling The process begins by randomly generating two parameters, r1 and r2, both of which
lie in the interval [0, 1] with a uniform distribution, ensuring that each point within the interval has an equal
probability of being selected. These random parameters are then used to compute the barycentric coordinates of
the sampled points within the triangle. The barycentric coordinates, denoted as α, β, and γ, allow us to express
any point within the triangle as a linear combination of the triangle’s vertices.

The algorithm of this part is shown below:

Algorithm 1 Uniform Sampling within a Triangle

Require: Triangle vertices V1, V2, V3

Ensure: Sampled point P within the triangle
Generate two random numbers r1 and r2 with a uniform distribution in the interval [0, 1]
Compute the barycentric coordinates using r1 and r2 as follows:

α← 1−√r1
β ← √r1 × r2
γ ← 1− α− β

Compute the Cartesian coordinates of the sampled point P as:
P ← αV1 + βV2 + γV3

return P

Halton Sampling In the part of uniform sampling, we have introduced how to compute barycentric coordi-
nates on a triangle. Therefore, here we focus on the generation of random numbers using the Halton sequence,
a method that generates quasi-random numbers which are known to fill the space more uniformly compared to
purely random numbers.

The algorithm to generate a number in the Halton sequence can be represented as:
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Algorithm 2 Halton Sequence Generation

Require: index ≥ 0, base > 1 (a prime number)
Ensure: Halton number corresponding to the given index and base

result← 0.0
f ← 1.0/base
i← index
while i > 0 do

result← result+ f · (i mod base)
i← i/base ▷ Integer division
f ← f/base

end while
return result

Using this method, we generate two sequences of Halton numbers with different bases such as 2 and 3, respec-
tively, which are then used to compute the barycentric coordinates for uniform sampling within a triangle. These
quasi-random numbers, r1 and r2, provide a more evenly distributed set of sample points within the triangle com-
pared to purely random sampling, facilitating a more uniform sampling process. This can be verified in Figure
3.3, where halton sampling shows a result which is closer to even distribution.

(a) Uniform

(b) Halton

Figure 3.3: Sample Triangle

11



3.1. COMPUTE OCCLUDED AREA RATIO

3.1.2 Generate Rays

Rays simulate the path of light as it interacts with objects in a scene. In our approach, while it is an usual case
to cast ray from viewpoint, here we generate them from the sampled points on the triangle to the light source
as shown in Figure 3.4, we need to pay attention that the viewpoint is abstracted as a point instead of an object
with volume. The sampled points serve as the origin of each ray, while the view point (or light source) acts as the
look-at point. The direction of each ray is computed based on the difference between the viewpoint and the origin.
The direction vector is then normalized to ensure its magnitude is 1, which simplifies subsequent calculations.

The direction vector can be calculated using the formula

Direction =
viewpoint− Origin
∥viewpoint− Origin∥

Where:

• Origin is the starting point of the ray, which in our case is the sampled point on the triangle.

• Destination is the end point of the ray, typically representing the viewpoint or light source.

Figure 3.4: Generate Ray from Sampling to Viewpoint

When there are multiple viewpoints in the scene, we have to generate same amount of rays as viewpoints for
each sampling.

3.1.3 Ray Triangle Intersection

Ray-triangle intersection is a fundamental operation in computer graphics, especially in the context of ray tracing.
Determining whether a ray intersects a triangle and finding the intersection point are crucial for rendering scenes
composed of triangular meshes.

One of the most efficient and widely used algorithms for this purpose is the Möller–Trumbore [MT97] inter-
section algorithm. It operates by representing the triangle in barycentric coordinates, which allows it to avoid the
computation of explicit plane equations. It then uses these coordinates to find the intersection point of the ray and
the triangle, if it exists. The algorithm performs a series of vector operations including dot products and cross
products to compute the barycentric coordinates and the distance from the ray’s origin to the intersection point.
More detail is shown below:
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Algorithm 3 Möller–Trumbore Ray-Triangle Intersection Algorithm

Require: Ray with origin O and direction D
Require: Triangle with vertices V1, V2, and V3

Ensure: Intersection point P or indication of no intersection
Compute edge vectors:

e1 ← V2 − V1

e2 ← V3 − V1

Compute vector h as the cross product of D and e2:
h← D × e2

Compute determinant a:
a← e1 · h

if a is close to zero then
return No intersection ▷ Ray is nearly parallel to the triangle

end if
Compute factor f :

f ← 1
a

Compute vector s:
s← O − V1

Compute barycentric coordinate u:
u← f · (s · h)

if u < 0 or u > 1 then
return No intersection

end if
Compute vector q as the cross product of s and e1:

q ← s× e1
Compute barycentric coordinate v:

v ← f · (D · q)
if v < 0 or u+ v > 1 then

return No intersection
end if
Compute distance t to the intersection point:

t← f · (e2 · q)
Compute intersection point P :

P ← (1− u− v)V1 + uV2 + vV3

return Intersection point P and distance t

3.1.4 Occluded Area Ratio

From previous steps, we have computed samplings on each triangle and generated rays originating from these
samplings directed towards the viewpoints. As opposed to directly compute occluded area, we detect visible
samplings here. We use visible weight represents the ratio of visible samplings to the total number of samplings
on the triangle. With this weight we compute visible area for each triangle, then we sum up them to get the total
visible area, and the ratio can be easily calculated with total area. Mathematically, the visibility weight, w, can be
defined as:

w =
Number of visible samplings per triangle
Total number of samplings per triangle

The visible area Avisible of the triangle can then be computed as:

Avisible = w ×Atotal
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The visible area ratio, denoted as Rvisible, is calculated as the ratio of the total visible area Atotal visible to the
total area Atotal of the triangle. It can be mathematically represented as:

Rvisible =
Atotal visible

Atotal

Conversely, the occluded area ratio, denoted as Roccluded, can be calculated as the complement of the visible
area ratio. It is given by:

Roccluded = 1−Rvisible

A sampling is deemed visible if at least one ray originating from it does not intersect any triangle between its
origin and the viewpoint other than the one from which the sampling was generated. To ascertain this, we should
examine all first hit intersection related to the ray cast from the sampling. If the distance from origin to viewpoint
is shorter than the distance between origin and first hit intersection, which means no intersection can obscure the
viewpoint, then this sampling is considered visible.

