
ARTIS - Art Tracking with IoT and
Blockchain

Jordi Küffer
Zurich, Switzerland

Student ID: 20-714-051

Supervisor: Dr. Eryk Schiller, Dr. Thomas Bocek, Dr. Bruno
Rodrigues, Prof. Dr. Burkhard Stiller

Date of Submission: September 6th, 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Kurzfassung

Diese Arbeit befasst sich mit der Kombination von Internet of Things (IoT) und Blockchain-
Technologien und konzentriert sich dabei auf die innovative Anwendung dieser Techno-
logien im Bereich des Transports von Kunstwerken. Das zentrale Ziel ist die Einführung
eines Systems, welches IoT und Blockchain nutzt, um die Überwachung und Verwaltung
von Kunstwerken während des Transports zu verbessern.

Um dieses Ziel zu erreichen, wendet die Studie eine zweiphasige Methodik an. Zunächst
wird eine umfassende Literaturrecherche durchgeführt, um ein grundlegendes Verständnis
für die zugrundeliegenden Prinzipien aufzubauen. Anschließend wird ein angewandter For-
schungsansatz ausgeführt, der die Entwicklung, Implementierung und Evaluierung eines
Prototyps beinhaltet. Das Ergebnis dieser Forschungsarbeit ist ein funktionaler Prototyp,
der den angestrebten Anwendungsfall unterstützt.

Das Ergebnis dieser Arbeit ist ARTIS, ein Prototyp, der den angestrebten Prozess des
Kunsttransports mittels IoT und blockchain unterstützt. Es wird jedoch festgestellt, dass
der Prototyp noch weiter verfeinert werden muss, insbesondere im Hinblick auf den Schutz
sensibler Daten und die Optimierung der Sensorgenauigkeit.

Der Wert dieser Arbeit liegt in der innovativen Verschmelzung von IoT- und Blockchain-
Technologien, die einen neuen Weg zur Bewältigung von Herausforderungen im Bereich
der Kunstwerkstransportation demonstriert. Dies legt die Grundlage für zukünftige Be-
mühungen, dieses Konzept zu einer produktionsreifen Lösung weiter zu entwickeln.

i

ii

Abstract

This thesis delves into the convergence of the Internet of Things (IoT) and Blockchain
technologies, focusing on the innovative application of these technologies within artwork
transportation. The main goal is to introduce a system that capitalizes on IoT and
blockchain to enhance the tracking and management of artwork during transportation
processes.

In pursuit of this goal, the study adopts a dual-pronged methodology. A comprehen-
sive literature review provides a foundational understanding of the underlying principles.
Subsequently, an applied research approach is employed, culminating in designing, imple-
menting, and evaluating a prototype tailored to the intricacies of artwork transportation.

The outcome of this thesis is ARTIS, a real-world prototype that effectively supports the
targeted artwork tracking use case. However, it is acknowledged that further strides are
needed to refine the prototype, particularly in safeguarding sensitive data and optimizing
sensor accuracy.

The significance of this work lies in its innovative amalgamation of IoT and blockchain
technologies, presenting a novel avenue for addressing challenges in the artwork trans-
portation domain. By demonstrating the feasibility of such a system, this thesis lays
the groundwork for future endeavors to advance this concept into a production-ready
solution.

iii

iv

Acknowledgments

I am grateful for the guidance and support provided by my supervisors, Dr. Eryk Schiller,
Dr. Thomas Bocek, and Dr. Bruno Rodrigues. Their profound insights, encouragement,
and dedication have been instrumental in shaping the trajectory of this work.

I extend my appreciation to the entire Communication Systems Group (CSG), and Prof.
Dr. Burkhard Stiller, whose collective expertise and collaborative spirit have enriched
my research journey. Their vibrant exchange of ideas and constructive feedback has
significantly contributed to the refinement of this study.

Finally, to my friends and family, your unwavering support has been my constant pillar
of strength and has allowed me to thrive and succeed in my educational career.

v

vi

Contents

Kurzfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 CERTIFY Project . 1

1.2 Motivation . 2

1.3 Description of Work . 2

1.3.1 Thesis Goals . 3

1.4 Methodology . 3

1.5 Thesis Outline . 4

2 Fundamentals 5

2.1 Internet of Things . 5

2.2 Blockchain . 5

2.2.1 Smart Contracts . 6

2.3 Tracking and Tracing . 6

vii

viii CONTENTS

3 Related Work 7

3.1 Artwork Conservation . 7

3.2 Artwork Transportation . 7

3.3 Artwork Monitoring Systems . 8

3.4 Artwork Management and Documentation 8

3.5 Applications of Blockchain and IoT . 9

3.6 Discussion . 10

4 Architecture and Design 11

4.1 Scenario Definition and Goal . 11

4.1.1 Actors . 12

4.2 Overview . 13

4.2.1 Technical Components . 14

5 Implementation 17

5.1 artis-smartcontract . 17

5.1.1 Data Structures and Events . 17

5.1.2 Functions and Modifiers . 19

5.2 artis-server . 25

5.2.1 Authentication Layer . 25

5.2.2 API Layer . 27

5.2.3 Application Layer . 28

5.3 artis-rockpi-logger . 30

5.3.1 Code . 30

5.4 artis-frontend . 32

CONTENTS ix

6 Evaluation 35

6.1 Cost and Performance Analysis . 35

6.2 Security Analysis . 38

6.2.1 Compromised Logger . 38

6.2.2 Compromised Smart Contract . 39

6.2.3 Disclosure of Data . 39

6.3 Field Test . 39

6.3.1 Cost . 40

6.3.2 Logger Reliability . 41

6.4 Discussion . 42

7 Summary and Conclusions 43

7.1 Summary . 43

7.2 Conclusions . 44

7.3 Future Work . 45

Bibliography 50

Abbreviations 51

List of Figures 53

List of Tables 55

Listings 57

Declaration of Independence 58

A Contents of the Repositories 59

x CONTENTS

Chapter 1

Introduction

The art industry has remarkable diversity, encompassing a multitude of participants,
including artists, collectors, auction houses, and art dealers. Alongside these stakeholders,
many intermediaries, such as promoters, conservators, archivists, and curators, contribute
to the industry. Nevertheless, at its core, the art world revolves around artistic creations,
spanning from sculptures, installations, and canvases to more unconventional pieces.

In the realm of art, museums curate not only from their own collections but also from
private art holdings or other institutions. Consequently, there arises a pressing need for
reliable logistics partners capable of safeguarding art during transit, maintaining optimal
conditions, and preventing any potential damage. This presents a promising opportunity
for the utilization of Internet of Things (IoT) sensors, capable of monitoring factors like
temperature, humidity, vibrations, and other environmental factors [42]. Furthermore, the
integration of blockchain technology holds the potential to guarantee the accuracy and
security of the transportation process for all involved parties. It also extends its utility
into the realm of art trading, enabling the verification and documentation of virtual and
physical ownership transfers. In doing so, it introduces an element of standardization into
a market that has traditionally been characterized by its lack of regulation and opacity
[42].

1.1 CERTIFY Project

CERTIFY is a multi-partner research project [10], dedicated to achieving a high level
of security by developing a novel framework to manage security throughout the lifecycle
of IoT devices. The project is scheduled to run from 1st October 2022 for 36 months
and involves 13 partners from eight European countries. The Communication Systems
Group (CSG) of the Department of Informatics (IfI) at University of Zurich (UZH) is
part of CERTIFY and focusing on designing and developing a blockchain-based sharing
infrastructure of security information, an Over-The-Air Patch Infrastructure and a pilot
project for tracking and monitoring artworks during transportation. This thesis is part of
the contributions by CSG to this pilot project.

1

2 CHAPTER 1. INTRODUCTION

1.2 Motivation

Artwork transportation has proven to be a logistical challenge in many ways [30]. Com-
plying with regulatory laws of both the departure and destination country, taking out
insurance on the artworks, using packaging that lowers the risk of damage, and many
more. Recording all relevant transactions typically involves administrative paperwork
and trust among the many parties involved [30].

The IoT has revolutionized how we interact with technology and data, allowing us to
connect devices, sensors, and networks seamlessly. At the same time, blockchain tech-
nology has emerged as a powerful tool for securely managing data and transactions in a
decentralized, tamper-proof way. Combined, these technologies offer exciting possibilities
for creating new forms of digital art that are both secure and transparent.

IoT devices, such as sensors, can record data that can be used to monitor the environment
around an artwork. By using blockchain technology to manage and store this data securely,
stakeholders can ensure the integrity of artwork even in a trustless environment. The
blockchain ledger can additionally improve documentation of ownership and custody by
indefinitely storing transactions on the chain.

In this context, the thesis proposes a system for artwork tracking in combination with
hardware and software deployed to provide automatic monitoring and management of
artwork in a transportation scenario.

1.3 Description of Work

The work involves creating a secure and transparent system for tracking and monitoring
the movement of a unique item, represented by a Non-Fungible Token (NFT) [50], using
a combination of blockchain technology and IoT devices. The goal is to develop a system
for monitoring and logging some environmental parameters, such as temperature and hu-
midity, while transporting artwork. The system should be able to define alert thresholds
for these parameters and notify the artwork sender, carrier, and recipient of any anoma-
lies. The NFT is registered in a Smart Contract (SC) by the item owner or holder and
contains relevant information and regulations, such as ObjectID [22], as required by the
International Council of Museums (ICOM).

The IoT Board Administrator sets the board to its initial state, ready to receive data
from the sensors. A private and public key profile is generated by creating a blockchain
account and stored on the device, ensuring the private key remains confidential and cannot
be leaked. The account address is associated with the NFT by the owner. This account
can update the state of the NFT by issuing transactions signed with the private key to the
smart contract. This allows the NFT to be updated with events such as ”pick up at origin”
and ”delivery at destination,” which are logged with relevant timestamps. Multi-approval
operations certify changes in responsibilities between different actors, such as when the
Sender transfers responsibility for the artwork to the Carrier. This helps to ensure the
secure and transparent transfer of custody of the item.

1.4. METHODOLOGY 3

Finally, with the transfer of custody, the behavior of the sensor is set from standby mode
to constant monitoring mode, allowing for real-time tracking and monitoring of the item
as it moves from one location to another. The system provides a secure and transparent
way to track and monitor unique items’ movement while ensuring their authenticity and
ownership.

1.3.1 Thesis Goals

Research: The research report should include a review of the relevant literature concerning
the technologies used and include existing solutions for blockchain-based artwork tracking.

Design on Solution Architecture: The report should include detailed specifications and
requirements for the system, including the backend and frontend.

Solution Prototyping: This goal covers the implementation of a prototype of the artwork
tracking system. This involves working with IoT devices, sensors, and other suitable
technologies. The prototype should be functional and demonstrate the key features of the
system.

Evaluation: The system evaluation involves testing the prototype in a (simulated) real-
world artwork transportation scenario. The evaluation report includes an analysis of the
system’s performance and an assessment of its real-world usability.

1.4 Methodology

The methodology adopted in this thesis is strategically designed to comprehensively ad-
dress the objectives outlined in Section 1.3.1. This approach can be categorized into two
primary phases: a literature review phase and an applied research phase.

Literature review phase: This involves conducting a literature review to gather essen-
tial knowledge about fundamental concepts and related work in artwork tracking and
blockchain and IoT. This review provides an overview of related work on tracking solu-
tions, summarized in Section 3.6. The knowledge gained serves as a basis for the design
and development of the proposed system.

4 CHAPTER 1. INTRODUCTION

Applied research phase: The applied research phase is composed of creating and evalu-
ating a prototype for the proposed system. It includes the design, implementation, and
evaluation described below.

Design: The system architecture design is based on a simplified artwork tracking sce-
nario. The prototype is required to support this scenario concerning the goals
defined in Section 1.3.1. The architecture includes all necessary components and
interactions to support the use case. This phase delivers a documentation of this
design presented in Chapter 4.

Implementation: The output of the previous phase needs to be implemented as a proto-
type system. The implementation process and details regarding the implementation
of features are reported in Chapter 5.

Evaluation: In the final phase, the delivered prototype of the implementation phase
is evaluated. The evaluation includes a cost and performance analysis outlined in
Section 6.1, a security analysis in Section 6.2, and a test run in a simulated artwork
tracking scenario in Section 6.3. The results are discussed in Section 6.4.

