
Designing and Implementing an
Advanced Algorithm to Measure the
Trustworthiness Level of Federated

Learning Models

Lynn Zumtaugwald
Zurich

17-929-340

Supervisors: Dr. Alberto Huertas
Date of Submission: August 7, 2023

University of Zurich Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Artificial intelligence (AI) has immersed our daily lives and assists in the decision process
of critical sectors such as medicine and law. Therefore it is now more important than
ever before that AI systems developed are reliable, ethical, and do not cause harm to
humans. The High-Level Expert Group on AI (AI-HLEG) of the European Commission
has laid the foundation by defining seven key requirements for trustworthy AI systems.
To address concerns about privacy risks associated with centralized learning approaches
federated learning (FL) has emerged as a promising and widely used alternative. FL al-
lows multiple clients to collaboratively train machine learning models without the need
for sharing private data. Because of the high adaption of FL systems, ensuring that
they are trustworthy is crucial. Previous research efforts have proposed a trustworthy
FL taxonomy with six pillars, each comprehensively defined with notions and metrics.
This taxonomy covers six of the seven requirements defined by the AI-HLEG. However,
one notable aspect that has been largely overlooked by research is the requirement for
environmental well-being in trustworthy AI/FL. This leaves a significant gap between
the expectations set by governing bodies and the guidelines applied and measured by
researchers. This master thesis addresses this gap by introducing the sustainability pillar
to the trustworthy FL taxonomy and thus presenting the first taxonomy that comprehen-
sively addresses all the requirements defined by the AI-HLEG. The sustainability pillar
focuses on assessing the environmental impact of FL systems and incorporates three main
aspects: hardware efficiency, federation complexity, and the carbon intensity of the energy
grid, each with well-defined metrics. As a second contribution, this master thesis extends
an existing prototype to evaluate the trustworthiness of FL systems with the sustainability
pillar. The prototype is then extensively evaluated in various scenarios, involving differ-
ent federation configurations. The results shed light on the trustworthiness of different
federation configurations in different settings with varying complexities, hardware, and
energy grids used. Importantly, the sustainability pillar’s score corrects the overall trust
score by considering the environmental impact of FL systems across seven key pillars.
Thus, the proposed taxonomy and prototype are the first to comprehensively address all
seven AI-HLEG requirements and lay the foundation for a more accurate trustworthiness
assessment of FL systems.

i

ii

Abstrakt

Künstliche Intelligenz (KI) hat unser tägliches Leben durchdrungen und unterstützt den
Entscheidungsprozess in kritischen Bereichen wie Medizin und Recht. Daher ist es heu-
te wichtiger denn je, dass die entwickelten KI-Systeme zuverlässig und ethisch vertret-
bar sind und dem Menschen keinen Schaden zufügen. Die High-Level Expert Group on
AI (AI-HLEG) der Europäischen Kommission hat mit der Definition von sieben Schlüs-
selanforderungen für vertrauenswürdige KI-Systeme den Grundstein dafür gelegt. Um die
Bedenken hinsichtlich der mit zentralisierten Lernansätzen verbundenen Risiken für den
Datenschutz auszuräumen, hat sich das Federated Learning (FL) als vielversprechende
und weit verbreitete Alternative erwiesen. FL ermöglicht es mehreren Teilnehmern, ge-
meinsam Modelle für maschinelles Lernen zu trainieren, ohne dass private Daten geteilt
werden müssen. Aufgrund des weitverbreiteten Gebrauchs von FL-Systemen ist die Sicher-
stellung ihrer Vertrauenswürdigkeit von entscheidender Bedeutung. Frühere Forschungs-
arbeiten haben eine vertrauenswürdige FL-Taxonomie mit sechs Säulen vorgeschlagen,
die jeweils umfassend mit Begriffen und Metriken definiert sind. Diese Taxonomie deckt
sechs der sieben von der AI-HLEG definierten Anforderungen ab. Ein wichtiger Aspekt,
der von der Forschung weitgehend übersehen wurde, ist jedoch die Anforderung an Nach-
haltigkeit in vertrauenswürdiger KI/FL. Dies hinterlässt eine erhebliche Lücke zwischen
den Erwartungen der Behörden und den von den Forschern angewandten und gemesse-
nen Richtlinien. Die vorliegende Masterarbeit schließt diese Lücke, indem sie die Säule
der Nachhaltigkeit in die Taxonomie vertrauenswürdiger KI/FL einführt und damit die
erste Taxonomie vorstellt, die alle von der AI-HLEG definierten Anforderungen umfas-
send berücksichtigt. Die Nachhaltigkeitssäule konzentriert sich auf die Bewertung der Um-
weltauswirkungen von FL-Systemen und umfasst drei Hauptaspekte: Hardware-Effizienz,
Komplexität und die Kohlenstoffintensität des Energienetzes, jeweils mit genau definier-
ten Metriken. Als zweiten Beitrag erweitert diese Masterarbeit einen bestehenden Pro-
totyp, um die Vertrauenswürdigkeit von FL-Systemen mit dem Nachhaltigkeitsaspekt zu
bewerten. Der Prototyp wird in verschiedenen Szenarien mit unterschiedlichen Konfigu-
rationen von FL Systemen ausgiebig evaluiert. Die Ergebnisse geben Aufschluss über die
Vertrauenswürdigkeit verschiedener FL Systeme in verschiedenen Umgebungen mit unter-
schiedlicher Komplexität, Hardware und verwendeten Energienetzen. Wichtig ist, dass die
Bewertung der Nachhaltigkeitssäule die Gesamtvertrauensbewertung korrigiert, indem die
Umweltauswirkungen von FL-Systemen über sieben Schlüsselsäulen hinweg berücksichtigt
werden. Die vorgeschlagene Taxonomie und der Prototyp sind somit die ersten, die alle
sieben AI-HLEG-Anforderungen umfassend berücksichtigen und den Grundstein für eine
genauere Bewertung der Vertrauenswürdigkeit von FL-Systemen legen.

iii

iv

Acknowledgments

I would like to thank the Communication Systems Group at the University of Zurich for
providing me the opportunity to conduct this insightful and exciting master’s thesis in
their research department and to contribute to the research community of trustworthy
federated learning.

Further, I want to extend special thanks to Dr. Alberto Huertas, Chao Feng, and Prof.
Dr. Stiller for their ongoing mentorship, guidance, and feedback during the research,
implementation, and writing process of this master thesis. I am deeply grateful for their
time and effort in helping me to complete this thesis.

Lastly, since this thesis concludes my studies at university, I would like to thank my family
and friends. Their belief in me kept my spirits and motivation high and I am sincerely
grateful for their love and support during this process and throughout my life.

v

vi

Contents

Abstract i

Abstrakt iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 3

1.3 Thesis Outline . 5

2 Background 7

2.1 Federated Learning . 7

2.1.1 Horizontal Federated Learning . 7

2.1.2 Vertical Federated Learning . 8

2.1.3 Centralized Federated Learning . 8

2.1.4 Decentralized Federated Learning 8

2.2 Trustworthy AI . 9

2.2.1 The Need of Trustworthy AI . 9

2.2.2 European Commission Ethical Guidelines for Trustworthy AI 9

2.2.3 The Five Pillars of Trustworthy AI 11

vii

viii CONTENTS

3 Related Work 15

3.1 Trustworthy FL - A Survey . 15

3.1.1 Privacy . 15

3.1.2 Robustness . 16

3.1.3 Fairness . 19

3.1.4 Accountability . 20

3.1.5 Explainability . 20

3.1.6 Federation . 21

3.2 Existing Trustworthy FL Taxonomy . 22

3.2.1 Limitations . 23

3.3 Evaluation Tools of Trustworthy FAI . 24

3.3.1 Limitations . 24

3.4 Estimating Emissions of AI/FL . 25

3.5 Findings from Related Work . 26

4 The Sustainability Pillar of Trustworthy FL 27

4.1 Motivation and Background . 28

4.2 Notions and Metrics of the Trustworthy FL Sustainability Pillar 30

4.2.1 The Carbon Intensity of the Energy Source 30

4.2.2 The Efficiency of the Underlying Hardware 31

4.2.3 The Complexity of the Federation 32

4.3 Limitations . 34

4.4 Trustworthy FL Taxonomy . 35

CONTENTS ix

5 Design and Implementation 37

5.1 Used Tools . 38

5.1.1 FederatedScope . 38

5.1.2 CodeCarbon . 39

5.1.3 FederatedTrust v.0.1.0 . 41

5.2 Design and Implementation of FederatedTrust v.0.2.0 45

5.2.1 Context, Assumptions . 45

5.2.2 Requirements and Constraints . 46

5.2.3 Architecture . 46

5.2.4 Algorithmic Pseudocode . 49

5.2.5 Metric Definitions . 50

5.2.6 Raw Metric Computation . 52

5.2.7 Metric Configuration and Normalization 53

5.2.8 Trust Score Computation . 57

5.2.9 Parametrization . 58

5.2.10 Additional Functionalities . 59

5.2.11 Installation Guidelines . 60

6 Evaluation, Results, and Discussion 61

6.1 Parametrized vs. Non-parametrized . 62

6.1.1 Scenario Zero . 62

6.2 Sustainability Pillar Evaluation of FederatedTrust v.0.2.0 64

6.2.1 Scenario One: Best Case Scenario 65

6.2.2 Scenario Two: Worst Case Scenario 66

6.2.3 Scenario Three: Middle Case Scenario 68

6.2.4 Scenario Four: Middle Case Scenario 69

6.3 Evaluation of FederatedTrust v.0.2.0 . 71

6.3.1 Scenario a . 71

6.3.2 Scenario b . 73

6.4 Discussion and Limitations . 76

x CONTENTS

7 Summary and Conclusion 79

7.1 Future Work . 80

Declaration of Independence of Written Work 83

Bibliography 92

Abbreviations 93

List of Figures 93

List of Tables 96

List of Code Listings 97

List of Algorithms 99

A FederatedTrust v.0.1.0 103

A.1 Algorithmic Pseudocode . 103

A.2 Normalization Functions for Metrics . 104

Chapter 1

Introduction

1.1 Motivation

In the last decade, Artificial Intelligence (AI) has become omnipresent in humanity’s daily
lives. From playing Go against AlphaGo [1], using voice assistants like Apple’s Siri [2] or
Amazon’s Alexa [2] to turn on the lights or play music, enjoying movies and series that
fit you better using Netflix’s recommender system [3] to getting ideas from ChatGPT [4]
helping you to write essays or even write your programming code. AI’s integration into
critical domains like medicine, HR, and law has opened opportunities to predict cancer
risks [5], assess job applicants [6], and even predict the risk of future crimes of a human
[7].

However, with all the benefits AI has brought forth, it also introduced potential risks of
danger. Different studies have shown racial bias in AI models that were used to predict if
a human is in need and entitled to receive special medical care [8], refusing people of color
the medical care they would have needed. Moreover, AI algorithms used to predict if a
defendant would become a recidivist [9], falsely predicted people of color as high risk twice
as often as their white counterparts. Gender bias was found in AI algorithms that were
widely in use to predict a job appliance fit for the job [10], predicting women as less suitable
for jobs in which men are more prevalent. Even if all the bias in the aforementioned AI
systems has been mitigated, more examples of biased, harmful, or unsafe AI are found
again and again. For example, Tesla’s autopilot AI has been involved in 736 crashes and
17 fatalities since the year 2019 [11]. This shows the necessity of developing AI in a safe
and trustworthy way to prevent unfairness, danger, and harm to humanity introduced by
AI systems in the first place.

To ensure that AI is developed such that it is trustworthy and does not harm humans in
any way, a new research field called trustworthy AI has evolved. Governing bodies such
as the High-level Expert Group on Artificial Intelligence (AI-HLEG) [12] in Europe have
established laws and guidelines to define trustworthy AI and build trustworthy AI. The
seven requirements for trustworthy AI defined by the AI-HLEG [12] are human agency
and oversight, technical robustness and safety, privacy and data governance, transparency,
fairness, environmental well-being, and accountability.

1

2 CHAPTER 1. INTRODUCTION

In parallel, another crucial area of concern has caught attention - data privacy. Safeguard-
ing human and organizational private data has become increasingly important. However,
traditional centralized machine learning requires all the data to train a machine learning
(ML) model in one single place, posing privacy risks. To mitigate that risk, Google in-
troduced Federated Learning (FL) in 2016 [13], a novel approach where multiple clients
collaboratively train an ML model without the need of sharing their private data by only
sharing and aggregating model parameters.

Despite FL being privacy-preserving to a certain degree by design, trustworthiness re-
mains a crucial factor in FL systems. Early works [14] in this field have laid the founda-
tion by defining a trustworthy FL taxonomy and implementing a prototype to evaluate
the trustworthiness of FL systems including the six pillars privacy, robustness, fairness,
accountability, explainability, and federation. These pillars cover six of the seven require-
ments defined by the AI-HLEG. However, comparisons between the requirements defined
by the AI-HLEG and the guidelines defined and the taxonomies show that one important
aspect of trustworthy FL has been overlooked: the requirement of environmental well-
being defined by the AI-HLEG. The AI-HLEG states in this requirement: ”AI systems
should benefit all human beings, including future generations. It must hence be ensured
that they are sustainable and environmentally friendly. Moreover, they should take into
account the environment, including other living beings, and their social and societal im-
pact should be carefully considered. [12, p. 19]”. Since the environmental impact of FL
systems has not yet been considered in any trustworthy FL taxonomy, this leaves a sig-
nificant gap between the expectations set by governing bodies and the guidelines applied
and measured by researchers.

In order to close this gap and to align the trustworthy FL taxonomies and tools to the
regulations defined, the environmental impact of FL systems needs to be included. To
achieve this, a new pillar with appropriate metrics and notions needs to be defined, and
a tool needs to be developed that evaluates and grades the environmental impact of an
FL system as part of its trustworthiness.

1.2. DESCRIPTION OF WORK 3

1.2 Description of Work

Thus, the main contributions of this thesis are surveying the state-of-the-art literature
to identify the missing aspect of environmental well-being in current trustworthy FL tax-
onomies, extending the taxonomy with a sustainability pillar representing the environmen-
tal impact of FL systems, defining metrics and notions that represent the environmental
impact of FL systems and implementing the sustainability pillar an algorithmic proto-
type, resulting in the first trustworthy FL taxonomy and the first algorithmic prototype
comprehensively assessing all the seven requirements for trustworthy AI defined by the
AI-HLEG. In more detail, this master’s thesis focuses on:

1. Literature Survey and Identification of missing aspects:

• State-of-the-art literature to trustworthy FL is surveyed including the pillars:
Privacy, Robustness, Fairness, Accountability, Explainability, and Federation

• Laws and regulations to trustworthy AI/FL are revised

• Existing trustworthy FL taxonomies from literature is analyzed and compared
with the literature survey as well as the regulations and guidelines defined by
governing bodies to identify missing aspects

• Existing trustworthy FL evaluation tools are analyzed and compared with the
literature survey as well as the regulations and guidelines defined by governing
bodies to identify missing aspects

• Research done to estimate the environmental impact of AI/FL system is re-
viewed

2. Establishment of a trustworthy FL taxonomy

• The missing aspect of environmental impact is included into the trustworthy
FL taxonomy by a new pillar sustainability

• Notions and metrics representing the sustainability pillar are defined

• The Limitations of the definition of the Sustainability Pillar are discussed

3. Design of an algorithmic prototype to evaluate the trustworthiness of FL models

• The architecture of the algorithmic prototype is designed

• Metrics and metric normalizations are designed

• The trust score computation process is designed

• The limitations of the design are discussed

4. Implementation of an algorithmic prototype to evaluate the trustworthiness of FL
models:

• The existing and most advanced prototype that evaluated the trustworthiness
of FL systems in terms of privacy, robustness, fairness, accountability, explain-
ability, and federation is extended with the new pillar of sustainability

4 CHAPTER 1. INTRODUCTION

• The package CodeCarbon is used to obtain information relevant to calculating
metrics for the sustainability pillar

• CPU and GPU benchmarking datasets from PassMark are included in the
algorithmic prototype to obtain the power performance of the hardware used
by participants of the federation

• Limitations of the implementation are discussed

5. Evaluation of the algorithmic prototype

• The algorithmic prototype is evaluated in parametrized and non-parametrized
scenarios, showing that the prototype is able to correctly obtain the metrics
for the sustainability pillar directly from the federation and its participants

• Four different parametrized evaluation scenarios are run to evaluate the proto-
type’s sustainability pillar behavior in situations where efficient or not efficient
hardware, simple or complex federations, and not carbon-intensive or carbon-
intensive energy grids are in place

• Two evaluation scenarios are run where the algorithmic prototype is tested as a
whole including all the seven pillars: privacy, robustness, fairness, explainabil-
ity, accountability, federation, and sustainability showing the trustworthiness
of different federations with varying configurations

• The results of the experiments and the limitations are extensively discussed

• Possible directions and ideas for future work are presented

1.3. THESIS OUTLINE 5

1.3 Thesis Outline

Chapter 2 of this master thesis describes the context of FL and its classification as well
as trustworthy AI, its pillars and laws, and guidelines defined. Chapter 3 explores re-
lated work on trustworthy FL, existing trustworthy FL taxonomies, existing trustworthy
FL evaluation tools, and related work on evaluating the environmental impact of AI/FL
systems and identifies limitations. Chapter 4 introduces the sustainability pillar to trust-
worthy FL including according notions and metrics. Chapter 5 focuses on the design
and implementation of an algorithmic prototype to evaluate the trustworthiness of FL
systems. Chapter 6 presents evaluation scenarios and their results. The end of the chap-
ter contains a comparative discussion of all evaluation scenarios, their results, and the
limitations of the current design and implementation. Chapter 7 summarizes this master
thesis, draws conclusions, and provides insights about future work. In the Appendix A,
the algorithmic pseudocode for a previous algorithm that evaluated the trustworthiness of
FL systems and that has been extended in this thesis is presented as well as information
on the metrics that have already been defined.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This Chapter explains the basic technologies of FL (2.1) and its classification into horizon-
tal (2.1.1), vertical (2.1.2), centralized (2.1.3) and decentralized FL (2.1.4). It continues
with the need for trustworthy AI (2.2.1) and its five pillars (2.2.3) and discussed the
requirements for trustworthy AI defined by the European Commission (2.2.2).

2.1 Federated Learning

Many of the past AI applications have been trained on a centralized approach where the
data is stored in one place forcing users to share their data with a central entity [15].
Nowadays, data privacy is demanding an approach where users do not have to expose
their data to a centralized entity in order to train an ML model. That’s where FL comes
into play. In the FL approach, ML models are trained over ten to potentially millions of
distributed edge devices while keeping the client’s data localized and preserving privacy
through only sharing model parameters with the global model instead of the device’s local
data. This data privacy approach allows users to collaboratively train a model and benefit
others without sharing their private data. The learning process of FL was categorized
by Yang et al. [16] into Horizontal Federated Learning (HFL) and Vertical Federated
Learning (VFL). Further, FL can be categorized into centralized federated learning (CFL)
and decentralized federated learning (DFL) [17]. The following subsections elaborate on
the different FL types.

2.1.1 Horizontal Federated Learning

In HFL, also referred to as homogenous FL, the datasets share the same feature space but
differ in samples [18]. HFL, being the more commonly used type of FL, is applicable in
scenarios where different devices or clients share the same consistent set of features. One
well-known example is Google’s KeyBoard prediction model, which is trained in an HFL
setting with data coming from millions of devices [16].

7

8 CHAPTER 2. BACKGROUND

2.1.2 Vertical Federated Learning

In VFL, also referred to as heterogenous FL, datasets share the sample ID space but
differ in feature space [16]. Also for VFL, the goal is to collaboratively train a model, but
using distributed data with different feature spaces. For example, a model to evaluate
your overall health may be trained on data coming from the doctor, the hospital, your
wearable fitness watch, and your mobile phone. All these data holders have different
features of your health and they may be combined in a model using VFL [19].

2.1.3 Centralized Federated Learning

Centralized federated learning (CFL) is nowadays the predominant FL approach [17]. It
consists of a central server to create and distribute the global models to the clients. The
clients train the model on their local data and share the updated model parameters with
the central server. The server updates the global model by aggregating all the local model
parameters from the clients and distributing the global model again to the clients [20].
Figure 2.1 shows the five steps involved in a classical training cycle in CFL. In step one, a
global model that is either pre-trained or initialized with weights at random is chosen on
the central server. Then, in the second step, the initial model is distributed to the clients.
Next, each client keeps training the model locally using its own local data. At some point,
the weights of the locally trained and updated models are sent back from the clients to
the central server, where the central server averages and aggregated them into a single,
updated global model. As a last step, the updated global model is again distributed to
all clients [21].

Figure 2.1: Federated Machine Learning in Steps from [21].

2.1.4 Decentralized Federated Learning

The newer approach of decentralized federated learning (DFL) [17], also defined as De-
centralized FL, Distributed or Serverless FL removes the need for a centralized server by

2.2. TRUSTWORTHY AI 9

aggregation of model parameters from neighboring participants or nodes and emerged in
2018 [22]. Centralized approaches have the drawback that the central server can become
a bottleneck and a single point of failure. DFL not using a centralized server removes this
issue using decentralized model aggregation [23].

2.2 Trustworthy AI

2.2.1 The Need of Trustworthy AI

In the last decade, AI has become omnipresent in humanity’s daily lives. However, with all
the benefits AI has brought forth, it also introduced potential risks of danger. Obermeyer
and Mullainathan [8] showed in 2019 that the algorithm used at that time for impor-
tant healthcare decisions for over 70 million people in the United States (US) is racially
biased leading to black people being less likely to get enrolled in the care management
program and receive complex and intensive future health care. Similarly, A. Brackey [9]
has shown that the Correctional Offender Management Profiling for Alternative Sanc-
tions (COMPAS) algorithm used in US court systems to predict if a defendant would
become a recidivist is racially biased. COMPAS predicted twice as many false positives
for recidivism for black offenders (45 %) than white offenders (23 %). But racial bias is
not the only issue recent AI models have been exposed. Amazon has been using a hiring
algorithm since 2014 to review job applicants’ resumes and find the top applicants that
fit the job profile. By 2015, the company noticed that the tool used for hiring was not
gender-neutral in job roles like software engineers and architects and favored men over
women. Investigating the root cause of this problem, engineers found out that the bias
was introduced by the dataset used for training the algorithm. Since men are more preva-
lent in these job areas, the algorithm falsely learned that men are more suitable for these
jobs than women [10].

Even if all the bias in the aforementioned AI systems has been mitigated, more examples
of biased, harmful, or unsafe AI are found again and again. This shows the need of
developing AI in a safe and trustworthy way to prevent unfairness, danger, and harm
to humanity introduced by AI systems in the first place. This led to a lot of research
conducted by researchers and governing bodies to propose definitions of trustworthy AI
and guidelines to build trustworthy AI.