Algorithm 4 Determining the Visibility of a Sampling

Require: Ray originating from sampling with origin O and direction D
Require: Viewpoint V
Require: Set of triangles T excluding the triangle from which the sampling was generated
Ensure: Visibility status of the sampling

Compute the distance from the origin to the viewpoint: dviewpoint = ∥V −O∥
Initialize variable dintersection to infinity
Initialize variable isVisible to false
for each triangle t in T do

Compute the intersection of the ray with triangle t using the Möller–Trumbore algorithm
if there is an intersection at distance d from O then

Update dintersection to the minimum of dintersection and d
end if

end for
if dviewpoint < dintersection then

Set isVisible to true ▷ No intersection obscures the viewpoint
end if
return isVisible

3.2 Estimate Mesh from Point Cloud

In this part we estimate mesh for subsequent computation of occluded area ratio. As discussed in Section 2.2,
region growing is an option here to segment points and to fit planar primitives based on segmented clusters
of points, but the result is normally difficult to control, and the process of fitting plane from clusters might
increase its instability. An alternative could be the software GoCoPP [YL22], which can help us on finding
good configurations of planar primitives in unorganized point cloud. Regarding the paper behind this software,
algorithm in GoCoPP outperforms region growing on different evaluation metrics. Below in Figure 3.5 shows the
result of 2 methods where in case of region growing we only segmented the point cloud, while in GoCoPP they
already triangulated planar primitive by applying alpha shape algorithm [AEF+95]. With the triangulated mesh
we can directly feed this data into our pipeline. Therefore, we choose to apply GoCoPP to generate mesh from
point cloud.
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(a) Region Growing

(b) Segmented via GoCoPP

Figure 3.5: Segmentation Methods

We use the same pipeline introduced in Section 3.1 to compute its occluded area ratio to represent occlusion
level. The result depends on which strategy we use to place viewpoints. We can randomly place them in the scene
or with fixed position such as center of the scene’s bounding box, this will be explained more detailed in Chapter
5.

3.3 Compute Boundary Ray Ratio of Point Cloud

We define boundary ray as the ray which intersects with boundary point. Hence, it’s also important to categorize
each point as either boundary or non-boundary. Normally, we regard wall, floor, ceiling and window as boundary,
in the context of our input data set, we will also add board, column and beam to this class. The exact classification
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will be shown in Section 3.3.4. With all points classified we can then input these data into computational pipeline
of boundary ray ratio. An overall workflow of this part is shown in Figure 3.6.

Figure 3.6: Flowchart of Computing Boundary Ray Ratio

3.3.1 Generate Random Rays

We want to use a ray from outside of the scene and directed towards the cloud, then we check how many bound-
aries the ray can intersects with, since this indicate how much occlusion a ray can contribute to the overall occlu-
sion level. In case of a room, its boundary can be represented as a cuboid, which can at most has 2 faces intersect
with one ray. Based on that, our rays can be classified as non-boundary ray, 1-boundary ray and 2-boundary ray
as shown in Figure 3.7.

(a) Non-boundary Ray (b) 1-boundary Ray (c) 2-boundary Ray

Figure 3.7: Classification of Boundary Rays

In our work, it is more feasible for us to create rays within the room which is always presented as point cloud.
We first randomly generate two points within the bounding box of the scene. One as origin of the ray and the
other is the look-at direction. To simulate a ray originates from outside and pass through the room we also take
its opposite direction into consideration. Namely, for one ray we have to compute its intersection with points in
both directions.

A ray can intersect multiple boundary and non-boundary points at the same time, here we define that the ray
has intersection with boundary on one direction when there is at least one boundary point intersect with it.
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Figure 3.8: Ray with 2 Directions

3.3.2 Ray Point Intersection

Each point within the point cloud is represented as a small sphere with a defined radius. This simplifies the
ray-point intersection check, as we can treat each point as a volumetric entity rather than a singular coordinate in
space. The way ray intersects with a sphere is illustrated in Figure 3.9.

Figure 3.9: Ray Intersect Point

To determine if a ray intersects with a sphere, we follow the algorithm [Scr23b] stated below:

Algorithm 5 Ray-Sphere Intersection Algorithm

Require: Ray origin, Ray direction, Sphere center, Sphere radius
1: Normalize the ray direction vector if not normalized
2: Compute vector L = Sphere center− Ray origin
3: Compute originDistance2 = L · L
4: Compute tca = L · Normalized ray direction
5: if originDistance2 < Sphere radius2 then
6: return Intersection exists (Ray origin is inside the sphere)
7: end if
8: if tca < 0 then
9: return No intersection (Sphere is behind the ray)

10: end if
11: Compute d2 = originDistance2 − t2ca
12: if d2 > Sphere radius2 then
13: return No intersection (Ray misses the sphere)
14: else
15: return Intersection exists (Ray intersects the sphere)
16: end if
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3.3.3 Ray Openings Intersection

Openings or gaps in the scene, such as windows or doors, should not contribute to occlusion. In the context of
boundary rays, we regard openings as boundary. To account for these openings, we need an efficient method to
determine if a ray intersects with any of the openings in the scene. Given the typically limited number of openings
in a scene, it is feasible to manually select a few points that represent the boundary of each opening. Using these
points, we can construct a polygonal representation of the opening. The ray-openings intersection check can then
be performed by testing if the ray intersects with any of these polygons.

For a set of points P = {p1, p2, ..., pn} that define a polygon, we first estimate a plane N that best fits these
points. Once the plane is determined, all points are projected onto it to ensure they lie within the same plane.
The next step involves calculating the intersection of the ray with this plane. If an intersection exists, we need to
determine if this intersection point lies inside the polygon. This workflow is shown in Figure 3.10.

Figure 3.10: Estimate Polygon from Points

To check the position of the intersection point relative to the polygon, we construct vectors between the intersec-
tion point and each vertex of the polygon. For every pair of neighboring vectors, we compute their cross product.
If all resulting cross products point in the same direction (i.e., they have the same sign), then the intersection point
is inside the polygon. Otherwise, the intersection point lies outside the polygon.