1.5 Thesis Outline

Chapter 1 has provided introductory and motivational information. Chapter 2 gives a
high-level overview of the theoretical background of the thesis. In Chapter 3, we discuss
existing papers on the topic and elaborate on the current systems regarding artwork
tracking. This information is built upon in Chapter 4 when we present the architecture
and design of our solution in detail. The implementational aspects of the solution are
presented in Chapter 5. The implemented system is then evaluated in Chapter 6, and
a summary and conclusions are given in Chapter 7. Furthermore, Chapter 7 addresses
the potential for future work and suggests opportunities for improvement of the proposed
system.

Chapter 2

Fundamentals

This chapter aims to introduce valuable background knowledge of the fundamentals built
upon in this thesis.

2.1 Internet of Things

IoT technology does not have a single unique definition. However, Madakam et al. [27, p.
165] defines the term Internet of Things as follows:

”An open and comprehensive network of intelligent objects that have the ca-
pacity to auto-organize, share information, data, and resources, reacting and
acting in face of situations and changes in the environment”

While the internet in the traditional sense is about the data created by people, IoT is
about data created by things. A practical example of this would be a smart heating system
for a vacation home. Such a system is able to record and store data about environmental
parameters such as temperature or humidity and make this data accessible in real-time
on a smartphone through the internet. It is also possible to interact with this system
through your phone. For example, raising the temperature of a winter vacation home the
night before arrival would be possible. This thesis aims to utilize an IoT device capable
of recording and storing environmental parameters to monitor an artwork in transit.

2.2 Blockchain

Blockchain technology has long been an evolution and promising advancement in dis-
tributed and decentralized systems. It describes a ledger that can be either distributed
(permissioned) or decentralized (permissionless), tamper-evident, tamper-resistant and
usually without a central authority. This technology allows a community of users to
record transactions that cannot be changed once published [56].

5

6 CHAPTER 2. FUNDAMENTALS

These properties can reduce the importance of trust among single parties, as the consensus
of the whole network is necessary for a transaction to be published. This is why blockchain
has been able to digitize processes that previously required trust in a central authority.
The most prominent examples of this are cryptocurrencies like Bitcoin [33] and Ether [7].

2.2.1 Smart Contracts

Some blockchains can be extended and leveraged by smart contracts, essentially collec-
tions of code and data deployed on the blockchain network using transactions. Nodes
within the blockchain network execute the smart contract, and the results of execution
are recorded on the blockchain. Users can create transactions that send data to public
functions offered by a smart contract. The smart contract then executes the appropriate
method to perform a service. Since the code is on the blockchain, it is tamper-evident and
resistant, making it a trusted third party. Smart contracts can perform various functions
such as calculations, storing information, exposing properties, and automatically sending
funds to other accounts [56].

Non-Fungible Token

An example of a smart contract standard would be the ERC-721 for NFTs on the
Ethereum network [12]. NFTs are digital assets stored on a blockchain and represent
a unique item or asset, such as a piece of artwork.

2.3 Tracking and Tracing

Tracking and tracing of logistic networks is considered an important issue [40]. In this
context, tracking refers to collecting and managing information about the current location
and status of a product or delivery item [40]. Tracing on the other hand looks back in
time and refers to the storing and retaining of a product or item’s history [46].

Chapter 3

Related Work

This chapter provides an overview of the existing literature on art tracking with IoT
and blockchains, highlighting previous research, methods, and findings related to the
research question. Lastly, we discuss the reviewed literature and conclude the chapter by
identifying research gaps.

3.1 Artwork Conservation

When it comes to preserving artworks, several factors play a role. This includes their
exposition of human factors and environmental variations [24]. More specifically, factors
that can hamper artwork integrity include humidity, temperature, light, pollutants, and
microbiological organisms [39]. Usually, temperature and humidity are the most sensitive
parameters [39]. Monitoring such factors can be of significant importance when it comes
to artwork preservation and health [8]. In addition to the conservation of artworks in
museums or galleries, there is also the aspect of ensuring the safety of artwork during
transportation.

3.2 Artwork Transportation

Collections of artworks have been exhibited for generations. More often than not, artworks
are showcased at different venues worldwide. The dangers imposed on artwork during
transportation have been thoroughly researched and led to the development of innovative
packaging and other safety measures [30]. Today, there exist a number of companies that
specialize in the transportation of artwork [23] [21] [55]. The advertised solution often
involves shock-absorbing as well as climate-controlled packaging. Even though these pack-
aging solutions have been adequately tested, many reviewed companies rely on customer
trust regarding their effectiveness in real-world applications. This presents an opportunity
for monitoring systems leveraging the potential of emerging technologies to improve the
artwork transportation process further.

7

8 CHAPTER 3. RELATED WORK

3.3 Artwork Monitoring Systems

Technological advancements have made it possible to study the impacts of transportation
on the integrity of artwork in more detail. Numerous studies have been conducted re-
garding this matter. One study utilized a small logging device to gather information on
shock and vibrations generated during transportation [38]. The study found that during
the several dozen transportations monitored, the artwork suffered significant shock and
vibration, even though the latest packaging techniques and appropriate means of trans-
portation were used. This demonstrates that continuous monitoring of these parameters
can be useful when verifying the integrity of the artwork after transportation.

In this context, [24] proposes a real-time system that collects information about the art-
work’s environment and its safety conditions. This information can then be used to
determine the quality of the conditions of artworks. The system uses a low-cost IoT node
that can operate with very low power consumption, thus allowing for the realization of
pervasive monitoring systems. This proposed system demonstrates how violations can be
detected as they happen or have already happened.

The study by [32] goes one step further and proposes a proactive approach to potential vi-
olations. The so-called PACT-ART architecture employs advanced computing techniques
like data mining and business process intelligence to predict the future state of the process.
PACT-ART can then point out any possible violations and recommend actions to mitigate
the misbehavior. Carchiolo et al. [9] expands on this and presents a system allowing for
continuous risk assessment during storage, handling, transport, and exhibition.

3.4 Artwork Management and Documentation

Correct and secure information about artworks is one of the main concerns in the art world
[25]. New technologies, such as blockchain, have been proposed as promising solutions
to increase artworks’ transparency, traceability, validity, and provenance [41]. Especially
smart contracts and NFTs have demonstrated the potential of blockchain technology to
revolutionize the art world.

Wang et al. [52] has shown the benefits of NFTs protecting digital assets by proving their
existence and ownership. Malik et al. [28] has suggested the application of NFTs beyond
digital art, proposing to physically tag an IoT device to an artwork or sculpture to transfer
and track ownership. The IoT device is designed such that an attempt to tamper with the
device will result in a blockchain record. This would potentially reduce intermediaries by
providing a verifiable certificate that proves ownership, custodial history, and authenticity
of a physical asset.

Platforms such as artory.com [3], 4art-technologies.com [1], and verisart.com [51] have
already started to deploy blockchain and are offering a way to digitally register an artwork,
introducing transparency and authenticity to the artwork, its history, and provenance [25].

Wang et al. [53], for example, developed a blockchain-based trading system for artworks
that uses NFTs to represent physical artworks introducing traceability, irreversibility, and

3.5. APPLICATIONS OF BLOCKCHAIN AND IOT 9

transparency into the art market. In this regard, Vairagade et al. [50] has proposed an
advanced NFT Minter for a blockchain-based artwork trading system. Besides trading,
the work by Yeh et al. [57] developed an artwork rental system based on blockchain
technology. The work is a proposal for a complete application of blockchain in the field
of art leasing, which allows renters to securely and transparently browse and rent the
available artworks.

3.5 Applications of Blockchain and IoT

Supply Chain Management (SCM) is another area where IoT is being used to improve
processes. Similar to monitoring the environment around an artwork, IoT is being used
in SCM to monitor the product state to ensure the right quality [5]. Another technology
that is innovating SCM is using blockchain. The combination of these two technologies in
industrial systems and supply chains has been a ”hot trend”in recent years [26]. Blockchain
presents an opportunity to build trust with its unique immutability characteristic. This
can be used to improve documentation and traceability of physical assets and ensure the
authenticity of the asset and collected data. The work that follows has already been
established in this context.

Bocek et al. [6] present a solution to monitor relevant environmental data while trans-
porting medical products. Upon delivery, the collected data is checked for compliance
by a smart contract and then stored on the blockchain. There, the data is immutable
and verifiable by any party. The proposed system comprises backend, frontend, and IoT
sensor devices. The architecture and components of the system are shown in Figure 3.1.
In addition to the Ethereum blockchain network, modum.io uses a relational database to
store raw temperature data and user credentials. The mobile clients download the tem-
perature data via Bluetooth from the sensors and submit it to the server, which sends it
to the SC to evaluate the regulatory compliance and store the result on-chain.

Figure 3.1: Modum.io AG Blockchain Architecture [6]

authena.io [4], is a Swiss-based company that provides a platform for tracking and verify-
ing the authenticity of physical assets using blockchain technology and IoT. Their platform
offers three main products:

10 CHAPTER 3. RELATED WORK

• AUTHENA SHIELD: A tamper-proof end-to-end authenticity solution.

• AUTHENA L1VE: Real-time tracking of location and environmental conditions
across countries and distribution channels.

• AUTHENA M3TA: Creating a secure link between physical product and its twin in
the Metaverse.

According to handelszeitung.ch [19], the system developed by authena can track the lo-
cation as well as environmental data of an asset. This data is then stored securely and
traceably on the blockchain. Unfortunately, the system is not open source, and the com-
pany provides no technical insight regarding the system’s architecture.

Everledger [17], is a digital transparency company providing technology solutions to in-
crease transparency in global supply chains. They use blockchain to track and verify
the authenticity of high-value assets such as diamonds, wine, and art. Their platform
allows users to track the entire lifecycle of an asset, from production to ownership, using
a secure and transparent blockchain-based ledger. Everledger mainly focuses on fraud
detection, verification, and provenance records by issuing digital certificates stored on a
private blockchain.

3.6 Discussion

This literature review has shown that the conservation of artwork remains a concern.
This concern is increased when it comes to the transportation of artworks. The integrity
and health of an artwork depend on a number of factors, including the environment
surrounding the artwork. Besides shock and vibration, temperature and humidity are
suggested to be the most sensitive parameters.

With new technologies like IoT, it becomes possible to monitor environmental parameters
continuously. Multiple papers have already demonstrated the potential benefits of artwork
monitoring [32] [9] [24] [38]. These benefits include the verification of packaging techniques
and registration of any potential disturbances to the environment that could damage an
artwork. We have also seen that the gathered data from artwork monitoring can be used
to predict future violations and suggest actions to prevent damage.

On the other hand, we have reviewed the existing literature on blockchain opportunities
in the art world. The main benefits include increased transparency and traceability by
generating a secure chain of ownership and simplified verification of authenticity.

When combining the two technologies, we have seen substantial research in the area of
SCM. Within SCM, subprocesses often involve the transportation of assets while ensur-
ing their integrity and health. This can be very similar to the requirements of artwork
transportation. However, little to no literature was found on the combination of IoT and
blockchain in artwork logistics. The reviewed literature suggests that the benefits of both
technologies can be combined to improve the current process of artwork transportation.

Chapter 4

Architecture and Design

This chapter describes the application scenario in Section 4.1 and provides an overview
of the system architecture in Section 4.2.

4.1 Scenario Definition and Goal

This project is designed for a scenario involving the transportation of sensitive pieces of
artwork from one place to another. More specifically, a sender is handing custody of the
artwork to a carrier who is responsible for transporting the artwork safely to a recipient.
This means the carrier controls the transportation environment so that any damages can
be prevented. Upon arrival, the artwork’s custody is transferred to the recipient, and the
process is finished.

Sender / Owner RecipientCarrier

Logging

Storing

Backend Server

Retrieving

Interaction Interaction

Blockchain Smartcontract

Figure 4.1: Defined scenario for the system to consider

The sender of the artwork registers the artwork on the system and inputs relevant infor-
mation to the application. The system returns an artwork Identifier (ID) which can be
used to retrieve details about the artwork. Before the item is handed over for transporta-
tion, the sender registers the carrier and the recipient by adding their corresponding
wallet addresses to the system. This allows the other actors to retrieve details about the
artwork and interact with the system. A logging device is also registered in the same

11

12 CHAPTER 4. ARCHITECTURE AND DESIGN

manner, which records and stores environmental data, precisely temperature and humid-
ity, during transportation to be audited by the actors. The logger is set up with a defined
threshold specific to the artwork. It reports any violation of this threshold to the system
automatically. Once the actors are registered, and the logger is set up, both the carrier
and the sender must verify the integrity of the artwork and initiate the request for a status
change to ”in transit”. After which the carrier transports the artwork to its destination
where the integrity of the artwork is verified by both the carrier and recipient, and the
status is changed to ”delivered.” If any violation occurred during the transportation the
timestamp of the most recent one is visible for all associated actors in the system. Any
past violations can be checked in the device’s database or the system’s transaction history.