2.2.2 European Commission Ethical Guidelines for Trustworthy AI

The high-level expert group on artificial intelligence (AI-HLEG) [12], an independent
expert group set up by the European Commission, presented a first draft of ethics guide-
lines for trustworthy AI in 2018, which were finalized and published in 2019. These ethics
guidelines define three components for trustworthy AI, which should be met throughout
the system’s entire life cycle: ”i) It should be lawful, complying with all applicable laws
and regulations; ii) It should be ethical, ensuring adherence to ethical principles and val-
ues; and iii) It should be robust, both from a technical and social perspective” [12, p. 5].

10 CHAPTER 2. BACKGROUND

Under these main principles, four ethical principles are defined: ”i) Respect for human
autonomy, meaning that humans interacting with AI systems must be able to keep full
and effective self-determination over themselves; ii) Prevention of harm, meaning that AI
systems should neither cause nor exacerbate harm or otherwise adversely affect human
beings; iii) Fairness, meaning that AI systems must ensure that individuals and groups are
free from unfair bias and iv) Explicability, meaning that the processes, capabilities and the
purpose of an AI system needs to be transparent” [12, p. 13]. In terms of the realization of
trustworthy AI, the AI-HLEG declared the following seven requirements that must be met:

”1. Human agency and oversight, including fundamental rights, human agency and hu-
man oversight

2. Technical robustness and safety, including resilience to attack and security, fall back
plan and general safety, accuracy, reliability and reproducibility

3. Privacy and data governance, including respect for privacy, quality and integrity of
data, and access to data

4. Transparency, including traceability, explainability, and communication

5. Diversity, non-discrimination and fairness, including the avoidance of unfair bias,
accessibility and universal design, and stakeholder participation

6. Societal and environmental well-being, including sustainability and environmental
friendliness, social impact, society and democracy

7. Accountability, including auditability, minimisation and reporting of negative impact,
trade-offs and redress” [12, p. 14].

The AI-HLEG further points out possible tensions between the principles and that meth-
ods of accountable deliberation to deal with such tensions should be established [12].

2.2. TRUSTWORTHY AI 11

2.2.3 The Five Pillars of Trustworthy AI

Li et al. [24] and Liu et al. [25] have summarized the five main aspects of trustworthy
AI: robustness, privacy, fairness, explainability, and accountability.

Robustness

An AI system is considered robust if it is able to deal with execution errors, erroneous
inputs, or unseen data. The robustness is further categorized and summarized by Li et
al. [24] into i) Data, ii) Algorithms, and iii) System robustness. Data robustness refers
to the fact that the AI system must be trained considering the diverse distributions of
data in different scenarios. The problem of distributional shifts became more prevalent
with the widespread application of AI systems and the diverse environments in which
the models are deployed [12]. A lack of data robustness may lead to a significant drop
in the performance of the AI system. Algorithmic robustness refers to the fact that
the algorithm is not vulnerable to adversarial and malicious attacks [26]. Decision-time
attacks try to mislead the prediction of a given model by perturbing input samples in
order to impersonate victims, poisoning attacks change the system’s response to specific
patterns by injecting carefully designed samples and model stealing attacks try to steal
knowledge about the model, just to name a few. System-level robustness refers to the
fact that an AI system should not allow illegal inputs. For example, presentation attacks
may fool biometric systems by faking input photos or masks.

Another aspect of the robustness of an AI system that is defined by Li et al. [24] is the
generalization. It refers to the capability to make accurate predictions on unseen data
that share the same distribution as the training data [27]. Having a generalizable AI
system is important for its trustworthiness since it is unreasonable to train the model
on exhaustive amounts of data. Assuming a ransomware detection AI system that was
trained and evaluated on ten different ransomware samples and sold to customers with the
promise that the model has an accuracy of 97 % in detecting ransomware. The knowledge
that the model generalizes to other ransomware samples is crucial, otherwise in practice
many attacks will possibly not be detected and the trust in the AI system will diminish.

Privacy

Data that is used to train ML models hold a lot of sensitive data like names, gender,
fingerprints, health records, and corporate information [18]. Rocher et al. [28] have shown
that 25 demographic attributes were sufficient to identify 99% of the entities unique. Thus,
AI models must protect against unauthorized use of data that can directly or indirectly
identify a person or an organization and allow it to make inferences on the entity’s private
information.

12 CHAPTER 2. BACKGROUND

Fairness

As introduced, AI systems are used in many fields such as financial risk assessment, hiring,
and identification and already take decisions that impact human lives [29]. Systematic
unfairness in such systems might have negative social ramifications and might put certain
groups at a disadvantage. It is therefore essential for trustworthy AI to be fair and not
biased in any direction. Bias in AI systems may have different causes, from data bias to
model bias and procedural bias, and often manifests itself in the form of unfair treatment
of different groups of people based on their protected information (e.g. race, ethnicity,
religion, sexual orientation, gender, etc.) [30, 31]. Li et al. [24] categorized fairness
of trustworthy AI into distribute fairness, meaning fairness of the outcome, procedural
fairness, meaning fairness of the process, and statistical fairness, meaning the aggregated
behavior of an AI system and individual fairness. Three different types of fairness have
been identified by Caton et al. [32] at a group level: i) independence, which requires
the system outcome to be statistically independent of sensitive variables such as gender
or race. ii) separation requires that the independence principle holds, but is conditioned
on the underlying ground truth. iii) Sufficiency requires that the true outcome and the
sensitive variable are independent but similarly consider the ground truth.

Explainability

The extensive use of AI systems and their impact on humans create a demand among users
for the right to know the intention, business model, and technological mechanism of AI
products [12]. The understanding of how an AI model makes its decisions is summarized
by Li. et al. [24] in the explainability pillar of trustworthy AI. Despite explaining the
decision process in ML models has been an active topic in research [33, 34] the definition
remains still an open question. Currently, studies divide the explainability of AI systems
into two levels:

• Model explainability by design: A model is considered explainable if it is explorable
by mathematics. Further, the model’s complexity, in terms of the number of param-
eters is influential [14]. ML models that are recognized as explainable compromise
linear regression, logistic regression, decision trees such as random forest, decision
rules, and Bayesian and k-nearest neighbors (KNN) models [35].

• Post-hoc model explainability: Complex models such as DNNs have been shown to
achieve better performance in industrial AI systems. However, relevant approaches
still cannot fully explain these complex models. That is why post-hoc methods
to explain models are an important aspect. These methods include analyzing the
model’s input, intermediate result, and output. Also, using explainable ML models,
i.e. explainers, such as linear models are used to approximate the decision surface
of complex models.

2.2. TRUSTWORTHY AI 13

Accountability

AI systems need to follow regulations and law requirements in order to be trustworthy.
This principle is summarized by Li et al. [24] in the accountability pillar of trustworthy
AI. AI stakeholders must justify and document the architecture and implementation of
their AI models and make this information accessible. This also implies that an AI system
must be reviewed, assessed, and audited through the entire lifecycle [36].

14 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

This Chapter provides a literature survey of related work of trustworthy FL and its pillars
in Section 3.1. It then continues with existing trustworthy FL taxonomies in Section 3.2
and tools to evaluate the trustworthiness of FL systems in Section 3.3 including comparing
the survey to the existing solutions, consequently defining limitations. In Section 3.4
related works to estimate carbon emissions of AI/FL models are explored and Section 3.5
concludes this Chapter by providing findings from the related work.

3.1 Trustworthy FL - A Survey

The five pillars of the trustworthiness of AI systems, introduced in the Background Chap-
ter, do also apply to FL. However, with FL being a distributed system including multiple
clients, differences and additional requirements apply. This section provides a survey of
related work to trustworthy FL.

3.1.1 Privacy

FL has been designed with the goal to collaborate on training a model and benefit without
having to share information about the own private data. It is clear, that preserving the
privacy of client’s data is an important factor for an FL system to be trustworthy. Even
though FL provides privacy to a certain degree by design, since the client’s data is never
shared but only the model parameters, a series of works have shown that attacks can still
compromise data privacy [37, 38, 39]. Privacy attacks on FL come from either a dishonest
server, a malicious client trying to infer (other) clients’ private data, or an adversary in
the middle that eavesdropped on the communication. Lyu et al. [40] provide an extensive
survey on privacy attacks in FL. In membership inference attacks (MIA), attackers infer
whether a specific given data exists in a client’s private dataset [41, 37, 39]. In the
training data/label inference attack (TIA) the attacker is able to reconstruct privately
owned data samples through deep leakage from gradient (DLC)[38] and improved deep
leakage from gradient (iDLC) [42] methods. Class representative attacks (CRA) aim to

15

16 CHAPTER 3. RELATED WORK

infer representative samples of a specific class using GANs [43, 44], whereas in property
inference attacks (PIA) attackers aim to infer dataset properties, which may or may not
be sensitive properties for example gender or age [37].

Similarly to the different privacy attacks that have developed over time, also privacy-
preserving mechanisms have been explored. Lyu et al. [40] surveyed existing privacy-
preserving methodologies which include i) Homomorphic encryption (HE), ii) Secure mul-
tiparty computation (SMC) and iii) Differential privacy (DP).

HE allows a robust solution by allowing arithmetic operations to be directly performed on
ciphertexts and different forms of HE have been proposed [45, 46, 47] each having their
advantages and disadvantages. In HE-based FL aggregation, local models are encrypted
and aggregation is performed over ciphertexts, thus removing the need for a trusted server.
However, HE introduces an overhead of commonly 15x increase in both computation and
communication [48] making it unpractical for most real-world applications. However, Jin
et al. [48] recently proposed FedML-HE, an efficient HE-based FL System that used
optimization techniques and reduces the overhead introduced by HE significantly.

SMC enables different participants to perform a collaborative computation on their inputs
without showing the inputs to other participants. Different SMC-based schemes have been
proposed for privacy-preserving learning [40].

DP offers computationally effective privacy protection through perturbing the data but
comes at the cost of accuracy. The different DP schemes include centralized differential
privacy (CDP), where the trusted aggregator adds noise. In CDP, fewer perturbations are
added and thus, the impact on the accuracy of the model is smaller but it is susceptible to
attacks from the server, as well as attacks from adversaries coming from the outside [49].
In local differential privacy (LCP), clients perturb their data before sharing it, which offers
more privacy but comes at cost of accuracy. Distributed differential privacy (DDP) closes
the gap between LDP and CDP while ensuring the privacy of each individual by combining
with cryptographic protocols [40]. Al-Ars and Enthoven [50] also surveyed privacy attacks
and defenses in FL. Additionally to the HE, SMC, and DP they also included robust
aggregation, gradient subset, gradient compression, and dropout as privacy-preserving
technologies. Out of those, however, only dropout, a method generally used to prevent
overfitting, can offer protection against some of the common attacks as can be seen in
Table 3.1. For more detailed information on the attacks, defenses, and their functionality,
please refer to [50, 40].

3.1.2 Robustness

The robustness of AI systems refers to the system being technically robust to ensure that
they can not be maliciously used or bring harm to humans.

3.1. TRUSTWORTHY FL - A SURVEY 17

Attacks
DLG/iDLG MIA mGAN-AI GAN

Defenses

DP + + * +
SMC ∼ ∼ + -
HE + + + -
Gradient Subset ∼ + ∼ ∼
Gradient Compression - ∼ ∼ ∼
Dropout - + ∼ +
Robust aggregation - ∼ ∼ -

Table 3.1: Privacy Attacks vs. Defense Mechanism in FL from [50].

Adversarial Robustness

Research has shown, that FL systems are vulnerable to both data poisoning [51, 52]
and model poisoning attacks [53, 54]. Both together are summarized under the notion
of poisoning attacks and they attempt to modify the behavior of the target model in
some undesirable way. In data poisoning attacks, one or multiple clients modify their
data such that the gradient arising from it and that is shared with the server is untrue
and influences the global model in a wrong way. On the contrary, in model poisoning
attacks the data is not touched, but the local model parameters are changed directly.
It has been shown [53, 55, 54] that data poisoning attacks are generally less effective
in FL due to the heterogeneous architectures. Despite this, they are often used because
they are easy to implement. Further, poisoning attacks can be classified into i) untargeted
poisoning attacks and ii) targeted poisoning attacks depending on the attacker’s objective.
In untargeted poisoning attacks, the goal is to randomly compromise the predictions of
the target model. For example in Byzantine attacks, malicious gradients are sent to the
server to cause failure of the global model [49]. In targeted attacks, the goal is that the
global models output the target label specified by the adversary for a particular sample
[56]. For example, in an FL setting that learns a model to distinguish between spam
and non-spam emails, an adversary can implement a label-flipping attack, where it falsely
labels all the data samples describing emails from a known spammer as not spam. The
local model in turn then learns internally, that these emails are not spam and propagates
this learning into the global model in the aggregation phase of FL [40].

Similarly to various poisoning attacks that have evolved over time, different defense
strategies have been implemented. Defenses against targeted attacks include detection
algorithms and erasing strategies. Defense against untargeted attacks mostly works by
clustering or computing distance metrics like Euclidean distance, coordinate-wise median,
and geometric median to separate benign from malicious clients. Given the functionality
of these defense mechanisms, they only work if the majority or more of the clients are
benign. Lyu et al. [40] surveyed and described state-of-the-art poisoning attacks and
defenses in machine learning. Please refer to their paper for more detailed information on
the functionality of poisoning attacks and defenses.

18 CHAPTER 3. RELATED WORK

Algorithmic Robustness

For an FL system to be robust, its trained model needs to predict reliably and with high
confidence, such that users can trust its output. The performance of a model is measured
by its accuracy in predicting the test set. In FL, measuring the accuracy of the global
model on the test set of the server side gives a good indication of the performance of the
ML model overall and its convergence. However, in FL clients often have different local
data distributions and the global model might not be able to patterns of each of them, to
generalize well [57]. Therefore, it is essential to also look at the performance of the global
model on the client’s test data and its distribution [58]. Non-IID training data and poor
generalization on the client side is a known problem in FL and many mitigation strategies,
summarized under the notion of personalized FL, have evolved over time. There are two
main personalized FL strategies defined by literature i) global model personalization and
ii) learning personalized models. In global model personalization, the single trained global
model is personalized for each client by additional training on each local dataset [59, 60].
In the learning personalized models strategy, instead of training a global model, many
individual personalized FL models are trained. Architecture-based approaches aim to
provide personalized model architectures for each client, such that the model architecture
is suitable to capture the client’s data, and similarity-based approaches aim to group
similar clients and train models per client group [58]. In each personalization method,
many sub-approaches and methodologies exist. For more details on all FL personalization
methods, their advantages, and disadvantages, please refer to the comprehensive summary
by Tan et al. [58].

Client Reliability

Since in FL, the global model is the result of aggregation of many client models, the
client’s reliability plays a huge role in the robustness of the FL system. Different works
defined metrics and methodologies to measure clients’ reputation and they are based on
the quality of client’s data [61], their contribution quality to the global model [62], their
participation rate in the FL process and their computation resources [63] or a combination
of the aforementioned [64]. Measuring client reputations is also used to detect malicious
clients or free-riders [65]. However, measuring client’s data quality and reputation is a
critical aspect in FL, since evaluating those leaks of private information about the clients
by definition, is not a preferred situation in FL. Therefore, there is a clear trade-off between
the client’s privacy and measuring the client’s reliability to ensure a robust FL system. If
the robustness or privacy of clients is more important for an FL system, depends on the
context and the use case. Kang et al. [64] implemented a reputation-aware and reliable
FL system that claims to be privacy-preserving by introducing a trusted third party on
a blockchain that computes and holds the reputation score of the clients. Other than the
client’s reputation and data quality, also the dropout rate is considered crucial for FL
systems. The more clients drop out, the less reliable the system is. Client dropout may
have different reasons, under them connectivity issues or clients leaving the federation.

3.1. TRUSTWORTHY FL - A SURVEY 19

3.1.3 Fairness

Since FL models are trained over distributed devices with possibly different data quality
and quantity and resources, their contribution to the final FL model may vary. In tradi-
tional FL approaches, each client receives the same global FL model independent of their
contributions. This, however, may rise unfairness and may also hinder clients with high
data quality and quantity to join FL federations. To address this issue, lots of research
has been invested in fairness-aware federated learning (FAFL). Shi et al. [66] provides an
extensive summary of introduced FAFL methods and fairness issues in FL and a FAFL
taxonomy. They identified three key stages where unfairness may arise in FL systems.

Firstly, unfairness can occur in the stage of client selection. Most methods for client
selection focus on the server’s interest in increasing the convergence speed [67, 68, 69, 70]
or enhancing the models’ performance [71, 72]. Applying this client selection strategy can
result in excluding clients with weaker capabilities from the FL process. This aspect is
generally referred to as client selection fairness. Unfair client selection may also introduce
bias in the FL model [73], for example by underrepresenting data coming from clients living
in urban areas with weaker connections or by excluding devices with weaker capability.

Secondly, unfairness may arise during the optimization of the FL mode. Performing global
optimization by aggregating clients’ model updates may lead to the global model not being
able to capture the diversity of the entire distributed training set, leading to prediction
errors of the global model on client’s datasets [74, 75]. This aspect is called performance
fairness.

Thirdly, unfairness may occur in the incentive distribution stage. In traditional FL set-
tings, each client is rewarded with the same global model neglecting their contribution.
This might not be recognized as fair by clients who contribute more to the final FL model
performance and may hinder them to participate in the federation, which in turn harms
the model. This is commonly referred to as the free-rider issue [76]. To mitigate this fair-
ness issue, FL systems need to reward clients based on their contribution to compensate
for their expenses which is generally referred to as contribution fairness.

Further, same as in traditional AI systems, FL systems are considered fair if the resulting
model is free from bias and does not discriminate against any group of individuals. Bias
mitigation is more difficult in FL than in traditional centralized ML since depending on the
privacy constraints of the FL system, the client data as well as the protected attributes
are not known. Even worse, bias in FL is exacerbated since each party will introduce
its own bias to the global model. Further, data heterogeneity is very common in FL
systems and favors the construction of biased models [59]. Abay et al. [77] proposed local
reweighting as a bias mitigation technique in the pre-processing stage of FL. It works by
attaching weights to samples in the training dataset from each client locally, and thus
does not come with privacy loss and is applicable regardless of the chosen ML model.
However, it may come at a performance cost. They further propose an in-processing bias
mitigation method called prejudice remover for FL, which works by adding a fairness-
aware regularizer to the loss function. A disadvantage of the prejudice remover for FL is
that it is tied to the logistic loss function and it requires clients to share their sensitive
attributes.

20 CHAPTER 3. RELATED WORK

3.1.4 Accountability

Accountability is important for the development of trustworthy and ethical AI systems.
It means being responsible for the actions taken during the development and deployment
of the FL system [12]. Further accountability means adhering to laws that are defined.
To achieve accountability in FL, it is necessary to document the entire process such that
questions can be answered. The documentation should include information about the
participants, the data used, and the model’s configuration, project specifications, and
performance.

IBM Research has developed an accountable FL fact sheet [78] template that provides
comprehensive documentation of the FL process, ensuring transparency and building trust
in the system.

Besides documentation, monitoring is also a crucial aspect of accountability. Stakeholders
must ensure that the AI system is developed and deployed according to the intended
processes [12]. Auditing is commonly used to verify the accountability of AI systems. It
involves evaluating the system’s performance, verifying the documentation, and ensuring
that the system adheres to ethical standards and the law.

3.1.5 Explainability

Similar to traditional AI systems explainability, explainability in FL refers to the ability
to understand and interpret the decision-making process of the machine learning models
trained using the FL approach. However, understanding how to model arrives at its
predictions can be more challenging in FL, since the model is trained on data coming
from different clients [79].

One aspect of explainability is interpretability, which refers to explainability from the
model design. Interpretability is influenced by the models’ transparency and the model
size [25]. ML/DL models have been categorized by Arrieta et al. [35] by their interpretabil-
ity level. A model is considered transparent if its behavior can be fully explained by
domain experts and mathematics. In summary, algorithmic transparent models are Lin-
ear/Logistic Regression, Decision Trees, K-Nearest Neighbors (KNN), Rule-Based Learn-
ers, General Additive Models, and Bayesian Models. The non-transparent models include
tree ensembles, multi-layer neural networks (MNN), convolutional neural networks (CNN),
and recurrent neural networks (RNN) [35]. The definition of model size differs for different
models. For instance, it can be the depth of a decision tree, the number of parameters for
neural networks, the number of decision rules, and so on [80]. Explaining the relationship
between the input and the output of the model becomes harder, the bigger the model size
is [35].

3.1. TRUSTWORTHY FL - A SURVEY 21

3.1.6 Federation

The federation pillar of trustworthy FL has first been introduced by Sánchez et al. [14]
and a prior master thesis [79] from the Communication Systems Group at the University
of Zurich. Unlike a traditional ML model, an FL model is an entirely distributed system
that comes with architectural design challenges. The federation pillar focuses on the
interactions of different components of the FL system. It can be hard to interrelate the
learning process amongst thousands of devices and still ensure model integrity and security
[79]. Lo et al. [81] presented a collection of design patterns for the life cycle of an FL
system.

The first important aspect is client management, FL systems need to attract clients to
participate in the federation. Then, metadata needs to be collected about the clients such
that the server can broadcast messages and start the training process [79]. Managing and
verifying client information is typically done through a client registry. In CFL, the client
registry is located on the server side and it collects information from clients such as device
ID, connection uptime, computation power, and storage capacity. A client registry enables
the FL system to keep track of clients and their status and is thus an important part of
an FL system. During training, the server needs to select participants in each training
round. This can be done at random or through a client selector [79]. Selecting clients
at random may not fully exploit the local updates from heterogeneous clients, resulting
in lower model accuracy, slower convergence rate, degraded fairness and more [82]. The
client selector may choose clients based on different metrics and different client selectors
have been proposed through time, each having their own advantages and disadvantages.

Since in FL, a global model and numerous local models are trained through many rounds,
model co-versioning is an important strategy to ensure traceability and fallback in case
something goes wrong or if an attack happens that degrades the model. A co-versioning
system might be integrated on the server side that stores global model versions [79].
However, needless to say, storing all these models comes at high storage cost [14].

22 CHAPTER 3. RELATED WORK

3.2 Existing Trustworthy FL Taxonomy

Table 3.2 summarizes the existing trustworthy FL taxonomies and their coverage of trust-
worthy FL pillars and of the seven requirements defined by the AI-HLEG. The taxonomy
from Shi et al. [66] covers the pillar of fairness and partially the federation pillar since it
discusses fair client selection as discussed in Subsection 3.1.3. The taxonomy from Tariq
et al. covers the pillar of privacy, fairness, and robustness and includes requirements
number two, three, and five defined by the AI-HLEG. Liu et al. provided a taxonomy
covering the pillar of privacy, robustness, and partially the pillar federation as shown in
Subsections 3.1.2 and 3.1.1. The taxonomy that covers the most pillars and requirements
defined by the AI-HLEG is the trustworthy FL taxonomy from Sánchez et al. [14]. Since
this is the most advanced taxonomy, that covers six of the seven requirements defined by
the AI-HLEG, it is discussed in more detail in the following.