Mathematically, given two vectors v1 and v2, their cross product is given by:

v1 × v2 =

∣∣∣∣∣∣
i j k

v1x v1y v1z
v2x v2y v2z

∣∣∣∣∣∣
Where i, j, and k are the unit vectors in the x, y, and z directions, respectively. By iterating over all the vertices
of the polygon and computing these cross products, we can determine the position of the intersection point with
respect to the polygon. In Figure 3.11 the ray intersects with polygon. To verify the algorithm with this illustration,
we can apply right-hand rule to every 2 neighbouring vectors in clockwise order, then the cross product should
always point downwards.

Figure 3.11: Ray Intersect Polygon
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3.3.4 Boundary Ray Ratio

Before we compute ray-boundary intersection, it is required to classify all points properly. Then we can categorize
rays into different classes.

Classification of Points To compute boundary ray ratio correctly, we have to define the class of each point.
The exact classification is shown in Table 3.1.

Boundary Non-Boundary
Wall Chair
Floor Sofa

Ceiling Table
Sofa Bookcase
Table Clutter
Door

Window
Beam
Board

Column

Table 3.1: Classification of Points

Computation After classifying all points in the scene, we compute ray-point intersection to determine which
class the ray belongs to. Subsequently, we compute the boundary ray ratio using the following formula:

Occlusion Level =

√(
2
3

)
· non-boundary ray count +

(
1
3

)
· 1-boundary ray count

total rays

We assign different weights to non-boundary ray and 1-boundary ray based on the principle that a ray with less
boundary intersection contribute more to occlusion level. To make this ratio comparable with occluded area ratio,
we apply the square root here since the ray fills the volume of the space and the measurement grows at cubic rate
while the area based ratio grows at quadratic rate.

3.3.5 Ray Tracing Based Point Cloud Scanning

To validate that boundary ray ratio is a reliable metric to represent occlusion level we would compare it with
occluded area ratio. Sufficient data is needed in this step as we cannot ensure the robustness of validation with
only 2 or 3 comparisons. Besides, the comparison should be conducted within the same scene since the structure
of different scene can differ significantly. Therefore, it is necessary to create a set of occluded point clouds for
each scene.

We would perform it in a manner similar to sampling a real scene using a laser scanner. The points stored in
the data acquired from the scanner are those that are visible to it. If we apply this to original point cloud, we are
actually creating a sub-sampled data set based on visibility to light sources.

Spherical Light Source To simulate a light source that emits rays in all directions, we use a spherical model.
Points are sampled on the surface of this sphere, and each point represents a direction for a ray. The number
of rays (or sampled points) is predetermined and can be adjusted based on the desired resolution or accuracy of
the scan. The exact sampling method is inspired by the work which is dealing with parameterizing surface of
spheres [FH05]. The specific algorithm is as follows:
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Algorithm 6 Surface Parameterization Based Sampling

Require: Number of horizontal samplings sampling hor and number of vertical sampling sampling ver
Ensure: A vector of directions constituting the scanning pattern.

1: Initialize a vector pattern with size sampling hor × sampling ver
2: hor ← sampling hor
3: ver ← sampling ver
4: for i = 0 to sampling hor − 1 do
5: cos i← cos

(
2πi
hor

)
6: sin i← sin

(
2πi
hor

)
7: for j = 0 to sampling ver − 1 do
8: sin j ← sin

(
2πj
ver

)
9: cos j ← cos

(
2πj
ver

)
10: Create a vector dir with elements cos i · sin j, sin i · sin j, and cos j
11: pattern[j + i · sampling ver]← dir
12: end for
13: end for
14: return pattern

An example of the result of this method is shown in Figure 3.12 with multiple views.

(a) Frontal View (b) View from Above

Figure 3.12: Sample Sphere

3.4 Evaluate Performance of Segmentation

Evaluating the performance of semantic segmentation is crucial to ensure its reliability and effectiveness. Metrics
serve as standardized measures to assess the quality of segmentation results, comparing the predicted outputs
against the ground truth. In this part, we discuss the semantic classes as well as metrics used to evaluate the
performance of semantic segmentation models.

3.4.1 Semantic Classes

Semantic segmentation requires a clear definition of the classes that are to be identified within the data set. Due
to discrepancies between the ground truth point cloud data set, denoted as S3dis [ASZ+16], and the data set used
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for the pre-trained model in Minkowski Engine, we have to make sure that their classes are comparable. Classes
in S3dis is shown in Table 3.2. When we do the comparison between points’ semantic labels, we categorize class
which is not included in the table to Clutter.

Semantic Class ID
Wall 0
Floor 1

Ceiling 2
Chair 3
Sofa 4
Table 5
Door 6

Window 7
Bookcase 8

Beam 9
Board 10
Clutter 11
Column 12

Table 3.2: Mapping of semantic classes to their respective class IDs.

Given a segmented point cloud, we can evaluate the segmentation by calculating various metrics such as preci-
sion, and recall for each class. In semantic segmentation of point clouds, each point in the cloud is classified into
one of several possible categories, which are True Positives (TP), False Positives (FP), True Negatives (TN), and
False Negatives (FN) regarding the correctness of segmentation. The Algorithm 7 demonstrates how to classify
points into them and counting the values. With these values we can then compute metrics explained in subsequent
section.
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Algorithm 7 Computation of TP, TN, FP, and FN for Point

Require: Segmented point cloud P with N points, Ground truth labels for each point
Ensure: Computation of True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives

(FN) for each class
1: Initialize counters for True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives

(FN) for each class to zero
2: for each point pi in point cloud P do
3: Get the ground truth label and predicted label for pi
4: for each class cj do
5: if the ground truth label of pi is cj then
6: if the predicted label of pi is cj then
7: TP for class cj += 1
8: else
9: FN for class cj += 1

10: end if
11: else
12: if the predicted label of pi is cj then
13: FP for class cj += 1
14: else
15: TN for class cj += 1
16: end if
17: end if
18: end for
19: end for
20: return Counters TP, TN, FP, and FN for each class

3.4.2 Evaluation Metrics

To evaluate the performance of our model in the context of point cloud segmentation, we employ several widely-
recognized metrics, which includes Precision, Recall and F1 Score.

These metrics provide different perspectives on the model’s capabilities and are computed using the values of
True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN) which are obtained for
each class through the algorithm described earlier. Below, we detail these metrics along with their respective
mathematical formulations:

Precision and Recall are two complementary metrics that provide insights into the model’s performance re-
garding false positives and false negatives.