Goal

The goal is to create a minimal working system for artwork tracking, considering the
following abstractions and the defined scenario. The system should allow the creation
of an NFT associated with a piece of artwork and storing and retrieving data on the
NFT. The actors can interact with the SC via a Representational State Transfer (REST)
Application Programming Interface (API) that is hosted on the internet. This API pro-
vides an abstracted form of interaction that does not need a low-level understanding of
the underlying blockchain components. Additionally, the system includes a programmed
logging device to record humidity and temperature data and report any deviations of a
predefined threshold to the API. Finally, the system should provide a user interface that
allows actors to log in with their Ethereum account and interact with the system.

Summary of Abstractions

The real-world scenario of transferring custody of artwork for transportation is naturally
much more complex and involves more actors [30]. However, in this work, we are making
the following abstractions:

• The sender of a specific artwork is also the owner of the artwork.

• When considering the transportation of the artwork back to the location of origin,
the sender and recipient are the same.

• Only temperature and humidity data are recorded by the logger.

• The authenticity and integrity of the artwork can be verified by any of the actors.

4.1.1 Actors

As already introduced in Section 4.1, the system is designed for three actors. Each of
the actors is represented by an Ethereum account which is used for authentication and
authorization. The actors are defined as follows.

4.2. OVERVIEW 13

• Sender: A person or institution responsible for dispatching the artwork from a
departure location to a destination. This Actor is also considered the owner of the
artwork. In this context, they can be used interchangeably. The responsibilities of
this actor include the initial registration of the artwork as an NFT, the holding of
the NFT in their wallet, and the setup of the IoT device.

• Carrier: A transportation company responsible for safely transporting artwork from
one location to another. The carrier is committed to delivering the artwork without
any damage or alteration. They are also responsible for verifying the integrity of the
artwork and the logger with the sender and recipient upon departure and arrival,
respectively.

• Recipient: A person or institution receiving the artwork. They share the responsi-
bilities of the carrier to verify the integrity of the artwork upon arrival.

4.2 Overview

Since the system is considering a particular scenario, This chapter aims to provide a high-
level overview of the architecture of the system while later going into detail about its
components and actors. From now on, we call the artwork tracking system ARTIS.

fullnode
RPC endpoint

Actors

SmartcontractAPI layer

PATCH -
violation
timestamp

POST - new
NFT

PATCH - NFT
status

GET - NFT
data

Sender / Owner
Minting

Updating
contract
variables

attached to
artwork

Recipient

Backend Server

Application Layer

...

Artwork Tracking System - ARTIS

Retrieving
contract
variables

Authentication
layer

role-based
authorization

signature
verification

Blockchain

Request processing
(validation,

etc...)
&

Blockchain interaction

Carrier

Frontend

IoT Device

Figure 4.2: System Architecture

This architecture was designed using a top-down approach, with the initial step of building
a server application that can interact with the SC. In the implementation phase, we added
the specific functionality needed to support the defined scenario. In Figure 4.2 you can
see the final architecture of the system.

14 CHAPTER 4. ARCHITECTURE AND DESIGN

Function unregistered owner recipient carrier logger

Get artwork data % ! ! ! %

Update roles % ! % % %

Update violation timestamp % % % % !

Update requested status % ! ! ! %

Update current Status % % % % %

Update data fields % ! % % %

Table 4.1: Available permission sets to registered roles

4.2.1 Technical Components

Apart from the specified external actors of the system, there are also technical components
to consider. The main components of the system are visually separated by colored areas
in Figure 4.2.

Blockchain

The blockchain component of the system consists of two sub-components. A Remote
Procedure Call (RPC) endpoint is needed to interact with the blockchain. The backend
server can use this endpoint to submit transactions that are used to interact with the SC.
For this project, we consume a managed service to access the Ethereum network and not
run our own Ethereum node.

The second component is the SC itself. It is in charge of defining the NFT of the artwork.
The functionality provided by the SC is defined as follows:

• Minting: A new user can create a NFT of their artwork by entering relevant infor-
mation about it and the outstanding transportation process.

• Retrieving data: Users are able to retrieve stored data from the SC.

• Updating data: Users can update the stored data.

The SC enforces a role-based authorization that controls the available permission sets of
each user. Specifically, this means read access is granted to carriers and recipients, while
write access is reserved for the owner. It also handles the multi-approval process necessary
for updating the status and changing custody upon transportation of the artwork. An
overview of the available permission sets of each actor can be found in Table 4.1

4.2. OVERVIEW 15

Backend Server

The backend server is designed to provide an abstracted form of interaction to the SC
by exposing a REST API. Like the actors and the logger, the backend server is also
represented by an Ethereum account. This account is used to deploy the SC and is the
sole point of access to it. This account issues every transaction. The backend server is
also responsible for handling authentication designed to prove that incoming requests are
made by the actors who are owners of the Ethereum accounts associated with specific
roles.

ServerUser

1: authentication request

3: return proof of ownership
challenge

5: return signature

4: sign
challenge request

Blockchain wallet

2: create challenge
message

5: sign challenge
using private key

8: return result
proof of ownership

6: send signature
verification request

7: verify signature &
proof of ownership

Figure 4.3: Authentication flow

Authentication The authentication flow visualized in Figure 4.3 uses signature verifica-
tion of cryptographically signed messages to prove ownership over an Ethereum account.
To do this, a challenge message is generated upon each authentication request. This mes-
sage contains relevant information to the session, such as the start of the session, the
duration of the session, and for which account the session is created. The message is then
signed with the private key of the requester’s wallet and sent back. The signature can
then be verified against the recovered address. If the requested address and recovered

16 CHAPTER 4. ARCHITECTURE AND DESIGN

address match, this proves that the request was made by an actor who owns the private
key corresponding to the account, assuming that the private key was not compromised.

Features In addition to enabling the features of the SC, and managing authentication,
the server validates incoming requests and provides meaningful error messages to the user.

IoT Device

The logging device records temperature and humidity data while the artwork is in tran-
sit. The recorded data is stored in a local database and evaluated against a predefined
threshold. The timestamps of any violations are reported to the system. If necessary the
recorded data can be accessed by connecting to the logger. The device interacts with the
system via the API provided by the backend server. It does not interact with the SC
directly. However, the logger is also represented by an Ethereum account and equipped
with a key pair. This is used for authentication by signing a message.

Frontend

To simplify the interaction with the system, we included a user interface. The frontend
presentation layer is a web application designed to facilitate the authentication process by
integrating popular blockchain wallets to sign messages and allow login with wallet func-
tionality. Therefore, it should afford to easily guide the user through the authentication
flow and provide a graphical interface to the backend server API.

For this purpose, the frontend consists of three main views: login view, home view, and
detail view. The login view mainly consists of a welcome screen and a login button.
The authentication process described in Section 4.2.1 is initiated upon pressing the login
button. After successful login, the user is redirected to the home view. The home view
allows the user to quickly see which artworks are associated with the logged-in account.
Additionally, this view registers a new artwork with the system. Lastly, the user can
navigate to the detail view by clicking on a specific artwork. The detail view displays all
the information about the artwork and lets the user update information. The status of
the artwork as well as the timestamp of the last violation are also displayed in the detail
view.

Chapter 5

Implementation

This chapter highlights the implementational aspects of the system. Introducing the
technologies used to build the components. Each section title refers to its respective
GitHub repository of the ARTIS-project1 GitHub organization.

5.1 artis-smartcontract

The SC was written in Ethereum’s native programming language Solidity [43]. The con-
tract was developed using hardhat [20], a development environment for Ethereum. Hard-
hat makes developing, compiling, testing, and deploying smart contracts easy. The SC has
been deployed to the Ethereum testnet Sepolia [14] during development but is intended
to be deployed on the mainnet in production. The Ethereum blockchain was selected due
to the research group’s and the author’s prior experience.

When the SC is first deployed, the smartcontractAdmin variable is set to the deploying
address. This address is the only point of access to any SC function. It is also the account
used by the server to interact with the SC and sign transactions.

1 constructor () ERC721("Artwork", "ARTIS") {

2 smartcontractAdmin = msg.sender;

3 }

Listing 5.1: SC constructor function

As seen in Listing 5.1 the SC extends the ERC-721 [12] contract which provides the NFT
interface.

5.1.1 Data Structures and Events

We will explain the data structures used in more detail to understand the rest of the
contract.

1https://github.com/artis-project

17

https://github.com/artis-project

18 CHAPTER 5. IMPLEMENTATION

Structs

To satisfy the artwork tracking use case three structs have been defined as seen in Listing
5.2. The ArtworkData struct contains all information about a specific artwork. This
includes the addresses of each actor as well as the violation timestamp and the status of
the artwork. The status field in turn contains two fields as defined in the Status struct.
They are used to support the multi-approval process when it comes to changing the status
of an artwork. To match the physical artwork with the NFT we also included an objectID
field. If needed, the ArtworkData struct can be extended with more data fields.

The StatusApprovals struct stores which of the actors has already approved a status
change. The logic behind this multi-approval process will be explained in detail later.

1 struct ArtworkData {

2 uint256 id;

3 string objectId;

4 address carrier;

5 address logger;

6 address recipient;

7 Status status;

8 uint256 violationTimestamp;

9 }

10

11 struct StatusApprovals {

12 bool carrier;

13 bool owner;

14 bool recipient;

15 }

16

17 struct Status {

18 string currentStatus;

19 string requestedStatus;

20 }

Listing 5.2: SC structs

Enums

The SC defines one enum that defines the different status values. Enums help during
development as they prevent misspellings or other types of errors.

1 enum StatusValue {

2 IN_TRANSIT ,

3 TO_BE_DELIVERED ,

4 DELIVERED ,

5 NONE

6 }

Listing 5.3: SC enums

5.1. ARTIS-SMARTCONTRACT 19

Mappings

The artworksmapping is used to map artwork IDs to ArtworkData structs. This mapping
is used to store the references to each new artwork. Similarly, the approvals mapping is
used to store and manage the approval data of an artwork. Simply put, this mapping can
answer the question of who has approved a certain status of a specific artwork.

1 mapping(uint256 => ArtworkData) internal artworks;

2

3 mapping(uint256 => mapping(StatusValue => StatusApprovals))

4 internal approvals;

Listing 5.4: SC mappings

e.g. approvals[1][StatusValue.IN_TRANSIT].carrier is true if and only if the carrier has
already approved to change the artwork status of artwork 1 to IN_TRANSIT.

Events

The contract defines three events (Listing 5.5). The Updated event is emitted whenever
the data associated with an artwork has changed. The StatusApproved event is emitted
whenever the multi-approval process (Figure 5.1) has been successful. If an approval is
still missing the ApprovalMissing event is emitted. Users can subscribe to these events
and be notified whenever an event is emitted.

1 event Updated(

2 uint256 indexed tokenId ,

3 ArtworkData newData ,

4 address owner ,

5 StatusApprovals approvals

6);

7

8 event StatusApproved(

9 uint256 indexed tokenId ,

10 StatusApprovals approvals ,

11 address approver

12);

13

14 event ApprovalMissing(

15 uint256 indexed tokenId ,

16 string requestedStatus ,

17 address missingApproval

18);

Listing 5.5: SC events

5.1.2 Functions and Modifiers

To support the functionality designed in Section 4.2 the contract implements three main
functions, modifiers, and helper functions. However, we will not go into detail about the
helper functions.

20 CHAPTER 5. IMPLEMENTATION

Function Modifiers

In Solidity, we can define function modifiers, that can be used to prepend functionality to
a function. If a function modifier is used in a function the code in the modifier is executed
beforehand. For instance, this can be used to perform a check before a function is run.
Function modifiers can be reused on multiple functions and thus introduce cleaner and
less redundant code.

