
Lars Zawallich

Unfolding Polyhedra via Tabu
Search

October 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-2
02

3.
03

L. Zawallich: Unfolding Polyhedra via Tabu Search
Technical Report No. IFI-2023.03, October 2023
Visualization and Multimedia Lab
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: https://ifi.uzh.ch/vmml

Technical Report IFI-2023.03, Department of Informatics, University of Zurich, 2023

Unfolding Polyhedra via Tabu Search

Lars Zawallich

Abstract Folding a discrete geometry from a flat sheet
of material is one way to construct a 3D object. While
nowadays for this purpose a lot of attention lays on
3D printing, folding can be a considerable alternative,
complementing the possibilities 3D printing provides.
A typical creation pipeline first designs the 3D object,
unfolds it, prints and cuts the unfold pattern from a 2D
material, and then refolds the object. Within this work
we focus on the unfold part of this pipeline. Most cur-
rent unfolding approaches segment the input, which has
structural downsides for the refolded result. Therefore,
we are aiming to unfold the input into a single-patched
pattern. Our algorithm applies tabu search to the topic
of unfolding. We show empirically that our algorithm
is faster and more reliable than other methods unfold-
ing into single-patched unfold-patterns. Moreover, our
algorithm can handle any sort of flat polygon as faces,
while comparable methods are bound to triangles.

Keywords Unfolding · Papercraft · Discrete Opti-
mization · Computational Geometry

1 Introduction

Folding paper has a long history. The oldest known
folded piece of papyrus dates back to ancient Egypt and
is a folded road map [19]. Even though it is not certain
that folding paper as an art was invented in Japan, the
oldest known origami was created there in the 6th cen-
tury [15]. The first records dealing with the unfolding
of polyhedra date back to Albrecht Dürer in 1525 [8].
Today, folding and unfolding can be found in many as-
pects of our lives. Be it a paper plane, an origami, arts
and crafts class in school, packaging, or architectural

L. Zawallich (LarsZawallich@gmail.com)
University of Zurich, Zurich, Switzerland

prototyping, folding or unfolding is involved in one way
or another. A recent and prominent example of fold-
ing and unfolding is the James Webb Space Telescope,
which had to be packed to fit into the delivering rocket
and then unfolded in space.

Within the area of digital fabrication, papercraft
only represents a small part of the overall field. Instead,
3D printers have received a lot of attention, especially
in the past years [17]. Despite all the advantages of
3D printing, there are some disadvantages to consider.
For instance, most materials used are not renewable,
the printers are more expensive and printing times are
longer in comparison to 2D printers.

In contrast, paper is more eco-friendly, 2D printers
are widely available and even printers for very large
paper sizes can be found in many copy shops. Addi-
tionally, the resulting object is very light. If more sta-
bility is needed, cardboard or other more stiff materials
can be used. On top of that, self-folding allows for au-
tomation with minimal manual work, which can result
in cheaper, quicker and easier-to-transport production
methods compared to classical 3D creation pipelines [9].
Instead of replacing 3D printing, we argue that mod-
els folded from paper can augment the possibilities 3D
printing offers.

Unfortunately, the problem of unfolding polyhedra
is complex and to this day, it is not even known if every
polyhedron can be unfolded at all [6]. On top of that,
it is known that non-convex polyhedra, the most com-
mon type in real world applications, can not always be
unfolded via edge unfolding, the most intuitive unfold-
ing technique. Current approaches try to overcome this
issue by segmenting the unfolding into separate parts,
which are unfoldable. In the most extreme case, this
can lead to “unfoldings” consisting of numerous seg-
ments each containing a single or very few faces. While

2 Lars Zawallich

it is proven that non-convex polyhedra are not edge-
unfoldable, in practice that issue rarely occurs.

Within this work, we present a simple algorithm
which edge-unfolds a given polyhedron fast and reliably
– given it is unfoldable. Our technique is more reliable
and orders of magnitudes faster than any comparable
method. Moreover, in contrast to comparable methods,
our approach does not need any special starting point
for its optimization.

2 Background

Our algorithm is a tabu search algorithm [10], which
has been applied to edge unfolding. In the following,
we briefly review the basics for unfolding as well as the
tabu search algorithm.

2.1 Unfolding

The following definitions are mostly covered in the book
Geometric Folding Algorithms: Linkages, Origami, Poly-
hedra [6].
There are two main ways to unfold a polyhedron:

1. Edge unfolding
2. General unfolding

Edge unfolding only allows cutting the polyhedron along
its given edges. General unfolding allows arbitrary cuts.
After cutting, both approaches are then unfolding the
cut-open polyhedron along its edges, to flatten it into a
plane. When using edge unfolding the number of cuts
and folds is bound from above by the number of edges
in the polyhedron. When using general unfolding, the
number of cuts and folds can become arbitrarily high,
resulting in tedious work when refolding. One famous
edge unfolding technique is Steepest Edge Unfolding
[21]. A general unfolding technique is Star-Unfolding [6,
Chapter 24.3]. In this work, we will only use edge un-
folding as a technique.

To this day, it is unknown if all polyhedra can be
unfolded. An overview of this issue can be seen in Ta-
ble 1.

Edge unfolding General unfolding
Convex ? 3
Non-convex 7 ?

