
Bluetooth Low Energy Device
Classifier

Jie Liao
Zurich, Switzerland

Student ID: 20-740-551

Supervisor: Katharina Müller
Date of Submission: August 8, 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

0.1 Einleitung

Im Jahr 2011 läutete die Einführung der Bluetooth Low Energy (BLE) Technologie eine
signifikante Neuerung in der drahtlosen Kommunikation ein. BLE, primär für Energieef-
fizienz und kurze Distanzkommunikation entwickelt, ebnete den Weg für das Internet der
Dinge (IoT). Dies förderte die Entstehung von ortsbasierten Trackern wie Apples AirTag.
Obwohl sie nützlich sind, haben sie Sicherheitsbedenken hervorgerufen. Ein Hauptanliegen
ist das Risiko, dass Dritte Bewegungen unbemerkt verfolgen könnten. Trotz vorhandener
Sicherheitsprotokolle bleiben Fragen bezüglich ihrer Effektivität. Daher ist es essenziell,
BLE-Geräte präziser zu identifizieren und zu kategorisieren, um die Sicherheit der Benut-
zer zu erhöhen.

0.2 Ziele

Das Hauptziel dieser Arbeit ist es, die wachsenden Sicherheits- und Datenschutzbedenken
im Zusammenhang mit Trackern und anderen Bluetooth Low Energy (BLE) Geräten zu
adressieren. Insbesondere zielt diese Arbeit darauf ab, eine Methode zu entwickeln, die
verschiedene BLE-Geräte effektiv klassifizieren kann.

Ein wichtiger Beweggrund für diese Arbeit ist das Ungleichgewicht im Schutz zwischen
iOS- und Android-Benutzern. Während iOS-Benutzer von erweiterten Sicherheitsfunktio-
nen profitieren, fehlen Android-Benutzern ähnliche Schutzmassnahmen. Daher konzen-
triert sich diese Arbeit darauf, eine Anwendung speziell für die Android-Plattform zu
erstellen.

Frühere Anwendungen wie HomeScout konzentrierten sich auf die Identifizierung von per-
sönlichen Trackern wie dem AirTag von Apple. Allerdings gibt es bestimmte Einschrän-
kungen in den Klassifikationsfähigkeiten dieser Lösungen. Dieser Forschungszweig zielt
darauf ab, diese Grenzen zu überwinden und eine verbesserte Klassifizierungsmethode zu
entwickeln, die in die HomeScout-Anwendung integriert wird.

Insgesamt lassen sich die Hauptforschungsziele wie folgt zusammenfassen: Entwicklung
einer Methode zur Klassifizierung verschiedener Arten von BLE-Geräten, insbesondere

i

ii

von Ortungstrackern und anderen IoT-Geräten, sowie Integration des entwickelten Klas-
sifikationsalgorithmus in HomeScout, um dessen Fähigkeit zur Geräteidentifikation über
die bloße Erkennung von Trackern hinaus zu erweitern.

0.3 Resultate

Die Einführung von Bluetooth Low Energy (BLE) im Jahr 2011 leitete einen bedeu-
tenden Wendepunkt in der drahtlosen Kommunikation ein und ebnete den Weg für das
Internet der Dinge (IoT) sowie den Aufstieg von standortbasierten Trackern. Trotz der
Bequemlichkeit, die Geräte wie Apples AirTag bieten, bestehen Sicherheitsrisiken, insbe-
sondere das Risiko, dass böswillige Akteure Personen ohne ihr Wissen verfolgen. Diese
Arbeit zielt darauf ab, die Sicherheitsbedenken im Zusammenhang mit BLE-Trackern
zu adressieren, insbesondere angesichts der Unterschiede im Schutz zwischen iOS- und
Android-Benutzern.

Ein Feature-basierter Prototyp wurde vorgeschlagen und drei Klassifikationsmodelle -
SVM, Random Forest und Multi-Layer Perceptron - wurden evaluiert. Dabei erwies sich
das Multi-Layer Perceptron Modell mit einer Genauigkeit von 94,5% auf Testdaten als
das überlegene Modell. Weiterhin wurde dieses Modell auf unbekannte Geräte getestet,
um seine Generalisierungsfähigkeit zu bewerten, und erreichte eine Genauigkeit von 88%
mit einer binären Klassifikationszielsetzung - Tracker und Nicht-Tracker.

Nach Behebung eines identifizierten Fehlers in der ursprünglichen Anwendung wurde die-
ses Modell in die HomeScout-App integriert. Nun ist HomeScout in der Lage, zwischen
Tracker- und Nicht-Tracker-Geräten zu unterscheiden. Zukünftige Arbeiten beinhalten
die Verfeinerung des Prototyps, die Erweiterung der Vielfalt des Datensatzes und die
Gewährleistung der Privatsphäre der Benutzer in öffentlichen Datensätzen.