Table 3.2: Existing Trustworthy FL Taxonomies and Their Coverage of Pillars and AI-
HLEG Requirements

Authors Paper
Pillars / AI-HLEG Requirements

Privacy Fairness Robustness Accountability Explainability Federation Sustainability
3. Privacy
and data gov-
ernance

5. Di-
versity, non-
discrimination,
and fairness

2. Techni-
cal robustness
and safety

7. Account-
ability and
auditability
/ 1. Human
agency and
oversight

4. Trans-
parency
including
explainability

2. Technical
robustness
and safety
/ 5. Di-
versity, non-
discrimination
and fairness

6. Envi-
ronmental
well-being

Shi et al. [66] A survey
of fairness-
aware feder-
ated learning

no yes no no no partially no

Tariq et al.
[83]

Trustworthy
Federated
Learning: A
Survey

yes yes yes no no no no

Liu et al. [25] Threats, at-
tacks and
defenses to
federated
learning:
issues, tax-
onomy and
perspectives

yes no yes no no partially no

Sanchez et
al.[14]

Learning: is-
sues, taxon-
omy and per-
spectives

yes yes yes yes yes yes no

A previous master thesis [79] from the Communication Systems Group of the University
of Zurich and the consequent paper published by Sánchez et al. [14] surveyed state-of-
the-art literature to trustworthy FL and created a taxonomy describing pillars, notions,
and metrics to define trustworthy FL requirements. The taxonomy is depicted in Figure
3.1 and contains the pillars i) privacy, ii) robustness, iii) fairness, iv) explainability, v)
accountability, and vi) federation. For each pillar, notions and according metrics are de-
fined. In total, 36 metrics are defined that can be used to evaluate the trustworthiness
score of a given FL system. For more detailed information, please refer to [14].

3.2. EXISTING TRUSTWORTHY FL TAXONOMY 23

Figure 3.1: Trustworthy FL Taxonomy from [14].

3.2.1 Limitations

Comparing the existing trustworthy FL taxonomy and the extensive literature survey,
despite the considerable work and depth of the taxonomy, limitations become present.

The most important limitation becomes present when comparing the taxonomy to the
requirements defined by the AI-HLEG and the existing taxonomy. The environmental
impact of an FL system is not considered in the taxonomy, but environmental well-being
has clearly been defined as one of the seven requirements for trustworthy AI by governing
bodies [12] as discussed in Subsection 2.2.2. Emissions produced by AI gain more and
more attention from research since the ever-growing AI models created an ever-increasing
carbon footprint that can not be neglected in a time where global warming is the key
challenge of humanity.

In the robustness pillar client dropouts should be considered as well since high dropout
rates threaten the robustness of a system. Further, only the accuracy of the global model
on the global test set is considered as the performance metric of the FL system, but
to measure the performance trustfully the performance on the test set of clients (local)
should be considered as well to ensure the collaboratively trained model also performs
robust on clients datasets.

In the fairness pillar, the collaboration fairness aspect, describing that rewards should be
aligned with contribution, is missing completely but is important to attract high-quality
clients, and rewards based on contribution have been shown to contribute to the robustness
of FL systems as well.

24 CHAPTER 3. RELATED WORK

3.3 Evaluation Tools of Trustworthy FAI

In terms of tools evaluating the trustworthiness of a federated learning system, Sánchez
et al. [14] implemented FederatedTrust. FederatedTrust is a lightweight algorithmic pro-
totype, that evaluates the trustworthiness score of a FL system by scoring it according
to measurements in the six defined pillars i) privacy, ii) robustness, ii) fairness, iv) ex-
plainability, v) accountability, and vi) federation. The 20 metrics implemented by the
prototype are depicted in Table 3.3. The prototype is programmed as a Python package
called FederatedTrust that is supposed to be integrated into the FederatedScope environ-
ment. FederatedScope is a Python environment to develop and test FL systems. A more
detailed view of FederatedTrust v.0.1.0 is provided in Subsection 5.1.3.

Table 3.3: Metrics Implemented by the FederatedTrust Algorithm Prototype from [14].

Metric Description Input Output When Who
Privacy

Differential Privacy Use of global or local differential privacy as a privacy defense FactSheet 0/1 Pre-training Server
Entropy Uncertainty in predicting the value of a random variable FL Framework Conf [0, 1] Pre-training Server
Global Privacy Risk Maximum privacy risk with differential privacy based on e Client Statistics % Pre-training Server

Robustness
Certified Robustness Minimum perturbation required to change the neural network prediction FL Model Real Post-training Server
Performance Test accuracy of the global model Statistics, FL Model % During-training Clients
Personalization Use of personalized FL techniques FactSheet 0/1 Pre-training Server
Federation Scale Number of clients representing the scale of the federation FactSheet Integer Pre-training Server

Fairness
Participation Variation Uniformity of distribution of participation rate among clients FL Framework [0, 1] Post-training Server
Accuracy Variation Uniformity of distribution of performance among clients Client Statistics, FL Model [0, 1] During-training Clients
Class Imbalance Average class imbalance estimation among clients Client Statistics [0, 1] Pre-training Clients

Explainability
Algorithmic Transparency Interpretability of the model by design FL Model [1, 5] Pre-training Server

Model Size
Model Features dimensionality, depth of decision tree,
or number of parameters, number of features

FL Model Integer Post-training Server

Feature Importance Average variance of feature importance scores FL Model [0, 1] Post-training Server
Accountability

Project Specification Project details and purpose FactSheet 0/1 Pre-training Server
Participants Participants number, identifiers, and their organizations FL Framework Conf, FactSheet 0/1 Pre-training Server
Data Contains Data origin and data-preprocessing steps FL Framework Conf, FactSheet 0/1 Pre-training Server
Configuration Information about the FL model FL Framework Conf, FactSheet 0/1 Pre-training Server
System Contains training time, FL model size, and network performance FL Framework Conf, Statistics 0/1 Post-training Server

Federation
Client Selector Use of a client selector scheme rather than random selection FactSheet 0/1 Pre-training Server
Aggregation Algorithm Selected aggregation function FL Framework Conf % Pre-training Server

3.3.1 Limitations

As already discussed in the limitations of the formal taxonomy, the prototype is also
missing a pillar including notions and metrics representing the environmental impact of a
FL system as part of its trustworthiness score, despite it being defined as a key requirement
for trustworthy AI. Since it is a first, lightweight prototype, there are also other aspects
not implemented.

The current privacy-preserving technologies considered in the prototype only evaluate
the implementation of differential privacy. However, the parameters used for differential
privacy are crucial to determine its usefulness but vary from system to system. Further-
more, other encryption-based privacy-preserving technologies like homomorphic encryp-
tion (HE) and secure multiparty computation (SMC) can offer privacy protection as well.
Neglecting these technologies can lead to the misclassification of FL models in the Feder-
atedTrust algorithm, such as models having HE implemented being incorrectly labeled as
untrustworthy. Scoring privacy-preserving technologies with a binary 1 or 0 based on their

3.4. ESTIMATING EMISSIONS OF AI/FL 25

implementation is too simplistic. Further, the information leakage risk is not considered in
the prototype at all, but may combined with privacy-preserving technologies capture the
pillar well. A more sophisticated approach would be to score different privacy-preserving
technologies based on their effectiveness against common privacy attacks identified in the
FL setting.

The robustness pillar does not include the countermeasures to attacks, called poisoning
defense, and many of them have been proposed as discussed in the survey of the robustness
pillar in Subsection 3.1.2. The system-level robustness notion could be implemented as
well. For client and data reliability, client reputation and clients data quality metrics
could be implemented. However, this would leak the private information of the clients
which a trustworthy FL quantifier should not do.

In the fairness pillar, the notion of collaborative fairness is not considered. Further, group-
level fairness is missing and could be represented by the existence of implemented bias
mitigation strategies.

3.4 Estimating Emissions of AI/FL

As shown in Table 3.2, to the best knowledge, none of the existing trustworthy FL tax-
onomies has the environmental impact requirement of the AI-HLEG [12] integrated. This
creates a gap between methodologies applied by researchers and requirements set by gov-
erning bodies. Thus, this section explores related work to estimate the environmental
impact of AI/FL models. Despite measuring or estimating the influence AI has on the
environment is relatively new, in recent years few works have tried to address this problem.

Most works focus on estimating the carbon emissions of specific models and Lucconi et al.
[84] provided a survey on aspects that influence the CO2 emissions of ML. Strubell et al.
[85] estimated the financial and environmental costs of large natural language processing
(NLP) models by analyzing the training and fine-tuning process. Luccioni et al. [86]
estimated the carbon emissions of the large language model BLOOM having 176 billion
parameters to be 50.5 tonnes of CO2 equivalents. Patterson et al. [87] estimated the energy
consumption and computed the carbon emissions of the language models T5, Meena,
GShard, Switch Transformer, and GPT-3 and highlighted opportunities to improve energy
efficiency and CO2 equivalent emissions such as sparsely activated DNNs and using energy
grids with low carbon intensity.

While the mentioned works focus mainly on energy consumption, George et al. [88] point
out that water consumption to cool large data- and server centers also contributes heavily
to the environmental impact of AI models and estimated the water consumption needed
to run Chat-GPT.

Despite most works focusing on centralized machine learning model training, Qui et al.[89]
provided a first look into the carbon footprint of FL models by incorporating parameters
that are special to FL and comparing the emissions produced by FL models vs. emissions
produced by centralized ML models. They concluded, that FL models can emit up to two

26 CHAPTER 3. RELATED WORK

orders of magnitude of CO2 equivalent emissions if the data is not identically distributed,
which is often the case in FL.

Similarly to estimating the carbon emissions of AI/FL models, tools to track carbon
emissions and apply standardized measurements for better comparison of model emissions
have been developed [86]. Code Carbon [90] and the Experimental Emissions Tracker [91]
can be used to track emissions during the training process, while the ML CO2 Calculator
[92] can be used to calculate the emissions after training.

Despite all the works done in this research field, to the best knowledge, none of them
have incorporated the emissions produced by FL models into trustworthy FL despite
environmental well-being clearly being defined as one of the seven key requirements for
trustworthy AI/FL by the AI-HLEG [12].

3.5 Findings from Related Work

FL has gained popularity in recent years and extensive research has been conducted re-
lated to the different pillars of trustworthy FL. While early works have provided first
trustworthy FL taxonomies, they have limitations in terms of neglected aspects that need
to be considered in trustworthy FL. The most considerable limitation is the missing as-
pect of environmental well-being in the formal taxonomies as well as in the algorithmic
prototypes. While all other six key requirements defined by the AI-HLEG are present, the
environmental well-being aspect is missing and has to the best knowledge not been defined
or considered by any trustworthy FL taxonomy. This creates a gap between methodolo-
gies applied by research and requirements set by governing bodies. Thus, besides the
extensive survey of the pillars and metrics provided in this Chapter, this work introduces
the environmental impact aspect to trustworthy FL, defines a pillar, notions, and metrics
for sustainability in trustworthy FL, and implements it in an algorithmic prototype, such
that trustworthy FL research adheres to the regulations defined by the AI-HLEG and
raises awareness of AI developers to the important aspect of emissions produced by the
training and use of FL models.

Chapter 4

The Sustainability Pillar of Trustworthy
FL

As defined by AI-HLEG, for AI systems and thus also for FL systems to be trustworthy,
environmental well-being is one of the seven key requirements [12]. However, no work
defined and included the environmental impact of the FL system as part of its trust-
worthiness, leaving a gap between trustworthy FL research and requirements defined by
governing bodies. Thus, this work contributes to the research community by defining a
trustworthiness pillar for FL systems called sustainability paying attention to the environ-
mental impact produced by the FL system, resulting in the first trustworthy FL taxonomy
including all seven requirements defined by the AI-HLEG.

This chapter first describes the motivation and background for sustainability in trustwor-
thy FL in Section 4.1 and then continues with the notions and metrics that have been
chosen to define the sustainability pillar of trustworthy FL in Section 4.2, including the
carbon intensity of the energy source in Subsection 4.2.1, the efficiency of the underlying
hardware in Subsection 4.2.2 and the complexity of the federation in Subsection 4.2.3.
It continues by discussing the limitations of the approach in Section 4.3 and concludes
the Chapter with the novel trustworthy FL taxonomy including the defined sustainability
pillar in Section 4.4.

27

28 CHAPTER 4. THE SUSTAINABILITY PILLAR OF TRUSTWORTHY FL

4.1 Motivation and Background

Currently, the focus of AI is set on achieving ever higher accuracy and thus developing ever
higher-performing models. However, tremendous amounts of resources are used to train
and run these AI systems, which comes with a cost to the environment [84]. Ever higher
accuracy is mostly but not only achieved by increasing the parameters, which in turn also
increases the energy consumed to train these models [87]. By only looking at the training of
the models, as an example, the large language model GPT-2 has 1.5 billion parameters and
consumed 28’000 kWh of energy to train. The successor GPT-3 has 175 billion parameters
and consumed 248’000 kWh of energy to train, which is 10 times more energy than
GPT-2 [86]. This example illustrates the trend to ever-growing machine learning models
that have an ever higher resource consumption. However, comparing the ML model’s
resource consumption by the energy used is not optimal, since the emission in terms
of CO2 equivalents (CO2eq) is produced by these amounts of energy, depending on the
energy mix used to train these models. Therefore, CO2eq emissions are a rational metric
to compare and evaluate the environmental impact of different AI systems. Patterson
et al. [93] estimated the CO2eq emissions of GPT-3 to be 552.1 tons of CO2eq. To
put these emissions into perspective, an average Dane generates 11 tons of CO2eq in a
year, meaning that the carbon footprint of GPT-3 is roughly that of the annual carbon
footprint of 50 Danes. This is a large carbon footprint, remembering that GPT-3 is just
one of many AI systems. Therefore, tracking and estimating the carbon emissions for
AI systems is a crucial step to take for developers and environmental well-being is a key
requirement for trustworthy AI systems. No reports could be found that report the CO2

equivalent emissions of FL systems in use. However, Qui et al. [89] tried to estimate the
CO2eq emissions of FL models and compared them to traditional centralized ML models.
They concluded, that FL may emit up to two orders of magnitude more carbon than
traditional centralized ML if the data is non-iid due to lower convergence speed and more
training rounds. If the data is iid, then the carbon emissions of FL systems and traditional
centralized ML are comparable.

Emissions produced by different ML and FL systems are commonly compared by the car-
bon footprint. The carbon footprint is calculated by Equation 4.1 where E is the number
of electricity units consumed during the computation procedure quantified in kilowatt-
hours (kWh) and C is the amount of CO2eq emitted from producing one electricity unit.
C is often quantified as kg of CO2eq emitted per kWh of electricity and is sometimes
referred to as the carbon intensity of the electricity [90].

Carbonfootprint = E × C (4.1)

CO2eq describes CO2 equivalents and is a standardized measure describing how much
warming a given amount of gas will have since other gases such as methane and nitrous
oxide also have a warming effect and are emitted by producing electricity as well. As
described, the carbon footprint is dependent on the electricity consumption and the carbon
intensity of the grid used.

In FL, emissions may come from the training phase from the clients as well as from the
aggregation at the server side. Further, emissions are produced by the communication

4.1. MOTIVATION AND BACKGROUND 29

costs coming from uplink communications (clients sharing the model with the server) and
downlink costs (the server sharing the model with the clients). The amount of electricity
that is used for training the FL model is dependent on many factors. First, the efficiency
of the underlying hardware at the client’s side and at the server side affects the consumed
energy. Secondly, it depends on the federation’s complexity and size, the bigger and the
more complex the federation the more computational power is needed. The amount of
carbon that is produced then additionally to the energy consumed depends on the carbon
intensity of the energy grid that is used [87, 84]. Consequently, this thesis proposes two
possible strategies for defining and evaluating the sustainability pillar of trustworthy FL:

1. Strategy one: Absolute measurement of emissions: directly measure/estimate and
score the CO2eq emissions produced for training, aggregation, and communication
of an FL system.

2. Strategy two; Relative scoring of aspects that influence emissions: score the carbon
intensity of the electricity grid used, the efficiency of the underlying hardware, and
the complexity of the federation.

The pillars including notions of the two strategies are shown in Figure 4.1. The left side
shows strategy one and the right side strategy two.

Figure 4.1: Two possible Strategies to define Sustainability Pillar Notions (left:absolute,
right:relative).

Strategy one provides the advantage that absolute values of CO2eq emissions are evaluated
and scored. But it provides the disadvantage that it is unclear how to score the emissions
produce answering the question of how much emissions are acceptable and how much are
not. Further, it leads to the result that big and complex federations are always scored
badly in the sustainability pillar and small and simple federations are scored well. Despite
the fact that the complex federation may have taken the best possible decisions in terms
of being as sustainable as possible, meaning using efficient hardware, and not carbon-
intensive energy sources. Complex federations including big models and many clients are
sometimes necessary to solve complex problems, and it is thus unfair to compare such
federations to small federations that solve a much simpler task at hand. Similarly com-
paring the emissions from China to the emissions from Switzerland is not fair since much
more people live in China. The second strategy provides the advantage that comparing
completely different federations in a fair way is possible by also including the decisions

30 CHAPTER 4. THE SUSTAINABILITY PILLAR OF TRUSTWORTHY FL

that have been taken that influence sustainability, whilst still keeping the fact that big
federations emit more emissions through including the federation complexity. Secondly,
decisions that influence sustainability can be scored in a clear way since the ranges are
given. Because of these advantages, the second strategy is followed in this thesis. The
following section introduces the notions and metrics defined for the sustainability pillar
of trustworthy FL.

4.2 Notions and Metrics of the Trustworthy FL Sustainabil-

ity Pillar

This section discussed the notions and metrics that define the sustainability pillar of
trustworthy FL.

4.2.1 The Carbon Intensity of the Energy Source

The carbon intensity of electricity is different in different parts of the world and depends
on the energy mix that is used to produce electricity. The United Nations (UN) Intergov-
ernmental Panel on Climate Change (IPCC) [94] has provided a median value of gCO2e
per kWh for different energy fuels as shown in Graph 4.2. Wind and nuclear emit the
least CO2eq with 12g and 11g of CO2eq per kWh and coal the most with 820g of CO2eq
per kWh. This is a difference of factor 68. Thus, an FL system that has used 500 kWh of
energy to be trained, would have emitted 5.5 kg of CO2eq if it was trained on electricity
produced by nuclear energy and 410 kg of CO2eq if it was trained on electricity produced
by coal only. This showcases, that the energy grid that is used to train a FL system
plays a huge role in the carbon emissions produced. Similarly, the carbon intensity of the
energy grid of countries varies by a huge factor.

British Petroleum (BP) has published in their annual review of the worlds energy statistics
[95] that the least carbon-intensive energy grid is used by the African country Lesotho
with 20g of CO2eq per kWh and the most carbon-intensive energy grid is used by the
South African country Botswana with 795 of CO2eq per kWh in 2022. Switzerland is in
place 12 of the countries with the lowest carbon-intensive energy grid with 32g of CO2eq
per kWh. The carbon intensity of the energy grid by countries is visualized in Figure 4.3.

Thus, the carbon intensity of the energy source notion of the Sustainability pillar deals
with the carbon intensity of the energy grid used. As shown, it ranges from 20g of CO2eq
to 795 of CO2eq by looking at the countries’ energy grids. Theoretically, with the energy
sources available today, the lowest possible energy grid would have 11g of CO2eq per kWh
only using wind energy and the highest possible 820g of CO2eq only using coal energy.
The energy grid used can be determined by the location of the workers (retrieved from
the IP address). For the carbon intensity of the energy grid used by clients, the average
of all the energy grids used by clients is computed. For the carbon intensity of the energy
grid used by the server, the energy grid of the country the server operates in is taken.

4.2. NOTIONS ANDMETRICS OF THE TRUSTWORTHY FL SUSTAINABILITY PILLAR31

Figure 4.2: Average life-cycle CO2e emissions per Fuel to Produce 1 kWh of Electricity
from [94].

Figure 4.3: Carbon Intensity of Electricity in 2022 by Country from [96].

4.2.2 The Efficiency of the Underlying Hardware

The second aspect that significantly impacts the energy consumption and thus the emis-
sions of an FL system is the efficiency of the underlying hardware. Efficient hardware
consumes less power to perform computational tasks. Lower power consumption trans-
lates to reduced energy requirements, leading to lower CO2eq emissions. In contrast,

32 CHAPTER 4. THE SUSTAINABILITY PILLAR OF TRUSTWORTHY FL

inefficient hardware that consumes more power will contribute to higher energy consump-
tion and thus increased CO2eq emissions. Additionally, inefficient hardware tends to
generate more heat, necessitating additional cooling mechanisms such as air conditioning
or fans. These cooling systems consume energy and contribute to CO2eq emissions. By
contrast, efficient hardware produces less heat and may require fewer cooling resources,
leading to lower energy consumption and reduced emissions [92]. FL systems train ML
models and are computationally heavy, thus the efficiency of the underlying hardware
plays a significant role in the emissions that are produced by the FL system.

The performance of Central Processing Units (CPUs) and Graphics Processing Units
(GPUs) can be described by different metrics, such as clock speed, Floating-Point Op-
erations Per Second or Instructions Per Second (IPS) [97]. It is important to note that
none of these metrics play a complete picture of the performance of the processing units,
and different metrics are more applicable in certain use cases. Further, manufacturers of
CPUs and GPUs often do not fully disclose the metrics of their products, which makes
comparing them difficult. To solve this issue, lots of benchmarking software has evolved
[98]. Such benchmarking tools evaluate the processor’s performance across a range of
tasks and provide a score that can be used for comparison. The most popular bench-
marking software for processors is PassMark, it computes a performance score by running
standardized tests that simulate real-world workloads, such as executing complex mathe-
matical calculations. PassMark has collected the benchmarks of over a million computers
and made them available to the public, allowing them to compare the performance of
processors.

In terms of heat production of a processor, Thermal Design Power (TDP) is used as
a specification in the industry. It indicates the maximum amount of heat a computer
component, such as a CPU or GPU, is expected to generate under normal operating
conditions. TDP is typically expressed in watts and represents the maximum power
consumption and heat dissipation that can be expected under typical workloads. The
smaller the number for TDP, the lower the power consumption of the processor [99].