Precision quantifies the proportion of positive identifications that were actually correct, as given by:

Precision =
True Positives

True Positives + False Positives

or equivalently,

Precision =
TP

TP + FP

A higher precision indicates a larger percentage of the model’s positive predictions were correct.

Recall, on the other hand, measures the proportion of actual positives that were identified correctly, as given
by:

Recall =
True Positives

True Positives + False Negatives
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or equivalently,

Recall =
TP

TP + FN

A higher recall indicates that fewer actual positives were missed by the model.

F1 Score is the harmonic mean of precision and recall, providing a balance between the two and ensuring that
both false positives and false negatives are considered. It is calculated as:

F1 = 2× Precision× Recall
Precision + Recall

or equivalently,

F1 = 2× TP

2× TP + FP + FN

An F1 Score closer to 1 indicates better performance, while a score closer to 0 indicates poor performance.
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4 Implementation

In this chapter, we first delve deeper into the core part of implementation of our computational pipeline as pre-
sented in Chapter 3. Then we go through the overall structure of the software which is ready for user to interact
with.

4.1 PCL and Eigen Serves for Computation

The Point Cloud Library (PCL) [RC11] stands as the backbone of our implementation. We rely on PCL to
accomplish a set of tasks, ranging from reading point cloud to evaluating its occlusion levels. Parallel to PCL,
the Eigen library [GJ+10] emerges as an invaluable asset. It is our preferred choice for handling mathematical
operations that are indispensable to our pipeline.

4.1.1 Handling Point Cloud Data

We read point cloud data and load them into different types as follows:

• pcl::PointXYZ - Point cloud with only coordinate information.

• pcl::PointXYZI - Extra intensity field, in this work it is used mostly to store category information of a
point.

• pcl::PointXYZRGB - Point cloud with coordinate and color information. If without RGB value attached,
we will see point cloud rendered with white color.

Sometimes we need to store points to a new point cloud, which can be done in a typical way shown in code
snippet below:

Listing 4.1: Save Point Cloud Data

1 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
2 for(...) {
3 pcl::PointXYZ point;
4 cloud->points.push_back(point);
5 }
6 cloud->width = cloud->points.size();
7 cloud->height = 1;
8 cloud->is_dense = true;
9 pcl::io::savePCDFileASCII("../files/cloud.pcd", *cloud);

4.1.2 Estimate Polygon

Computation of ray-opening intersection plays an crucial role in calculating boundary ray ratio. Each opening is
represented as a polygon, and the data we can extract from the original point cloud is a set of small clouds where
each point inside it can be regarded as a vertex of polygon in 3D space. And these vertices are most likely not in
the same plane, therefore, we would estimate a polygon which is able to be used in subsequent computation.

Plane Estimation The initial step is fitting a plane to each cluster’s point data. For this, we rely on the
RANSAC algorithm [FB81] embedded within PCL. In the code snippet shown below, PCL’s SACSegmentation
[Rus23a] is configured to detect planar models. If successful, it retrieves the plane’s coefficients.
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Formation of Polygon With the plane’s coefficients, our next move is to project every point in the cluster
onto this plane. This ensures that all points lie in a co-planar fashion. Once our points sharing a planar space, we
compute the convex hull of each cluster. This results in a 2D polygon within a 3D space, effectively enveloping
all the cluster points. Here, PCL’s ProjectInliers projects the points onto the detected plane, thereby creating a
co-planar point cloud. The usage of PCL’s ConvexHull [CLRS01] class create a cloud representing the polygon.

4.1.3 Ray Tracing Based Intersection Computation

Ray tracing based methods are pivotal to our computational pipeline. We use ray to check if it intersects with any
basic element in the scene, such as point, triangle, polygon, bounding box, etc.

Database-like Structure To compute and record all intersections between all rays and all elements in the
scene, we build different structure for each type of element. Their interactions are also stored, which makes the
system appears to be a relational database. We can query this database to get all the information we need.

Listing 4.2: Data Structures

1 struct Ray3D { // ray structure used for point cloud ray tracing
2 size_t index;
3 pcl::PointXYZ origin;
4 pcl::PointXYZ direction;
5 std::vector<size_t> first_dir_bound_intersection_idx;
6 std::vector<size_t> second_dir_bound_intersection_idx;
7 ...
8 };
9 struct Intersection {

10 size_t index;
11 size_t triangle_index;
12 size_t ray_index;
13 Eigen::Vector3d point;
14 bool is_first_hit;
15 ...
16 };
17 struct Ray {
18 size_t index;
19 size_t first_hit_intersection_idx;
20 Eigen::Vector3d origin;
21 Eigen::Vector3d direction;
22 std::vector<size_t> intersection_idx;
23 std::vector<size_t> triangle_idx;
24 ...
25 };
26 struct Sample {
27 size_t index;
28 size_t triangle_index;
29 Eigen::Vector3d point;
30 bool is_visible = false;
31 std::vector<size_t> ray_idx;
32 };
33 struct Triangle {
34 size_t index;
35 Eigen::Vector3d v1;
36 Eigen::Vector3d v2;
37 Eigen::Vector3d v3;
38 std::vector<size_t> sample_idx;
39 std::vector<size_t> intersection_idx;
40 ...
41 };
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Octree Partitioning In the context of our pipeline, it can be quite overwhelming to iterate over all points for
rat-tracing computation. A naive approach, iterating through each data point and ray, would be computationally
taxing. Recognizing this challenge, it becomes imperative to partition our data into more manageable chunks.
Commonly, data structures such as BVH [Eri05] and octree [Mea80] are used for this purpose. Since there
existing an octree implementation in PCL, we employ it for partitioning our data.

The outcome of octree partitioning is a structured tree. Within this tree, there are three types of nodes: leaf
nodes, branch nodes, and the root node. Leaf nodes serve as storage units for data, branch nodes encapsulate
the bounding box for their respective child nodes, and the root node includes the bounding box of the entire
tree. Navigating this structure, if a ray originates inside the root node, we examine its intersection with the root’s
child nodes. The procedure recursively continues until we reach a leaf node, at which point we verify the ray’s
intersection with the points stored in the leaf. If there is a data intersection, the intersected point is returned.