0.4 Weitere Arbeiten

Der entwickelte Klassifikator ist ein Prototyp und bedarf weiterer Optimierungen, insbe-
sondere in Bezug auf den Umfang des Datensatzes. Für eine verbesserte Klassifizierung
von BLE-Geräten wäre es wünschenswert, einen größeren und vielseitigeren Datensatz zu
erstellen, der weitere Gerätekategorien abdeckt.

MAC-Randomisierung ist weiterhin eine Herausforderung, und zukünftige Forschungen
sollten darauf abzielen, Mechanismen zu entwickeln, um diese Geräte konsequent zu iden-
tifizieren. Weitere Features, wie die Ankunftszeit von BLE Advertisements, könnten eben-
falls in Betracht gezogen werden, um die Klassifikationsperformance zu steigern.

Beim Erstellen von öffentlichen Datensätzen sollte immer der Datenschutz gewährleistet
sein, um die Privatsphäre der Nutzer zu schützen.

Abstract

In 2011, the introduction of Bluetooth Low Energy (BLE) marked a significant shift in
wireless communication, paving the way for the Internet of Things (IoT) and the rise of
location-based trackers. While devices like Apple’s AirTag provide convenience, they pose
security risks, notably the potential for malicious actors to track individuals unbeknownst
to them. This work aims to address security concerns related to BLE trackers, especially
considering the disparity between protections for iOS and Android users. The research fo-
cuses on creating an Android application, improving upon previous tools like HomeScout,
which had limited classification capabilities. A feature based prototype was proposed and
three classification models including SVM, Random Forest, and Multi-layer Perceptron
were evaluated. The result was an effective classification method for BLE devices, with
the Multi-Layer Perceptron model outperforming others with a 94.5% accuracy on test
data. The model was further tested on unseen device to evaluate its generalization capa-
bility, which achieved a 88% of accuracy in with binary classification target, tracker and
non-tracker. This model was integrated into the HomeScout app after resolving an identi-
fied bug in the original application. Eventually, Homescout is able to identify tracker and
non-tracker device after integration. Future work entails refining the prototype, enhancing
the dataset’s diversity, and ensuring user privacy in public datasets.

iii

iv

Acknowledgments

I would like to express my sincere gratitude to Katharina and Prof.Stiller for giving me the
valuable opportunity to conduct my master’s thesis in the Communication Systems Re-
search Group (CSG) at the Department of Informatics of the University of Zurich. Their
guidance, support, and trust throughout this research journey have been instrumental in
shaping the outcomes of my work.

Katharina’s expertise, patience, and continuous feedback have been invaluable in refining
my research methodology and enhancing the quality of my thesis. Her dedication to
pushing the boundaries of knowledge and her unwavering commitment to my academic
growth have been truly inspiring.

Last but not least, I would like to acknowledge the support and encouragement of my
family and friends who have stood by me throughout this academic endeavor.

I am truly grateful to all those who have contributed to the successful completion of my
master’s thesis. Your support and guidance have been invaluable, and I am honored to
have had the opportunity to work with such exceptional individuals at the CSG group.

v

vi

Contents

German Abstract i

0.1 Einleitung . i

0.2 Ziele . i

0.3 Resultate . ii

0.4 Weitere Arbeiten . ii

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation and Research Objectives . 3