Table 1: Status of main questions concerning non-
overlapping unfoldings; ? – Unknown; 3 – Always pos-
sible; 7 – Known counter-examples; [6, Table 22.1]

To unfold every face of a polyhedron, generally, at
least one cut is required at each vertex. The only excep-
tion occurs at vertices with incident angles of 2π, i.e.
at vertices with a Gaussian curvature of zero. In this
case, no cut is needed to unfold the surrounding faces
into a plane. Doing the cut nevertheless has the advan-
tage of being able to separate the coplanar faces in the
unfolding. This separation can be advantageous in re-
solving overlaps later on. For genus zero polyhedra, the
cut edges must form a spanning tree over its vertices.
If the cut edges would not form a spanning tree, either
some vertices were not reached, or the tree had a cy-
cle. In the first case, the faces around this vertex would
not be unfoldable into a plane – except for the above
described case. In the latter case the faces enclosed by
the cycle would be cut out completely, disconnecting it
from the unfolding. Such a spanning tree formed by the
cut edges is called a cut-tree.

A single-patched overlap-free unfolding created by
using edge unfolding is called a net. Rarely, this term is
also used to name an overlap-free unfolding generated
by general unfolding. To avoid confusion, we will only
use it in relation to edge unfolding.

The net of an unfolded polyhedron itself is a poly-
gon. This polygon needs some indications on where to
fold it and in which direction, to regain the original
polyhedron. We follow the convention of dashed lines
representing valley folds and dash-dotted lines repre-
senting mountain folds. Figure 1 shows an example. To
prevent overloading of our visualizations, we only use
these fold-representations when it comes to folding.

If a polyhedron is not edge-unfoldable without over-
lap, we will call it not-unfoldable. In the literature, this
term is also referred to as ununfoldable.

(a) The folding pattern of a sand clock
shape. Dashed lines represent valley
folds and dash-dotted lines represent
mountain folds.

(b) The cor-
responding 3D
shape.

Fig. 1: An example for line-styles representing different
folding directions.

Unfolding Polyhedra via Tabu Search 3

There are different ways to look at an unfolding.
One is to define it via its cutting of the graph (e.g. [24]).
Another way is to define the unfolding as a spanning-
tree of the dual-graph of the mesh (e.g. [11]). While
any approach working on the dual-graph will always
have to find a spanning-tree, approaches working on
graphs can only work with cut-trees in the genus zero
case. With higher genuses the cutting needs to be a cut-
graph – instead of a cut-tree – with as many cycles as
the polyhedron’s genus.

In this work, we use the approach of spanning-trees
of dual-graphs. Figure 2 shows an example of such a
spanning-tree. In the context of unfolding, we call a
spanning-tree of the dual-graph an unfold-tree.

(a) A folded icosphere. (b) The corresponding un-
folding.

Fig. 2: A folded and unfolded icosphere with 80 faces.
The unfold-tree is visualized in blue.

2.2 Tabu Search

Tabu Search is a metaheuristic for optimization and
has first been introduced by Fred Glover [10]. The basic
technique is outlined in Algorithm 1.

Algorithm 1 Tabu Search
function tabuSearch(~x, maxTabuSize)

. ~x is an initial state of parameters
tabuList = list()
while !stoppingCriterion() do

neighbors ← getNeighbors(~x)
neighbors ← removeTabus(neighbors, tabuList)

. Avoids undoing past steps
bestNeighbor ← neighbors.best()
tabuList.push(~x)
~x← bestNeighbor
tabuList.shrinkToSize(maxTabuSize)

. Removes oldest entries first
end while

end function

As with other combinatorial optimization problems,
computing derivatives is hard to impossible in the con-
text of unfolding. Therefore, many known and promi-
nent optimization techniques (like gradient descent, or
Newton’s method) can not be applied. Tabu search does
not require any sort of derivative. While other deriva-
tive free optimization techniques in their basic variant,
like hill climbing [16], are unable to overcome local min-
ima, tabu search is able to do so. This is done by ac-
cepting the locally best neighbor instead of only accept-
ing improving neighbors. By then memorizing the past
states, the algorithm prevents falling back into a local
minimum. Two possible issues tabu search poses are to
determine when the optimum is reached and how many
past steps to remember. These two issues are addressed
in Sections 4 and 4.4.

3 Related Work

Besides the purpose of creating paper models or art,
folding and unfolding polyhedra appears in other areas
of research as well. In robotics, a recent publication sug-
gested reconfiguring modular robots with folding and
unfolding techniques [29]. Also in the field of robotics,
the review by Rus et al. gives a great overview of so-
called origami robots, which are created from a flat ma-
terial via folding [20].

Solving the big questions in unfolding (see Table 1)
turned out to be very hard. Instead, current works in
this area focus on special cases like orthogonal polyhe-
dra [3, 4], or edge unzipping [5].

One practical approach to create papercraft mod-
els was presented by Tachi, who proposed to lay out
the faces of a mesh into a plane, connecting them with
so-called tucking-molecules [25]. These molecules get
folded into the body of the result, making them in-
visible from the outside. This approach does not need
to cut any paper, but only fold, which can be advanta-
geous. The approach has been extended in the work by
Demain et al. to use less filling-material, rendering the
algorithm more practical [7].

Another practical approach of creating papercraft
models are developable surfaces. The core idea is to
find developable patches – which means they have a
zero Gaussian curvature in each point – representing
the input mesh as well as possible. Then, these patches
are cut out of paper (or another developable material)
and attached together. This attachment may involve
a bending of the patches. Different approaches include
e.g. optimizing cut-lines for strips, which then are made
developable [18], approximations with cones and cylin-
ders [22], optimizing for hinges [23], or minimizing the
number and complexity of patches while keeping the

4 Lars Zawallich

approximation error low [13]. Developable surfaces can
be seen as a segmentation technique, which works with
bends instead of folds.

When working with folds, many practical approaches
(see next paragraphs) favor edge unfolding over general
unfolding. Unfortunately, for edge unfolding there are
known polyhedra, which cannot be edge-unfolded. To
overcome this issue, many approaches choose to seg-
ment the unfolding into parts.