Octree Data Structure The underlying node structure for our octree is captured succinctly in the following
code representation:

Listing 4.3: Octree Node Structure

1 struct OctreeNode {
2 size_t index;
3 size_t parent_index = -1;
4 size_t prev = -1;
5 size_t next = -1;
6 int depth;
7 std::vector<size_t> children;
8 std::vector<size_t> triangle_idx;
9 int diagonal_distance;

10 Eigen::Vector3d min_pt;
11 Eigen::Vector3d max_pt;
12 Eigen::Vector3d min_pt_triangle;
13 Eigen::Vector3d max_pt_triangle;
14 bool is_leaf = false;
15 bool is_branch = false;
16 bool is_root = false;
17 };

Partition Mesh We can partition mesh with the help of PCL’ octree class. However, this requires a preliminary
step where the extraction of a point which represent the triangle. To achieve this, we use the triangle’s center of
gravity as its representative point. By making these points a cloud, an octree can be constructed. PCL offers
several traversal methods for octree, here the depth-first iterator is applied by default.

Build Depth-Size Map Recognizing that nodes at the same depth exhibit identical bounding box sizes, a
traversal of the tree allows us to construct a size-depth map. Here, the bounding box’s size (denoted by the
distance between maximal point and minimal point) acts as the key, while the depth is the associated value.

Build Depth-Node Map For each node in the tree, we can now find its corresponding depth through Depth-
Size Map built in former step. Then we build the Depth-Node Map where depth is the key and value is composed
of indexes of nodes belong to this level.

Build Connections Between Nodes Establishing connections between parent and child nodes is an essen-
tial step. This phase involves a traversal of the depth-node map, starting from the root and working through to the
leaf node level. There are some points are worth highlighting:

• The root node stands alone without a parent, but nodes at level 1 always share the root as their parent.
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• For branch nodes, the traversal of their child nodes occurs after the traversal of the left sibling’s children but
prior to the right sibling’s children. This traversal pattern help us in effectively mapping the parent-child
relationships.

Following is an example with a tree depth of three. Though an octree typically has eight children for every
node, for the sake of clarity, we’ve reduced its size in this explanation.

Figure 4.1: Octree Structure

The node index, placed at the upper left corner of each box, equates to its traversal order in a depth-first pattern.
Using node 1 as a reference, all its children indices are lesser than 5. Such observations facilitate the accurate
connection of children to their parent nodes.

Compute Bounding Box of Each Node For each leaf node, its bounding box can be directly returned from
methods implemented by PCL’s octree class. But inside the box, there only stores center point of triangle. Hence,
we have to compute the bounding box based on the real geometry of triangle. Each point is stored in form of
pcl::PointXYZI, where I represent its intensity field. In our case we use this field to store the index of triangle. If
we iterate over all points, we are actually iterating over all triangles.

The minimal point and maximal point can be obtained from the minimal and maximal vertex of all triangles.
Once we have built bounding box for each leaf node, we can traverse upwards to compute bounding box for each
branch node and root node.

Partition Point Cloud For partitioning the point cloud, most steps are the same as mentioned in 4.1.3. The
only difference is that we don’t need to compute bounding box based on triangle for each node, methods offered
by PCL’ octree class already meet our needs.

Ray Intersecting with Bounding Box To determine whether a ray intersects with a bounding box, there
are two primary conditions to be considered:

• If the ray’s origin lies inside the bounding box, then it is evident that the ray intersects.
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• If the ray’s origin is outside the bounding box, a specialized algorithm is employed to check for the inter-
section.

The underlying principle is to inspect how the ray interacts with the bounding box by calculating potential
intersection points for each dimension (i.e., x, y, and z). This method of computation involves the slab technique
[Scr23a], which calculates the intersection of the ray with the planes that define the bounding box.

4.2 Auxiliary Components

Several auxiliary libraries play a pivotal role in our system, furnishing it with additional functionalities and capa-
bilities. We briefly discuss these libraries and their respective roles in our pipeline.

JsonCpp - Parameter Parser JsonCpp is a C++ library that allows for the parsing of JSON files. In our
system, we use it to parse the configuration file, which contains all the parameters required for our pipeline. The
following snippet illustrates the configuration file’s structure:

Listing 4.4: Json Configuration File
1 "occlusion": {
2 "mesh": {
3 "path": "../files/simp_conf.obj",
4 "ply_path": "../files/copy_alpha_shape.ply",
5 "pattern": 4,
6 "octree_resolution": 1.0,
7 "enable_acceleration": true,
8 "samples_per_unit_area": 100,
9 "use_ply": true

10 },

Websocketpp - Communication Channel Websocketpp is a C++ library that facilitates the establishment
of a communication channel between the backend and frontend. It is a critical component of our system, enabling
the seamless exchange of data between the two components. The following snippet illustrates the communication
channel’s initialization:

Listing 4.5: Websocket Server

1 typedef websocketpp::server<websocketpp::config::asio> server;
2 void on_message(server& s, websocketpp::connection_hdl hdl, server::message_ptr msg,

DataHolder& data_holder) {
3 ...
4 s.send(hdl, msg->get_payload(), msg->get_opcode());
5 std::string payload = msg->get_payload();
6 if (payload.substr(0, 3) == "-i=") {
7 data_holder.setFileName(payload.substr(3, payload.length()));
8 }
9 ...

10 int main{
11 print_server.set_message_handler([&print_server, &data_holder](websocketpp::

connection_hdl hdl, server::message_ptr msg) {
12 on_message(print_server, hdl, msg, data_holder);
13 });
14 ...
15 print_server.listen(8080);
16 print_server.run();
17 }
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4.3 Web-Based User Interface

Our software is encapsulated within the framework of a web application. The PCL-based backend is responsi-
ble for computation, whereas the frontend enhances user interaction. Detailed structures of the backend were
previously introduced in Section 4.1. In this section, we will briefly introduce usage of the user interface.

The user interface’s visual representation is displayed in Figure 4.2.

Figure 4.2: Web-Based User Interface

4.3.1 Three.js Serves for Visualization

Three.js [Mr.21] is a cross-browser JavaScript library built upon WebGL, complemented with an API designed to
exhibit animated 3D computer graphics directly in a web browser. This dynamic library provides the interactive
visualization pivotal for our application.