1 modifier onlyAdmin () {

2 require(

3 msg.sender == smartcontractAdmin ,

4 "only accessible by smartcontractAdmin wallet 403"

5);

6 _;

7 }

8

9 modifier read(address sender , uint256 tokenId) {

10 require(

11 ownerOf(tokenId) == sender ||

12 carrierOf(tokenId) == sender ||

13 recipientOf(tokenId) == sender ,

14 "sender is not authorized 403"

15);

16 _;

17 }

18

19 modifier write(address sender , ArtworkData memory data) {

20 if (data.violationTimestamp != 0) {

21 require(

22 sender == loggerOf(data.id),

23 "only logger is allowed to add a violationTimestamp 403"

24);

25 }

26 require(

27 bytes(data.status.currentStatus).length == 0,

28 "currentStatus is updated automatically 403"

29);

30 if (sender != ownerOf(data.id)) {

31 require(

32 bytes(data.objectId).length == 0 &&

33 // address (1) is submitted if the field did not change

34 data.carrier == address (1) &&

35 data.recipient == address (1) &&

36 data.logger == address (1),

37 "only owner has write permissions 403"

38);

39 }

40 _;

41 }

Listing 5.6: SC modifiers

The modifiers in Listing 5.6 are used to check if a caller is authorized to call a specific
function. If the call is forbidden the transaction is reverted with an appropriate error

5.1. ARTIS-SMARTCONTRACT 21

message. The last three characters of each error message represent the corresponding
Hypertext Transfer Protocol (HTTP) status code. This status code is directly forwarded
by the server API in case of an error.

To ensure that all SC interaction is done through the server API we modified every public
function with the onlyAdmin modifier. This modifier reverts any transaction that is sent
from a different account than the specified admin account.

The read modifier is additionally added to each function that reads data from the SC.
We check that the wallet that authenticated a request to the server API is registered as
an actor with read permissions.

Similarly, we defined the write modifier to check that certain ArtworkData fields are
only modified by the owner or logger respectively. The currentStatus field cannot be
modified at all, it is updated automatically once the actors approve a status change. The
detailed permission sets of each actor can be found in Table 4.1.

The contract makes use of one additional modifier called exists which simply checks if
a given tokenId exists.

safeMint

This function is called to create a new NFT. This process is called ”minting”. The safeMint
function in an ERC721 contract creates and assigns ownership of a new NFT to a desig-
nated recipient.

1 function safeMint(address to, ArtworkData memory data)

2 public

3 onlyAdmin

4 {

5 totalSupply.increment (); // start ids at 1

6 uint256 tokenId = totalSupply.current ();

7 _safeMint(to, tokenId);

8 ArtworkData memory newArtwork = ArtworkData ({ ... });

9 artworks[tokenId] = newArtwork;

10 }

Listing 5.7: SC safeMint function

Our implementation is rather straightforward, first, we increment the counter variable,
which keeps track of the total supply. We also use this number as a token identifier which
is equal to the artwork ID. With this unique ID, we call the _safeMint(to, tokenId)

function of the ERC721 contract provided by openzeppelin [34]. In Line 8 of Listing 5.7,
we initialize a new ArtworkData instance with the initial data, which is partially provided
by the user via a function parameter. We assign the values of the objectID property, the
actors, and the logger properties. The violation timestamp, ID, and status properties are
ignored and set to a default value. Finally, the artwork data is associated with the newly
minted artwork in the artworks mapping.

22 CHAPTER 5. IMPLEMENTATION

updateArtworkData

The data associated with an artwork can be updated by calling this function. Upon
successful update, the function does not return anything but emits an event with the
updated values. This is based on a limitation of Solidity where it is impossible to return
an object from a state-changing function. Additionally, this function allows you to update
multiple fields at once. This has some advantages:

simplified interface: Using only one update function instead of exposing an update func-
tion for each field reduces the number of public functions. This results in a more
understandable and usable contract.

atomic updates: If an error occurs during the execution of this function the transaction
as a whole is reverted, resulting in the initial state of the contract. This maintains
data consistency and prevents partial updates.

reduced costs: The possibility to update multiple fields at once reduces the number of
transactions that need to be submitted and in turn reduces execution costs.

1 function updateArtworkData(ArtworkData memory data , address sender)

2 public

3 onlyAdmin

4 exists(data.id)

5 write(sender , data)

6 {

7 if (data.violationTimestamp != 0) { ... }

8 if (bytes(data.status.requestedStatus).length != 0) { ... }

9 if ((bytes(data.objectId).length != 0)) { ... }

10 if (data.carrier != address (1)) { ... }

11 if (data.recipient != address (1)) { ... }

12 if (data.logger != address (1)) { ... }

13

14 emit Updated(...);

15 }

Listing 5.8: SC updateArtworkData function

The updateArtworkData expects the updated data as a parameter of the type Artwork-
Data. Solidity expects every field of the data parameter to be populated. This is why
we check for each field if the value should be updated and execute the according update.
For string fields, this check is done by checking the length of the incoming string. An
empty string with length 0 indicates that the user did not update this field. The same
check is not possible with addresses. This is why we used the address 0x00...001 to mark
an empty address update field. The zero address (0x0) is reserved to remove an address
from a field.

The code to update artwork properties differs in complexity. For the violationTimestamp
field it is as simple as assigning the new timestamp to the corresponding artwork:

1 artworks[data.id]. violationTimestamp = data.violationTimestamp

5.1. ARTIS-SMARTCONTRACT 23

This works identically for updating the roles and the objectID. When updating the logger
address we implemented an additional check to prevent updates when the artwork is
IN_TRANSIT.

1 require(

2 !(artworks[data.id]. status.currentStatus.equal("IN_TRANSIT")),

3 "logger cannot be updated in transit 403"

4);

Updating the transportation status The logic behind updating the status (Figure 5.1)
is more complex. The reason for this is the multi-approval feature of this contract. To
satisfy our use case, the actors must agree on the transportation status of the artwork. To
ensure this agreement, each affected actor must submit an update request with the same
value. Only if this requirement is satisfied, is the binding transportation status updated.

update status request
input: newStatus

false

yes

requestedStatus
is equal to

newStatus?

set
requestedStatus to

newStatus

reset all approvals

TO_BE_DELIVERED -> IN_TRANSIT

IN_TRANSIT -> DELIVERED

revert

yes

noowner
approved ?

yes

no
carrier and
recipient

approved?

reset
approvals

update
currentStatus of

the artwork

set sender
approval

yes

no
carrier and

owner
approved ?

approval
missing

DELIVERED -> TO_BE_DELIVERED
which status

change?

any other

Figure 5.1: Multi-approval transportation status change

24 CHAPTER 5. IMPLEMENTATION

To differentiate between the status that actors want to change to and the status which is
currently in place we introduced two variables: requestedStatus and currentStatus.
Users can request a status change by submitting a new requestedStatus. If this value
does not match the previous value, all approvals are reset, and the requestedStatus field
is set to the new value. The next step is to set the approval for the actor who sent the
initial update request. Because different actors must approve different status changes, we
must check for the three distinct cases.

If the status is requested to change from TO_BE_DELIVERED to IN_TRANSIT, the carrier, and
the owner must approve that change. This check is performed analogously for the change
from IN_TRANSIT to DELIVERED. Lastly, the owner decides to change from DELIVERED

to TO_BE_DELIVERED. Any other combination of status changes is not allowed, and the
transaction is reverted.

If the right approvals have already been made, the function automatically updates the
currentStatus and terminates. If any approval is missing, it terminates without updating
the currentStatus. In that case, the actor in question must submit their request for a
status update.

getArtworkData

The function to retrieve data about an artwork is the simplest one. It merely returns the
ArtworkData object mapped to the requested artwork ID. To easily convert the returned
tuple to an object using the contract Application Binary Interface (ABI), each property
is mapped to the tuple entry specified in the function signature, visible in Listing 5.9.

1 function getArtworkData(uint256 tokenId , address sender)

2 public

3 view

4 onlyAdmin

5 exists(tokenId)

6 read(sender , tokenId)

7 returns (

8 uint256 id ,

9 string memory objectId ,

10 address owner ,

11 address carrier ,

12 address logger ,

13 address recipient ,

14 string memory currentStatus ,

15 string memory requestedStatus ,

16 bool carrierApproval ,

17 bool ownerApproval ,

18 bool recipientApproval ,

19 uint256 violationTimestamp

20) { ... }

Listing 5.9: SC getArtworkData function signature

5.2. ARTIS-SERVER 25

artis-server

/src

/authentication

Authenticator.py

auth_types.py

/models

Artwork.py

Schemas.py

Fields.py

/smartcontract

ArtworkConnector.py

SmartContractConnector.py

/utils

error_handlers.py

app.py

Figure 5.2: Server directory structure

5.2 artis-server

The server is the central part of the system; it connects the end users to the SC. The
responsibilities of the server can be separated into three layers. The files of the server’s
directory structure are depicted in Figure 5.2 and the corresponding code is explained in
the next sections. The server code is implemented in Python using a variety of libraries
that are addressed later on.

5.2.1 Authentication Layer

To implement the authentication flow described in section 4.2.1, we defined an Authenti-

cator class, which handles the server-side logic. This class implements functions provided
by the third web library [48] but has been adapted to fit our specific use case. The func-
tionality described in this section is exposed by the API via the endpoints listed in Table
5.1b.

The method described in Listing 5.10 constructs a dictionary with the information used
to build the challenge message. The method is exposed by the API layer via the /auth/-
payload endpoint as listed in Table 5.1b. This dictionary is then returned to the client
who constructs a message from it and signs it.

26 CHAPTER 5. IMPLEMENTATION

1 def generate_client_auth_payload(self , address: str , chain_id: str):

2 return {

3 "payload": {

4 "version": "1",

5 "type": "evm",

6 "domain": "artis -project",

7 "address": address ,

8 "chain_id": chain_id ,

9 "nonce": str(uuid4()),

10 "issued_at": datetime.now(self.timezone).strftime(self.timeformat)

,

11 "expiration_time": (

12 datetime.now(self.timezone) + timedelta(hours =1)

13).strftime(self.timeformat),

14 }

15 }

Listing 5.10: Generating the challenge payload

1 def verify(

2 self ,

3 domain: str ,

4 payload: LoginPayload ,

5 options: VerifyOptions = VerifyOptions (),

6) -> str:

7

8 ... # perform checks (e.g. expiration date)

9

10 message = self._generate_message(payload.payload)

11 user_address = self._recover_address(message , payload.signature)

12 if user_address.lower () != payload.payload.address.lower():

13 raise Unauthorized(

14 f"The intended payload address ’{payload.payload.address.lower

()}’ is not the payload signer"

15)

16 return user_address

Listing 5.11: Verifying the signature

The signed message is then sent back and verified by the verify method listed in Listing
5.11. After reconstructing the challenge message, the method recovers the account address
that was used for the signature. If it matches the address specified in Line 7 of Listing
5.10 the authentication request is valid. This proves that the user who sent the request
has ownership over the specified account. To recover the address, the python web3 library
was used [54].

If the authentication request succeeds the server issues a JSON Web Token (JWT) signed
by the server wallet. This token is then used by the client to authenticate further requests
until it expires. The JWT’s signature and expiration date are verified upon each request
by the Authenticator class. The Authenticator exposes this functionality with the
/auth/login endpoint.

5.2. ARTIS-SERVER 27

Two additional authentication endpoints are exposed by the API. /auth/logout closes
the session and /auth/user returns information about the subject of a JWT. It can be
queried to check if the session is still active and react accordingly on the client side.

5.2.2 API Layer

To expose the functionality defined in the use case and implemented in the SC, it is enough
to implement four different API endpoints. The authentication mechanism described in
Section 5.2.1 provides another set of four endpoints.

Endpoint Method
/artworks POST
/artworks GET
/artworks/<int:artwork_id> GET
/artworks/<int:artwork_id> PATCH

(a) Resource endpoints

Endpoint Method
/auth/payload POST
/auth/login POST
/auth/logout POST
/auth/user GET

(b) Authentication endpoints

Table 5.1: API endpoints

The JavaScript Object Notation (JSON) schema of the artwork resource is shown in List-
ing 5.12. Such a JSON object is returned by both of the /artworks/<int:artwork_id>
endpoints. The properties marked with an arrow (→) can be included in the body of
a PATCH request to /artworks/<int:artwork_id>. The POST request to /artworks

expects the same body except for the requestedStatus property which cannot be set and
the owner property which can be set to mint an artwork NFT for someone else. The re-
quest body is validated using the models defined in the src/models/ folder. This is done
by leveraging the functionality to define custom schemas, and fields of the Marshmallow
[29] package.