Straub et al. explored different heuristics to find cut-
trees by assigning a value to the edges of the mesh and
then finding a minimal spanning tree [24]. Their ap-
proach to remove overlaps is to cut the unfolding into
several parts [24, Section 2.2], which is a segmentation.
Instead of finding cut-trees Haenselmann et al. explored
different heuristics for spanning a tree over the dual-
graph of the mesh, which is equivalent to laying out its
faces in a specific order [11]. Takahashi et al. proposed
to start off with small patches and stitch them together,
using a genetic optimization algorithm [26]. While they
are trying to minimize the number of segments, it is
still possible and common for their algorithm to yield
a segmented result.

Instead of accepting segmentation as a necessity, Xi
et al. segmented a given mesh by analyzing overlaps in
unfoldings created by an easy-to-compute method [27].
The resulting segments can then be unfolded without
self-overlap via the easy-to-compute method they used
in their pipeline. Additionally, they considered the con-
tinuous foldability of the unfolding, which is important
for e.g. self-folding.

The topics of self-foldability and continuous unfold-
ing have gained more interest in the past years, since it
is an important concept to automatically create robots
and structures from 2D shapes, by exposing them to
e.g. heat [2]. This possibility motivated recent publica-
tions (e.g. [12,28]) to focus on the continuous and self-
folding property of unfoldings, rather than the question
of unfoldability itself.

To the best knowledge of the authors, there are only
two published approaches aiming to edge unfold a given
non-convex mesh into a single-patched unfolding. One is
the aforementioned approach by Takahashi et al. which
aims to create a single patched unfolding, but accepts
segmented results, if no single patch can be found [26].
The other approach uses simulated annealing to unfold
a given mesh, while additionally considering gluetags
[14]. In our experiemnts, this approach scales poorly
and lacks reliability (see Figures 6 and 7).

Our method improves on all aforementioned short-
comings current approaches have. For example, it scales
better, while also not relying on segmentation.

4 Methods

Unfolding a polyhedron can be seen as an optimization
problem. As such, the function f to minimize takes the
current unfold configuration as an input and yields the
number of overlapping faces. Obviously, f will always
yield a non-negative integer and its minimum is reached
with f(~x) = 0. Knowing the global minimum is espe-
cially advantageous for optimization. Instead of hoping
to have reached a global minimum, it is very easy to
determine if a given minimum is local or global.

The algorithm presented in this article applies tabu
search to the topic of unfolding. In particular, the algo-
rithm can be split into the following parts:

1. The input (Sections 4.1)
2. An initial unfolder (Section 4.2)
3. A strategy to select the best step (Section 4.3)
4. A strategy to overcome local minima (Sections 4.4

and 4.5)
5. (Optional) Additional optimization parameters (Sec-

tion 4.6)

Additionally, in Section 4.7 efficient overlap detection,
and in Section 4.8 data structures are discussed.

4.1 Input

As input, our method takes an orientable mesh. This
mesh does not need to be triangular, but for the un-
folding every face needs to be planar. To allow for an
input without planar faces, we implemented the pla-
narization flow presented by Alexa and Wardetzky [1].
The planarization is done as a preprocessing step and
is independent of the unfolding algorithm presented in
this paper. Besides the planarity of faces, the mesh has
to be a manifold. There are no constraints on the genus,
convexity or other remaining properties of the mesh. In
theory, the mesh could even self-intersect. This would
make re-folding the result hard to impossible, but does
not hinder our algorithm from producing a valid result.

4.2 The Initial Unfolder

For the initial unfolding it is acceptable to contain over-
laps. Furthermore, different initial unfoldings are needed,
to explore different areas of the unfolding space. There-
fore, we aimed for a non-deterministic algorithm quickly
producing different unfoldings, which may contain over-
laps.

Our choice was the Steepest Edge Unfolding algo-
rithm [21]. Originally designed to unfold convex polyhe-
dra, it is also applicable to non-convex polyhedra. The

Unfolding Polyhedra via Tabu Search 5

resulting unfoldings will very likely contain overlaps,
but that is acceptable, as mentioned above. Since the
Steepest Edge Unfolding uses a randomized direction as
a cut direction, it is able to create different unfoldings
for the same polyhedron. Moreover, the time complex-
ity is bound by O(V + F) (one cut per vertex, plus
setting up the unfold-tree, which scales linearly with
the number of faces). Finally, the resulting unfoldings
tend to have fewer overlaps than other methods with
comparable time complexity, like a random unfolding,
yield.

4.3 Selecting The Best Step

We restrict the neighborhood search of our algorithm
to one parameter at a time. In particular, the algorithm
picks a random overlapping face and tries to attach it to
another possible neighbor in the dual-graph. For read-
ability, the procedure of attaching a face to another
neighbor in the dual-graph will be called a move. An
example for a move can be seen in Figure 3. The goal
of our algorithm is to move faces, such that the to-
tal number of overlapping faces decreases. Please note,
that this does not necessarily mean a face needs to be
overlap-free after a move. Since each non-leaf face in
the unfold-tree represents a subtree, moving that face
corresponds to moving the subtree as a whole. There-
fore, the moved face may still overlap, while the total
number of overlaps of the subtree has been reduced.

(a) Before attaching a node
to a new parent.

(b) After attaching a node to
a new parent.

Fig. 3: Attaching a node in the unfolding to a new
parent-node in the unfold-tree. The spanning-tree is vi-
sualized in blue.