To evaluate the efficiency of the underlying hardware in terms of computing power per
unit of power consumed, it makes sense to divide the Mark through the TDP, defining the
power performance of the processor. A processor with a high power performance score
is able to do a lot of computation with low energy consumption and it is thus the most
efficient in terms of resource consumption [99]. PassMark has provided a database with
Power Performance measurement for over 3000 CPUs published on Kaggle [100] and for
over 2000 GPUs [101], which will be used to evaluate the efficiency of the processors used
by the server and the average efficiency used by the clients in this thesis’s algorithmic
prototype.

4.2.3 The Complexity of the Federation

The complexity and size of the federation impact the consumed energy thus the emissions
produced. Generally, the more complex, the bigger the model, the higher the number of
participants, and so on, the higher also the energy consumption [89].

4.2. NOTIONS ANDMETRICS OF THE TRUSTWORTHY FL SUSTAINABILITY PILLAR33

Number of Training Rounds

Each training round in an FL system produces CO2eq emissions by the energy that is
used [89]. One training round consumed energy for i) training of the model on the client’s
side, ii) aggregating the model parameters on the server side, and iii) communication of
model parameters up (from clients to server) and down (from server to clients). All of
these consume energy and thus emit CO2eq. More training rounds emit higher amounts
of CO2eq than fewer training rounds.

Dataset Size

The size of the dataset that is used by clients to train the FL models influences the
CO2eq emissions. Larger datasets need more computational resources in terms of power
and memory and time to fit the model. Thus, larger datasets need more energy than
smaller datasets and also produce more CO2eq [92].

Model Size

The size of the model that is trained in the FL system influences the CO2eq emissions
produced as well. Large models typically require more computational resources and time
to process each iteration, which results in higher energy consumption [92] at the client’s
side. Also, aggregating large models on the server side typically uses more energy than
aggregating small models. Further, in FL, model parameters are shared between server
and clients, large models thus also introduce a communication overhead, again leading to
more energy consumption and more CO2eq emissions.

Number of Clients

The number of clients in a federation, also called the federation size, influences the emis-
sions produced by this system. The more clients participate in the federated, the more
energy is used [89] for i) training, ii) aggregation, and iii) communication, and thus, the
more CO2eq are emitted.

Client Selection Rate

The client selection rate in an FL system refers to the number of clients that are selected
to share their model parameters in each round with the server. Often, only a percentage of
clients is selected per round [89]. The larger this percentage, the larger the communication
overhead from the uplink communication. Needless to say, the larger the CO2eq emissions.

34 CHAPTER 4. THE SUSTAINABILITY PILLAR OF TRUSTWORTHY FL

Number of Local Training Rounds

In FL, clients train their local models and at some point in time the model parameters
are shared with the server. However, clients may perform a different number of local
training rounds within one global training round. The higher the number of local training
rounds, the higher the computational overhead on the client’s side and the higher the
energy consumption [92, 89].

4.3 Limitations

For the carbon intensity of the energy source notion, a limitation is that taking the average
carbon intensity of the energy grid of the country is just an approximation since the carbon
intensity of the electricity grid fluctuates within a country and also within a day or within
seasons. However, for the purpose used it is a fairly good approximation.

For the hardware efficiency notion, only the efficiency of CPUs and GPUs is considered,
but of course, to be more accurate also the efficiency of other parts such as RAM could
be integrated. The power performance metric is dependent on PassMark benchmarking
scores and is not comparable to other benchmarking software scores. Further, if the true
emissions want to be captured, the emitted CO2eq for producing the hardware should be
included. This, however, is fairly difficult to do.

Aspects that may be relevant for emissions produced but are not paid attention to in
this first proof of concept sustainability pillar could be privacy-preserving technologies
used in the federation. For example, if a federation uses HE as privacy protection, due
to its computational complexity may increase the energy consumption needed and thus
also the emissions produced. Further, as introduced in Subsection 3.1.2 FL systems often
use methods to detect malicious clients or free-riders such as clustering or the H-MINE
algorithm. Such methodologies are computationally heavy and may increase the compu-
tational costs, thus the energy consumption and CO2eq emissions.

4.4. TRUSTWORTHY FL TAXONOMY 35

4.4 Trustworthy FL Taxonomy

The six pillars of trustworthiness defined by Sánchez et al. [14] together with the newly in-
troduced pillar sustainability constitute a comprehensive taxonomy describing the require-
ments for a trustworthy FL model. Thanks to the newly introduced pillar sustainability,
the taxonomy including seven pillars aligns with the seven requirements for trustworthy
AI defined by the AI-HLEG [12]. A visual representation of the final taxonomy including
the seven pillars of robustness, privacy, fairness, explainability, accountability, federation,
and sustainability is presented in Figure 4.4. In each pillar, the most important aspects
representing the pillar are summarized in notions [79], as discussed the sustainability pil-
lar has three notions - Carbon intensity of the energy source, hardware efficiency, and
federation complexity. Within each notion, specific metrics that can be used to calculate
the trustworthiness level are defined. This taxonomy forms the builds the basis for eval-
uating and assessing the level of trustworthiness in an FL system. The taxonomy can be
customized by adding or removing metrics, depending on the context of a system.

Figure 4.4: Trustworthy FL Taxonomy

36 CHAPTER 4. THE SUSTAINABILITY PILLAR OF TRUSTWORTHY FL

Chapter 5

Design and Implementation

The second contribution of this work is the design and implementation of the sustainability
pillar defined in Chapter 4 into an algorithmic prototype to evaluate the trustworthiness
score of an FL system.

Even though this work has found the limitation of the missing aspects of paying attention
to the emissions produced by an FL system as part of its trustworthiness, the goal of
the algorithmic prototype still is to evaluate the overall trustworthiness of a FL system
including all seven pillars. So far, no work has presented an evaluation algorithm for
trustworthy FL that includes all the seven requirements defined by the AI-HLEG. Thus,
instead of only implementing a prototype for the sustainability pillar, this work extends
the already existing prototype FederatedTrust developed by Sánchez et al. [14] with the
sustainability pillar and consequently presents the first algorithmic prototype to evaluate
the trustworthiness score of a given FL system including all the seven pillars representing
the seven requirements defined by the AI-HLEG [12].

Section 5.1 introduces tools that are used in the prototype. As FederatedTrust is im-
plemented to be integrated into FederatedScope, this Chapter first gives an overview of
FederatedScope and its functionalities in Subsection 5.1.1. It continues with an overview
of FederatedTrust v.0.1.0, the existing version implemented and designed by [14] and a
description of the python package CodeCarbon, which is used in the implementation to
estimate hardware efficiency and the carbon intensity of the energy grid used in Subsection
5.1.2.

After introducing the tools used, the design and implementation of FederatedTrust v.0.2.0
are handled in Section 5.2.

37

38 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.1 Used Tools

This Section gives insights into the design, architecture, and important functionalities of
tools that are used in FederatedTrust v.0.2.0. It starts with the Framework Federated-
Scope in Subsection 5.1.1, continues with the package CodeCarbon in Subsection 5.1.2
and ends with details to FederatedTrust v.0.1.0 in Subsection 5.1.3.

5.1.1 FederatedScope

FederatedScope [102] is an FL platform providing comprehensive functionalities and flex-
ible customization for various FL tasks. It is based on an event-driven architecture,
allowing users to extend and customize the FL system. It is written in Python and can
be installed in a Python environment via the following command:

1 git clone https :// github.com/alibaba/FederatedScope.git

FederatedScope has a modular construction and provides different interfaces where users
can add new building blocks as shown in Figure 5.1. New workers (clients and server),
new algorithms for personalization and/or aggregation and plugins for attack simulations,
privacy protection strategies, and much more can be programmed and easily integrated
into the framework [102]. This makes the framework extensible and adaptable to different
use cases and an interesting and suitable framework for research in FL. In this work,
version 0.2.0 of FederatedScope is used.

Figure 5.1: Programming Interfaces provided by FederatedScope from [102].

5.1. USED TOOLS 39

Typically, a FL course consists of multiple rounds of training. Figure 5.2 shows a basic
round of an FL course and its actors implemented in FederatedScope. According to Xie
et al. [102] this includes four major steps:

1. Global model broadcast: the server broadcasts the global model to all clients in the
federation

2. Local training: Once clients have received the global model from the server, they
start locally training the model with their private data

3. Client selection: The server chooses a percentage of clients to share their updated
models for the global training round. This selection can be done randomly or a
specified client selection strategy can be used.

4. Return updates: The server chooses a percentage of clients to share their updated
models for the global training round. This selection can be done randomly or a
specified client selection strategy can be used. The selected clients then share the
locally trained model with the server.

5. Aggregation: The server performs federated aggregation on the received model up-
dates with the help of an aggregator.

Figure 5.2: Overview of an FL round implemented with FederatedScope from [102].

5.1.2 CodeCarbon

CodeCarbon [90] is a lightweight software package that can be integrated into a Python
codebase. It estimates the amount of carbon dioxide (CO2) produced by the cloud or
personal computing resources used to execute the code. It measures the power supply of
underlying hardware at frequent time intervals. According to the developers, the package
supports the following hardware [90]:

40 CHAPTER 5. DESIGN AND IMPLEMENTATION

• GPU: energy consumption is tracked using the pynvml library

• RAM: an average value of 3 Watts per 8GB RAM is used to estimate RAM power
consumption

• CPU: On Windows or Mac, CodeCarbon tracks CPU power consumption using the
Intel Power Gadget, and on Linux, it tracks Intel processor power consumption
from Intel RAPL files. In the case that none of the tracking tools are available for
a computing resource, CodeCarbon uses a fallback approach. It identifies the spe-
cific CPU being used and matches it with a comprehensive data source containing
information on over 2000 Intel and AMD CPUs, along with their respective TDPs.
If the CPU is not found in the data source, however, a predefined global constant is
used. CodeCarbon makes an approximation by assuming that 50% of the TDP rep-
resents the average power consumption. This methodology allows for an estimation
of power consumption in case no direct tracking capabilities are available.

With the described methodology, the net power used is the net power supply measured
in kWh consumed during the computing time [90].

The net power consumption is then multiplied by the carbon intensity of the energy grid
used by the device. The carbon intensity of the energy grid is determined by the location
of the device and the average carbon intensity of the energy grid of the country the device
is located in, determined by a database containing countries and their carbon intensity of
the energy grid [90].

CodeCarbon also provides a dashboard with visualizations explaining the energy that has
been consumed, and the emissions that have been produced and put that measurements
into perspective by comparing the emissions produced to monthly average emissions from
a household, a car, or a television. An example dashboard can be seen in Figure 5.3.

Figure 5.3: Exemplary CodeCarbon Emissions Dashboard from [90]

Even if the measurements taken by the package are not fully accurate, the package provides
a fair estimation of emissions and helps to raise awareness of CO2eq emissions of machine
learning for developers and businesses. In this work, CodeCarbon version 2.2.1 is used.

5.1. USED TOOLS 41

5.1.3 FederatedTrust v.0.1.0

As already shortly introduced in Section 5.1.3 FederatedTrust is an algorithmic proto-
type developed by Sánchez et al. [14] to quantify the trustworthiness level of FL models
according to the six pillars: privacy, robustness, fairness, explainability, accountability,
and federation. Since FederatedTrust will be extended in this work with the sustainabil-
ity pillar, this section gives a detailed introduction to FederatedTrust, its architecture,
implementation, and metrics.

Design and Architecture

For the algorithm design, FederatedTrust considers the following four different input
sources to compute the trustworthiness level of FL systems according to Sánchez et al.
[14]. i) FL Model: contains information on the collaboratively trained model in the FL
course. ii) FL framework configuration file: contains configuration parameters of Feder-
atedScope needed to train and evaluate the FL model. This configuration includes the
number of training rounds, the number of clients, the client selection rate, the dataset
split, the client selection mechanisms, the model hyperparameters, the loss function, the
optimizer, the model architecture, the aggregation algorithm, and more. iii) FactSheet:
contains relevant information to calculate the trustworthiness score for all the pillars. The
factsheet is filled through the FL course with information coming from the others sourced
through FederatedTrust’s TrustmetricManager. vi) Statistics: contains the statistical in-
formation extracted from the training dataset of each client such as client’s class balance,
client’s test performance loss, and client’s test accuracy.

Figure 5.4 visually represents the dynamic interactions among the various actors engaged
in the computation process of determining the trustworthiness score computed by Fed-
eratedTrust integrated into an FL framework. The central server has the pivotal role of
hosting four components: the aggregator, the FactSheet, the FL framework configuration,
and the FederatedTrust algorithm. While the clients hold their local model, their private
dataset, and client statistics [14].

The Aggregator takes on the responsibility of merging the parameters from the partici-
pating clients’ models to construct the global FL model[14].

The FL framework configuration file holds detailed information about the FL system such
as the number of participating clients, the model used and its architecture, the dataset
used, the aggregation algorithm used, the number of global and local training rounds, and
more [14].

The FactSheet, also residing on the central server, captures and documents essential
information about the FL system and its actors that are later used to compute the notions
and metrics for the trust FL score. Some information in the FactSheet is obtained from
the configuration file and other information is coming from the FL course itself [14].

Furthermore, the central server holds the FederatedTrust algorithm, which takes on the
computation of the final trust score for the FL system. By employing a comprehensive set

42 CHAPTER 5. DESIGN AND IMPLEMENTATION

of criteria and metrics, this algorithm evaluates the trustworthiness of the FL system and
produces a final trust score that acts as an indicator of the FL system’s trustworthiness
level in terms of privacy, robustness, fairness, accountability, explainability, and federation
[14].

Each client is responsible for local training and evaluation of the model with their own
private data. Further, client statistics such as the performance of the model, the class
distribution, and the entropy distribution are stored at the client’s side [14].

Together, these components and actors form a cohesive FL framework supplied with
FederatedTrust to compute the trustworthiness score of FL systems. To compute the
trust score, during the pre-training phase, the relevant content of the FL framework
configuration is sent to the FederatedTrust algorithm and copied to the FactSheet (steps
one and two in Figure 5.4) and pre-training metrics are computed according to them.
Then, the server shared the global model with all the clients in the federation, starting
the local training process at each client (step three in Figure 5.4). At some point in
time, the server chooses clients for the global aggregation, and the chosen clients sent
back the model parameters of their locally trained models and the client’s statistics to
the server (step four in Figure 5.4). At that point, the model parameters are aggregated
by the aggregator and FederatedTrust computes in-training metrics (step five in Figure
5.4). Until the number of global training rounds is reached, steps three, four, and five are
repeated. Once reached this point, FederatedTrust computes the post-training metrics.
In the end, the FederatedTrust algorithm reports a trust score per pillar and a global one
of the federation. Additionally, a report is generated and stored [14]. A more detailed
version of the steps is provided in the algorithmic pseudocode in Appendix 7.1.

Figure 5.4: Overview of Different Actors of FederatedTrust integrated into a Framework
from [14].

5.1. USED TOOLS 43

Metric and Metric Computation

The trust metrics that are implemented in FederatedScope have already been introduced
and discussed in Section and are depicted in Table 3.3 but this subsection pays a closer
look into the methodology used to compute this metrics and their normalization. As can
be seen in Figure 5.5, the separate metrics are first going through metrics normalization
functions, normalizing them to values between 0 and 1 [14]. How they are normalized,
depends on the metric itself and the normalization function for each metric can be seen
in Table A.2 in the Appendix.

After the normalization step, all metrics associated with a separate notion are passed to a
metric aggregation function, which combines all metrics into a score for each notion. The
notion score is a weighted average of all the metrics belonging to that notion. The weights
can be adjusted in the evaluation metrics file of FederatedTrust. Out of the notion scores,
the same aggregation is applied again to all the notions belonging to one trust pillar,
resulting in a trust score for each of the six pillars. Then again, the same aggregation
function is applied to all the six pillar scores finally resulting in a global trust score of the
FL system [14].

Figure 5.5: FederatedTrust Metric Calculation Process from [14].

Issues Experienced with FederatedTrust v.0.1.0

Whilst trying out FederatedTrust v.0.1.0 for this work, some problems with the package
became present. Making the package as is run inside FederatedScope using the installation
guidelines provided was not possible and the issues could only be resolved after inspect-
ing another public repository of the developer that showed changes that were made to
FederatedScope itself in order to make FederatedTrust run with it. These are only minor
issues, but resolving these proved to be a time-consuming process. To spare this process
to future users of FederatedScope v.0.1.0, this section provides a list of problems and steps
that need to be taken in order to make FederatedTrust v.0.1.0 run:

44 CHAPTER 5. DESIGN AND IMPLEMENTATION

• Missing files: the package is missing crucial files for metrics computation. It is miss-
ing a file for computing the clever metric as well as a file for computing the feature
importance cv. These two files can be found under federatedscope/contrib/met-
rics/feature importance cv.py and federatedscope/contrib/metrics/clever.py in the
repository available under this link:
https://github.com/ningxie1991/FederatedScope. These files need to be downloaded
and included under the same path in your local FederatedScope environment for
FederatedTrust v.0.1.0 to run.

• Model zoo: Unfortunately, FederatedTrust v.0.1.0 does not work with the differ-
ent models in the model zoo of FederatedScope. The definition of the model has
been changed in order to work with some functions of FederatedTrust v.0.1.0 such
as the computation of the SHAP value. To get FederatedTrust running, either
the implementation of the SHAP value needs to be changed or the changed model
definition of the developer has to be applied. The changed model definition can
be found in the path federatedscope/cv/model/cnn.py in the following repository:
https://github.com/ningxie1991/FederatedScope. One needs to replace the file fed-
eratedscope/cv/model/cnn.py in the local FederatedScope environment with the one
that can be found under the link provided.

• Inclusion of code snippets: In order to make FederatedTrust v.0.1.0 work, code-
snippets have to be integrated into FederatedScope. Some of them are described
in the installation guidelines of FederatedScope v.0.1.0, but not all of them. In
detail, the changes made to the files federatedscope/core/fed runner.py, federat-
edscope/core/trainers/torch trainer.py, federatedscope/core/workers/client.py and
federatedscope/core/workers/server.py in the repository under the following link:
https://github.com/ningxie1991/FederatedScope need to be applied to your local
version of FederatedScope as well. An easier way is to download the named files
and replace them in your local version of FederatedScope.

• Dependency issues: Once built FederatedTrust v.0.1.0 inside FederatedScope differ-
ent dependency issues arise. Following versions of the external libraries needed work
in the combination of FederatedScope and FederatedTrust:

1 torchvision == 0.15.2

2 adversarial -robustness -toolbox == 1.14.1

3 dotmap == 1.3.30

4 numpy ==1.22.4

5 scipy ==1.7.3

6 pandas == 2.0.1

7 hashids == 1.3.1

8 grpcio ==1.55.0

9 grpcio -tools

10 protobuf == 3.20.3

11 pympler == 1.0.1

12 pyyaml ==6.0

13 fvcore

14 iopath

15 wandb == 0.15.3

16 scikit -learn == 1.1.3

17 scipy == 1.7.3

18 shap == 0.41.0

5.2. DESIGN AND IMPLEMENTATION OF FEDERATEDTRUST V.0.2.0 45

19 tabulate == 0.9.0

20 tensorboard

21 tensorboardX

22 tensorflow == 2.12.0

23 torch == 2.0.1

24 pympler

• FederatedScope version: FederatedTrust v.0.1.0 works with FederatedScope v.0.2.0
once the above-mentioned adjustments have been taken, but not with the newest
version v.0.3.0.

A simpler way to make FederatedTrust v.0.1.0 run within FederatedScope, is to clone the
adjusted FederatedScope repository under this link:
https://github.com/ningxie1991/FederatedScope
and install FederatedTrust inside this environment. It is simpler since all the adjustments
to files in FederatedScope are already done. However, the fixing of the dependency issues
step described above still needs to be taken.

5.2 Design and Implementation of FederatedTrust v.0.2.0

This section explains the design and implementation of FederatedTrust v.0.2.0 which is
an extension of FederatedTrust v.0.1.0 including the sustainability pillar and its metrics
and notions. Subsection 5.2.1 defines the context and assumptions that were followed
in designing and implementing the prototype. Subsection 5.2.2 defines requirements and
constraints while Subsection 5.2.3 shows the architecture and Subsection 5.2.4 depicts the
algorithmic pseudocode. Subsection 5.2.5 introduces the metrics and notions for the sus-
tainability pillar and their definition. Subsection 5.2.6 explains the computation process
for the metrics of the sustainability pillar. Subsection 5.2.7 handles the metric config-
uration file and the metric normalization process. Subsection 5.2.8 shows the process
that is followed to compute the final trust score and Subsection 5.2.10 explains additional
functionalities built into FederatedTrust v.0.2.0 that are not directly related to the compu-
tation of a final trustworthiness score. Lastly, Subsection 5.2.11 introduces the guidelines
needed to follow to install and use FederatedTrust v.0.2.0.

5.2.1 Context, Assumptions

For the development of FederatedTrust v.0.2.0 included in the FederatedScope v.0.2.0
framework, the following contexts (C) and assumptions (A) are defined. The first context
and the first assumption stayed the same as they were in FederatedTrust v.0.1.0 [79] but
the second assumption is added to suit the new prototype.

• ”C-1: The use case that the algorithm is developed for is a client-server HFL model”
[79].

46 CHAPTER 5. DESIGN AND IMPLEMENTATION

• ”A-1: The central server is honest and maintained by a trusted system owner and
thus does not interfere with the FL protocol maliciously” [79].

• A-2: Clients are honest but curious, meaning they do trustfully report their metrics
and statistics without maliciously interfering with the FL protocol.

5.2.2 Requirements and Constraints

Similar to the first version of FederatedTrust [79, 14], this extended version of Federat-
edTrust assumes that the server is honest and maintained by a trusted system adminis-
trator, and thus the server does not maliciously interfere with the trust score computa-
tion process. The functional requirements (FR), non-functional requirements (NF), and
privacy constraints (PC) for FederatedTrust v.0.2.0 are the same as they were in Feder-
atedTrust v.0.1.0 and are the following:

”FR-1: Each of the seven trustworthy FL pillars must be represented in the algorithm,
meaning that at least one metric from each pillar must be considered in the final score.

FR-2: The final trustworthiness score must be a combination of the trustworthiness scores
from all notions and pillars.

NF-1: The algorithm should add minimal computation overhead and complexity to the
server, participants, and FL model.

NF-2: The algorithm should be modular and configurable.

PC-1: The algorithm must not store any sensitive data from the FL model.

PC-2: The algorithm must not leak or share any sensitive data from clients, the server,
and the FL model with third parties.

PC-3: The metrics calculations can occur at the client’s local devices, the central server,
or collaboratively between both” [p. 10][14].