Web Technology Stack Given our choice of three.js for visualization, a group of complementary web tech-
nologies is integrated to build our frontend. The technologies used in our web tech stack are as follows:

• TypeScript - An enhanced version of JavaScript, TypeScript introduces a stricter syntax and the conve-
nience of optional static typing, fortifying code robustness and clarity.

• TailwindCSS - A utility-first CSS framework, it grants developers the tools to rapidly carve custom user
interfaces without the redundancy of routine styling.

• Vite - Tailored for modern web projects, Vite is a forward-thinking build tool that streamlines the develop-
ment process.

• Websocket - Elevating communication protocols to the next level, Websocket delivers full-duplex commu-
nication channels over a single TCP connection, encouraging instantaneous data exchange.

4.3.2 User Interface Usage

In this part we will briefly introduce our user interface and explain how to use it.
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Stats Panel Stats panel is located at the top left corner of the user interface. It shows three different metrics
of the scene in different color.

• Frame Rate - Blue, frame rate of the visualization.

• Network Latency - Green, network latency.

• Cache Size - Red, cache size of the point cloud.

Figure 4.3: Stats Panel

GUI GUI is located at the top right corner of the user interface. It shows different parameters of the scene.

Figure 4.4: GUI

• Light Intensity - Control the intensity of the light source.

• Show Cloud - Show the point cloud.

• Use Shader Material - Use shader material to visualize the sphere generated by point picker in a different
way. Here it is blinking between white and black.

• Center - Show center viewpoint.

• Viewpoint Max - Show max-mid viewpoint.

• Viewpoint Min - Show min-mid viewpoint.

• Picker Size - Size of the point picker.

• Semantic - When this enabled, the semantic label of a point will be displayed after right clicking with
mouse.

Buttons Below are the buttons on the user interface.

• Original Cloud - Upload and visualize original point cloud.

• Semantic - Specify file path of point cloud generated from semantic segmentation.
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• Ground Truth - Specify file path of ground truth point cloud.

• Mesh - Upload and visualize mesh.

• Compute Occlusion - Compute occlusion of the point cloud.

• Extract Polygons - Extract the polygon which is specified by interactively selecting points in the rendering
of point cloud.

• Evaluate - Evaluate the performance of semantic segmentation.

4.3.3 Command Line Usage

This project is designated to be used in a web application. However, we can also manipulate the computational
pipeline in command line environment. In addition to functionalities to compute occlusion level and evaluation
metrics directly through user interface, there are commands performs intermediate operations within our work-
flow, such as point cloud scanning, point cloud reconstruction and computation of occluded area ratio etc.

Arguments and Corresponding Functionality Below shows arguments used for different usages. To get
proper results, it is needed to modify parameters in the configuration file config.json.

• -b - Start the backend server.

• -moc - Compute occluded area ratio.

• -bounoc - Compute boundary ray ratio.

• -fscan - Scan cloud with fixed viewpoint.

• -recon - Reconstruct point cloud with ground truth labels from .txt file.

• -eval - Evaluate performance of segmentation.

• -t2ply - Transfer the format of .pcd files to .ply.
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5 Experimental Results

Experiment is one of the most important steps to evaluate the approaches presented in Chapter 3. In this chapter
we will first validate the reliability of our proposed metrics, then we apply them to subsequent workflow to
investigate the impact of occlusion on semantic segmentation of point cloud.

5.1 Validation

The validation phase starts by computing occlusion level of ground truth mesh. Different strategies of the place-
ment of viewpoints will be applied to this scene.

5.1.1 Occlusion Level of Ground Truth Mesh

Setup We prepare a ground truth mesh which present a conference room [McG17] as our input. Since there
are a large quantity of triangles in this mesh, this could potentially result in a significant computational workload,
thus we use the software Meshlab [CCC+08] to help us reducing its size. We have 3 viewpoints in this scene,
their positions are center of the scene, midpoint between center and maximal point and midpoint between center
and minimal point. The mesh scene is shown in Figure 5.1 where all viewpoints are marked with red box.

Figure 5.1: Mesh with Viewpoints

We will conduct this experiment on different pattern of viewpoints as shown in Figure 5.2. There are around
10000 triangles in this mesh, to simplify the computation, we set number of samples per unit area to 10, which
result in around 20000 samples in total. In case there is one viewpoint in the scene, we have the same amount of
rays as samples since we create rays from sampling to viewpoints. Therefore, number of rays will be doubled if
we add one more viewpoint, tripled with 3 viewpoints and so on.
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Figure 5.2: Pattern of Viewpoints

Results Our results are shown in Table 5.1 and Figure 5.3. We can see that the occlusion level decreases as
the number of viewpoints increases. This is because with more viewpoints we can cover more area of the scene,
which results in less occlusion. It is important to note that there is only 1 viewpoint in pattern 1, 2 and 3, 2
viewpoints in pattern 4 and 5, and 3 viewpoints in pattern 6.

Pattern Occluded Area Ratio
1 0.570
2 0.780
3 0.571
4 0.484
5 0.453
6 0.391

Under Table 0.914
Pure Cube 0.000

Table 5.1: Result of Ground Truth Mesh
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Figure 5.3: Result of Ground Truth Mesh

Except for patterns we mentioned above, we also added 2 corner cases where in the first case we put one
viewpoint right below the center as shown in Figure 5.4. The only difference is that the Z-value of this viewpoint
is equal to the minimal vertex of the scene. The center viewpoint is also shown since we want to display the
relative position of the viewpoint used in corner case to it, but we don’t consider it for computation. Based on its
special position, most of the rays cast from samplings should be blocked by the table. The value 0.914 can verify
that in this case most samplings are occluded to this viewpoint,

Figure 5.4: Corner Case - Under Table
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In the other corner case we change the scene to a pure cube where there is no clutter inside it. Thus, all
samplings should be visible to a viewpoint inside the cube regardless of its position. The resulting visible sam-
pling cloud is shown in Figure 5.5. Our pipeline output the value 0, which can also validate the correctness of
computation.

Figure 5.5: Corner Case - Pure Cube

Based on results presented above, we can take the Occluded Area Ratio as a reliable metric to represent the
occlusion level of a mesh.

5.1.2 Estimated Mesh and Scanned Cloud

In this section we are going to compute occlusion level of estimated mesh and scanned point cloud respectively.