It may happen that the randomly selected face can
not be attached to a new parent-node. This can occur
for several reasons. The two main reasons are, there is
no new parent-node available, or the move would cre-
ate more overlaps than the current state has. The first
case occurs for example when a face is fully connected,

all possible dual-graph neighbors are located in its own
subtree (see Figure 4), or all possible dual-graph neigh-
bors are in the tabu list (see Section 4.4). If a face can
not be attached to a new parent-node, our algorithm
recursively climbs up the tree and tries to move the
parent-node of the initially selected one instead, until
the root node is reached.

4.4 Local Minima

Tabu search stores m past steps in a so-called tabu list.
Any step in the tabu list can not be undone. Obvi-
ously, the value of m is critical for this algorithm. A
value that is too large would make the algorithm block
every possible move, resulting in no direction left to go.
For example, if only two faces are overlapping, which
are both close to the root node (e.g. both having a dis-
tance of two to the root node), there are at maximum
eight possible moves. If m was greater than eight, it
is possible that all moves are blocked by the tabu list.
While too large values for m may block every possi-
ble move, a value that is too small would result in the
algorithm to fall back into local minima.

In our work, we used

m = val · logval(|F |)

throughout. val is the average valence in the dual-graph
of the mesh and |F | is the number of faces. For trian-
gle meshes the valence of each node representing a face,
which is not located at a border, is 3 and thus val = 3
on average as well. The minimal height of a tree grows
logarithmically with the number of its entries. Degen-
erate cases exist, but it is very unlikely to create one
randomly. But even if such a case occurs, it is even more
unlikely for the whole degenerate tree to be one local
minimum. Still, in such a case, higher values for m (up
to the size of the configuration space) might be neces-
sary. The val term multiplies the height of a tree with
the number of neighbors it can be applied to. Thus,
val · logval(|F |) is the number of possible moves one
branch in a full tree can perform on average. This value
statistically allows the algorithm to test every possible
move on a branch, before it can undo moves from that
branch.

Generally, it is better to slightly overshoot the value
of m by a bit, since it is easier to determine if the solver
can not perform any moves, compared to detecting if
the solver falls back into a local minimum. Therefore,
we are aiming for a reasonable upper bound of steps to
block, rather than an exact value. It can always hap-
pen that the solver gets stuck in a situation where ev-
ery possible move gets blocked by filtering out previous
moves (see the example from above). Detecting such a

6 Lars Zawallich

case is easy: If no move can be performed at all any-
more, the tabu list gets cleared, enabling the solver to
perform moves again. Empirically, we determined that
this situation occurs very rarely.

4.5 Switching Root Nodes

In our data structure (Section 4.8), the root node of the
unfold-tree is not movable to a new parent. This can
lead to constellations, where the solver gets stuck. Such
a constellation could occur if two nodes overlap and all
dual-graph neighbors are located in their own sub-trees.
In such a situation, the overlapping nodes can not get
attached to any neighbor, since such a move would cut
the tree into two. Also, if the nodes are high up in the
unfold-tree, moving their parent nodes might not help
either. Such a case could be resolved by moving non-
overlapping nodes up and reordering the tree, which is
a very time-consuming operation. An example for such
a case is illustrated in Figure 4.

Instead of solving this issue directly, we implement
a reroot method, which selects a new root node, when
such a situation is detected. From an implementation
point of view, rerooting is done by climbing up the tree
from the new root node to the current one and inverting
each parent link, the transformation, as well as the re-
spective child entry in each node. When the solver gets
stuck in a situation like described above, our algorithm
reroots to a node located in the subtree of the over-
lapping node. That way, the climbing direction from
this node is inverted and all dual-graph neighbors which
were unreachable before are now possible to move to.

The goal of our algorithm is to find a net of a poly-
hedron and not a specific tree-structure. Therefore, we
are free to switch root nodes. While the tree structure
is needed to compute the unfolding, a fixed root also
causes issues. E.g. when the root node is overlapping
another node, the issue might be easy to solve by mov-
ing the root node to another position (see Figure 4).
But because the root node is not movable, in such a
situation the overlap needs to be solved by moving the
rest of the tree around the root node. Such an opera-
tion is very difficult to perform for a highly randomized
algorithm like ours. Moreover, it is practically impossi-
ble to detect such a situation and its correct solution.
Since the whole idea of our algorithm is to be built from
simple but robust parts, detecting these complex situ-
ations or even their solutions would violate this major
construction philosophy. Instead, we make use of an im-
portant observation: One unfold-pattern can be created
by many isomorphic unfold-trees.

Therefore, to prevent any issue related to a fixed
root node, we randomly reroot in every iteration, ex-

Fig. 4: A blocking situation where no colliding node or
parent node can be moved anymore. The root node is
highlighted in orange, the unfold-tree is marked with
blue lines and overlapping faces are marked in red. In
this case, the red faces are overlapping the root node.
The root node is overlapping as well, but for visibility
is not marked in red. Both overlapping faces have their
only remaining dual-graph neighbor within their own
subtree. These dual-graph neighbors are connected to
the nodes via blue dashed lines. Moving either of the
overlapping faces to their dual-graph neighbor would
disconnect them from the root node.

cept if we detect a blocking situation like described in
the first paragraph of this section. With this strategy,
we mimic the behavior of an unfold-pattern, which can
perform any move, while still maintaining the simple
tree-structure and all its benefits.

4.6 Optional Optimization Parameters

In its basic version our algorithm “just” unfolds polyhe-
dra and accepts the first output that is overlap-free. For
some polyhedra more than one net exists, though. Our
algorithm can be extended by additional optimization
parameters, to enforce other constraints on the result-
ing unfolding than just being overlap-free. For example,
a certain aspect ratio may be desired, to better fit stan-
dard paper sizes.