1 {

2 "id": integer ,

3 "objectId ": string , ←
4 "owner": string ,

5 "recipient ": string | null , ←
6 "carrier ": string | null , ←
7 "violationTimestamp ": integer , ←
8 "status ": {

9 → "requestedStatus ": IN_TRANSIT | DELIVERED | TO_BE_DELIVERED | NONE ,

10 "currentStatus ": IN_TRANSIT | DELIVERED | TO_BE_DELIVERED ,

11 "approvals" {

12 "owner": boolean ,

13 "recipient ": boolean ,

14 "carrier ": boolean

15 }

16 }

17 }

Listing 5.12: Artwork JSON schema

28 CHAPTER 5. IMPLEMENTATION

1 "artworks ": {

2 "owner": [integer],

3 "recipient ": [integer],

4 "carrier ": [integer],

5 "logger ": [integer],

6 }

Listing 5.13: GET /artworks response

A GET request to /artworks returns the artwork IDs where the requester is registered as
an actor. This response is shown in Listing 5.13. A POST request to the same endpoint
returns { "tokenId": integer } with the newly generated ID.

To build the API application we used Flask [18]. The entry point of the Flask application
is the app.py file in the base folder. The endpoint definitions of the /artworks route are
shown in Listing 5.14. The logic in the entry methods is reduced to a minimum. The
body is validated and loaded to the internal Artwork class. Then the request is processed
by the application layer and returned after being converted back to a JSON object.

1 @app.get("/artworks")

2 @auth_required(authenticator)

3 def get_all () -> dict:

4 return {"artworks": sc.getArtworkIdsByAddress(g.sender)}

5

6 @app.post("/artworks")

7 @auth_required(authenticator)

8 def mint() -> dict:

9 artworkData = Artwork.load_from_mint(request.get_json ())

10 return {"tokenId": sc.safeMint(to=g.sender , data=artworkData)}

11

12 @app.get("/artworks/<int:artwork_id >")

13 @auth_required(authenticator)

14 def get(artwork_id: int) -> dict:

15 return sc.getArtworkData(artwork_id , g.sender).dump()

16

17 @app.patch("/artworks/<int:artwork_id >")

18 @auth_required(authenticator)

19 def update(artwork_id: int) -> dict:

20 newArtworkData = Artwork.load(request.get_json () | {"id": artwork_id })

21 return sc.updateArtworkData(newArtworkData , g.sender).dump()

Listing 5.14: Definition of Endpoints

5.2.3 Application Layer

The application layer connects to the SC and submits the transactions needed to fulfill
the API request. To do this we are using the python web3 library [54]. This functionality
is defined in the /src/smartcontract/ArtworkConnector.py file. It defines a class that
extends the SmartContractConnector abstract class. The SmartContractConnector

class contains code that is generally necessary to connect to a SC. This includes setting

5.2. ARTIS-SERVER 29

up the Web3 provider, as well as the account to submit the transactions, and adding
some middleware. Additionally, we decided to define two abstractmethods that fetch the
contract address and contract ABI dynamically. This ensures the API is always connected
to the newest contract. In our case, we used GitHub variables to store the contract address
and the Etherscan [16] API to fetch the ABI. With this setup, we built an extensible
platform that can add endpoints to connect to additional SCs more easily.

The ArtworkConnector class has the same interface as the solidity contract. As shown
in Listing 5.15, each public method directly connects to a SC method. Web3.py pro-
vides a simple-to-use smart contract proxy object which we stored in the class variable
self._contract. This object makes all the contract functions available with the func-

tions property. To call a contract function it suffices to execute self._contract.functions

.<function_name>(<input>).call(). This returns the value from the SC and can more or
less be directly returned to the user. If the function mutates the state of the contract, we
need to use .transact() and a transaction hash is returned instead. We use this transac-
tion hash to wait for the transaction receipt and extract the data from the emitted events.
This is done by the helper function self._handleEvent.

1 def safeMint(self , to: bytes , data: Artwork):

2 owner , mint_data = data.to_sc_mint ()

3 tx_hash = self._contract.functions.safeMint(

4 to if not owner else owner , mint_data

5).transact ()

6 event_args = self._handleEvent(tx_hash , "Transfer")

7 return event_args.get("tokenId")

8

9 def updateArtworkData(self , newArtworkData: Artwork , sender: bytes):

10 tx_hash = self._contract.functions.updateArtworkData(

11 newArtworkData.to_sc_update (), sender

12).transact ()

13 event_args = self._handleEvent(tx_hash , "Updated")

14 new_data = event_args.get("newData")

15 new_data = dict(new_data , **{"owner": event_args.get("owner")})

16 new_data["status"] = dict(

17 new_data["status"], **{"approvals": event_args.get("approvals")}

18)

19 return Artwork.load(data=new_data)

20

21 def getArtworkIdsByAddress(self , address: str):

22 artwork_ids = (

23 self._contract.functions.getArtworkIdsByAddress(address).call().

_asdict ()

24)

25 # incoming lists are zero padded to the total supply of tokens

26 remove_zeros = lambda d: {

27 k: list(filter(lambda x: x != 0, v)) for k, v in d.items()

28 }

29 return remove_zeros(artwork_ids)

30

31 def getArtworkData(self , artworkId: int , sender: str):

32 data=self._contract.functions.getArtworkData(artworkId , sender).call()

33 return Artwork.load(data=dict(data._asdict ()))

Listing 5.15: ArtworkConnector class methods

30 CHAPTER 5. IMPLEMENTATION

5.3 artis-rockpi-logger

Figure 5.3: Rock Pi with a DHT-22 sensor

Another major component of the system is the logging device used to monitor the en-
vironmental data during the transportation of the artwork. For this project, we used a
Rock Pi [37] with a DHT-22 [2] sensor attached. (Figure 5.3)

The decision for this device and sensor is based on simplicity, flexibility, and low acquisition
costs. The Rock Pi is compatible with the Linux operating system, making writing scripts
using high-level programming languages like Python very simple. It also has General
Purpose Input/Output (GPIO) support to easily connect the DHT-22 sensor. The sensor
is capable of recording temperature and humidity data from the environment.

To read data from the DHT-22 sensor, we used an existing library called ”Rockfruit Python
DHT” [49] that we adapted slightly to work with our board. The library provides a func-
tion with the signature read_retry(sensor, pin, retries=15, delay_seconds=2).
This method reads data from the DHT sensor of the specified type (in our case 22)
on the specified GPIO pin. It returns a tuple of humidity (as a floating point value in
percent) and temperature (as a floating point value in Celsius).

The function attempts to read multiple times (up to the specified retries) until a reading
can be registered. If no reading can be registered after the number of retries, the function
returns (None, None). The default delay between retries is two seconds but can be
overridden.

5.3.1 Code

In Listing 5.16, you can see that the script is executing the read_retry function in
an endless loop, and whenever the reading has been successful, it stores the data along
with a timestamp of the reading in seconds and a readable format in a local database
(readings.db, Figure 5.4).

5.3. ARTIS-ROCKPI-LOGGER 31

artis-rockpi-logger

/Rockfruit_Python_DHT

artis_api.py

authenticator.py

logging_script.py

violation_script.py

readings.db

Figure 5.4: Logger directory structure

1 while True:

2 humidity ,temperature = Rockfruit_DHT.read_retry(sensor ,pin ,retries =15)

3 timestamp = datetime.datetime.now()

4 if humidity is not None and temperature is not None:

5 c.execute(

6 "INSERT INTO readings VALUES (?, ?, ?, ?)",

7 (

8 timestamp.strftime("%Y-%m-%d %H:%M:%S"),

9 int(timestamp.timestamp ()),

10 temperature ,

11 humidity ,

12),

13)

14 conn.commit ()

Listing 5.16: Temperature and humidity logging loop in logging_script.py

The logger contains a second important script which is run simultaneously. The viola-

tion_script.py is executed with the predefined temperature and humidity thresholds
and the corresponding artwork ID.

1 python3 violation_script.py \

2 --artwork -id 1 \

3 --temperature -threshold 30 \

4 --humidity -threshold 80

Listing 5.17: Executing the violation_script.py

This script contains another while loop that continuously checks for new entries in the
database and evaluates whether the threshold has been exceeded. If there has been either
a temperature or humidity violation, the script calls the corresponding method to call the
ARTIS server API. These methods are defined in the artis_api.py file.

To authenticate to the API, the logger follows the same authentication flow illustrated in
Figure 4.3. The methods used to send the authentication requests and sign the challenge
message are defined in the authenticator.py file.

32 CHAPTER 5. IMPLEMENTATION

5.4 artis-frontend

The last component of the system is the user interface. It is a single-page application
built with React [36] and TypeScript. The styling is done with Tailwind CSS [47]. These
technologies were selected due to the author’s prior experience. Theoretically, the user
interface is not required to interact with the system. However, simple authentication is a
large benefit of the user interface. Its integration with Metamask [31] enables a seamless
login and authentication flow. From a code perspective, thirdweb [48] is used to access
the API of Metamask. A short demo of the user interface can be viewed on GitHub2

(a) Welcome Screen

(b) Connecting to Metamask

An unauthenticated user first lands on this welcome page with a button to connect the
website to Metamask as shown in Figure 5.5a. After pressing the button, Metamask opens

2https://artis-project.github.io/artis-thesis/frontend-demo.mov

https://artis-project.github.io/artis-thesis/frontend-demo.mov

5.4. ARTIS-FRONTEND 33

a pop-up to select an account to connect to the website (Figure 5.5b). Finally, the button
label changes to ”Sign in” and as soon as the user presses the button again, a signature
request is sent to the server. The message visible on the pop-up in Figure 5.5c is a message
constructed from the response of the POST /auth/payload request.

Once the user signs this message, the signature is sent back to the server, validated, and
an authentication token is issued. The user is now logged in and can see all the artworks
by their IDs that are associated with the logged-in account (Figure 5.5d).

(c) Sign in request

(d) Artworks page

Figure 5.5: Sign in process

The artwork page shows colorful tiles representing artworks. Each tile is labeled with the
corresponding artwork ID. The tabs on the top can be selected to view all the artworks
where the account is registered e.g. the user might be the owner of artwork 1 but the
recipient of artwork 2.

34 CHAPTER 5. IMPLEMENTATION

Figure 5.6: Artwork mint modal Figure 5.7: Artwork detail view

To create a new artwork NFT, the user can click on the transparent tile at the bottom.
This opens a modal where the user can enter details about the artwork (Figure 5.6). To
view more details about an existing artwork the user can click on a tile to open up the
detail view shown in Figure 5.7. This view displays important information like the status
of the artwork, the role the user is registered as, and the timestamp of the most recent
violation if any occurred. Further, the user can edit values by switching on the edit mode
with the switch on the top right.

Chapter 6

Evaluation

In this chapter, we evaluate different aspects of the developed system. Section 6.1 shows a
cost and performance analysis of the developed SC and a security analysis in Section 6.2.
Section 6.3 concludes the analyses with a field test of a simulated artwork transportation
scenario. Finally, this chapter is concluded with a discussion in Section 6.4.

6.1 Cost and Performance Analysis

The primary cost factor of the artis-system is the SC. Each execution of a function that
mutates the state of the SC costs a certain amount of gas which in turn has a price in
Ether. The cost for a transaction thus is calculated as follows:

transaction fee = gas× gas price

To analyze the execution costs of the safeMint and updateArtworkData contract functions,
we executed the corresponding requests of the developed API multiple times (n = 10) for
each input variety. This analysis was conducted on the sepolia testnet and the resulting
transactions were inspected on the Etherscan block explorer. The transactions were sub-
mitted with a relatively high gas price (30 Gwei) to make the transactions attractive for
validators [13]. During this analysis, we observed that the gas used for a specific function
depends on the input parameters but does not vary if the input parameters are the same.
To analyze the performance, we also recorded the processing time of each request. This
time can be an indicator of the performance but depends on the state of the blockchain
and likely differs on the mainnet.

To get a sense of how gas translates into fees, we used the average gas price of the past
month for the Ethereum mainnet (28 Gwei, 07.08.23 - 08.08.23) [15] and the current
value of Ether in Swiss Francs (CHF) (1625.20 CHF = 1 ETH, 09.08.23) [11]. Because
the contract can also be deployed on other blockchains that use the Ethereum Virtual
Machine (EVM), we decided to include the cost on the polygon network. Except the
contract has not been deployed to the Polygon network, and the same amount of gas
was used for these calculations. The average gas price of the past month (173 Gwei [35],

35

36 CHAPTER 6. EVALUATION

07.08.23 - 08.08.23) was multiplied by the gas and converted into CHF by using the current
price for MATIC (0.60 CHF = 1 MATIC, 09.08.23) [11]. The results were rounded to four
decimal points for the tokens and two decimal points for CHF.