5.2.3 Architecture

Figure 5.6 depicts the architecture and interactions between FederatedScope and Fed-
eratedTrust v.0.2.0. It extends the original architecture of FederatedTrust v.0.1.0 [79]
with the added components to obtain the metrics needed to compute the trust score of
the sustainability pillar. The left side of Figure 5.6 shows the components coming from

5.2. DESIGN AND IMPLEMENTATION OF FEDERATEDTRUST V.0.2.0 47

FederatedTrust v.0.2.0 and the right side shows the components originally coming from
FederatedScope. If FederatedTrust is mentioned, it relates to FederatedTrust v.0.2.0. The
interactions between the different components involve the following steps:

1. Setup: Start federation by initiating the FedRunner from FederatedScope. The
FedRunner takes the ConfigFile as input and initiates clients and the server as well
as a TrustMetricManager from FederatedTrust. The TrustMetricManager takes the
ConfigFile as input as well and begins populating the FactSheet with pre-training
metrics such as the number of clients in the federation and the number of training
rounds.

2. Model broadcast: The server broadcasts the global model to selected clients in the
federation.

3. Local Training: The selected clients train their local models with their local private
dataset. Additionally, clients are using functionalities of the CodeCarbon package
(not shown in Figure 5.6) to obtain metrics relevant to the sustainability pillar
computation such as the hardware and the carbon intensity of the energy grid used.

4. Report Emissions Metrics: Selected clients report metrics such as the hardware
models and energy grid used to the TrustMetricManager which then stores it in the
EmissionsFile.

5. Model Sharing: The selected clients then share their updated model parameters
with the server.

6. Federated Aggregation: the Aggregator is used by the server and performs secure
aggregation over the model updates received from selected clients.

7. Evaluation: After each training round, the clients perform model evaluation and
call the MetricBuilder to perform metric calculations. The results of this evaluation
are then written to the Eval Results File.

8. Next training round: Steps two to eight are repeated until all the training rounds
are finished.

9. Propagate Evaluation Results: Once the final training round is finished and the
FedRunner stops the collaborative training, The evaluation results get propagated
to the FactSheet through the TrustMetricManager of FederatedTrust

10. Trust Score Computation: The TrustMetricManager calls the evaluation function
to compute the overall trust score from the FactSheet and report including the
trustworthiness scores get stored in the output directory of FederatedTrust.

48 CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.6: Interactions between FederatedTrust and FederatedScope, further develop-
ment from [79] and [102].

5.2. DESIGN AND IMPLEMENTATION OF FEDERATEDTRUST V.0.2.0 49

5.2.4 Algorithmic Pseudocode

The execution of the training process for an FL model in FederatedScope, described in
Subsection 5.6, along with the evaluation of its trustworthiness using FederatedTrust
v.0.2.0, is shown in Algorithm 1. The algorithm is a further development of v.0.1.0 [14].

Algorithm 1 Training in FederatedScope with FederatedTrust v.0.2.0
Input: N clients, sampling size m, central server S, total number of iterations T , initial

model w(0), setup configurations C, FederatedTrust metric manager ft
Output: Evaluation results, trustworthiness report, estimated carbon emissions

1: S sends the hashed ids of all clients i ∈ [N] and C to ft
2: ft creates FactSheet with information from C
3: ft creates a map of hashed client ids to values of 0 representing the initial selection rate
4: S sends the model metadata to ft
5: S requests class distribution information from all clients i ∈ [N]
6: ft creates emissions file ef
7: for each client i ∈ [N] do
8: Client i uses ft function to calculate the sample size per class of local data
9: ft creates or updates the class distribution map of hashed labels to sample size

10: end for
11: for t = 0 to T do
12: S randomly samples D(t) ⊂ [N] clients with size of m
13: S sends the hashed ids of the selected clients to ft
14: ft updates the client selection rate map
15: S broadcasts the current model w(t) to all clients i ∈ D(t)
16: for each client i ∈ D(t) do
17: Client i initializes an EmissionsTracker object from CodeCarbon and starts emissions

tracking for training
18: Client i performs local training with w(t)
19: Client i uses ft function to stop emission tracking for training and to save results
20: ft updates ef
21: Client i sends new model updates w(t+ 1)i back to S
22: end for
23: S initializes an EmissionsTracker object from CodeCarbon and starts emissions tracking

for aggregation
24: S performs secure aggregation of all updates received into a new global model w(t+ 1)
25: S uses ft function to stop emissions tracking for aggregation and to save results
26: ft updates ef
27: end for
28: S sends final global model w′ to every client i ∈ [N] for performance evaluation
29: for each client i ∈ [N] do
30: Client i computes evaluation metrics with local test data and global model w′

31: Client i sends the evaluation results back to S
32: end for
33: S aggregates the evaluation results and sends them to ft
34: ft receives the evaluation results and populates the FactSheet with them
35: S asks ft to evaluate the trustworthiness of the model
36: ft computes the trustworthiness score and estimated emissions and generates a report JSON

and print message

50 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.2.5 Metric Definitions

This Subsection contains the notions and metrics for the sustainability pillar in Table 5.1
as seen in the taxonomy 4.4. Each of the metrics has the following properties, similar to
FederatedTrust v.0.1.0 [79]:

1. Metric: the name of the metric

2. Description: A short description/definition of the metric

3. Input: The document or data serving as input for metric calculation

4. Output: the raw output of the metric before the normalization step gets applied.
The raw output can be in one of the following formats: - 0/1 - [m,n] - % - Integer -
Real
where [m,n] means that it is a range from m to n.

5. Dependency: dependent elements, packages, or libraries necessary for the computa-
tion

The other 20 metrics that have already been implemented in FederatedTrust v.0.1.0 can
be seen in Figure A.2 in the Appendix 7.1 and more details about those metrics can be
found in the original master thesis that implemented these metrics [79].

5.2. DESIGN AND IMPLEMENTATION OF FEDERATEDTRUST V.0.2.0 51

Table 5.1: Metrics for Sustainability Pillar.

Metric Description Input Output Dependency

Carbon Intensity of Energy Source

Avg, carbon
intensity of
clients

The average carbon inten-
sity of energy grid used by
clients

location
of clients
(IP)

Float
[20,795]

IP address of clients,
codecarbon package
incl. carbon intensity
database

Carbon inten-
sity server

The carbon intensity of en-
ergy grid used by the server

Location
of server
(IP)

Float
[20,795]

IP address of server,
codecarbon package
incl. carbon intensity
database

Hardware Efficiency

Avg. hard-
ware efficiency
of clients

The average performance
per watt (CPU or GPU
Mark/ TDP) of CPUs and
GPUs used by clients

CPU
and
GPU
models
of clients

Float
[20,1447]

codecarbon package
reads CPU and GPU
model in use, hardware
benchmark dataset
from PassMark

Hardware
efficiency of
clients

The performance per watt
(CPU or GPU Mark/
TDP) of CPUs and GPUs
used by the server

CPU
and
GPU
models
of server

Float
[20,1447]

codecarbon package
reads CPU and GPU
model in use, hardware
benchmark dataset
from PassMark

Federation Complexity

Number of
global training
rounds

The number of global
training rounds in the FL
system

Config
file

Integer Is documented in the
config file

Number of
clients

The number of clients in
the federation

Config
file

Integer Is documented in the
config file

Client selec-
tion rate

% of clients selected in each
training round to share
their models

Config
file

Float
[0,1]

Is documented in the
config file

Average
number of
local training
rounds

The average number of lo-
cal training rounds per-
formed by clients withing
one global training round

Config
file

Integer Is documented in the
config file

Average
dataset size

The average number of
samples used by clients in
one training round

Client
Statis-
tics

Integer Is computed trough
FederatedScope

Model size Number of features/depth
of decision tree/number of
parameters in NN

Model Integer Model meta data

52 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.2.6 Raw Metric Computation

This Subsection explains how the computation of the raw metrics composing the notions of
the sustainability pillar works. These raw metrics are afterward normalized with different
normalization functions according to the metric configuration as described in Subsection
5.2.7. FederatedTrust v.0.2.0. still contains all the six other pillars that have already
been implemented in FederatedTrust v.0.1.0. But since they were already there, they
are not explicitly explained in this Subsection. For more details on metrics and notions
composing all the pillars except the sustainability pillar please refer to [79].

Carbon Intensity of Energy Source

The carbon intensity of the energy source notion is compromised of two metrics: the
average carbon intensity of the energy source used by all the clients in the federation and
the carbon intensity of the energy source utilized by the server.

To calculate the average carbon intensity of the energy source used by clients metric, the
EmissionsTracker functionality of the CodeCarbon package introduced in Subsection 5.1.2
is used. CodeCarbon obtains information about the location of the client and then matches
this location with a database containing the average carbon intensity of the energy grid
of countries. In each global training round, all the clients report their carbon intensity of
the energy grid obtained by the CodeCarbon functionalities to the TrustMetricManager of
FederatedTrust v.0.2.0, which then stores this information in a file. After the last global
training round is completed, FederatedTrust computes the average of all the clients that
reported energy grids in all training rounds.

A similar procedure happens on the server side to report the carbon intensity of the energy
grid. However, since the server does not perform any training, the reporting happens
when the server performs aggregation on the model parameters. The server also uses the
CodeCarbon package to obtain the carbon intensity of its energy grid and reports it to the
TrustMetricManager in each global round. Most of the time, the server does not change
its location, thus the raw metric is equal to the carbon intensity of the energy grid the
server is located in. If the server would change its location during the federated training
of a model, FederatedTrust v.0.2.0 would still be able to capture it, since the metric is
reported to the TrustMetricManager in every round, and after the last training round the
average is computed.

Due to the implementation of the metrics included in the carbon intensity of energy
source notion, FederatedTrust v.0.2.0 can precisely capture the metrics even if clients
or server change their locations through the course of the federation or if clients are
located in different countries of the world. Additionally, the CodeCarbon package is
used and updated frequently, ensuring that the carbon intensity values of energy grids
from countries remain up-to-date, ensuring that FederatedTrust v.0.2.0 does not become
outdated quickly.

5.2. DESIGN AND IMPLEMENTATION OF FEDERATEDTRUST V.0.2.0 53

Hardware Efficiency

The hardware efficiency notion of the sustainability pillar is compromised by two notions:
the average hardware efficiency of the clients and the hardware efficiency of the server.

Similarly to the carbon intensity of the energy source metrics, the hardware efficiency
metrics rely on functions of the CodeCarbon package. CodeCarbon obtains the hardware
that is installed in the clients and the server and during training on the client’s side and
aggregation at the server side also detects which part of the hardware, meaning if CPU or
GPU, is used. This information is then sent from the worker to the TrustMetricManager
and stored in each global round. After the last training round is finished, FederatedTrust
uses a downloaded database in the form of a CSV file to match the CPU and GPU
models with their power performance measurements. The CSV files containing the power
performance measurements of CPUs [100] and GPUs [101] are created by PassMark, a
widely used hardware benchmarking software, and are for this work downloaded from
Kaggle and stored in FederatedTrust. After the CPU and GPU models are matched with
their according power performance metrics, for all the clients the average of the power
performance metrics of the used hardware is computed. Also for the server, the average
is computed. But since the server mostly does not change its hardware, the average is the
same as taking the power performance of one round.

With this implementation, FederatedTrust v.0.2.0 is able to accurately compute the hard-
ware efficiency of the hardware that is used by clients and servers. It is also able to
differentiate between hardware that is installed in the worker’s devices and hardware that
is actually used and only takes hardware that is used into account. Since the database
that is used is a static CSV file, the database does not contain CPUs and GPUs that are
developed in the future and thus needs to be updated. An improvement would be to build
a crawler that directly gets the power performance values from the Passmarks website,
such that the values are always up-to-date.

Federation Complexity

The federation complexity notion of the sustainability pillar is compromised of the number
of training rounds, the number of clients in the federation, the client selection rate, the
average number of local training rounds, the average dataset size, and the model size. All
of these metrics are computed by the FederatedScope framework itself and are directly
taken from it to further apply normalization functions by FederatedTrust.

5.2.7 Metric Configuration and Normalization

The metric configuration file serves as a centralized repository for storing all the essential
pillars, notions, and metrics that are taken into account for calculating the trustworthiness
score in FederatedTrust. In Figure 5.7, the structured representation of metric objects
stored within the metrics configuration file can be observed. This JSON file contains all
seven pillars, encompassing the notions associated with each pillar. Under each notion, a

54 CHAPTER 5. DESIGN AND IMPLEMENTATION

comprehensive list of metrics is provided as well as a weight for that notion. Each metric
comprises various key-value pairs, including an input field that specifies the source from
which the value of the metric can be obtained. Additionally, a field path is included,
which details the specific path within the source file where the value is stored.

By organizing this information within the metrics configuration file, FederatedTrust knows
which metrics, notions and pillars need to be computed and considered during the trust-
worthiness evaluation process. For extending FederatedTrust with pillars, notions, or
metrics in the future, this configuration file can be used.

Figure 5.7: FederatedTrust v.0.2.0 Metric Configuration Design further Development from
[79].

An important aspect to discuss in the configuration file is the type field. This field specifies
the kind of normalization function that needs to be applied to the value of this metric in
order to normalize it to a score between zero and one to later include it into the trust
score of the notion and later the trust score of the pillar and ultimately the trust score of
the federation. Currently, there are six different normalization functions implemented in
FederatedTrust, but new functions can easily be implemented. The six functions include:

1. true score: This type of metric directly reflects the output score based on the input.
It is a straightforward mapping from input to output and thus also does not need a
normalization function [79].

5.2. DESIGN AND IMPLEMENTATION OF FEDERATEDTRUST V.0.2.0 55

2. ranges: For this type of metric a specific range of values needs to be defined. The
output score of this metric depends on which range the input value falls into. This
allows considering different levels within a range, for example, models having one
million, ten million, hundred million, or one billion parameters [79].

3. score mapping: In this type of metric, the input value is mapped to an output value
depending on a defined score map that must be provided in the score map field [79].

4. score ranking: With this type, we assign a ranking to the input value, and that
ranking becomes the output score. It’s more about the relative position or order of
the input values, rather than their specific numerical values [79].

5. property check: metrics of this type focus on verifying the presence or absence of
specific properties in the input value. The output score is based on whether the
property is present or not, enabling validation of essential characteristics [79].

6. scaled score: metrics of this type lie in between a specified scale, for example between
20 and 120. This scale is then transformed to map the score between a scale of zero
and one.

The first five metric types and their according normalization functions have already been
implemented in FederatedTrust v.0.1.0 and their exact implementation and examples can
be viewed at [79]. The Listing 5.1 shows the implementation of the new normalization
function that is used for the newly introduced scaled score metrics necessary for the
sustainability pillars of FederatedTrust v.0.2.0.

1 def get_scaled_score(value , scale:list , direction:str):

2 """ Maps a score of a specific scale into the scale between zero and

one

3 :param value: int or float: the raw value of the metric

4 :param scale: list containing the minimum and maximum value the

value can fall in between

5 :param direction: asc means the higher the range the higher the

score , desc means otherwise

6 :return: normalized score of [0, 1]

7 """

8 score = 0

9 low , high = 0, 1

10 try:

11 value_min , value_max = scale[0], scale [1]

12 except Exception as e:

13 logger.warning("Score minimum or score maximum is missing. The

minimum has been set to 0 and the maximum to 1")

14 value_min , value_max = 0,1

15 else:

16 if value >= value_max:

17 score = 1

18 elif value <= value_min:

19 score = 0

20 else:

21 diff = value_max - value_min

22 diffScale = high - low

23 score = ((float(value) - value_min) * (float(diffScale) /

diff) + low)

56 CHAPTER 5. DESIGN AND IMPLEMENTATION

24 if direction == ’desc’:

25 score = high - score

26 return score

Code Listing 5.1: Code of Scaled Score Normalization Function.

The described scaled score metric is used in the sustainability pillar of FederatedTrust
v.0.2.0 for all the metrics belonging to the carbon intensity of the energy source pillar as
well as all the metrics belonging to the hardware efficiency notion. Further, it is used for
the client selection rate metric in the federation complexity notion. All the other metrics
in the federation complexity pillar use score type number two ranges. The Listing 5.2
exemplary shows the part of the configuration file that represents the carbon intensity
of the energy source notion of the sustainability pillar. Of course, the necessary fields
for the other two notions of the sustainability pillar have also been added to the metric
configurations file.

1 "sustainability ": {

2 "energy_source ": {

3 "weight ": 0.5,

4 "metrics ": {

5 "carbon_intensity_clients ": {

6 "inputs ": [

7 {

8 "source ": "factsheet",

9 "field_path ": "sustainability/avg_carbon_intensity_clients

"

10 }

11],

12 "operation ": "get_value",

13 "type": "scaled_score",

14 "direction ": "desc",

15 "scale": [20,795] ,

16 "description ": "Carbon intensity of energy grid used by

clients",

17 "weight ": 0.5

18 },

19 "carbon_intensity_server ": {

20 "inputs ": [

21 {

22 "source ": "factsheet",

23 "field_path ": "sustainability/avg_carbon_intensity_server"

24 }

25],

26 "operation ": "get_value",

27 "type": "scaled_score",

28 "direction ": "desc",

29 "scale": [20,795] ,

30 "description ": "Carbon intensity of energy grid used by server

",

31 "weight ": 0.5

32 }

33 }

34 }

Code Listing 5.2: Exemplary Part of Configuration File

5.2. DESIGN AND IMPLEMENTATION OF FEDERATEDTRUST V.0.2.0 57

5.2.8 Trust Score Computation

The procedure to calculate the overall trust score of the FL system in FederatedTrust
v.0.2.0 is depicted in Figure 5.8. The metrics that are needed to compute the notion
scores are obtained before, during, or after the training of the FL model, and are coming
from different sources such as the FL model itself, the framework configuration file, the
client statistics file, or the emissions file depending on the metric.

For the sustainability pillar of FederatedTrust v.0.2.0, the metrics are obtained from the
FL model, framework configuration file, and the emissions file as discussed in Subsec-
tion 5.2.6. More information on the metrics of the other pillars and their inputs and
computations can be found at [79].

In the first step, the metrics necessary to calculate the trust score are gathered and stored
in a JSON file called FactSheet. The TrustMetricManager from FederatedTrust v.0.2.0
then collects these metrics from the FactSheet and applies the according normalization
function to each metric to get a score between zero and one. Which normalization function
has to be applied to which metric, is defined in the type field of each metric in the
configuration file as discussed in Subsection 5.2.7.

After applying the normalization function, the metric aggregation function is called which
aggregates all metrics belonging to a notion with a weighted average, resulting in trust
scores per notion.

Then, the notion aggregation function is applied to aggregate all the notions belonging to
a pillar with a weighted average to obtain a trust score per pillar.

To reach a final trust score, the pillar aggregation function is applied to aggregate all the
notion trust scores and combine them to a final FL trust score again using a weighted
average.

Figure 5.8: FederatedTrust v.0.2.0 Trust Score Computation Process, further development
from [14].

58 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.2.9 Parametrization

Since running complex federations with lots of clients and a high number of training rounds
just to compute the trust score of that configuration is time- and energy-consuming, Fed-
eratedTrust v.0.2.0 provides the possibility to parametrize configurations of the federation
in order to compute the trust score. With this, users can compute the trust score a fed-
eration would get if it would have been run with other configurations e.g. 10e6 training
rounds instead of 10 training rounds. To parametrize FederatedTrust v.0.2.0 one needs
to store the metrics that want to be parametrized in the factsheet template file (Federat-
edTrust/configs/factsheet template.json). An example factSheet template file where only
the number of training rounds have been parametrized and the rest of the metrics have
not been parametrized can be viewed in the Listing 5.3. The listing shows all the raw
metrics that are gathered in the factsheet of FederatedTrust v.0.2.0 in order to compute
the trust score. The parametrization of the number of training rounds in this file does not
lead the federation to run 10e6 training rounds, instead, the number of training rounds
that are specified in the configuration file are run. But the trust score is computed as if
10e6 training rounds would have been run. This is a useful feature if users want to play
around with different configurations of federations and look at their resulting trust score
without indeed running federations with these configurations.

1 {

2 "project ": {

3 "overview ": "",

4 "purpose ": "",

5 "background ": ""

6 },

7 "data": {

8 "provenance ": "",

9 "preprocessing ": "",

10 "avg_entropy ": ""

11 },

12 "participants ": {

13 "client_num ": "",

14 "sample_client_rate ": "",

15 "client_selector ": "",

16 "avg_dataset_size ": ""

17 },

18 "configuration ": {

19 "optimization_algorithm ": "",

20 "training_model ": "",

21 "personalization ": "",

22 "differential_privacy ": "",

23 "dp_epsilon ": "",

24 "trainable_param_num ": "",

25 "total_round_num ": 10e6,

26 "learning_rate ": "",

27 "local_update_steps ": ""

28 },

29 "performance ": {

30 "test_loss_avg ": "",

31 "test_acc_avg ": "",

32 "test_feature_importance_cv ": "",

33 "test_clever ": ""

5.2. DESIGN AND IMPLEMENTATION OF FEDERATEDTRUST V.0.2.0 59

34 },

35 "fairness ": {

36 "test_acc_cv ": "",

37 "selection_cv ": "",

38 "class_imbalance ": ""

39 },

40 "system ": {

41 "avg_time_minutes ": "",

42 "avg_model_size ": "",

43 "avg_upload_bytes ": "",

44 "avg_download_bytes ": "",

45 "total_upload_bytes ": "",

46 "total_download_bytes ": ""

47 },

48

49 "sustainability ": {

50 "avg_carbon_intensity_server ": "",

51 "avg_carbon_intensity_clients ": "",

52 "avg_power_performance_clients ": "",

53 "avg_power_performance_server ": "",

54 "emissions_training ": "",

55 "emissions_aggregation ": "",

56 "emissions_communication_uplink ": "",

57 "emissions_communication_downlink ": ""

58

59 }

60 }

Code Listing 5.3: Exemplary Part of Configuration File

5.2.10 Additional Functionalities

In addition to calculating the trust score of a federation, FederatedTrust v.0.2.0 pro-
vides another useful functionality: estimating the emissions that are produced by the
federation. This estimation relies on the EmissionsTracker of the CodeCarbon package
introduced in Subsection 5.1.2. The estimated emissions in g of CO2eq are printed at
the end of the training process in the console by FederatedTrust v.0.2.0. The emissions
produced are obtained and estimated by CodeCarbon in the training stage at the clients’
side and the aggregation stage at the server side. In addition, FederatedTrust also es-
timates the emissions produced for communicating the model parameters up (from the
clients to the server) and down (from the server to the clients). For this estimation, the
number of bytes that are communicated metric, which is computed by the FederatedScope
framework itself, is taken and multiplied by 2.24e-10 kWh/byte, resulting in an estimated
energy consumption to transfer the number of bytes. This constant is an estimation
published by the Shift Project in its one-byte report [103]. The energy consumption is
then multiplied by the carbon intensity of the server to obtain the emissions produced
by downlink communication and multiplied by the average carbon intensity of the clients
to obtain the uplink communication. The estimated emissions for training, aggregation,
uplink communication, and downlink communication are summed and printed in the con-
sole. It is important to note, that the emissions shown in the console are only an estimate,

60 CHAPTER 5. DESIGN AND IMPLEMENTATION

due to using constants for the communication part. Of course, the energy consumption
of transferring data over the internet depends on many factors such as the distance and
the internet protocol used.