Such additional constraints can be implemented by
adding them to the optimization function f . It is im-
portant for each constraint to have a well known and

Unfolding Polyhedra via Tabu Search 7

reachable minimum. The stopping criterion then needs
to be adjusted to the sum of minimums of all con-
straints. Moreover, the selection strategy discussed in
Section 4.3 needs to be extended as well, to allow se-
lecting faces violating additional constraints. Lastly, the
memory discussed in Section 4.4 needs to be adjusted
appropriately.

When applying constraints, each constraint is guar-
anteed to be met, but the runtime of the algorithm can
worsen arbitrarily. Furthermore, there is no guarantee
that any constraint is combinable with being overlap-
free. Therefore, great care is advised when working with
constraints.

4.7 Efficient Overlap Detection

After each change in the unfold-tree, it is necessary to
determine the resulting number of overlaps. This is by
far the most time-consuming part of the whole algo-
rithm. Therefore, it is crucial to implement this part as
efficiently as possible. In a naive implementation, de-
tecting all overlaps would pose a time complexity of
O(n2). Please note that in the worst case, if every face
overlaps every other face, the time complexity can not
be better than O(n2). To improve the average speed, we
decided to implement a sweep line algorithm, which re-
duces the average time complexity down to O(n log n).
The algorithm is described in Algorithm 2.

Algorithm 2 Sweep Line Overlap Detection
Require: ~p . ~p is a list of unfolded polygons

function detectOverlaps(~p)
~p′ ← sort(~p, ~d)

. Sort by lower bounding box coordinate in dimension ~d
overlaps← 0
for i← 0 to |~p′| do

fi ← ~p′i
for j ← i+ 1 to |~p′| do

fj ← ~p′j
if fj .bBox.lower~d() > fi.bBox.upper~d() then

break
end if
if fi.intersects(fj) then

overlaps← overlaps+ 1
end if

end for
end for
return overlaps

end function

Since our algorithm only changes a part of the un-
folding at a time, it would be a waste to compute all
overlaps again after moving a small subtree. Whenever
the moved subtree contains less than log n polygons, we
perform a naive overlap test on these polygons. If the

number of moved polygons is larger, we recompute all
overlaps using the sweepline algorithm.

4.8 Data Structures

In our implementation, we are using a list of vertices
and a list of face indices as mesh data structure. Since
our method should be able to handle mixed types of
faces and not just triangles, half-edge data structures
are less advisable.

To unfold a mesh, we are using a tree structure over
the dual graph of the input mesh, which we call unfold-
tree (see Section 2.1). Each tree-node stores the follow-
ing values to make navigation and unfolding easy:
– A reference to the face it represents
– A link to the parent node
– A list of child nodes
– A transformation

The mentioned transformation rotates the represented
face into the plane of the parent face along their shared
edge. In other words, the transformation of a node un-
folds the mesh by one step. The root node of the tree
would contain an empty parent-link and the identity
transformation. Unfolding the whole mesh is then done
by a tree-traversal, where the transformations are ap-
plied successively. That way, unfolding has a time com-
plexity of O(|F |) at maximum, with |F | being the num-
ber of faces in the mesh.

To efficiently find nodes in the tree, we store each
node in a list. The face-index is then equal to the index
within that list. In a naive tree-implementation, search-
ing a tree scales linear with the number of entries. By
storing each node in a list, we can find every tree-node
in constant time instead.

The resulting faces are stored in a 2D face represen-
tation. This data structure contains:
– A reference to the face it represents
– A list of 2D vertices
– A transformation

The transformation is the product of all small transfor-
mations from the unfold-tree. That way, each unfolded
face contains information about how to transform the
3D face into 2D in one step. This information is bene-
ficial, since it is often necessary to unfold just a small
part of the whole mesh. When traversing only a sub-
tree of the unfold-tree, we do not need to calculate the
needed transformation for the subtree anew.

4.9 Pseudocode

All in all, our algorithm is summarized by the pseu-
docode of Algorithm 3.

8 Lars Zawallich

Algorithm 3 Tabu Search for Unfolding Polyhedra
Require: f . f is the overlap detecting function
Require: ~x . ~x is the initial unfold-tree

function tabuUnfolding(f, ~x)
while f(~x) > 0 do

if stuckInRootLock() then . See Section 4.5
rerootIntoStuckSubTree(~x)

else
randomReroot(~x)

end if
if stuckInMemoryLock() then . See Section 4.4

clearMemory()
end if
bH , xH ← initHistoryV alues()
x← selectRandomCollidingFace(~x)
while x 6= root(~x) do

b = bestNeighbor(x) . Filtered by tabu list
if f(move(~x, x, b)) < f(~x) then

~x← move(~x, x, b)
memorize(x, b)
continueOuterLoop

end if
if f(move(~x, x, b)) < f(move(~x, xH , bH)) then

. Better history value found
bH ← b
xH ← x

end if
x← x.parent

end while
. No improving solution found within the loop

~x← move(~x, xH , bH)
memorize(xH , bH)

end while
end function

5 Results

An illustrative display of the whole unfolding pipeline
for the Stanford Bunny can be found in Figure 12 in
Appendix A. Other unfolding examples are shown in
Figures 5a and 5b.