57’500 Gas

115’000 Gas

172’500 Gas

230’000 Gas

average gas

only objectID +recipient +carrier +logger

226’226 Gas
206’086 Gas

185’946 Gas
169’226 Gas

(a) Transaction gas usage

average response time
2s 975ms 5s 950ms 8s 925ms 11s 900ms

9s 682ms

9s 711ms

9s 684ms

11s 812ms

only objectID +recipient +carrier +logger

(b) Request speed in seconds

Figure 6.1: safeMint analysis

safeMint

Figure 6.1a shows the average gas the safeMint function consumes for various input pa-
rameters. Each bar shows the average of 10 function executions. The very left bar shows
the average gas used if only the objectID of the artwork is added during minting. The
second bar shows the gas consumed if the objectID and the recipient address are provided
during minting. This pattern remains the same for the last two bars. The analysis shows
that the more parameters are provided, the more gas it consumes. Table 6.1 shows the
transaction fees in the corresponding native token and converted into CHF as outlined
above.

only objectID +recipient +carrier +logger
transaction fee
ETH (MATIC)

0.0048 (0.0293) 0.0053 (0.0322) 0.0059 (0.0357) 0.0064 (0.0392)

in CHF
Ethereum (Polygon)

7.83 (0.02) 8.61 (0.02) 9.54 (0.02) 10.47 (0.02)

Table 6.1: Estimated transaction fees safeMint

The response time of the API calls are mostly below 10s. We could not observe a large
difference in the different input parameters. The chart in Figure 6.1b shows the average
response time in seconds. The maximum response time recorded was 33s on the fifth
call with only the objectID submitted, and the minimum was 3s with the objectID and
recipient address submitted. This shows that this metric can fluctuate heavily depending
on the state of the network.

6.1. COST AND PERFORMANCE ANALYSIS 37

25’000 Gas

50’000 Gas

75’000 Gas

100’000 Gas

average gas

update status approve status report violation register carrier

80’498 Gas81’196 Gas82’662 Gas
99’737 Gas

(a) Transaction gas usage

average response time
3s 475ms 6s 950ms 10s 425ms 13s 900ms

13s 832ms

10s 957ms

12s 11ms

11s 835ms

update status approve status report violation
register carrier

(b) Request speed in seconds

Figure 6.2: updateArtworkData analysis

updateArtworkData

Similarly, we also analyzed the updateArtworkData function. The bar on the very left of
Figure 6.2a shows the average gas consumed by the function when updating the requested
status. Approving the status as a different actor shows an average consumption of 82’662
gas. The last two bars show the gas amount for reporting a violation from the logger and
registering a carrier.

The cost of these transactions was estimated similarly to with the safeMint function (Table
6.2). The results show that updating an artwork NFT is much less costly than minting
it.

update status approve status report violation register carrier
transaction fee
ETH (MATIC)

0.0028 (0.0173) 0.0024 (0.0143) 0.0023 (0.0141) 0.0023 (0.014)

in CHF
Ethereum (Polygon)

4.62 (0.01) 3.83 (0.01) 3.76 (0.01) 3.73 (0.01)

Table 6.2: Estimated transaction fees updateArtworkData

The average response time of updating an NFT varies depending on the input parameters.
The request that was fulfilled the fasted approved a status change in around three Seconds.
Interestingly, the longest response time of over 35 seconds was recorded on the same type
of request.

Non-Mutating Functions

The GET endpoints exposed by the API target several functions that do not mutate the
state of the SC. These functions do not cost gas, and their execution time is much less
(usually < 1 Second). Additionally, the artis-server adds a caching layer to these function
calls, which generally reduces the response time of repeated calls to a few milliseconds.

38 CHAPTER 6. EVALUATION

6.2 Security Analysis

Since the system is intended to be used by different actors in a trust-less environment a
security analysis is vital for evaluating the prototype. The following Section discusses the
different threat scenarios and evaluates the security risk.

6.2.1 Compromised Logger

The logging device is important to the system, and a compromised device would lead to
a compromised system altogether. We consider three different attack scenarios when it
comes to the logger.

Software Exploitation

Currently, the device itself is not secured in any way. Any malicious actor could connect
to the logger device and alter its software. This could include changing the violation
thresholds, stopping the logging script, manipulating the local database of the readings,
and more. Such a threat scenario compromises the integrity, confidentiality, and avail-
ability of the system. Because the current system is not protected against this threat, the
security risk is high.

Hardware Exploitation

The recordings can also be influenced externally by exploiting the hardware components.
By gaining access to the logger device, a malicious actor could influence the environmental
parameters in a minimal perimeter around the sensor and falsify the readings. This could
result in violations even if the artwork itself was not affected or could prevent violations
even if the artwork was affected. The integrity and availability of the system can be
compromised, which poses a high-security risk.

Compromised Credentials

The system only allows registered actors to change the NFT. This is also true for the
logger device, which authenticates the system by signing a challenge message with a
private key. If the private key is leaked, a malicious actor could report violations even
if none occurred. Currently, the private key is stored in an environment variable on the
software. An attacker could easily retrieve the value of the private key by connecting
to the logger. This indicates a high-security risk for this threat by compromising the
confidentiality and integrity of the system.

6.3. FIELD TEST 39

6.2.2 Compromised Smart Contract

A malicious actor could influence the state of the SC by accessing it directly. The attacker
would have to identify flaws in the contract code and find an exploit to manipulate artwork
data. We estimate the security risk of finding a flaw in the code to be medium, as the
contract was tested during development, and basic code-checking tools could not identify
a vulnerability. The SC only accepts transactions issued by the system’s admin. If the
admin credentials are leaked, the attacker would have unlimited access to the SC. In the
current system, the admin’s private key is only stored on the artis-server. The server
is deployed as a Google Cloud-run service, and the Google secret manager supplies the
private key. The security risk for this threat scenario is estimated to be low because the
secret manager is an industry-standard solution for managing sensitive data.

6.2.3 Disclosure of Data

The data stored on the SC could be sensitive depending on the use case. The SC prevents
unauthorized users from reading data. However, the transactions submitted to update
data can contain sensitive information. This information can be read by anyone who has
access to the SC address, admin address, or any of the actors’ addresses. Because these
addresses are not considered secrets, the system is considered to disclose all transaction
data to the public. This could introduce a high-security risk for certain use cases as
confidentiality would be compromised.

6.3 Field Test

Because the isolated analyses performed above do not indicate how the system would
perform during an artwork transportation scenario, we used the system on a simulated
transportation scenario.

The steps of the simulated scenario are visualized in Figure 6.3 and described in more
detail below.

1. Creates a new artwork NFT and registers the corresponding roles using the artis-
frontend.

2. Request the status of the artwork to be changed to IN TRANSIT from the sender
account

3. Approve this request from the carrier account

4. Enable the logger by starting the logging script and the violation script with the
thresholds of 25 degrees Celcius and 70% humidity.

5. Take the logging device and transport it from the point of departure to the desti-
nation

40 CHAPTER 6. EVALUATION

Action Owner mints artwork NFT

Request POST /artworks
{

"objectId": TEST-123,
"carrier": 0x...,
"recipient": 0x...,
"logger": 0x...

}

Owner requests the artwork
to be transported

PATCH /artworks/id
{

"status": {
"requestedStatus":

"IN_TRANSIT"
}

}

Carrier approves the request

Carrier transports the artwork

Logger reports temperature
or humidity violations
if any occur

PATCH /artworks/id
{
 "violationTimestamp":

1692022392
}

Artwork is delivered,
carrier requests status
to be updated

PATCH /artworks/id
{

"status": {
"requestedStatus":

"IN_TRANSIT"
}

}

Recipient approves the request

PATCH /artworks/id
{

"status": {
"requestedStatus":

"IN_TRANSIT"
}

}

PATCH /artworks/id
{

"status": {
"requestedStatus":

"IN_TRANSIT"
}

}

Action

Request

Figure 6.3: Field test scenario

6. During the transportation, simulate a violation by wrapping a hand around the
sensor to increase the temperature.

7. Upon arrival, request the status of the artwork to be changed to DELIVERED from
the carrier account

8. Approve this request from the recipient account

The field test involves a minimum of five requests to the API. If any violations occur, this
number is increased accordingly. We also simulated a temperature violation by covering
the sensor with our hand (Figure 6.4b) to include a violation in the test. The test was
performed on the go, traveling by train and using a power bank to power the device and
a hotspot from a cellular phone to connect to the internet. During the test, we recorded
different metrics now used for evaluation. The most important metrics include a cost
analysis of the field test and an evaluation of the performance of the logger.

6.3.1 Cost

During our field test, nine transactions were issued by the API. The cost analysis also
includes deploying the SC and minting the NFT. However, this would be a one-time cost,
and its significance shrinks with the number of transportation. Table 6.3 gives an overview
of the transactions and estimated costs. The costs are estimated in the same manner as
in Section 6.1. However, the transactions were not issued with a fixed gas price, but each
transaction was estimated based on the network at the time.

6.3. FIELD TEST 41

(a) Simulating artwork transportation scenario (b) Simulating temperature violation

Figure 6.4: System Field Test

The total cost of the field test mainly consists of the contract deployment. This transaction
accounts for over 78% of the total gas consumption and thus also accounts for the greatest
cost factor. The variable part included in another similar transportation scenario of the
same artwork amounts to around 25.85 CHF on the Ethereum network or around 0.07
CHF on the Polygon network.

Transaction Count Total Cost on Ethereum (Polygon)
Contract deployment one time 143.79 (0.33)
mint NFT one time 12.05 (0.03)
update status 2 9.26 (0.02)
approve status 2 7.68 (0.02)
report violation 3 8.91 (0.03)
Total 9 181.69 (0.43)

Table 6.3: Transaction fees field test

6.3.2 Logger Reliability

The field test lasted around 52 minutes. During the transportation, the logger stored
every sensor reading in a local database. Figure 6.5 illustrates the intervals of the sensor
readings. Each line indicates a successful reading by the sensor; the red lines represent a
violation. The maximum time between two readings was 9 minutes and 36 seconds. The
shortest interval was less than a second. We did not test other metrics such as accuracy
or range for this prototype.

07:06:36 07:58:37

9m 36s

Figure 6.5: Timeline with sensor readings

42 CHAPTER 6. EVALUATION

6.4 Discussion

The performance and cost of the developed system depend mainly on the blockchain used
as infrastructure. The blockchain is essential and must be chosen with great diligence. The
prototype deployed on the sepolia testnet demonstrates the influence of different factors,
such as network congestion and priority fees on the time needed for a transaction to be
completed. On the testnet, the average response time with a fixed gas price of 30 Gwei
is reasonable and could support a real-life scenario. However, this is not representative of
the mainnet.

Nevertheless, the gas consumption of the SC functions can be directly adapted to any
block-chain running the same EVM version. The analysis shows that executing a simple
scenario on the Ethereum network can be very costly. Polygon solves this issue as our cost
estimation is reduced by a factor of over 422. On Ethereum, the total cost of a scenario is
quite costly, but considering the artwork’s potential value, we think it could be acceptable
for a real-life scenario. With Polygon, the estimated total cost is minimal and acceptable.

The security risks illustrated in Section 6.2 prevent the system from being used in a real-
life artwork transportation scenario. The developed system serves as a proof of concept,
and the security vulnerabilities must be mitigated for a production version.

The intervals of successful readings by the sensor have shown to be inconsistent and leave
large gaps between readings. Unfortunately, the quality of the sensor would not be enough
to support a real-life use case. A suitable sensor should be able to consistently record
at shorter intervals, preferably less than a minute long. The reason for the sensor’s poor
performance is unclear. Possible explanations include a timing issue in the communication
between the board and the sensor, voltage fluctuations from the portable power bank, or
other environmental factors. We believe this issue could easily be solved using a higher
quality board with integrated sensors, such as the B-L462E-CELL1 Discovery kit by ST
[45].

Chapter 7

Summary and Conclusions

This chapter aims to conclude the thesis with a summary, conclusions, and potential
future work based on the insights gained during development and the limitations of the
system.