5.2.11 Installation Guidelines

In order to simplify the time-consuming installation process of FederatedTrust v.0.1.0, this
new version FederatedTrust v.0.2.0 is directly integrated into FederatedScope. Thanks to
this approach, the installation is as simple as cloning the repository from GitHub and
installing the dependencies through the setup.py file. The dependency issues described in
Subsection 5.1.3 have been resolved in this version.

The installation process includes:

1. Cloning the GitHub repository

1 git clone https :// github.com/lzumta/FederatedScope.git

2. Changing the directory to FederatedScope

1 cd FederatedScope

2. Installing Dependencies into a virtual environment

1 # Editable mode

2 pip install -e .

1 # Or (developers for dev mode)

2 pip install -e .[dev]

3 pre -commit install

After the installation, the example experiment can be executed with these steps:

1. Changing the directory to federatedTrust

1 cd federatedTrust

2. Executing example federation

1 python ../ federatedScope/main.py --cfg configs/example_config.yaml

To apply your own configurations, create a config.yaml file and pass it to FederatedScope.

To apply parametrization, change the values of the metrics you wish to parametrize in
the federatedTrust/configs/factsheet template.json file.

More detailed instructions for configuration and parametrization are provided in the
ReadMe of the repository.

Chapter 6

Evaluation, Results, and Discussion

This chapter provides a comprehensive assessment of the sustainability pillar as well as
the algorithmic prototype including all seven pillars. With seven different evaluation
scenarios, the capabilities of the sustainability pillar, the algorithm including all pillars,
and their limitations are explored.

Since the algorithm directly computes metrics for the sustainability pillar through running
the federation, such as the hardware that is used by clients, setting up different evaluation
scenarios would mean running the federation on different devices. Further, to get different
values for the carbon intensity of the energy grid used, the federation would need to be
run in different countries. Additionally, running complex federations with hundreds of
training rounds and clients would be computationally expensive and take tremendous
amounts of time. To simplify these aspects, parametrization 5.2.9 is used in some of the
evaluation scenarios.

First, one evaluation scenario (Section 6.1) is run without parameterizing metrics and
thus using FederatedTrust v.0.2.0 as intended. Then, the same scenario is run with
parametrized metrics, confirming that the algorithm produces consistent results, no mat-
ter if parameters have been used or the values are directly computed from the federation
and thus validating the functionality of the algorithm.

Second, four different parametrized evaluation scenarios are run (Section 6.2), analyz-
ing the behavior of FederatedTrust v.0.2.0 focusing on the sustainability pillar. Various
aspects are analyzed, such as different complexities of the federation, different magni-
tudes of the carbon intensity of the energy grid used by the clients and the server, and
different hardware efficiencies of CPUs used by clients and the server by parametrizing
FederatedTrust v.0.2.0.

Third, two evaluation scenarios are run (Section 6.3), analyzing the behavior of Federat-
edTrust v.0.2.0 as a whole including all the seven pillars.

Finally, the results of the experiments are discussed as well as the limitations of the
algorithmic prototype implementation and design (Section 6.4).

61

62 CHAPTER 6. EVALUATION, RESULTS, AND DISCUSSION

6.1 Parametrized vs. Non-parametrized

This section evaluates the functionality of FederatedTrust v.0.2.0 by running two evalua-
tion scenarios using the algorithm as intended, meaning that all the metrics are obtained
and computed directly from the federation and its participants as introduced in Subsection
5.2.6 without applying any parametrization. Then, the exact same evaluation scenario
is run with parametrization to evaluate the behavior of the algorithm with and without
parametrization and ensure similar outputs. Parametrization means manually setting val-
ues to metrics instead of letting them be obtained through the federation as explained in
Subsection 5.2.9.

6.1.1 Scenario Zero

Scenario Description

In scenario zero, a small federation is run with ten training rounds, ten clients, a client
sample rate of one, and one local training round, using the FEMNIST dataset with a size
of 100 samples at each client, and a small DNN model with two layers and a total of
5’730’000 parameters. The server as well as all the ten clients are located in Switzerland,
which has a low carbon intensity of the energy grid of 32.87. The server as well as all
the ten clients use an Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz which has a power
performance of 423.89.

This scenario is once run without parametrization, meaning that FederatedTrust v.0.2.0
obtains the metrics directly. The values, metrics, and scores of this run are depicted in
Table 6.1. Then, this scenario is once run with parametrization of the metrics, and the
results are shown in Table 6.2.

Results

As the comparison of the non-parametrized run of FederatedTrust v.0.2.0 in Table 6.1 and
the parametrized run in Table 6.2 shows, the metrics that the algorithm obtains to the
hardware model of the clients and the server, as well as the metrics of the carbon intensities
of the energy grid used are correct as the values are the same in both Experiments.
Further, the scores that the algorithm outputs are the same in the non-parametrized and
parametrized version. The only difference is the source of the values, as one experiment is
parametrized (Table 6.2) and one is not parametrized (Table 6.2) as shown in the source
column of the Tables. Out of this, it can be concluded, that the algorithm obtains and
computes the metrics for the sustainability pillar correctly from the federation and the
third-party package CodeCarbon.

6.1. PARAMETRIZED VS. NON-PARAMETRIZED 63

Table 6.1: Evaluation Scenario Zero not Parametrized

Sustainability Pillar 0.77
Metric Value Source Score

Carbon intensity of energy source (weight 0.5) 0.98
Avg. carbon intensity of energy grid clients 32.87g CO2eq / kWh Computed 0.98
Carbon intensity of energy grid server 32.97g CO2eq / kWh Computed 0.98

Hardware efficiency (weight 0.25) 0.28
Avg. hardware efficiency clients 423.89 Computed 0.28
hardware efficiency server 423.89 Computed 0.28

Federation complexity (weight 0.25) 0.83
Number of training rounds 10 ConfigFile 1
Number of clients 10 ConfigFile 1
Client selection rate 1 ConfigFile 0.0
Average number of local training rounds 1 ConfigFile 1
Average dataset size 100 Computed 1
Model size 5’730’000 Computed 1

Table 6.2: Evaluation Scenario Zero Parametrized

Sustainability Pillar 0.77
Metric Value Source Score

Carbon intensity of energy source (weight 0.5) 0.98
Avg. carbon intensity of energy grid clients 32.87g CO2eq / kWh Parametrized in FactSheet 0.98
Carbon intensity of energy grid server 32.97g CO2eq / kWh Parametrized in FactSheet 0.98

Hardware efficiency (weight 0.25) 0.28
Avg. hardware efficiency clients 423.89 Parametrized in FactSheet 0.28
hardware efficiency server 423.89 Parametrized in FactSheet 0.28

Federation complexity (weight 0.25) 0.83
Number of training rounds 10 Parametrized in FactSheet 1
Number of clients 10 Parametrized in FactSheet 1
Client selection rate 1 Parametrized in FactSheet 0.0
Average number of local training rounds 1 Parametrized in FactSheet 1
Average dataset size 100 Parametrized in FactSheet 1
Model size 5’730’000 Parametrized in FactSheet 1

64 CHAPTER 6. EVALUATION, RESULTS, AND DISCUSSION

6.2 Sustainability Pillar Evaluation of FederatedTrust v.0.2.0

From the definition of the sustainability pillar of trustworthy FL, there exist different
combinations of FL systems having different carbon-intensive energy grids, different effi-
ciency of hardware, and different federation complexities resulting in different magnitudes
of CO2eq emissions. Out of that, there exist four edge cases that can be seen in Figure
6.1. On the bottom left, the best-case scenario is located. The best case scenario is a
simple federation using efficient hardware and thus having low energy consumption and
additionally using a low carbon-intensive energy grid. The combination of low energy
consumption and low carbon intensity of the energy grid results in low carbon emissions
and should thus receive a high score in the sustainability pillar of trustworthy FL. On
the contrary, having a high energy consumption due to using not efficient hardware and
a complex federation in combination with using a high-intensity energy grid leads to high
carbon emissions and should thus result in a low sustainability score. On the top left of
Figure 6.1, a middle-case scenario with low energy consumption but a carbon-intensive
energy grid is situated. On the contrary, on the bottom right a middle-case scenario with
high energy consumption but a not carbon-intensive energy grid is situated. Both of these
scenarios lead to medium CO2eq emissions and should thus get a medium score in the
sustainability pillar. The following Subsections provide an evaluation scenario for each of
the four cases described above to research if the resulting sustainability score adheres to
the expectations.

Figure 6.1: The Sustainability Pillar Matrix

6.2. SUSTAINABILITY PILLAR EVALUATION OF FEDERATEDTRUST V.0.2.065

6.2.1 Scenario One: Best Case Scenario

Scenario Description

Scenario one represents the best-case scenario with low CO2eq emission. In this scenario,
the Intel Core i7-1250U CPU is used by the server as well as all five clients, which is
efficient with a power performance of 1447, the highest measured by PassMark so far.
Further, the federation complexity is low, with a small number of clients, global training
rounds, local training rounds, and a small client selection rate, dataset size, and model
size. Additionally, the clients and the server are located in Albania with one of the lowest
carbon-intensive energy grids. The parameters and evaluation scores of the best-case
scenario can be seen in Table 6.3.

Results

As Table 6.3 shows, the carbon intensity of the energy source of the server is scored as
one, since the server is located in Albania with a low carbon intensity energy grid of
23 kg of CO2eq per kWh. Similarly, the average carbon intensity of the energy grid of
the five clients is scored as one, since all of them are also located in Albania. These two
metrics combined by the metric aggregation function result in a score of one for the carbon
intensity of the energy sources used notion.

The hardware efficiency of the server is scored as one since the server is using an Intel
Core i7-1250U CPU having a high power performance of 1447. Similarly, all five clients
are using this CPU and thus also the average hardware efficiency of clients is scored as
one. These two metrics combined by the metric aggregation function result in a score of
one for the hardware efficiency notion.

In terms of federation complexity, the number of training rounds is low with only ten
training rounds, and thus scored by the algorithm as one. Similarly, the federation only
contains five clients, which is low and thus scored as one by the normalization function of
the algorithm. The client selection rate of 0.2 is scored as 0.89 since it is low but the lowest
set by the normalization function is a client selection rate of 0.1. The average number of
local training rounds is only one, the lowest possible, and thus scored as one. The average
dataset size on the client’s side is only 100 samples per global training round, which is low
and is thus scored as one by the algorithm. Lastly, the federation in evaluation scenario
one uses a small DNN model with only 98’000 parameters, which is scored as one by the
algorithm. All these metrics together result in a high federation complexity score of 0.98
since the federation complexity is at the lower end.

Combining these three notions with the weighted average, the overall score for the sustain-
ability pillar is one for scenario one which represents a best-case scenario in terms of the
sustainability pillar with efficient hardware, a small federation, and a not carbon-intensive
energy grid and thus low emissions.

66 CHAPTER 6. EVALUATION, RESULTS, AND DISCUSSION

Table 6.3: Evaluation Scenario One

Sustainability Pillar 1

Metric Value Score

Carbon intensity of energy source (weight 0.5) 1

Avg. carbon intensity of energy grid clients 23g CO2eq / kWh 1
Carbon intensity of energy grid server 23g CO2eq / kWh 1

Hardware efficiency (weight 0.25) 1

Avg. hardware efficiency clients 1447 1
hardware efficiency server 1447 1

Federation complexity (weight 0.25) 0.98

Number of training rounds 10 1
Number of clients 5 1
Client selection rate 0.2 0.89
Average number of local training rounds 1 1
Average dataset size 100 1
Model size 98’000 1

6.2.2 Scenario Two: Worst Case Scenario

Scenario Description

Scenario two represents a worst-case scenario with inefficient hardware and a highly com-
plex federation resulting in high energy consumption and high carbon intensity of the
electricity grid used and thus, high CO2eq emission. In this scenario, an Intel Xeon W-
2104 CPU having a low power performance of 51.67 is used by the server. All the 10e6
clients use an AMD FX-9590 CPU, which has a low power performance of 30.76. Thus,
in total, the hardware used is not efficient. Further, the federation complexity is high,
with 10e6 clients, 10e6 global training rounds, 90 local training rounds, 100% client se-
lection rate, 1.1 * 10e5 dataset size, and 10e12 number of parameters in the DNN model.
Additionally, the server is located in South Africa with one of the highest possible en-
ergy grids with 709g CO2eq per kWh. Half of the clients are located in Kosovo, with a
carbon-intensive energy grid of 769g of CO2eq per kWh and the other half is located in
Gambia with a carbon-intensive electricity grid of 700g of CO2 eq per kWh, resulting in
an average carbon intensity of the electricity grid used by clients of 734.5g of CO2eq per
kWh. The parameters and evaluation scores of scenario two can be seen in Table 6.4.

Results

As Table 6.4 shows, the carbon intensity of the energy source of the server is scored as
0.11, since the server is located in South Africa with a high carbon intensity energy grid of
709g of CO2eq per kWh. Similarly, the average carbon intensity of the energy grid of the
10e6 clients is scored as 0.08, since 50% of them are located in Kosovo and the other half

6.2. SUSTAINABILITY PILLAR EVALUATION OF FEDERATEDTRUST V.0.2.067

in Gambia, both having high carbon-intensive energy grids. These two metrics combined
by the metric aggregation function result in a score of 0.09 for the carbon intensity of the
energy sources used notion.

The hardware efficiency of the server is scored as 0.01 since the server is using an Intel
Xeon W-2104 CPU having a low power performance of 51.67. All the clients are using
a low-power performance CPU and thus also the average hardware efficiency of clients is
scored as 0.01. These two metrics combined with the metric aggregation function result
in a score of 0.01 for the hardware efficiency notion.

In terms of federation complexity, the number of training rounds is high with 10e6 train-
ing rounds and thus scored by the algorithm as 0.17. Similarly, the federation contains
10e6 clients, which is high and thus scored as 0.17 by the normalization function of the
algorithm. The client selection rate of 1 is scored as 0.00 since it is the highest possible
client selection rate and every client shares its parameters in every global training round.
The average number of local training rounds is only 90 and scored by the normalization
function as 0.11. The average dataset size at the client’s side is 1.1 * 10e5 samples per
global training round, which is high and is thus scored as 0.2 by the algorithm. Lastly,
the federation in evaluation scenario two uses a big DNN model with only one billion
parameters, which is scored as 0.14 by the algorithm. All these metrics together result in
a high federation complexity score of 0.13 since the federation is rather complex.

Combining these three notions with the weighted average, the overall score for the sus-
tainability pillar is 0.09 for scenario two which represents a worst-case scenario in terms
of the sustainability pillar using inefficient hardware and carbon-intensive electricity grids
in combination with a complex federation.

Table 6.4: Evaluation Scenario Two

Sustainability Pillar 0.09

Metric Value Score

Carbon intensity of energy source (weight 0.5) 0.09

Avg. carbon intensity of energy grid clients 734.5g CO2eq / kWh 0.08
Carbon intensity of energy grid server 709g CO2eq / kWh 0.11

Hardware efficiency (weight 0.25) 0.01

Avg. hardware efficiency clients 30.76 0.01
hardware efficiency server 51.67 0.02

Federation complexity (weight 0.25) 0.13

Number of training rounds 10e6 0.17
Number of clients 10e6 0.17
Client selection rate 1 0.00
Average number of local training rounds 90 0.10
Average dataset size 1.1 * 10e5 0.2
Model size 10e12 0.14

68 CHAPTER 6. EVALUATION, RESULTS, AND DISCUSSION

6.2.3 Scenario Three: Middle Case Scenario

Scenario Description

Scenario three represents a middle case scenario with inefficient hardware and a complex
federation resulting in high energy consumption but a low carbon intensity of electricity
grid used and thus, medium CO2eq emission. In this scenario, the Intel Core i7-6800K @
3.40GHz CPU is used by the server, which has a power performance of 76.29. 40% of the
clients use an Intel Xeon E5-4620 v3 @ 2.00GHz CPU, with a power performance of 100.24.
35% of clients use an Intel Xeon E5-4627 v2 @ 3.30GHz, which has a power performance of
71.69 and 25% use an Intel Xeon E5-2650 v2 @ 2.60GHz which has a power performance of
105.21. Further, the federation complexity is high, with 10e6 clients, 10e6 global training
rounds, 90 local training rounds, 80% client selection rate, 1.1 * 10e5 dataset size, and
10e12 number of parameters in the DNN model. The server and the clients are located in
Switzerland with an energy grid of 32g CO2eq per kWh. The parameters and evaluation
scores of scenario three can be seen in Table 6.5.

Results

As Table 6.5 shows, the carbon intensity of the energy source of the server is scored as
1, since the server is located in Switzerland with a low carbon intensity energy grid of
32g of CO2eq per kWh. Similarly, the average carbon intensity of the energy grid of the
10e6 clients is scored as 1, since they are also located in Switzerland. These two metrics
combined by the metric aggregation function result in a score of 1 for the carbon intensity
of the energy sources used notion.

The hardware efficiency of the server is scored as 0.05 since the server is using Intel Core
i7-6800K @ 3.40GHz CPU, which has a low power performance of 76.29. All the clients
are using a low-power performance CPU and thus also the average hardware efficiency of
clients is scored as 0.04. These two metrics combined with the metric aggregation function
result in a score of 0.04 for the hardware efficiency notion.

In terms of federation complexity, the number of training rounds is high with 10e6 training
rounds and thus scored by the algorithm as 0.17. Likewise, the federation contains 10e6
clients, which is high and thus scored 0.17 by the normalization function of the algorithm.
The client selection rate of 0.8 is scored as 0.22. The average number of local training
rounds is 90 and scored by the normalization function as 0.11. The average dataset size
at the client’s side is 1.1 * 10e5 samples per global training round, which is high and is
thus scored as 0.2 by the algorithm. Lastly, the federation in evaluation scenario three
uses a big DNN model with only one billion parameters, which is scored as 0.14 by the
algorithm. All these metrics together result in a high federation complexity score of 0.17
since the federation is rather complex.

Combining these three notions with the weighted average, the overall score for the sus-
tainability pillar is 0.55 for scenario three which represents a middle-case scenario with
high energy consumption but low carbon intensity of the energy grid used.

6.2. SUSTAINABILITY PILLAR EVALUATION OF FEDERATEDTRUST V.0.2.069

Table 6.5: Evaluation Scenario Three

Sustainability Pillar 0.55

Metric Value Score

Carbon intensity of energy source (weight 0.5) 1

Avg. carbon intensity of energy grid clients 23g CO2eq / kWh 1
Carbon intensity of energy grid server 32g CO2eq / kWh 1

Hardware efficiency (weight 0.25) 0.04

Avg. hardware efficiency clients 91.49 0.05
hardware efficiency server 76.29 0.04

Federation complexity (weight 0.25) 0.17

Number of training rounds 10e6 0.17
Number of clients 10e6 0.17
Client selection rate 0.8 0.22
Average number of local training rounds 90 0.10
Average dataset size 1.1 * 10e5 0.2
Model size 10e12 0.14

6.2.4 Scenario Four: Middle Case Scenario

Scenario Description

Scenario four represents a middle case scenario with a simple federation and highly effi-
cient hardware, thus low energy consumption but a highly carbon-intensive energy grid
resulting in medium CO2eq emission. In this scenario, the Intel Core i7-1250U CPU power
performance of 1447 is used by the server. All eight clients use the Intel Core i5-1335U
with a power performance of 1268. Further, the federation complexity is low, with a
small number of clients, global training rounds, local training rounds, and a small client
selection rate, dataset size, and model size. Moreover, the clients and server are located
in South Africa with one of the most carbon-intensive energy grids with 709g CO2eq per
kWh. The parameters and evaluation scores of the middle case scenario four can be seen
in Table 6.6.

Results

As Table 6.6 shows, the carbon intensity of the energy source of the server as well as of the
clients is scored as 0.11 since the server and all the clients are located in South Africa using
a carbon-intensive energy grid of 709 kg of CO2eq per kWh. These two metrics combined
by the metric aggregation function result in a score of 0.11 for the carbon intensity of the
energy sources used notion.

The hardware efficiency of the server is scored as one since the server is using an Intel
Core i7-1250U CPU having a high power performance of 1447. All eight clients are using

70 CHAPTER 6. EVALUATION, RESULTS, AND DISCUSSION

the Intel Core i5-1335U CPU with a power performance of 1268 and this metric is scored
by the normalization function as 0.87. These two metrics combined with the metric
aggregation function result in a score of 0.94 for the hardware efficiency notion.

In terms of federation complexity, the number of training rounds is low with only ten
training rounds, and thus scored by the algorithm as one. Alike, the federation only
contains eight clients, which is low and thus scored as one by the normalization function
of the algorithm. The client selection rate of 0.3 is scored as 0.77 since it is low but the
lowest set by the normalization function is a client selection rate of 0.1. The average
number of local training rounds is only one, the lowest possible, and thus scored as one.
The average dataset size on the client’s side is only 100 samples per global training round,
which is low and is thus scored as one by the algorithm. Lastly, the federation in evaluation
scenario four uses a small DNN model with only 99’300 parameters, which is scored as
one by the algorithm. All these metrics together result in a high federation complexity
score of 0.96 since the federation complexity is at the lower end.

Combining these three notions with the weighted average, the overall score for the sustain-
ability pillar is 0.53 for scenario four which represents a middle-case scenario with efficient
hardware and a small federation and thus low energy consumption, but a carbon-intensive
energy grid and thus medium CO2eq emissions.

Table 6.6: Evaluation Scenario Four

Sustainability Pillar 0.53

Metric Value Score

Carbon intensity of energy source (weight 0.5) 0.11

Avg. carbon intensity of energy grid clients 709g CO2eq / kWh 0.11
Carbon intensity of energy grid server 709g CO2eq / kWh 0.11

Hardware efficiency (weight 0.25) 0.94

Avg. hardware efficiency clients 1268 0.87
hardware efficiency server 1447 1

Federation complexity (weight 0.25) 0.96

Number of training rounds 10 1
Number of clients 8 1
Client selection rate 0.3 0.77
Average number of local training rounds 1 1
Average dataset size 100 1
Model size 99’300 1

6.3. EVALUATION OF FEDERATEDTRUST V.0.2.0 71

6.3 Evaluation of FederatedTrust v.0.2.0

This section evaluates the prototype FederatedTrust v.0.2.0 including all seven pillars:
privacy, fairness, robustness, federation, explainability, accountability, and sustainability
with two different evaluation scenarios using different federation configurations. These
evaluation scenarios are used to compare FederatedTrust v.0.2.0 and FederatedTrust
v.0.1.0.