We compared the performance of our algorithm with
two other methods (see Section 3): Optimized Topolog-
ical Surgery for Unfolding 3D Meshes [26] and Simu-
lated Annealing to Unfold 3D Meshes and Assign Glue
Tabs [14]. We will refer to these methods as OTS and
SA. For both methods an implementation was provided
in the supplemental materials of the respective articles.
To ensure fairness in our comparison, we removed the
glue tab addition from the SA method, reducing it to an
unfolding algorithm using simulated annealing. This is
done to ensure comparability, since we do not add any
glue tabs, which is a considerable overhead in computa-
tional time. Moreover, in the same implementation, we
exchanged the naive overlap detection of the original
implementation with a sweepline algorithm (see Sec-
tion 4.7). This way, the overlap detection in all three
methods works comparably fast, allowing for a better
comparison between them. All three algorithms were

(a) The folded and unfolded Fertility model (800 faces).

(b) The folded and unfolded Dragon model (600 faces).

Fig. 5: Different unfolding results.

implemented in C++ and compiled with the same com-
piler, using the same compilation flags.

5.1 Performance and Iterations

To compare the performance we measured the times
each algorithm needed to unfold a set of given meshes.
As a test set, we chose the Thingi10k [30] dataset. We
filtered out all meshes which were non-manifold, con-
sisted of multiple components, or were unrepresentable
with at least 100 faces, resulting in 2,800 meshes. Each
mesh has been tested in five different resolutions (100,
200, 400, 600, and 800 faces). The performances are
plotted in Figure 6, and the success rates are plotted in
Figure 7. More detailed results are shown in Table 2 in
Appendix A.

Unfolding Polyhedra via Tabu Search 9

0 100 200 300 400 500 600 700 800 900

0.01

0.1

1

10

100

1,000

Number of Faces

T
im

e
(s

)

SA OTS Ours cn3 logn

Fig. 6: Mean unfold timings of three methods. See Table 2 for exact values. To support our argumentation from
Section 5.1.3, a polygon estimating the time complexity is plotted. The c represents a constant. Please note the
log scale on the y-axis.

0 100 200 300 400 500 600 700 800 900

10
20
30
40
50
60
70
80
90

100

Number of Faces

Su
cc

es
s

R
at

e
(%

)

SA OTS Ours

Fig. 7: Success rates for three methods. See Table 2 for
exact values.

Our approach performs orders of magnitude faster
than the other two, while being more reliable. For lower
numbers of faces, the timings would permit to use our
approach in interactive or even real-time applications.

5.1.1 Outlier Removal

To be able to determine a trend in our findings, we re-
moved outliers per resolution. We define an outlier as
any value greater than the mean plus three times the
standard deviation of the underlying data. The timings

presented in Figure 5 are filtered this way. For the un-
filtered values, please refer to Table 2 in Appendix A.

5.1.2 Iterations

Apart from the performance, we also measured the num-
ber of iterations our algorithm needed to unfold the
same dataset as in Section 5.1. The mean values of the
filtered data (see Section 5.1.1) are shown in Figure 8.
A clear linear relationship is visible. Therefore, we con-

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Number of Faces

N
um

be
r

of
St

ep
s

Ours cn

Fig. 8: Mean filtered iterations needed for our method.
The c represents a constant. A clear linear relationship
is visible.

10 Lars Zawallich

clude that our algorithm on average needs O(|F) iter-
ations to find an overlap-free unfolding for a triangular
polyhedron with |F | faces.

5.1.3 Complexity Estimation

The unfold-tree used in our algorithm in general has
a non-constant branching factor. Within this section,
we will refer to the branching factor of the ith node
as bi. For triangular meshes the branching factor is 2
in every node. On average, the branching factor of an
unfold-tree is the average valence of the dual-graph it
spans minus one (val−1). In each iteration, our method
performs an overlap detection for each possible move a
face can do. For the ith face there is a maximum of
bi possible moves if it is a leaf node in the unfold-tree
and bi − 1 for inner nodes. Testing overlaps has a time-
complexity of O(n) for leaf nodes, and O(n log(n)) for
inner nodes on average. Since the time complexity for
internal nodes is asymptotically worse, we will assume
every test to be within this complexity class. Within
each iteration, our algorithm may climb up the tree
and test every node on its way to root. In the best case,
each branch of a tree has a height of log n. In the worst
case, each branch has a height of n. On average, we
assume a tree to have a height of n+logn

2 . Thus, our time
complexity is estimated as O(n2 log n) per iteration on
average. Combining this value with the findings from
Section 5.1.2, the estimated average time complexity is
O(n3 log n)

This estimation overshoots the measured filtered tim-
ings by a bit (see Figure 6). In our derivation, if we had
to pick we always assumed the case that was worse,
which was more conservative than it had to be. For ex-
ample, it is possible that the overlap detection worked
in O(n) instead of O(n log n) in the vast majority of
cases, which would erase a log term from the final re-
sult. This could have happened, if the majority of over-
laps were located close to the leaves of the unfold-tree.
Since on average half of the nodes of a tree are leaf
nodes, this assumption is reasonable. We still conclude
that our algorithm has a time complexity of

O(n3 log n)

on average.

5.2 Failed Cases

In this section, we would like to highlight one case,
where the approach by Takahashi et al. [26] found a
net and our approach did not. The polyhedron is shown
in Figure 9a. Unfolding this shape is particularly diffi-
cult, due to the coarse triangulation of the flat areas

in combination with the holes, which are longer than
they are wide. The latter property makes it impossible
to unfold the walls of the tubes into the space defined
by the opening of the tubes (see Figure 9b).

(a) A cuboid with holes,
which our algorithm failed to
unfold.

(b) A zoom-in on one of the
holes in the unfolding. Red
marks overlapping faces.

Fig. 9: Left: A polyhedron our approach failed to unfold
in our test. Right: The problem posed by the holes in
the cuboid.