7.1 Summary

This thesis proposes a novel system to monitor and track artwork during transportation.
The system is designed to include both blockchain and IoT to improve transparency and
traceability in the art world. The idea is to attach an IoT device to the physical artwork
that records and stores environmental data critical to the integrity of the artwork. The
logging device evaluates the recorded data against a predefined threshold and alerts the
stakeholders if any deviations occur. Any data associated with the artwork is stored on
the blockchain to serve as an indisputable record of events. To create a proof of concept
for this proposed system, a prototype was realized within the scope of this thesis.

The first step was to establish the theoretical background for this project through a liter-
ature review. The thesis introduced the concepts of blockchain, IoT, SCs, and continued
with a review of related work. The focus was placed on gathering existing solutions or
work that use either blockchain, IoT, or both in tracking and monitoring systems. The
results of the literature review were discussed and used as inspiration for the design of the
proposed system.

The design of the system includes a description of a simplified artwork tracking scenario
that should be supported by the final prototype. The architecture of the system was then
derived from this simplified scenario. The final system comprises a frontend user interface,
a backend server, a SC, and the IoT device. The frontend is designed to provide a user-
friendly interface to the backend server. The backend server exposes a REST API to
interact with the SC. The developed SC defines the unique digital counterpart of physical
artwork as a NFT. By storing additional details on the SC, it becomes feasible to register
stakeholders as key actors. Their designated blockchain identities can then be used to
access information about the artwork status or request modifications. Authorization is

43

44 CHAPTER 7. SUMMARY AND CONCLUSIONS

handled by the SC itself through a role-based policy while authentication is handled on
the server by challenging users to provide proof of ownership. The IoT device is designed
to record temperature and humidity data and report violations of a predefined threshold
via the API to the SC.

The established design and architecture were then implemented in the form of a prototype.
The SC was implemented in Solidity and deployed to the sepolia testnet. The backend
server is written in Python and uses the web3py library to execute contract functions
by initiating transactions. Those functions are then exposed as API endpoints using the
Flask framework. The backend server is deployed to the web as a Google Cloud-run
service. The frontend is built using react and provides a Graphical User Interface (GUI)
for the API endpoints. Using Metamask the user can easily authenticate to the backend
server by signing a challenge message and providing proof of ownership over the Ethereum
account used. Lastly, to monitor humidity and temperature a Rock Pi was used with a
DHT-22 sensor attached. The software for the logger is written in Python.

The system was evaluated in terms of cost, performance, and security as well as a simulated
artwork tracking scenario. The cost analysis was performed on the sepolia testnet and
used the recorded gas consumption of function executions to estimate the transaction
fees on the mainnet. The analysis also includes an estimation of the fees if the system
was deployed on the Polygon network. To evaluate the performance of the system, the
requests to the API were timed multiple times and the resulting average was discussed. To
evaluate the security of the system, several potential threat scenarios were analyzed and
rated in terms of security risk. The field test involved deploying a SC instance, minting
an NFT, registering the actors, requesting the artwork to be delivered, approving a status
change, reporting a simulated violation, and finally delivering the artwork and changing
the status to delivered. The transportation scenario included the logging device being
transported outside for roughly an hour.

7.2 Conclusions

A prototype system to monitor and track artwork using IoT and blockchain technology
was successfully designed, implemented, and evaluated. The general objective has been
achieved by this prototype. The system is capable of creating an NFT as a digital coun-
terpart of artwork. The owner of the artwork is then able to register other stakeholders
and effectively give them read/write permissions to information about the artwork and
its current status. By attaching a logging device to the artwork, the system can monitor
environmental conditions and report any deviations to the system. Those violations are
then irrefutably stored on the blockchain. Furthermore, the transaction history on the
blockchain can be used to trace ownership and custody of the artwork. The system also
provides a user-friendly frontend interface as well as an abstracted REST API to interact
with the system and the underlying SC.

The development of the system presented major challenges. For instance, authenticating
to the system involves signing a challenge message with a private key. This process can
be cumbersome to achieve without proper wallet integration. To overcome this challenge

7.3. FUTURE WORK 45

we decided to integrate the popular wallet provider Metamask in our frontend. With this
integration, the authentication process is as simple as clicking a button. Another challenge
was finding a suitable IoT device. Initially, the idea was to use a more sophisticated device
with integrated sensors. The development on such a board turned out to be more complex
and we decided to switch to a simpler device that can run on a familiar operating system
like Linux. This choice resulted in a decline in the sensor’s quality. Initially, the scope
of this thesis also included protecting sensitive data by designing a confidentiality scheme
using Zero-Knowledge Proof (ZKP). We decided to leave this for future research as this
was intended to be achieved by using existing libraries and frameworks that turned out
to be harder to integrate than expected. Instead, we focused on a different set of features
for the final prototype.

The developed prototype has been used in a simulated artwork transportation scenario
and has been shown to work as intended. Nevertheless, the prototype has some limitations
that have to be addressed in future work.

7.3 Future Work

This thesis has demonstrated a minimal prototype to demonstrate a novel approach to
artwork tracking and monitoring in transportation scenarios. To arrive at a mature state
of the system there is still great room for improvement and further development.

First, it would be essential to upgrade certain components of the system. This may include
upgrading to a better sensor as well as adding more sensors to track location, vibration,
and other environmental data. With an upgraded IoT device another field test performed
at a larger scale will bring further insight into the feasibility of the system in a real-world
scenario.

Secondly, future work should address the security risks outlined in Section 6.2. Primarily
the protection of sensitive data should be investigated. This may involve exploring the
potential of using ZKPs to protect data exposed in blockchain transactions [44].

Lastly, the current design includes a centralized server to provide an interface to the SC.
This introduces a single point of failure to the system and it might be worth exploring a
truly distributed approach.

46 CHAPTER 7. SUMMARY AND CONCLUSIONS

Bibliography

[1] 4art-technologies.com. 4ARTechnologies. url: https://www.4art-technologies.
com/de/.

[2] adafruit.com. DHT22. url: https://www.adafruit.com/product/385. Date
accessed: 18/08/2023.

[3] artory.com. Artory. url: https://www.artory.com/. Date accessed: 22/03/2023.
[4] authena.io. Authena. url: https://authena.io/. Date accessed: 22/03/2023.
[5] Mohamed Ben-Daya, Elkafi Hassini, and Zied Bahroun. “Internet of things and

supply chain management: a literature review”. International Journal of Production
Research 57.15-16 (2017), pp. 4719–4742. issn: 1366588X. doi: 10.1080/00207543.
2017.1402140.

[6] T Bocek, B B Rodrigues, T Strasser, and B Stiller. “Blockchains everywhere - a
use-case of blockchains in the pharma supply-chain”. 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM). 2017, pp. 772–777. doi: 10.
23919/INM.2017.7987376.

[7] Vitalik Buterin. “Ethereum: A Next-Generation Smart Contract and Decentralized
Application Platform.” Ethereum Whitepaper (2014).

[8] Mauro Cannistraro, Giuseppe Cannistraro, and Roberta Restivo. “Environmental
monitoring of sacred artworks – A case study for the search for an index of corre-
lation between particle concentration and mass of fine dust”. Thermal Science and
Engineering Progress 14 (Dec. 2019), p. 100405. issn: 2451-9049. doi: 10.1016/J.
TSEP.2019.100405.

[9] Vincenza Carchiolo, Mark Phillip Loria, Marco Toja, and Michele Malgeri. “Real
Time Risk Monitoring in Fine-art with IoT Technology.”FedCSIS (Communication
Papers). 2018, pp. 151–158.

[10] certify-project.eu. CERTIFY. url: https://certify-project.eu/. Date accessed:
10/04/2023.

[11] coinmarketcap.com. CoinMarketCap. url: https://coinmarketcap.com/currenc
ies. Date accessed: 09/08/2023.

[12] ethereum.org. ERC-721 Non-Fungible Token Standard. url: https : / / ethereu
m . org / en / developers / docs / standards / tokens / erc - 721/. Date accessed:
26/03/2023.

[13] ethereum.org. Gas and fees. url: https://ethereum.org/en/developers/docs/
gas/. Date accessed: 14/08/2023.

[14] ethereum.org. Sepolia Testnet. url: https://ethereum.org/en/developers/
docs/networks/#sepolia. Date accessed: 26/06/2023.

47

https://www.4art-technologies.com/de/
https://www.4art-technologies.com/de/
https://www.adafruit.com/product/385
https://www.artory.com/
https://authena.io/
https://doi.org/10.1080/00207543.2017.1402140
https://doi.org/10.1080/00207543.2017.1402140
https://doi.org/10.23919/INM.2017.7987376
https://doi.org/10.23919/INM.2017.7987376
https://doi.org/10.1016/J.TSEP.2019.100405
https://doi.org/10.1016/J.TSEP.2019.100405
https://certify-project.eu/
https://coinmarketcap.com/currencies
https://coinmarketcap.com/currencies
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/networks/#sepolia
https://ethereum.org/en/developers/docs/networks/#sepolia

48 BIBLIOGRAPHY

[15] etherscan.io. Ethereum Average Gas Price. url: https://etherscan.io/chart/
gasprice. Date accessed: 09/08/2023.

[16] etherscan.io. Etherscan. url: https://etherscan.io/. Date accessed: 05/08/2023.
[17] everledger.io. Everledger. url: https://everledger.io.Date accessed: 22/03/2023.
[18] flask.palletsproject.com. Flask. url: https://flask.palletsprojects.com/en/

2.3.x/. Date accessed: 02/08/2023.
[19] handelszeitung.ch. Authena: Garantie für fälschungssichere Produkte. url: https:

//www.handelszeitung.ch/podcasts/upbeat/authena-garantie-fur-falschu

ngssichere-produkte-615882. Date accessed: 23/08/2023.
[20] hardhat.org. Hardhat. url: https://hardhat.org/. Date accessed: 26/06/2023.
[21] hasenkamp.com. hasenkamp Fine Art. url: https://hasenkamp.com/en/fineart/

packaging. Date accessed: 22/08/2023.
[22] ICOM. Object ID - International Council of Museums. url: https://icom.museu

m/en/resources/standards-guidelines/objectid/. Date accessed: 11/03/2023.
[23] kraft-els.ch. Kraft E.L.S. AG - Exhibition Logistics Service. url: https://kraft-

els.ch/en/packing/. Date accessed: 22/08/2023.
[24] Elia Landi, Lorenzo Parri, Riccardo Moretti, Ada Fort, Marco Mugnaini, and Va-

lerio Vignoli. “An IoT sensor node for health monitoring of artwork and ancient
wooden structures”. 2022 IEEE International Workshop on Metrology for Living
Environment, MetroLivEn 2022 - Proceedings (2022), pp. 110–114. doi: 10.1109/
METROLIVENV54405.2022.9826938.

[25] Elisabetta Lazzaro. “Blockchain opportunities and challenges in the art market”
(2020).

[26] Z. Li, Ray Y. Zhong, Z. G. Tian, Hong Ning Dai, Ali Vatankhah Barenji, and
George Q. Huang. “Industrial Blockchain: A state-of-the-art Survey”. Robotics and
Computer-Integrated Manufacturing 70 (Aug. 2021), p. 102124. issn: 0736-5845.
doi: 10.1016/J.RCIM.2021.102124.

[27] Somayya Madakam, R. Ramaswamy, and Siddharthi Tripath. “Internet of Things
(IoT): A Literature Review”. Journal of Computer and Communications 03.05 (2015),
pp. 164–173. issn: 2327-5219. doi: 10.4236/JCC.2015.35021.

[28] Nikhil Malik, Yanhao Wei, Gil Appel, and Lan Luo. “Blockchain technology for
creative industries: Current state and research opportunities”. International Journal
of Research in Marketing 40.1 (Mar. 2023), pp. 38–48. issn: 0167-8116. doi: 10.
1016/J.IJRESMAR.2022.07.004.

[29] marshmallow.readthedocs.io. marshmallow. url: https://marshmallow.readthe
docs.io/en/stable/. Date accessed: 05/08/2023.

[30] MF Mecklenburg. “Art in transit: studies in the transport of paintings” (1991).
[31] metamask.io. Metamask. url: https://metamask.io/. Date accessed: 05/08/2023.
[32] Raef Mousheimish, Yehia Taher, Karine Zeitouni, and Michel Dubus. “PACT-ART:

Adaptive and context-aware processes for the transportation of artworks”. 2015
Digital Heritage International Congress, Digital Heritage 2015 (2015), pp. 347–
350. doi: 10.1109/DIGITALHERITAGE.2015.7419520.