6.3.1 Scenario a

Scenario Description

The configurations for this evaluation scenario a can be viewed in Table 6.7. The federation
uses one server and 10 clients, all located in Switzerland using an Intel Core i7-8650U CPU.
The model is a 2-layer CNN and the dataset used is the FEMNIST dataset to classify
handwritten digits. The dataset is split into 60% used for training, 20% for testing and
20% for evaluation. The federation runs for 10 global training rounds and clients perform
only one local training round per global training round. In each global training round,
60% of clients are selected to share their model parameters with the server. Differential
privacy is on with an epsilon of 10. The last column of Table 6.7 shows the source where
these metrics have been set. In this experiment, all the values are configured in the
ConfigFile or obtained through the course of the federation. No parametrization has been
applied,

Table 6.7: Configurations FederatedTrust v.0.2.0 evaluation scenario a

Metric Value Source
Model ConvNet2 (FederatedScope) ConfigFile
Number of local training rounds 10 ConfigFile
Dataset FEMNIST ConfigFile
Data split 0.6/0.2/0.2 (train, test, validation) ConfigFile
Batch size 50 ConfigFile
Loss CrossEntropyLoss ConfigFile
Consistent label distribution False ConfigFile
Number of clients 10 ConfigFile
Client Selection rate 60% ConfigFile
Number of training rounds 10 ConfigFile
Client hardware Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz Obtained
Server hardware Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz Obtained
Client location Switzerland Obtained
Server location Switzerland Obtained
Differential privacy True with epsilon 10 ConfigFile
Method FedAvg ConfigFile

72 CHAPTER 6. EVALUATION, RESULTS, AND DISCUSSION

Results

The results of the evaluation scenario a of FederatedTrust v.0.2.0 can be seen in Figure
6.4 and Figure 6.2. Figure 6.4 shows the scores of all the pillars with their according
notions.

As can be seen, the privacy pillar received a score of 0.49, since differential privacy was
applied. However, the chosen epsilon of 10 seems to be too small, thus the Indistinguisha-
bility notion is scored as zero. The robustness pillar has a score of 0.30 due to the low
performance of the model. The fairness pillar received a score of 0.59 since the class dis-
tribution is very uneven but the performance of the model among the clients is even. The
explainability pillar received a high score of 0.9 and the accountability pillar a score of
0.73. The federation pillar received a score of 0.79, with the notion of client management
receiving the highest score of one but the optimization notion a score of 0.57. Coming
to the sustainability pillar, the carbon intensity of the energy source notion was scored
high with 0.98, since the clients and the server are located in Switzerland which has a low
carbon intensity energy grid. The hardware efficiency notion received a score of 0.28. The
federation complexity is low and the received score of 0.91 is high, leading to an overall
score of the sustainability pillar of 0.79.

The final trust score of this federation is 0.65. Without the newly added sustainability
pillar in FederatedTrust v.0.2.0, FederatedTrust v.0.1.0 would have scored the federation
with a trust score of 0.63 and is therefore 0.02 points lower than FederatedTrust v.0.2.0
which takes into account the environmental impact a federation has. This showcases that
FederatedTrust v.0.2.0 corrects the trust score upwards if the federation has a high envi-
ronmental impact.

Figure 6.2: Results of Evaluation of FederatedTrust v.0.2.0 Scenario a all Pillars

6.3. EVALUATION OF FEDERATEDTRUST V.0.2.0 73

6.3.2 Scenario b

Scenario Description

The configurations for this evaluation scenario can be viewed in Table 6.8. The federation
uses one server and 10e6 clients, all located in South Africa using an Intel Core i7-8650U
CPU. The model is a 2-layer CNN and the dataset used is the FEMNIST dataset to
classify handwritten digits. The dataset is split into 60% used for training, 20% for
testing, and 20% for evaluation. The federation runs for 10e6 global training rounds
and clients perform 1000 local training rounds per global training round. In each global
training round, 30% of clients are selected to share their model parameters with the server.
Differential privacy is on with an epsilon of 10. The last column of Table 6.8 shows the
source where these metrics have been set. Most of them are set in the ConfigFile of
FederatedScope to configure the federation run, some are parametrized in the FactSheet
file of FederatedTrust as described in Subsection 5.2.9 to avoid actually running these
many training rounds and the hardware that is used by the clients and the server are
obtained from the course directly by FederatedTrust.

Table 6.8: Configurations FederatedTrust v.0.2.0 evaluation scenario b

Metric Value Source
Model ConvNet2 (FederatedScope) ConfigFile
Number of local training rounds 100 FactSheet
Dataset FEMNIST ConfigFile
Data split 0.6/0.2/0.2 (train, test, validation) ConfigFile
Batch size 50 ConfigFile
Loss CrossEntropyLoss ConfigFile
Consistent label distribution False ConfigFile
Number of clients 10e6 FactSheet
Client Selection rate 30% ConfigFile
Number of training rounds 10e6 FactSheet
Client hardware Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz Obtained
Server hardware Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz Obtained
Client location South Africa FactSheet
Server location South Africa FactSheet
Differential privacy True with epsilon 10 ConfigFile
Method FedAvg ConfigFile

74 CHAPTER 6. EVALUATION, RESULTS, AND DISCUSSION

Results

The results of the evaluation scenario b of FederatedTrust v.0.2.0 can be seen in Figure
6.3 and Figure 6.5. Figure 6.5 shows the scores of all the pillars with their according
notions.

As can be seen, the privacy pillar received a score of 0.55, and the robustness pillar a
score of 0.33 due to the low performance of the model. The fairness pillar received a score
of 0.16 since the class distribution is very uneven and also the performance of the model
among the clients is uneven. The explainability pillar received a high score of 0.9 and the
accountability pillar a score of 0.73. The federation pillar received a score of 0.79, with
the notion of client management receiving the highest score of one but the optimization
notion a score of 0.57. Coming to the sustainability pillar, the carbon intensity of the
energy source notion was scored low with 0.11 as well as the hardware efficiency with
a score of 0.28. The federation complexity notion is medium and scored 0.49, since the
number of training rounds and clients is high but the model is not complex, leading to an
overall score of the sustainability pillar of 0.25.

The final trust score of this federation is 0.53. Without the newly added sustainability
pillar in FederatedTrust v.0.2.0, FederatedTrust v.0.1.0 would have scored the federation
with a trust score of 0.57 and is therefore 0.04 points higher than FederatedTrust v.0.2.0
which takes into account the environmental impact a federation has. This showcases that
FederatedTrust v.0.2.0 corrects the trust score downwards if the federation has a high
environmental impact.

Figure 6.3: Results of Evaluation of FederatedTrust v.0.2.0 Scenario b all Pillars

6.3. EVALUATION OF FEDERATEDTRUST V.0.2.0 75

F
ig
u
re

6.
4:

R
es
u
lt
s
of

E
va
lu
at
io
n
of

F
ed
er
at
ed
T
ru
st

v
.0
.2
.0

S
ce
n
ar
io

a
al
l
N
ot
io
n
s

F
ig
u
re

6.
5:

R
es
u
lt
s
of

E
va
lu
at
io
n
of

F
ed
er
at
ed
T
ru
st

v
.0
.2
.0

S
ce
n
ar
io

b
al
l
N
ot
io
n
s

76 CHAPTER 6. EVALUATION, RESULTS, AND DISCUSSION

6.4 Discussion and Limitations

The evaluation scenario zero showed that FederatedTrust v.0.2.0 is able to correctly obtain
the raw metrics from the added sustainability pillar directly from the federation, its client,
and the server using methodologies explained in Subsection 5.2.6. This was shown by
running the algorithm once by itself and once passing the raw metrics as parameters
in the FactSheet file. Both versions showed the same raw metrics as well as scores for
the metrics, notions, and the sustainability pillar as shown in Table 6.1 and Table 6.2.
Further, this analysis implies that the four parametrized evaluation scenarios (one, two,
three, and four) are valid and their results can be discussed as real evaluation scenarios.

The analysis of the sustainability pillar showed that federations having a small federation
complexity and that are using efficient hardware as well as low carbon intensity energy
grids receive high scores in the sustainability pillar. This fact was shown in the evaluation
scenario one, which received a score of one in the sustainability pillar. This aligns with
the expectations of federations with low carbon emissions receiving high scores in the
sustainability pillar.

Further, it was shown that federations having a fairly complex federation including large
numbers of clients and training rounds as well as big model and dataset sizes, in combina-
tion with inefficient hardware and a high carbon intensity energy grid result in low scores
in the sustainability pillar. This was shown in evaluation scenario one, which received a
score of 0.09 in the sustainability pillar.

Additionally, FL systems having a fairly complex federation as well as inefficient hardware,
but using low carbon-intensive energy grids have received neither high nor low scores in
the sustainability pillar, but a medium score of 0.65 in the evaluation scenario three.
The opposite of this example, being FL systems that have a simple federation and use
efficient hardware, but are using a carbon-intensive energy grid also scored medium in
the sustainability pillar as shown in evaluation scenario one with a sustainability score of
0.53.

The results of the evaluation scenarios suit the design of the pillar that makes use of the
fact that using inefficient hardware and having complex federations lead to higher energy
consumption and higher energy consumption leads to higher CO2eq emissions as well as
the fact that the higher the carbon intensity of the energy grid the higher are also the
CO2eq emissions.

The analysis of FederatedTrust v.0.2.0 including the new pillar sustainability and all
the six existing pillars shows that FederatedTrust v.0.2.0 provides lower scores for the
same federation configuration compared to FederatedTrust v.0.1.0 if the environmental
impact of the federation is high and higher scores if the environmental impact is low.
This showcases that FederatedTrust v.0.2.0 corrects the trust score of the federation by
including the factor of environmental impact. Thus, FederatedTrust v.0.2.0 is the first
algorithmic prototype that takes all the seven requirements defined by the AI-HLEG into
account and thus closes the gap between research and guidelines defined by governing
bodies.

6.4. DISCUSSION AND LIMITATIONS 77

Coming to limitations in terms of the sustainability pillar, the magnitude in which the
single metrics influence the CO2eq emissions are uncertain but are weighted equally. For
example, the number of training rounds and the number of clients in the federation have
the same weight in this prototype design, but it might be that having more training
rounds actually contributes more to the final CO2eq emissions than the number of clients
in the federation or vice-versa. Similarly, on a notion level, it is unclear if the efficiency of
the hardware notion and the federation complexity notion influence the CO2eq emissions
equally. Thus, a clear limitation of this prototype design and implementation is the
weighting of the metrics and notions, that might not fully reflect the influence they have
on the environmental impact of the federation. Further investigations are needed at this
point.

Another important aspect to discuss is that since all metrics are weighted the same, if one
metric is extraordinarily big, for example, if the number of training rounds is 1 billion,
only this one metric is scored low if all the other metrics perform well in the sustainability
analysis. This means, that the sustainability pillar would still get a high score, even if
a federation with one billion training rounds would probably emit a lot of CO2eq and is
thus not sustainable. Thus, in future works, it might be necessary to think about how to
mitigate extremely big metrics.

Similarly in the other six pillars, the influence of the single metrics and notions on the
according pillar could be researched and the weights could be adjusted accordingly to
achieve a more accurate final trust score.

Currently, the data needed to compute the metrics of the sustainability pillar are stored
in plain text, which poses some security risks. The security of the prototype could be
enhanced by using encryption for the data that is stored in the emissions file.

As discussed in Section 4.3, the design of the sustainability pillar itself poses some limita-
tions. Privacy-preserving technologies such as DP and HE, often applied in FL, increase
the computational costs of a federation and thus also the emissions. Similarly, mecha-
nisms to detect malicious clients might increase the computational costs and the emissions
produced. These factors are not yet integrated into the sustainability pillar and could be
explored in future works.

Even if the algorithmic prototype has now already implemented 30 metrics, there are still
some missing that have been defined in the taxonomy for the pillars robustness, privacy,
explainability, fairness, accountability, and federation as discussed in Subsection 3.3.1.
In the future, one could enhance the prototype by implementing all metrics and thus
provide a more flexible algorithmic prototype that fits a variety of different federation
configurations.

78 CHAPTER 6. EVALUATION, RESULTS, AND DISCUSSION

Chapter 7

Summary and Conclusion

Artificial intelligence (AI) has immersed our daily lives and assists in the decision process
of critical sectors such as medicine and law. Therefore it is now more important than ever
before that AI systems developed are reliable, ethical, and do not cause harm to humans.
The AI-HLEG [12] has laid the groundwork by defining the seven key requirements for
trustworthiness in AI systems: 1) Human Agency and Oversight, 2) Technical Robustness
and Safety, 3) Privacy and Data Governance, 4) Transparency, 5) Fairness and non-
discrimination, 6) Environmental wellbeing and 7) Accountability. In response to the
data privacy risks associated with traditional centralized learning, FL has emerged as a
promising alternative. FL allows multiple clients to collaboratively train a global model
without the need to share their own private data. Because of the wide adoption of FL,
ensuring the trustworthiness of FL systems is crucial.

Early work [14] in this field has proposed a trustworthy FL taxonomy compromising the
pillars of privacy, robustness, accountability, explainability, federation, and fairness, each
defined with specific notions and metrics. Additionally, prototype algorithms have been
implemented to measure the trust level of FL systems. However, to the best knowledge,
the requirement of environmental well-being of trustworthy AI/FL has been largely over-
looked by research despite being clearly defined by the AI-HLEG. This leaves a clear gap
between requirements defined by governing bodies and guidelines applied and measured
by research.

This master thesis addresses the gap by introducing the sustainability pillar to the trust-
worthy FL taxonomy. The sustainability pillar focuses on assessing the environmental
impact of FL systems. It consists of three notions: hardware efficiency, federation com-
plexity, and the carbon intensity of the energy grid. The first two notions together define
the resource consumption of an FL system, in which a higher federation complexity and
less efficient hardware contribute to increased resource consumption. Additionally, the
carbon intensity of the energy grid measures CO2eq emissions associated with a kWh
of electricity, and thus all the notions together provide insights into the environmental
impact of the FL system.

As a second contribution, this master thesis extended the existing prototype for evaluating
the trustworthiness of FL systems with an implementation of the sustainability pillar. The

79

80 CHAPTER 7. SUMMARY AND CONCLUSION

implementation uses a Python package called CodeCarbon [90], to obtain the hardware
model names used by clients and the server as well as to obtain the carbon intensity of
the energy grid used by clients and the server by obtaining their location and taking the
carbon intensity of the energy grid used in the country each client or the server is located
in.

Extensive evaluations of the prototype across seven different scenarios involving different
federation configurations have been conducted. The results of the evaluation scenarios
show, that FL systems of low complexity, efficient hardware, and a low carbon-intensive
energy grid as the one of Albania, receive a high score in the sustainability pillar of
trustworthy FL. On the contrary, complex federations using inefficient hardware and a
carbon-intensive energy grid receive low scores in the sustainability pillar. Further, com-
plex federations that use inefficient hardware but a low-carbon-intensive energy grid as
well as simple federations using efficient hardware but a carbon-intensive energy grid re-
ceive medium scores around 0.5. Further, the evaluation scenarios including all the seven
pillars show that this extended version of FederatedTrust provides lower trust scores for
federations having high environmental impact and higher trust scores for federations hav-
ing low environmental impact compared to FederatedTrust v.0.1.0 that did not take the
environmental impact into account. This showcases that FederatedTrust v.0.2.0 corrects
the trust score of the federation by including the factor of environmental impact and
thus provides a more comprehensive trust score by including seven pillars representing
the seven requirements defined by the AI-HLEG.

In conclusion, this master’s thesis contributes to the research community by providing
the first trustworthy FL taxonomy that includes all the seven requirements defined by
the AI-HLEG. Moreover, it introduces the first algorithmic prototype, that evaluates the
trustworthiness level of FL systems including all the seven requirements. Ultimately,
the integration of sustainability into trustworthy FL taxonomies closes the gap between
requirements defined by governing bodies and research.

7.1 Future Work

In future work, the contribution of individual metrics to carbon emissions can be explored
and used to fine-tune the weighting of the metrics to achieve more precise sustainability
scores. Similarly, the contribution of metrics to the other pillars could be explored and
fine-tuned with weights. Further, other aspects of a federation that influence the emissions
could be included such as the computational costs for privacy-preserving methodologies
such as DP and HE as well as the computational costs for malicious client detection
such as clustering or the H-MINE algorithm. The security of the prototype could be
enhanced by encrypting information stored at the side of FederatedTrust, Despite all
the metrics defined in the sustainability pillar being implemented in the prototype, the
algorithmic prototype could be enhanced by incorporating missing metrics of the other
six pillars that are defined in the taxonomy but not yet implemented in the prototype. As
DFL is emerging, the prototype could be adjusted to work with decentralized federations
in the future. Currently, the prototype only works combined with the FederatedScope
framework, thus future work could integrate it into other frameworks. These changes could

7.1. FUTURE WORK 81

enhance the prototype and improve its flexibility to different federations using different
methodologies, different frameworks as well as decentralized architectures.

82 CHAPTER 7. SUMMARY AND CONCLUSION

Declaration of Independence for Written
Work

Selbständigkeitserklärung

Hiermit erkl̈re ich, dass ich die vorliegende Arbeit selbstn̈dig und ohne Benutzung anderer
als der angegebenen Hilfsmittel (inklusive generativer KI wie z.B. ChatGPT) angefertigt
habe. Mir ist bekannt, dass ich die volle Verantwortung für die Wissenschaftlichkeit des
vorgelegten Textes selbst übernehme, auch wenn (nach schriftlicher Absprache mit der
betreuenden Professorin resp. dem betreuenden Professor) KI-Hilfsmittel eingesetzt und
deklariert wurden. Alle Stellen, die wörtlich oder sinngems̈s aus veröffentlichten oder
nicht veröffentlichten Schriften entnommen wurden, sind als solche kenntlich gemacht.
Die Arbeit ist in gleicher oder ḧnlicher Form oder auszugsweise im Rahmen einer anderen
Prüfung noch nicht vorgelegt worden.

Naters, den August 7, 2023 .

Statement of authorship

I hereby declare that I have composed this work independently and without the use of any
aids other than those declared (including generative AI such as ChatGPT). I am aware
that I take full responsibility for the scientific character of the submitted text myself,
even if AI aids were used and declared (after written confirmation by the supervising
professor). All passages taken verbatim or in sense from published or unpublished writings
are identified as such. The work has not yet been submitted in the same or similar form
or in excerpts as part of another examination.

Naters, August 7, 2023 .

83

Lynn Zumtaugwald

Lynn Zumtaugwald

84 Declaration of Independence

Bibliography

[1] S. D. Holcomb, W. K. Porter, S. V. Ault, G. Mao, and J. Wang, “Overview on deep-
mind and its alphago zero ai,” in Proceedings of the 2018 international conference
on big data and education, 2018, pp. 67–71.

[2] M. B. Hoy, “Alexa, siri, cortana, and more: an introduction to voice assistants,”
Medical reference services quarterly, vol. 37, no. 1, pp. 81–88, 2018.

[3] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms,
business value, and innovation,” ACM Transactions on Management Information
Systems (TMIS), vol. 6, no. 4, pp. 1–19, 2015.

[4] OpenAI, “Chatgpt,” https://openai.com/blog/chatgpt, accessed: 03.02.2023.

[5] P. G. Mikhael, J. Wohlwend, A. Yala, L. Karstens, J. Xiang, A. K. Takigami, P. P.
Bourgouin, P. Chan, S. Mrah, W. Amayri et al., “Sybil: A validated deep learning
model to predict future lung cancer risk from a single low-dose chest computed
tomography,” Journal of Clinical Oncology, vol. 41, no. 12, pp. 2191–2200, 2023.

[6] I. Ajunwa, S. Friedler, C. E. Scheidegger, and S. Venkatasubramanian, “Hiring by
algorithm: predicting and preventing disparate impact,”Available at SSRN, 2016.

[7] C. McKay, “Predicting risk in criminal procedure: actuarial tools, algorithms, ai
and judicial decision-making,” Current Issues in Criminal Justice, vol. 32, no. 1,
pp. 22–39, 2020.

[8] Z. Obermeyer and S. Mullainathan, “Dissecting racial bias in an algorithm that
guides health decisions for 70 million people,” in Proceedings of the conference on
fairness, accountability, and transparency, 2019, pp. 89–89.

[9] A. Brackey, “Analysis of racial bias in northpointe’s compas algorithm,” Ph.D. dis-
sertation, Tulane University School of Science and Engineering, 2019.

[10] J. Dastin, “Amazon scraps secret ai recruiting tool that showed bias against women,”
in Ethics of data and analytics. Auerbach Publications, 2018, pp. 296–299.

[11] N. H. T. S. Administration, “Motor vehicle traffic crash data resource,” https://
crashstats.nhtsa.dot.gov/#!/#%2F, accessed: 10.03.2023.

[12] A. HLEG, “thics guidelines for trustworthy ai,” https://ec.europa.eu/futurium/en/
ai-alliance-consultation.1.html, accessed: 15.02.2023.

85

https://openai.com/blog/chatgpt
https://crashstats.nhtsa.dot.gov/#!/#%2F
https://crashstats.nhtsa.dot.gov/#!/#%2F
https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html
https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html

86 BIBLIOGRAPHY

[13] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Ba-
con, “Federated learning: Strategies for improving communication efficiency,” arXiv
preprint arXiv:1610.05492, 2016.

[14] P. M. S. Sánchez, A. H. Celdrán, N. Xie, G. Bovet, G. M. Pérez, and B. Stiller,
“Federatedtrust: A solution for trustworthy federated learning,” arXiv preprint
arXiv:2302.09844, 2023.

[15] A. R. Elkordy, J. Zhang, Y. H. Ezzeldin, K. Psounis, and S. Avestimehr, “How much
privacy does federated learning with secure aggregation guarantee?” arXiv preprint
arXiv:2208.02304, 2022.

[16] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and
applications,” ACM Transactions on Intelligent Systems and Technology (TIST),
vol. 10, no. 2, pp. 1–19, 2019.

[17] E. T. M. Beltrán, M. Q. Pérez, P. M. S. Sánchez, S. L. Bernal, G. Bovet,
M. G. Pérez, G. M. Pérez, and A. H. Celdrán, “Decentralized federated learning:
Fundamentals, state-of-the-art, frameworks, trends, and challenges,” 2022. [Online].
Available: https://arxiv.org/abs/2211.08413

[18] T. D. Nguyen, T. Nguyen, P. L. Nguyen, H. H. Pham, K. Doan, and K.-S. Wong,
“Backdoor attacks and defenses in federated learning: Survey, challenges and future
research directions,” arXiv preprint arXiv:2303.02213, 2023.

[19] Y. Liu, Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang, Y.-Q. Zhang, and
Q. Yang, “Vertical federated learning,” arXiv preprint arXiv:2211.12814, 2022.