A solution to this problem is to combine all triangles
of the tubes into a triangle strip. The cuboid then has
to be unfolded in a way that these strips can be placed
at the outside. This solution is visualized in Figure 10.

Fig. 10: A net for the polyhedron shown in Figure 9.

Finding such a solution is highly unlikely for a ran-
domized algorithm without any geometric awareness,
like ours.

Aside from geometrically extreme cases, like the one
shown in this section, our algorithm is more reliable
than the other two, as shown in Figure 7 and Table 2.

Unfolding Polyhedra via Tabu Search 11

(a) A folded Utah Teapot with many non-triangular faces. (b) The corresponding unfolding.

Fig. 11: A folded and unfolded Utah Teapot with 890 faces of different types.

5.3 Non-triangular Input

Besides performing way faster than the other two meth-
ods, our approach is also independent of the face type.
While the other two methods in their current implemen-
tation are bound to triangles, we can process arbitrary
face types, which can even be mixed. Figure 11 shows
an unfolded Utah Teapot with different types of faces.

6 Conclusion and Future Work

In this work we presented an algorithm, which edge-
unfolds a given mesh into a single-patched unfolding
using tabu search. As input, our algorithm can process
meshes with planar faces of arbitrary type. The pro-
posed algorithm outperforms every known comparable
algorithm by orders of magnitude. This improvement
of speed and the nature of the algorithm permit inter-
active work with unfoldings of a few hundred faces. To
this day, this has not been possible.

The notable limitation of the proposed algorithm
is its inability to handle input meshes which are not-
unfoldable. It is up to future research to extend or mod-
ify the given algorithm to detect and overcome not-
unfoldability.

7 Acknowledgements

I would like to thank Prof. Dr. Marc Alexa for supervis-
ing my Master Thesis, which was the first step towards
this publication. Moreover, I would like to thank Prof.
Dr. Renato Pajarola for his support and very helpful

discussions about local minima, as well as for supervis-
ing my PhD.

References

1. Alexa, M., Wardetzky, M.: Discrete laplacians on general
polygonal meshes. ACM Transaction on Graphics 30(4),
102:1–10 (2011). DOI 10.1145/2010324.1964997

2. An, B., Miyashita, S., Tolley, M.T., Aukes, D.M., Meeker,
L., Demaine, E.D., Demaine, M.L., Wood, R.J., Rus, D.:
An end-to-end approach to self-folding origami structures.
IEEE Transactions on Robotics 34(6), 1466–1473 (2018).
DOI 10.1109/TRO.2018.2862882

3. Damian, M., Demaine, E.D., Flatland, R., O’Rourke, J.:
Unfolding genus-2 orthogonal polyhedra with linear refine-
ment. Graphs and Combinatorics 33(5), 1357–1379 (2017).
DOI 10.1007/s00373-017-1849-5

4. Damian, M., Flatland, R., O’Rourke, J.: Epsilon-unfolding
orthogonal polyhedra. Graphs and Combinatorics 23(1),
179–194 (2007). DOI 10.1007/s00373-007-0701-8

5. Demaine, E.D., Demaine, M.L., Eppstein, D., O’Rourke,
J.: Some polycubes have no edge zipper unfolding. In: Pro-
ceedings Canadian Conference in Computational Geome-
try, pp. 101–105. Saskatchewan, Saskatoon, Canada (2020)

6. Demaine, E.D., O’Rourke, J.: Geometric Folding Algo-
rithms: Linkages, Origami, Polyhedra. Cambridge Univer-
sity Press (2007). DOI 10.1017/CBO9780511735172

7. Demaine, E.D., Tachi, T.: Origamizer: A practical algo-
rithm for folding any polyhedron. In: International Sym-
posium on Computational Geometry, vol. 77, pp. 34:1–16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017).
DOI 10.4230/LIPIcs.SoCG.2017.34

8. Dürer, A.: Underweysung Der Messung Mit Dem Zirkel
Und Richtscheyt. Hieronymus Andreae, Nüremberg (1525)

9. Felton, S.M., Tolley, M.T., Shin, B., Onal, C.D., Demaine,
E.D., Rus, D., Wood, R.J.: Self-folding with shape memory
composites. Soft Matter 9(32), 7688–7694 (2013). DOI
10.1039/C3SM51003D

12 Lars Zawallich

10. Glover, F.: Future paths for integer programming and links
to artificial intelligence. Computers & Operations Research
13(5), 533–549 (1986). DOI 10.1016/0305-0548(86)90048-1

11. Haenselmann, T., Effelsberg, W.: Optimal strategies for
creating paper models from 3d objects. Multime-
dia Systems 18(6), 519–532 (2012). DOI 10.1007/
s00530-012-0273-1

12. Hao, Y., Kim, Y., Xi, Z., Lien, J.M.: Creating foldable
polyhedral nets using evolution control. In: Robotics:
Science and Systems, vol. 14, pp. 7:1–9 (2018). DOI
10.15607/RSS.2018.XIV.007

13. Ion, A., Rabinovich, M., Herholz, P., Sorkine-Hornung,
O.: Shape approximation by developable wrapping. ACM
Transactions on Graphics 39(6), 200:1–12 (2020). DOI
10.1145/3414685.3417835

14. Korpitsch, T., Takahashi, S., Gröller, E., Wu, H.Y.: Sim-
ulated annealing to unfold 3d meshes and assign glue
tabs. Journal of WSCG 28(1-2), 47–56 (2020). DOI
10.24132/JWSCG.2020.28.6

15. Lang, R.J.: The Complete Book of Origami: Step-By-Step
Instructions In Over 1000 Diagrams: 37 Original Models.
Dover Origami Papercraft. Dover Publications (1988)