Setup We prepare 2 original point clouds with name Conference Room 1 and Conference Room 2 respectively.
For each of them, we estimate a mesh via GoCoPP. Then for each mesh, we conduct the same workflow described
in Section 3.1 to get Occluded Area Ratio. The next step is to apply the computation pipeline of Boundary Ray
Ratio on scanned clouds, which will be generated by adopting the same patterns illustrated in Figure 5.2 to place
spherical light sources as described in Section 3.3.5.

Above workflow will be conducted for each scene 6 times as we would keep the same viewpoint strategy
presented in Figure 5.2, and each time we cast 10000 rays in the scene randomly for calculating Boundary Ray
Ratio.

Conference Room 1 We present the visualization of the scene Conference Room 1 in each step. Figure 5.6
shows the result of mesh estimation, where point clouds was transferred into a set of alpha-shape triangulated
planar primitives.

To detect boundary ray we have to know each point’s category in terms of boundary from scanned point cloud,
where we use white color to represent boundary point and blue for non-boundary point as shown in Figure 5.7
(a). This boundary cloud is generated together with the ground truth scanned cloud displayed in Figure 5.7 (b).
The resulting visualization will be displayed for scanned clouds under each pattern.
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Figure 5.6: Estimate Mesh from Conference Room 1

In the end of this part, result of computation for Occluded Area Ratio and Boundary Ray Ratio is shown in
Table 5.2 together with line graph illustrated in Figure 5.13.

(a) Boundary (b) Scanning

Figure 5.7: Boundary and Scanning of Conference Room 1 under Pattern 1 with 38372 Points
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(a) Boundary (b) Scanning

Figure 5.8: Boundary and Scanning of Conference Room 1 under Pattern 2 with 36152 Points

(a) Boundary (b) Scanning

Figure 5.9: Boundary and Scanning of Conference Room 1 under Pattern 3 with 38834 Points
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(a) Boundary (b) Scanning

Figure 5.10: Boundary and Scanning of Conference Room 1 under Pattern 4 with 74524 Points

(a) Boundary (b) Scanning

Figure 5.11: Boundary and Scanning of Conference Room 1 under Pattern 5 with 77206 Points
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(a) Boundary (b) Scanning

Figure 5.12: Boundary and Scanning of Conference Room 1 under Pattern 6 with 113358 Points

Pattern Occluded Area Ratio Boundary Ray Ratio
1 0.291 0.248
2 0.178 0.214
3 0.290 0.332
4 0.109 0.173
5 0.153 0.194
6 0.071 0.165

Table 5.2: Result of Conference Room 1

The result shows that as the number of viewpoints increase, the Occluded Area Ratio decrease. There are 2
viewpoints in both pattern 4 and 5, thus the increase of data in pattern 5 is not against our conclusion. Values of
Boundary Ray Ratio describe the same tendency, and they do not differ too much from data in Occluded Area
Ratio. Therefore, based on these results we consider Boundary Ray Ratio as a reliable metric to represent the
occlusion level of the scene presented by point cloud Conference Room 1.
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Figure 5.13: Result of Conference Room 1

Conference Room 2 The resulting mesh estimation is shown in Figure 5.14. Then we present the visualiza-
tion of scanned point cloud together with its boundary cloud. The workflow here is the same as explained in 5.1.2
and conducted with same patterns displayed in Figure 5.2. Results are shown in the end of the part in Table 5.3
and Figure 5.21.

Figure 5.14: Estimate Mesh from Conference Room 2
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(a) Boundary (b) Scanning

Figure 5.15: Boundary and Scanning of Conference Room 2 under Pattern 1 with 36742 Points

(a) Boundary (b) Scanning

Figure 5.16: Boundary and Scanning of Conference Room 2 under Pattern 2 with 34270 Points

(a) Boundary (b) Scanning

Figure 5.17: Boundary and Scanning of Conference Room 2 under Pattern 3 with 35260 Points
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(a) Boundary (b) Scanning

Figure 5.18: Boundary and Scanning of Conference Room 2 under Pattern 4 with 71012 Points

(a) Boundary (b) Scanning

Figure 5.19: Boundary and Scanning of Conference Room 2 under Pattern 5 with 72002 Points

(a) Boundary (b) Scanning

Figure 5.20: Boundary and Scanning of Conference Room 2 under Pattern 6 with 106272 Points
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Pattern Occluded Area Ratio Boundary Ray Ratio
1 0.371 0.319
2 0.525 0.473
3 0.313 0.321
4 0.294 0.282
5 0.264 0.265
6 0.218 0.223

Table 5.3: Result of Conference Room 2

Both ratios display the same trend and also present a minor difference on value. Thus we can conclude that
Boundary Ray Ratio is able to assess the occlusion level of Conference Room 2.
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Figure 5.21: Result of Conference Room 2

In this section we conducted 2 experiments to compute and compare occlusion level for different scenes. The
result proves that Boundary Ray Ratio can be applied for computation in subsequent experiments.

5.2 Correlation

The major task in this part is to find correlation between occlusion level and performance of segmentation. Due
to the difference in terms of complexity and structure of the 2 scenes, it is obviously not a feasible way to directly
compare the metrics of them. Thus, We apply scanned point clouds generated in previous experiment as input
data to Minkowski Engine for semantic segmentation. In the final step, we calculate evaluation metrics for each
segmented cloud. With occlusion level and result of evaluation metrics of this data set, we may correlate them
and analyze the impact of occlusion on semantic segmentation. The comparison should be done between data
generated from the same scene.

5.2.1 Setup

Since we have generated the set of occluded point clouds which also refer to scanned point cloud in previous
experiment, we directly use it for semantic segmentation.
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Point cloud with predicted semantic information is then generated for each occluded point cloud via Minkowski
Engine. We calculate evaluation metrics in a pair-wise manner as shown in Figure 5.22 as we have to check the
correctness of predicted labels point by point.

5.2.2 Results

In this part, we display visualization for each pair of clouds which includes one occluded cloud with ground truth
RGB information and one cloud with semantic label represented by specific colors. In the end of each part, output
of the computational pipeline will be shown in tables and graphs where we can compare data more conveniently.

Conference Room 1 We first exhibit visual output of scanned point cloud again and then its corresponding
segmentation of Conference Room 1.