[20] S. AbdulRahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and M. Guizani,
“A survey on federated learning: The journey from centralized to distributed on-site
learning and beyond,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5476–5497,
2020.

[21] Alexsoft, “Federated learning: The shift from centralized to distributed on-
device model training,” https://www.altexsoft.com/blog/federated-learning, ac-
cessed: 13.02.2023.

[22] L. He, A. Bian, and M. Jaggi, “Cola: Decentralized linear learning,” Advances in
Neural Information Processing Systems, vol. 31, 2018.

[23] E. T. M. Beltrán, M. Q. Pérez, P. M. S. Sánchez, S. L. Bernal, G. Bovet, M. G.
Pérez, G. M. Pérez, and A. H. Celdrán, “Decentralized federated learning: Fun-
damentals, state-of-the-art, frameworks, trends, and challenges,” arXiv preprint
arXiv:2211.08413, 2022.

[24] B. Li, P. Qi, B. Liu, S. Di, J. Liu, J. Pei, J. Yi, and B. Zhou, “Trustworthy ai: From
principles to practices. arxiv 2021,” arXiv preprint arXiv:2110.01167, 2022.

[25] H. Liu, Y. Wang, W. Fan, X. Liu, Y. Li, S. Jain, Y. Liu, A. Jain, and J. Tang,
“Trustworthy ai: A computational perspective,” ACM Transactions on Intelligent
Systems and Technology, vol. 14, no. 1, pp. 1–59, 2022.

https://arxiv.org/abs/2211.08413
https://www.altexsoft.com/blog/federated-learning

BIBLIOGRAPHY 87

[26] A. Brintrup, G. Baryannis, A. Tiwari, S. Ratchev, G. Martinez-Arellano, and
J. Singh, “Trustworthy, responsible, ethical ai in manufacturing and supply chains:
synthesis and emerging research questions,” arXiv preprint arXiv:2305.11581, 2023.

[27] I. Goodfellow, Y. Bengio, and A. Courville, “Machine learning basics (chapter
5)(2016),”Deep Learning (MIT Press, 95–151), 2016.

[28] L. Rocher, J. M. Hendrickx, and Y.-A. De Montjoye, “Estimating the success of
re-identifications in incomplete datasets using generative models,” Nature commu-
nications, vol. 10, no. 1, pp. 1–9, 2019.

[29] Z. Zhou, F. Sun, X. Chen, D. Zhang, T. Han, and P. Lan, “A decentralized federated
learning based on node selection and knowledge distillation,”Mathematics, vol. 11,
no. 14, p. 3162, 2023.

[30] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on
bias and fairness in machine learning,” ACM Computing Surveys (CSUR), vol. 54,
no. 6, pp. 1–35, 2021.

[31] S. Barocas, A. Guo, E. Kamar, J. Krones, M. R. Morris, J. W. Vaughan, W. D.
Wadsworth, and H. Wallach, “Designing disaggregated evaluations of ai systems:
Choices, considerations, and tradeoffs,” in Proceedings of the 2021 AAAI/ACM Con-
ference on AI, Ethics, and Society, 2021, pp. 368–378.

[32] S. Caton and C. Haas, “Fairness in machine learning: A survey,” arXiv preprint
arXiv:2010.04053, 2020.

[33] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi,
“A survey of methods for explaining black box models,” ACM computing surveys
(CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[34] A. Rosenfeld and A. Richardson, “Explainability in human–agent systems,” Au-
tonomous Agents and Multi-Agent Systems, vol. 33, pp. 673–705, 2019.

[35] A. B. Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garćıa, S. Gil-López, D. Molina, R. Benjamins et al., “Explainable artificial intelli-
gence (xai): Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information fusion, vol. 58, pp. 82–115, 2020.

[36] D. Leslie, “Understanding artificial intelligence ethics and safety,” arXiv preprint
arXiv:1906.05684, 2019.

[37] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended
feature leakage in collaborative learning,” in 2019 IEEE symposium on security and
privacy (SP). IEEE, 2019, pp. 691–706.

[38] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in neural
information processing systems, vol. 32, 2019.

88 BIBLIOGRAPHY

[39] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and
federated learning,” in 2019 IEEE symposium on security and privacy (SP). IEEE,
2019, pp. 739–753.

[40] L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, and S. Y. Philip, “Privacy
and robustness in federated learning: Attacks and defenses,” IEEE transactions on
neural networks and learning systems, 2022.

[41] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks
against machine learning models,” in 2017 IEEE symposium on security and privacy
(SP). IEEE, 2017, pp. 3–18.

[42] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage from gradients,”
arXiv preprint arXiv:2001.02610, 2020.

[43] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: information
leakage from collaborative deep learning,” in Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, 2017, pp. 603–618.

[44] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit
confidence information and basic countermeasures,” in Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security, 2015, pp. 1322–1333.

[45] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in Advances in Cryptology—EUROCRYPT’99: International Conference
on the Theory and Application of Cryptographic Techniques Prague, Czech Repub-
lic, May 2–6, 1999 Proceedings 18. Springer, 1999, pp. 223–238.

[46] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of
the forty-first annual ACM symposium on Theory of computing, 2009, pp. 169–178.

[47] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE transactions on information theory, vol. 31, no. 4, pp. 469–472,
1985.

[48] W. Jin, Y. Yao, S. Han, C. Joe-Wong, S. Ravi, S. Avestimehr, and C. He, “Fedml-he:
An efficient homomorphic-encryption-based privacy-preserving federated learning
system,” arXiv preprint arXiv:2303.10837, 2023.

[49] W. Zhang, Y. Zhao, F. Li, and H. Zhu, “A hierarchical federated learning algo-
rithm based on time aggregation in edge computing environment,”Applied Sciences,
vol. 13, no. 9, p. 5821, 2023.

[50] D. Enthoven and Z. Al-Ars, “An overview of federated deep learning privacy attacks
and defensive strategies,” Federated Learning Systems: Towards Next-Generation
AI, pp. 173–196, 2021.

[51] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor attacks
against federated learning,” in International conference on learning representations,
2020.

BIBLIOGRAPHY 89

[52] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J.-y. Sohn,
K. Lee, and D. Papailiopoulos, “Attack of the tails yes, you really can backdoor
federated learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 16 070–16 084, 2020.

[53] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to back-
door federated learning,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2020, pp. 2938–2948.

[54] C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of federated learning in
sybil settings.” in RAID, 2020, pp. 301–316.

[55] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing federated learning
through an adversarial lens,” in International Conference on Machine Learning.
PMLR, 2019, pp. 634–643.

[56] Z. Liu, J. Guo, W. Yang, J. Fan, K.-Y. Lam, and J. Zhao, “Privacy-preserving
aggregation in federated learning: A survey,” IEEE Transactions on Big Data, 2022.

[57] M. Moshawrab, M. Adda, A. Bouzouane, H. Ibrahim, and A. Raad, “Reviewing
federated learning aggregation algorithms; strategies, contributions, limitations and
future perspectives,” Electronics, vol. 12, no. 10, p. 2287, 2023.

[58] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated learning,”
IEEE Transactions on Neural Networks and Learning Systems, 2022.

[59] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open
problems in federated learning,” Foundations and Trends® in Machine Learning,
vol. 14, no. 1–2, pp. 1–210, 2021.

[60] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches for personal-
ization with applications to federated learning,” arXiv preprint arXiv:2002.10619,
2020.

[61] Y. Zhan, J. Zhang, Z. Hong, L. Wu, P. Li, and S. Guo, “A survey of incentive
mechanism design for federated learning,” IEEE Transactions on Emerging Topics
in Computing, vol. 10, no. 2, pp. 1035–1044, 2021.

[62] Y. Wang and B. Kantarci, “A novel reputation-aware client selection scheme for
federated learning within mobile environments,” in 2020 IEEE 25th International
Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD). IEEE, 2020, pp. 1–6.

[63] S. Abdul Rahman, “Adaptive client selection and upgrade of resources for robust
federated learning,” Ph.D. dissertation, École de technologie supérieure, 2022.

[64] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani, “Reliable federated
learning for mobile networks,” IEEE Wireless Communications, vol. 27, no. 2, pp.
72–80, 2020.

90 BIBLIOGRAPHY

[65] Y. Jiang, W. Zhang, and Y. Chen, “Data quality detection mechanism against label
flipping attacks in federated learning,” IEEE Transactions on Information Forensics
and Security, vol. 18, pp. 1625–1637, 2023.

[66] Y. Shi, H. Yu, and C. Leung, “A survey of fairness-aware federated learning,” arXiv
preprint arXiv:2111.01872, 2021.

[67] T. Nishio and R. Yonetani, “Client selection for federated learning with heteroge-
neous resources in mobile edge,” in ICC 2019-2019 IEEE international conference
on communications (ICC). IEEE, 2019, pp. 1–7.

[68] M. Ribero and H. Vikalo, “Communication-efficient federated learning via optimal
client sampling,” arXiv preprint arXiv:2007.15197, 2020.

[69] J. Goetz, K. Malik, D. Bui, S. Moon, H. Liu, and A. Kumar, “Active federated
learning,” arXiv preprint arXiv:1909.12641, 2019.

[70] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning on non-iid
data with reinforcement learning,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 1698–1707.

[71] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani, “Hybrid-
fl for wireless networks: Cooperative learning mechanism using non-iid data,” in
ICC 2020-2020 IEEE International Conference On Communications (ICC). IEEE,
2020, pp. 1–7.

[72] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient resource manage-
ment for federated edge learning with cpu-gpu heterogeneous computing,” IEEE
Transactions on Wireless Communications, vol. 20, no. 12, pp. 7947–7962, 2021.

[73] P. Zhou, P. Fang, and P. Hui, “Loss tolerant federated learning,” arXiv preprint
arXiv:2105.03591, 2021.

[74] M. Mohri, G. Sivek, and A. T. Suresh,“Agnostic federated learning,” in International
Conference on Machine Learning. PMLR, 2019, pp. 4615–4625.

[75] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation in federated
learning,” arXiv preprint arXiv:1905.10497, 2019.

[76] L. Lyu, J. Yu, K. Nandakumar, Y. Li, X. Ma, J. Jin, H. Yu, and K. S. Ng, “Towards
fair and privacy-preserving federated deep models,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 11, pp. 2524–2541, 2020.

[77] A. Abay, Y. Zhou, N. Baracaldo, S. Rajamoni, E. Chuba, and H. Ludwig, “Mitigat-
ing bias in federated learning,” arXiv preprint arXiv:2012.02447, 2020.

[78] N. Baracaldo, A. Anwar, M. Purcell, A. Rawat, M. Sinn, B. Altakrouri, D. Balta,
M. Sellami, P. Kuhn, U. Schopp et al., “Towards an accountable and reproducible
federated learning: A factsheets approach,” arXiv preprint arXiv:2202.12443, 2022.

[79] N. Xie, “Quantifying the trustworthiness level of federated learning models,”Avail-
able at https://www.merlin.uzh.ch/ publication/ show/ 22995 , November 2022.

https://www.merlin.uzh.ch/publication/show/22995

BIBLIOGRAPHY 91

[80] S. Rabiul Islam, W. Eberle, and S. K. Ghafoor, “Towards quantification of explain-
ability in explainable artificial intelligence methods,”arXiv e-prints, pp. arXiv–1911,
2019.

[81] S. K. Lo, Q. Lu, L. Zhu, H.-Y. Paik, X. Xu, and C. Wang, “Architectural patterns
for the design of federated learning systems,” Journal of Systems and Software, vol.
191, p. 111357, 2022.

[82] L. Fu, H. Zhang, G. Gao, H. Wang, M. Zhang, and X. Liu, “Client selection
in federated learning: Principles, challenges, and opportunities,” arXiv preprint
arXiv:2211.01549, 2022.

[83] A. Tariq, M. A. Serhani, F. Sallabi, T. Qayyum, E. S. Barka, and K. A. Shuaib,
“Trustworthy federated learning: A survey,” arXiv preprint arXiv:2305.11537, 2023.

[84] A. S. Luccioni and A. Hernandez-Garcia, “Counting carbon: A survey of factors
influencing the emissions of machine learning,” arXiv preprint arXiv:2302.08476,
2023.

[85] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for
deep learning in nlp,” arXiv preprint arXiv:1906.02243, 2019.

[86] A. S. Luccioni, S. Viguier, and A.-L. Ligozat, “Estimating the carbon footprint of
bloom, a 176b parameter language model,” arXiv preprint arXiv:2211.02001, 2022.

[87] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So,
M. Texier, and J. Dean,“Carbon emissions and large neural network training,”arXiv
preprint arXiv:2104.10350, 2021.

[88] A. S. George, A. H. George, and A. G. Martin, “The environmental impact of ai:
A case study of water consumption by chat gpt,” Partners Universal International
Innovation Journal, vol. 1, no. 2, pp. 97–104, 2023.

[89] X. Qiu, T. Parcollet, J. Fernandez-Marques, P. P. de Gusmao, Y. Gao, D. J. Beutel,
T. Topal, A. Mathur, and N. D. Lane, “A first look into the carbon footprint of
federated learning.” J. Mach. Learn. Res., vol. 24, pp. 129–1, 2023.

[90] CodeCarbon, “Codecarbon,” https://codecarbon.io, accessed: 22.02.2023.

[91] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau, “Towards
the systematic reporting of the energy and carbon footprints of machine learning,”
2020.

[92] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, “Quantifying the carbon
emissions of machine learning,” arXiv preprint arXiv:1910.09700, 2019.

[93] D. Patterson, J. Gonzalez, U. Hölzle, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild,
D. R. So, M. Texier, and J. Dean,“The carbon footprint of machine learning training
will plateau, then shrink,”Computer, vol. 55, no. 7, pp. 18–28, 2022.

https://codecarbon.io

92 BIBLIOGRAPHY

[94] S. Schlömer, T. Bruckner, L. Fulton, E. Hertwich, A. McKinnon, D. Perczyk, J. Roy,
R. Schaeffer, R. Sims, P. Smith et al., “Annex iii: Technology-specific cost and per-
formance parameters,” in Climate change 2014: Mitigation of climate change: Con-
tribution of working group III to the fifth assessment report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, 2014, pp. 1329–1356.

[95] B. Petroleum, “Statistical review of world energy 2022. bp,” 2022.

[96] O. W. in Data, “Carbon intensity of electricity,” https://ourworldindata.org/
grapher/carbon-intensity-electricity, accessed: 03.07.2023.

[97] M. Martonosi, D. Brooks, and P. Bose, “Modeling and analyzing cpu power and per-
formance: Metrics, methods, and abstractions,” SIGMETRICS 2001/Performance
2001-Tutorials, 2001.

[98] PassMark, “Benchmarking,” https://www.cpubenchmark.net/, accessed:
25.03.2023.

[99] ——, “Thermal design power,” https://www.cpubenchmark.net/power
performance.html, accessed: 03.05.2023.

[100] ——, “Cpu benchmark dataset,” https://www.kaggle.com/datasets/alanjo/
cpu-benchmarks, accessed: 03.05.2023.

[101] ——, “Gpu benchmark dataset,” https://www.kaggle.com/datasets/alanjo/
gpu-benchmarks, accessed: 03.05.2023.

[102] Y. Xie, Z. Wang, D. Gao, D. Chen, L. Yao, W. Kuang, Y. Li, B. Ding, and J. Zhou,
“Federatedscope: A flexible federated learning platform for heterogeneity,” arXiv
preprint arXiv:2204.05011, 2022.

[103] G. Kamiya, “The carbon footprint of streaming video: fact-checking the headlines,”
2020.

https://ourworldindata.org/grapher/carbon-intensity-electricity
https://ourworldindata.org/grapher/carbon-intensity-electricity
https://www.cpubenchmark.net/
https://www.cpubenchmark.net/power_performance.html
https://www.cpubenchmark.net/power_performance.html
https://www.kaggle.com/datasets/alanjo/cpu-benchmarks
https://www.kaggle.com/datasets/alanjo/cpu-benchmarks
https://www.kaggle.com/datasets/alanjo/gpu-benchmarks
https://www.kaggle.com/datasets/alanjo/gpu-benchmarks

Abbreviations

AI Artificial Intelligence
AI-HLEG High-Level Expert Group on Artificial Intelligence
BP British Petrolium
CFL Centralized Federated Learning
CNN Convolutional Neural Network
CO2eq Carbon Dioxide equivalents
COMPAS Correctional Offender Management Profiling for Alternative Sanctions
CPU entral Processing Unit
DFL Decentralized Federated Learning
DL Deep Learning
DNN DNN Deep Neural Network
DP Differential Privacy
FAFL Fairness Aware Federated Learning
FedAvg FederatedAveraging
FL Federated Learning
FLOPS Floating-Point Operations Per Second
GAN Generative Adversarial Network
GPT-3 Generative Pre-trained Transformer 3
GPT-4 Generative Pre-trained Transformer 4
GPU Graphics Processing Unit
HE Homomorphic Encryption
HFL Horizontal Federated Learning
IPCC Intergovernmental Panel on Climate Change
IPS Instructions Per Second
ML Machine Learning
MNN Multi-layer Neural Network
NLP Natural Language Processing
US United States
RNN Recurrent Neural Network
SMC Secure Multiparty Computation
SVM Support Vector Machine
TDP Thermal Design Power
VFL Vertical Federated Learning
XAI Explainable AI

93

94 ABBREVIATONS

List of Figures

2.1 Federated Machine Learning in Steps from [21]. 8

3.1 Trustworthy FL Taxonomy from [14]. 23

4.1 Two possible Strategies to define Sustainability Pillar Notions (left:absolute,
right:relative). 29

4.2 Average life-cycle CO2e emissions per Fuel to Produce 1 kWh of Electricity
from [94]. 31

4.3 Carbon Intensity of Electricity in 2022 by Country from [96]. 31

4.4 Trustworthy FL Taxonomy . 35

5.1 Programming Interfaces provided by FederatedScope from [102]. 38

5.2 Overview of an FL round implemented with FederatedScope from [102]. . . 39

5.3 Exemplary CodeCarbon Emissions Dashboard from [90] 40

5.4 Overview of Different Actors of FederatedTrust integrated into a Frame-
work from [14]. 42

5.5 FederatedTrust Metric Calculation Process from [14]. 43

5.6 Interactions between FederatedTrust and FederatedScope, further develop-
ment from [79] and [102]. 48

5.7 FederatedTrust v.0.2.0 Metric Configuration Design further Development
from [79]. 54

5.8 FederatedTrust v.0.2.0 Trust Score Computation Process, further develop-
ment from [14]. 57

6.1 The Sustainability Pillar Matrix . 64

6.2 Results of Evaluation of FederatedTrust v.0.2.0 Scenario a all Pillars 72

95

96 LIST OF FIGURES

6.3 Results of Evaluation of FederatedTrust v.0.2.0 Scenario b all Pillars . . . 74

6.4 Results of Evaluation of FederatedTrust v.0.2.0 Scenario a all Notions . . . 75

6.5 Results of Evaluation of FederatedTrust v.0.2.0 Scenario b all Notions . . . 75

A.1 FederatedTrust Algorithm Pseudocode from [14]. 103

A.2 FederatedTrust Normalization of Metrics from [14]. 104

List of Tables

3.1 Privacy Attacks vs. Defense Mechanism in FL from [50]. 17

3.2 Existing Trustworthy FL Taxonomies and Their Coverage of Pillars and
AI-HLEG Requirements . 22

3.3 Metrics Implemented by the FederatedTrust Algorithm Prototype from [14]. 24

5.1 Metrics for Sustainability Pillar. 51

6.1 Evaluation Scenario Zero not Parametrized 63

6.2 Evaluation Scenario Zero Parametrized . 63

6.3 Evaluation Scenario One . 66

6.4 Evaluation Scenario Two . 67

6.5 Evaluation Scenario Three . 69

6.6 Evaluation Scenario Four . 70

6.7 Configurations FederatedTrust v.0.2.0 evaluation scenario a 71

6.8 Configurations FederatedTrust v.0.2.0 evaluation scenario b 73

97

98 LIST OF TABLES

Code Listings

5.1 Code of Scaled Score Normalization Function. 55
5.2 Exemplary Part of Configuration File . 56
5.3 Exemplary Part of Configuration File . 58

99

100 CODE LISTINGS

List of Algorithms

1 Training in FederatedScope with FederatedTrust v.0.2.0 49

101

102 LIST OF ALGORITHMS

Appendix A

FederatedTrust v.0.1.0

A.1 Algorithmic Pseudocode

Figure A.1: FederatedTrust Algorithm Pseudocode from [14].

103

104 APPENDIX A. FEDERATEDTRUST V.0.1.0

A.2 Normalization Functions for Metrics

Figure A.2: FederatedTrust Normalization of Metrics from [14].

	Abstract
	Abstrakt
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Background
	Federated Learning
	Horizontal Federated Learning
	Vertical Federated Learning
	Centralized Federated Learning
	Decentralized Federated Learning

	Trustworthy AI
	The Need of Trustworthy AI
	European Commission Ethical Guidelines for Trustworthy AI
	The Five Pillars of Trustworthy AI

	Related Work
	Trustworthy FL - A Survey
	Privacy
	Robustness
	Fairness
	Accountability
	Explainability
	Federation

	Existing Trustworthy FL Taxonomy
	Limitations

	Evaluation Tools of Trustworthy FAI
	Limitations

	Estimating Emissions of AI/FL
	Findings from Related Work

	The Sustainability Pillar of Trustworthy FL
	Motivation and Background
	Notions and Metrics of the Trustworthy FL Sustainability Pillar
	The Carbon Intensity of the Energy Source
	The Efficiency of the Underlying Hardware
	The Complexity of the Federation

	Limitations
	Trustworthy FL Taxonomy

	Design and Implementation
	Used Tools
	FederatedScope
	CodeCarbon
	FederatedTrust v.0.1.0

	Design and Implementation of FederatedTrust v.0.2.0
	Context, Assumptions
	Requirements and Constraints
	Architecture
	Algorithmic Pseudocode
	Metric Definitions
	Raw Metric Computation
	Metric Configuration and Normalization
	Trust Score Computation
	Parametrization
	Additional Functionalities
	Installation Guidelines

	Evaluation, Results, and Discussion
	Parametrized vs. Non-parametrized
	Scenario Zero

	 Sustainability Pillar Evaluation of FederatedTrust v.0.2.0
	Scenario One: Best Case Scenario
	Scenario Two: Worst Case Scenario
	Scenario Three: Middle Case Scenario
	Scenario Four: Middle Case Scenario

	Evaluation of FederatedTrust v.0.2.0
	Scenario a
	Scenario b

	Discussion and Limitations

	Summary and Conclusion
	Future Work

	Declaration of Independence of Written Work
	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Code Listings
	List of Algorithms
	FederatedTrust v.0.1.0
	Algorithmic Pseudocode
	Normalization Functions for Metrics