[33] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System” (2008).
[34] openzeppelin.com. OpenZeppelin. url: https://www.openzeppelin.com/. Date

accessed: 05/08/2023.
[35] polyscan.com. Polygon PoS Chain Average Gas Price. url: https://polygonscan.

com/chart/gasprice. Date accessed: 09/08/2023.

https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://etherscan.io/
https://everledger.io
https://flask.palletsprojects.com/en/2.3.x/
https://flask.palletsprojects.com/en/2.3.x/
https://www.handelszeitung.ch/podcasts/upbeat/authena-garantie-fur-falschungssichere-produkte-615882
https://www.handelszeitung.ch/podcasts/upbeat/authena-garantie-fur-falschungssichere-produkte-615882
https://www.handelszeitung.ch/podcasts/upbeat/authena-garantie-fur-falschungssichere-produkte-615882
https://hardhat.org/
https://hasenkamp.com/en/fineart/packaging
https://hasenkamp.com/en/fineart/packaging
https://icom.museum/en/resources/standards-guidelines/objectid/
https://icom.museum/en/resources/standards-guidelines/objectid/
https://kraft-els.ch/en/packing/
https://kraft-els.ch/en/packing/
https://doi.org/10.1109/METROLIVENV54405.2022.9826938
https://doi.org/10.1109/METROLIVENV54405.2022.9826938
https://doi.org/10.1016/J.RCIM.2021.102124
https://doi.org/10.4236/JCC.2015.35021
https://doi.org/10.1016/J.IJRESMAR.2022.07.004
https://doi.org/10.1016/J.IJRESMAR.2022.07.004
https://marshmallow.readthedocs.io/en/stable/
https://marshmallow.readthedocs.io/en/stable/
https://metamask.io/
https://doi.org/10.1109/DIGITALHERITAGE.2015.7419520
https://www.openzeppelin.com/
https://polygonscan.com/chart/gasprice
https://polygonscan.com/chart/gasprice

BIBLIOGRAPHY 49

[36] react.dev. React. url: https://react.dev/. Date accessed: 05/08/2023.
[37] rockpi.org. Rock Pi 4. url: https://rockpi.org/rockpi4.Date accessed: 18/08/2023.
[38] DAVID SAUNDERS. “Monitoring Shock and Vibration during the Transporta-

tion of Paintings”. National Gallery Technical Bulletin 19 (1998), pp. 64–73. issn:
01407430.

[39] Eva Schito and Daniele Testi. “Integrated maps of risk assessment and minimiza-
tion of multiple risks for artworks in museum environments based on microclimate
control”. Building and Environment 123 (Oct. 2017), pp. 585–600. issn: 0360-1323.
doi: 10.1016/J.BUILDENV.2017.07.039.

[40] A H M Shamsuzzoha and Petri T Helo. “Real-time tracking and tracing system:
Potentials for the logistics network”. Proceedings of the 2011 international conference
on industrial engineering and operations management. 2011, pp. 22–24.

[41] Elena Sidorova.“The Cyber Turn of the Contemporary Art Market”. Arts 2019, Vol.
8, Page 84 8.3 (July 2019), p. 84. issn: 2076-0752. doi: 10.3390/ARTS8030084.

[42] Antonio Skarmeta, Stefano Sebastio, Sreedevi Beena, Roland Atoui, Valerio Senni,
Fabio Federici, Eryk Schiller, Katharina Mueller, Jan Von der Assen, Saverio Do-
natiello, Simon Tuck, Dinesh Sharma, Rohit Bohara, Roberto Nardone, and Javier
Parra. Security Requirements, Threats Models, and Initial Certify Lifecycle Man-
agement. Tech. rep. CERTIFY, July 2023.

[43] soliditylang.org. Solidity Programming Language. url: https://soliditylang.
org/. Date accessed: 04/12/2022.

[44] Rui Song, Shang Gao, Yubo Song, and Bin Xiao. “ZKDET : A Traceable and
Privacy-Preserving Data Exchange Scheme based on Non-Fungible Token and Zero-
Knowledge”. Proceedings - International Conference on Distributed Computing Sys-
tems 2022-July (2022), pp. 224–234. doi: 10.1109/ICDCS54860.2022.00030.

[45] st.com. B-L462E-CELL1. url: https://www.st.com/en/evaluation-tools/b-
l462e-cell1.html. Date accessed: 18/08/2023.

[46] Gunnar Stefansson and Bernhard Tilanus. “Tracking and tracing: principles and
practice”. International Journal of Services Technology and Management 2.3-4 (2001),
pp. 187–206.

[47] tailwindcss.com. Tailwind CSS. url: https://tailwindcss.com/. Date accessed:
05/08/2023.

[48] thirdweb.com. thirdweb. url: https://thirdweb.com/. Date accessed: 02/08/2023.
[49] Tim-J-Parbs. Rockfruit Python DHT. url: https://github.com/Tim-J-Parbs/

Rockfruit_Python_DHT. Date accessed: 18/08/2023.
[50] Rupali Vairagade, Leela Bitla, Harshpal H. Judge, Shubham D. Dharpude, and

Sarthak S. Kekatpure. “Proposal on NFT Minter for Blockchain-based Art-Work
Trading System”. 2022 IEEE 11th International Conference on Communication
Systems and Network Technologies (CSNT). IEEE, Apr. 2022, pp. 571–576. isbn:
978-1-6654-8038-3. doi: 10.1109/CSNT54456.2022.9787667.

[51] verisart.com. Verisart. url: https://verisart.com. Date accessed: 23/08/2023.
[52] Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. “Non-Fungible Token (NFT):

Overview, Evaluation, Opportunities and Challenges” (May 2021).
[53] Ziyuan Wang, Lin Yang, Qin Wang, Donghai Liu, Zhiyu Xu, and Shigang Liu.

“ArtChain: Blockchain-enabled platform for art marketplace”. Proceedings - 2019
2nd IEEE International Conference on Blockchain, Blockchain 2019 (July 2019),
pp. 447–454. doi: 10.1109/BLOCKCHAIN.2019.00068.

https://react.dev/
https://rockpi.org/rockpi4
https://doi.org/10.1016/J.BUILDENV.2017.07.039
https://doi.org/10.3390/ARTS8030084
https://soliditylang.org/
https://soliditylang.org/
https://doi.org/10.1109/ICDCS54860.2022.00030
https://www.st.com/en/evaluation-tools/b-l462e-cell1.html
https://www.st.com/en/evaluation-tools/b-l462e-cell1.html
https://tailwindcss.com/
https://thirdweb.com/
https://github.com/Tim-J-Parbs/Rockfruit_Python_DHT
https://github.com/Tim-J-Parbs/Rockfruit_Python_DHT
https://doi.org/10.1109/CSNT54456.2022.9787667
https://verisart.com
https://doi.org/10.1109/BLOCKCHAIN.2019.00068

50 BIBLIOGRAPHY

[54] web3py.readthedocs.io. web3.py. url: https://web3py.readthedocs.io/en/
stable/. Date accessed: 02/08/2023.

[55] welti-furrer.ch. Welti-Furrer. url: https://www.welti-furrer.ch/en/fine-art-
shipping. Date accessed: 22/08/2023.

[56] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. “Blockchain Technology
Overview” (June 2019). doi: 10.6028/NIST.IR.8202.

[57] Kuo-Hui Yeh, Tomohiro Inagaki, Der-Chen Huang, Ling-Chun Liu, Yong-Yuan
Deng, and Chin-Ling Chen. “An Artwork Rental System Based on Blockchain Tech-
nology”. Symmetry 2023, Vol. 15, Page 341 15.2 (Jan. 2023), p. 341. issn: 2073-8994.
doi: 10.3390/SYM15020341.

https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/
https://www.welti-furrer.ch/en/fine-art-shipping
https://www.welti-furrer.ch/en/fine-art-shipping
https://doi.org/10.6028/NIST.IR.8202
https://doi.org/10.3390/SYM15020341

Abbreviations

ABI Application Binary Interface
API Application Programming Interface

CHF Swiss Francs
CSG Communication Systems Group

EVM Ethereum Virtual Machine

GPIO General Purpose Input/Output
GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ICOM International Council of Museums
ID Identifier
IfI Department of Informatics

IoT Internet of Things

JSON JavaScript Object Notation
JWT JSON Web Token

NFT Non-Fungible Token

REST Representational State Transfer
RPC Remote Procedure Call

SC Smart Contract
SCM Supply Chain Management

UZH University of Zurich

ZKP Zero-Knowledge Proof

51

52 ABBREVIATIONS

List of Figures

3.1 Modum.io AG Blockchain Architecture [6] 9

4.1 Defined scenario for the system to consider 11

4.2 System Architecture . 13

4.3 Authentication flow . 15

5.1 Multi-approval transportation status change 23

5.2 Server directory structure . 25

5.3 Rock Pi with a DHT-22 sensor . 30

5.4 Logger directory structure . 31

5.5 Sign in process . 33

5.6 Artwork mint modal . 34

5.7 Artwork detail view . 34

6.1 safeMint analysis . 36

6.2 updateArtworkData analysis . 37

6.3 Field test scenario . 40

6.4 System Field Test . 41

6.5 Timeline with sensor readings . 41

53

54 LIST OF FIGURES

List of Tables

4.1 Available permission sets to registered roles 14

5.1 API endpoints . 27

6.1 Estimated transaction fees safeMint . 36

6.2 Estimated transaction fees updateArtworkData 37

6.3 Transaction fees field test . 41

55

56 LIST OF TABLES

Listings

5.1 SC constructor function . 17

5.2 SC structs . 18

5.3 SC enums . 18

5.4 SC mappings . 19

5.5 SC events . 19

5.6 SC modifiers . 20

5.7 SC safeMint function . 21

5.8 SC updateArtworkData function . 22

5.9 SC getArtworkData function signature . 24

5.10 Generating the challenge payload . 26

5.11 Verifying the signature . 26

5.12 Artwork JSON schema . 27

5.13 GET /artworks response . 28

5.14 Definition of Endpoints . 28

5.15 ArtworkConnector class methods . 29

5.16 Temperature and humidity logging loop in logging_script.py 31

5.17 Executing the violation_script.py . 31

57

Institut für Informatik

5/5

 31.05.2023/db/gs/nl

Declaration of independence for written work

I hereby declare that I have composed this work independently and without the use of

any aids other than those declared (including generative AI such as ChatGPT). I am

aware that I take full responsibility for the scientific character of the submitted text

myself, even if AI aids were used and declared (after written confirmation by the

supervising professor). All passages taken verbatim or in sense from published or

unpublished writings are identified as such. The work has not yet been submitted in the

same or similar form or in excerpts as part of another examination.

Zürich,

 Signature of student

30.08.2023

58

Appendix A

Contents of the Repositories

The system is composed of four repositories that are managed in a GitHub organization.
The organization as well as the repositories can be found at:

https://github.com/orgs/artis-project/repositories

The implementational details of each component and its associated repository are found in
Chapter 5, where each Section is named after the corresponding repository. Additionally,
each repository contains a README.md file which contains important information on the
component’s installation and configuration.

The repository with the name artis-thesis contains the LATEX source code for this thesis.

59

https://github.com/orgs/artis-project/repositories

	Kurzfassung
	Abstract
	Acknowledgments
	Introduction
	CERTIFY Project
	Motivation
	Description of Work
	Thesis Goals

	Methodology
	Thesis Outline

	Fundamentals
	Internet of Things
	Blockchain
	Smart Contracts

	Tracking and Tracing

	Related Work
	Artwork Conservation
	Artwork Transportation
	Artwork Monitoring Systems
	Artwork Management and Documentation
	Applications of Blockchain and IoT
	Discussion

	Architecture and Design
	Scenario Definition and Goal
	Actors

	Overview
	Technical Components

	Implementation
	artis-smartcontract
	Data Structures and Events
	Functions and Modifiers

	artis-server
	Authentication Layer
	API Layer
	Application Layer

	artis-rockpi-logger
	Code

	artis-frontend

	Evaluation
	Cost and Performance Analysis
	Security Analysis
	Compromised Logger
	Compromised Smart Contract
	Disclosure of Data

	Field Test
	Cost
	Logger Reliability

	Discussion

	Summary and Conclusions
	Summary
	Conclusions
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Listings
	Declaration of Independence
	Contents of the Repositories