(a) Scanning (b) Segmentation

Figure 5.22: Scanning and Corresponding Segmentation under Pattern 1 of Conference Room 1

(a) Scanning (b) Segmentation

Figure 5.23: Scanning and Corresponding Segmentation under Pattern 2 of Conference Room 1
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(a) Scanning (b) Segmentation

Figure 5.24: Scanning and Corresponding Segmentation under Pattern 3 of Conference Room 1

(a) Scanning (b) Segmentation

Figure 5.25: Scanning and Corresponding Segmentation under Pattern 4 of Conference Room 1
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(a) Scanning (b) Segmentation

Figure 5.26: Scanning and Corresponding Segmentation under Pattern 5 of Conference Room 1

(a) Scanning (b) Segmentation

Figure 5.27: Scanning and Corresponding Segmentation under Pattern 6 of Conference Room 1

The result is shown below in Table 5.4 and Figure 5.28.

Pattern Occlusion F1 Score
1 0.248 0.826
2 0.214 0.887
3 0.332 0.680
4 0.173 0.886
5 0.194 0.737
6 0.165 0.807

Table 5.4: Evaluation Metrics of Conference Room 1

From the graph we can see opposite trends between occlusion level and evaluation metrics. This indicates an
inversely proportional relationship. If we compare data of clouds under different patterns pair-wisely, the negative
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correlation does not always hold. For example, occlusion level of cloud under pattern 4 is higher than the value
in pattern 6, but F1 score in pattern 4 is still higher. Based on that, we conclude that the occlusion level and
performance of semantic segmentation are inversely proportional related to each other in terms of Conference
Room 1.
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Figure 5.28: Occlusion and Evaluation of Conference Room 1

Conference Room 2 We apply same workflow as described in Conference Room 1 to present our results.

(a) Scanning (b) Segmentation

Figure 5.29: Scanning and Corresponding Segmentation under Pattern 1 of Conference Room 2
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(a) Scanning (b) Segmentation

Figure 5.30: Scanning and Corresponding Segmentation under Pattern 2 of Conference Room 2

(a) Scanning (b) Segmentation

Figure 5.31: Scanning and Corresponding Segmentation under Pattern 3 of Conference Room 2

(a) Scanning (b) Segmentation

Figure 5.32: Scanning and Corresponding Segmentation under Pattern 4 of Conference Room 2

48



5.2. CORRELATION

(a) Scanning (b) Segmentation

Figure 5.33: Scanning and Corresponding Segmentation under Pattern 5 of Conference Room 2

(a) Scanning (b) Segmentation

Figure 5.34: Scanning and Corresponding Segmentation under Pattern 6 of Conference Room 2

The result is shown in Table 5.5 and Figure 5.35.

Pattern Occlusion F1 Score
1 0.319 0.765
2 0.473 0.888
3 0.321 0.772
4 0.282 0.858
5 0.265 0.797
6 0.223 0.837

Table 5.5: Occlusion and Evaluation of Conference Room 2

The results in pattern 1, 2 and 3 show the same trends as opposed to the result of Conference Room 1. If we
compare data in other patterns pair-wisely, both positive and negative relationships can be found. Hence, we came
to the conclusion that no obvious correlation can be found between occlusion level and performance of semantic
segmentation in terms of Conference Room 2.
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Figure 5.35: Occlusion and Evaluation of Conference Room 2
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6 Conclusion and Discussion

6.1 Conclusion

Semantic segmentation achieved through Minkowski Engine shows a good understanding on classification of
structure and objects of the point cloud based indoor scene. But the accuracy of the output still needs to be
improved in order to extend the application of semantic segmentation. Hence, in this bachelor thesis we focus on
occlusion, which is a common feature to represent the loss of information of point cloud acquired by scanning, to
investigate its impact on the performance of semantic segmentation. We first proposed the metric occluded area
ratio to reflect the occlusion level of mesh. Then we extend this concept to point cloud and proposed another
metric boundary ray ratio. Through the comparison of the 2 ratios of the same scene in Section 5.1.2 we came to
the conclusion that boundary ray ratio is a reliable metric to estimate occlusion level of a point cloud. Based on
that we applied this metric in our experiments to estimate how much the set of scanned point clouds are occluded
and compare the output with the result of evaluation metric F1 score. From the results described in Section 5.2,
we found that in the scene conference room 1 there exists an inversely proportional relationship between occlusion
level and performance of semantic segmentation, while in Conference Room 2 there is no obvious correlation can
be found.

It is worth to mention some edge cases such as the cloud scanned under pattern 2 of conference room 2 shown in
Figure 5.30, where the cloud has the largest loss of information but scores highest on performance. If we inspect
this cloud carefully, we can notice that despite the significant incompleteness of the whole scene, the region close
to the corner exhibits a dense state, thus the segmentation method might have better understanding there due to
high richness of structural information. This indicates that the performance is also affected by structure of point
cloud and density of points in certain region. Therefore, occlusion alone is not enough to affect the result of
semantic segmentation. It is critical to consider additional metrics to obtain a better evaluation. Other influential
factors may include the complexity of the scenes being segmented, variations in placement of light sources,
and the diversity of the interior items. Moreover, spatial relationship between different objects and structures
may affect segmentation method’s understanding on point cloud. According to these findings, we came to the
conclusion that occlusion level of point cloud has limited impact on its performance of semantic segmentation.

6.2 Discussion

6.2.1 Limitation

Although the reliability of the metric for estimating occlusion level has been proven, it is not computing the real
occlusion of point cloud. Our way of estimation is achieved through random rays intersecting boundary points,
which is highly dependent on the exterior structure of the scene. Due to the limited diversity of data used in our
experiments, we cannot guarantee that our metric will remain effective on more complex structures.

6.2.2 Future Work

Some future work can be done for improvements. More data with different structures and complexities can be
used in experiments to improve robustness and reliability of occlusion metrics. The development of more com-
prehensive metrics for evaluating occlusion levels should be a priority, with a focus on considering the complex
interrelations of elements within the scene. This could alternatively be done by proposing an evaluation system for
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assessing the completeness of the scene, where influential factors regarding semantic segmentation are assigned
with certain weights for computation.

By addressing these aspects, we can expect advancements in devising better metrics or system to evaluate
factors that may influence semantic segmentation.
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