16. Lin, S., Kernighan, B.W.: An effective heuristic algorithm
for the traveling-salesman problem. Operations Research
21(2), 498–516 (1973). DOI 10.1287/opre.21.2.498

17. Lu, B., Li, D., Tian, X.: Development trends in additive
manufacturing and 3d printing. Engineering 1(1), 85–89
(2015). DOI 10.15302/J-ENG-2015012

18. Mitani, J., Suzuki, H.: Making papercraft toys from meshes
using strip-based approximate unfolding. ACM Transac-
tions on Graphics 23(3), 259–263 (2004). DOI 10.1145/
1015706.1015711

19. Robinson, N.: The Origami Bible: A Practical Guide to The
Art of Paper Folding. North Light Books (2004)

20. Rus, D., Tolley, M.T.: Design, fabrication and control of
origami robots. Nature Reviews Materials 3(6), 101–112
(2018). DOI 10.1038/s41578-018-0009-8

21. Schlickenrieder, W.: Nets of polyhedra. Diploma thesis,
Technische Universität Berlin, Straße des 17. Juni 135,
10623 Berlin (1997)

22. Shatz, I., Tal, A., Leifman, G.: Paper craft models from
meshes. The Visual Computer 22(9), 825–834 (2006). DOI
10.1007/s00371-006-0067-6

23. Stein, O., Grinspun, E., Crane, K.: Developability of trian-
gle meshes. ACM Transactions on Graphics 37(4), 77:1–14
(2018). DOI 10.1145/3197517.3201303

24. Straub, R., Prautzsch, H.: Creating optimized cut-out
sheets for paper models from meshes. Karlsruhe Reports in
Informatics 36, 1–15 (2011). DOI 10.5445/IR/1000025577

25. Tachi, T.: Origamizing polyhedral surfaces. IEEE Transac-
tions on Visualization and Computer Graphics 16(2), 298–
311 (2009). DOI 10.1109/TVCG.2009.67

26. Takahashi, S., Wu, H.Y., Saw, S.H., Lin, C.C., Yen, H.C.:
Optimized topological surgery for unfolding 3d meshes.
Computer Graphics Forum 30(7), 2077–2086 (2011). DOI
10.1111/j.1467-8659.2011.02053.x

27. Xi, Z., Kim, Y.H., Kim, Y.J., Lien, J.M.: Learning to seg-
ment and unfold polyhedral mesh from failures. Comput-
ers & Graphics 58(C), 139–149 (2016). DOI 10.1016/j.cag.
2016.05.022

28. Xi, Z., Lien, J.M.: Continuous unfolding of polyhedra - a
motion planning approach. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3249–
3254 (2015). DOI 10.1109/IROS.2015.7353828

29. Yao, M., Belke, C.H., Cui, H., Paik, J.: A reconfiguration
strategy for modular robots using origami folding. Interna-
tional Journal of Robotics Research 38(1), 73–89 (2019).
DOI 10.1177/0278364918815757

30. Zhou, Q., Jacobson, A.: Thingi10k: A dataset of 10,000 3d-
printing models. arXiv preprint arXiv:1605.04797 (2016).
DOI 10.48550/arXiv.1605.04797

A Timings and Unfolding Results

All timings of Table 2 were recorded on a Linux machine equipped
with an i7-10700K CPU (3.8GHz) and 128GB RAM. A success
was given, when a method was able to unfold the given mesh
into a single-patched unfolding. For the OTS approach, a fail-
ure was given when the method yielded a segmented result. For
the SA approach, a failure was given, when the method did not
yield a result within a given number of iterations [14, Section 5].
Due to the low success-rate on 400 faces, the times of that row
for the SA approach should be seen as an indicator, rather than
a reliable number.

Value |F| OTS SA Ours

Min Time (s)

100 0.068 0.001 0.000
200 0.190 0.114 0.000
400 0.610 1.769 0.000
600 1.966 - 0.000
800 3.627 - 0.000

Mean Time (s)

100 0.107 3.674 0.021
200 0.832 86.467 0.311
400 10.923 565.600 1.890
600 68.344 - 5.499
800 211.713 - 13.769

Mean Time
Filtered (s)

100 0.103 3.014 0.017
200 0.660 75.106 0.174
400 7.992 562.719 1.178
600 47.895 - 3.729
800 142.361 - 8.699

Max Time (s)

100 8.742 127.956 1.449
200 270.273 612.973 102.130
400 1,058.936 2,036.940 629.937
600 3,847.608 - 1,017.305
800 6,694.813 - 1,570.504

Success
Rate (%)

100 100.00 99.71 100.00
200 99.82 90.08 99.86
400 99.36 25.23 99.68
600 96.04 - 99.64
800 88.44 - 99.43

Table 2: Detailed timings, as well as success rates for
the method of this article (Ours), as well as two similar
approaches of the literature (OTS [26] and SA [14]).

Unfolding Polyhedra via Tabu Search 13

(a) The Stanford Bunny with 370 faces. The unfold-tree
is visualized in blue.

(b) The unfolding of 12a. The unfold-tree is the same as
in 12a.

(c) The unfold pattern of a simplified Stanford Bunny.
Dashed lines represent valley folds and dash-dotted lines
represent mountain folds.

(d) The manually refolded bunny.

Fig. 12: Unfolding the Stanford Bunny with 370 faces. Top left: The input mesh with the corresponding unfold
tree. Top right: The calculated unfolding with the same unfold tree as in 12a. Bottom left: The unfold pattern,
following the convention of dashed lines representing valley folds and dash-dotted lines representing mountain
folds. Bottom right: The manually refolded bunny.