1.2 Description of Work . 3

1.3 Thesis Outline . 4

2 Related Work 5

2.1 IoT Device Classification . 5

2.2 Bluetooth Low Energy Network . 6

2.3 Research Gap . 7

vii

viii CONTENTS

3 Background 9

3.1 Bluetooth Low Energy . 9

3.1.1 Specifications . 10

3.1.2 Discovery Process . 12

3.1.3 Protocol Stack . 13

3.1.4 Physical Layer . 13

3.1.5 Link Layer . 14

3.2 HomeScout . 19

3.2.1 App Workflow . 19

3.2.2 App Architecture . 19

3.2.3 User Interface . 20

3.2.4 Services . 20

3.2.5 Tracker Identification . 23

3.3 Support Vector Machines . 24

3.3.1 Basic Concept and Mechanism . 24

3.3.2 Kernel Functions . 25

3.3.3 Advantages and Disadvantages . 25

3.4 Random Forest . 26

3.4.1 Decision Tree . 26

3.4.2 Basic Concept and Mechanism . 27

3.5 Multi-layer Perceptron . 28

3.5.1 Basic Concept and Mechanism . 28

3.5.2 Activation Functions . 29

3.5.3 Advantages and Disadvantages . 29

CONTENTS ix

4 Design and Implementation 31

4.1 Data Acquisition . 31

4.2 Data Analysis . 33

4.2.1 AD analysis . 33

4.2.2 Analysis of collected data from trackers 35

4.2.3 Analysis of collected data from non-tracker devices 37

4.3 Prototype Design . 37

4.3.1 Data Preprocessing . 40

4.3.2 Feature-based Prototype . 41

4.4 Integration of Classification Algorithm into HomeScout 45

5 Results and Evaluation 49

5.1 Evaluation Metrics Selection . 49

5.2 Evaluation Dataset . 50

5.3 Evaluation of Feature-based Prototype . 50

5.3.1 SVM Classifier . 50

5.3.2 Hyperparameters Fine-tuning . 50

5.3.3 Model Evaluation . 51

5.3.4 Random Forest Classifier . 51

5.3.5 Multi-Layer Perceptron Classifier 54

5.4 Experiments on Unseen Device . 55

5.5 Validation Experiments on Homescout . 56

6 Conclusion and Future Work 59

6.1 Conclusion . 59

6.2 Future Work . 60

Abbreviations 65

Glossary 67

x CONTENTS

List of Figures 67

List of Tables 70

A Example link layer packets 73

A.1 AirTag . 74

A.2 Nutale . 75

A.3 HuaweiTag . 76

A.4 Tile . 77

A.5 Three different states of an AirTag . 78

A.6 Three different states of an HuaweiTag . 79

B Device capture list 81

Chapter 1

Introduction

In 2011, the introduction of Bluetooth Low Energy (BLE) technology marked a significant
shift in the landscape of wireless communication. BLE was designed to be energy-efficient
and optimized for short-range communication with small data payloads, making it an ideal
technology for the Internet of Things (IoT) ecosystem. As a result, BLE has become an
integral part of IoT and has facilitated the development of location-based trackers, which
are increasingly popular. Its advantage in energy-saving perfectly suits the use case of
location trackers, which require minimal battery drain to effectively track and report the
location of items over extended periods. An increasing number of location trackers based
on BLE network have been developed and introduced to the public. A study conducted
by Circana [11] shows that sales for item trackers massively grew by nearly 63% in just
the US during the months of January and February. The low price of these trackers also
makes it accessible to the public and explain the reason why it’s prevelant in the market.

One of the most well-known examples of these trackers is Apple’s AirTag, which allows
users to track and locate their belongings using their smartphones. It is a small, coin-
shaped device that can be attached to an item using a keychain or adhesive, which is
convenient for tracker users. For instance, users can attach an AirTag to their keys to
help locate them in case they are misplaced or lost.

While these devices provide convenience to users, they also introduce security concerns
that need to be addressed. For example, a malicious actor could potentially track the
movements of an individual carrying an AirTag or similar device without their knowledge
or consent. This raises privacy concerns, as the individual’s location data could be used
for malicious purposes. With the release of AirTag in 2011, concerns about these potential
dangers have become increasingly prominent. More and more people have reported being
stalked by AirTag [13]. Consumers are realizing these convenient IoT devices can also
threaten their safety. Although device manufacturers and developers are implementing
various security features in their products, the effectiveness of these measures is still being
questioned. Apple implements a safety measure to Airtags which makes a beeping noise
when an unregistered AirTag is detected moving with a user after 8 hours [16]. But people
who intend to track other people can easily register an AirTag and track victims until
they get home and then disable it. Besides, it’s actually easy to muffle AirTag’s alert
having only a 60 decibel beep sound with some kind of cushions. Moreover, the current

1

2 CHAPTER 1. INTRODUCTION

state of protection varies between different smartphone platform. As of now, only iOS
users are truly safeguarded, as Google and Apple have pledged to collaborate on ensuring
Android users receive equivalent protection, though progress on this front has been slow.
Additionally, users must consent to participate in the FindMy network, thus sharing their
location with the network. However, if a user decides not to provide this consent due
to privacy concerns, they will not receive alerts when an AirTag is tracking them. This
contradiction further complicates the security issues of these tracking devices.

Thus, multiple mobile applications were developed, such as AirGuard [12] and HomeScout,
to check for potentially dangerous devices. With the development of the HomeScout
application in various previous projects, it is possible to detect and filter out personal
trackers, including the AirTag, Tile, Samsung Galaxy SmartTag+, Chipolo One Spot,
and the OpenHaystack tag. The application was designed to enable users to scan and
detect personal tags at any location and throughout the day, thereby alleviating users’
anxiety about being tracked. Furthermore, through the analysis of the scanned BLE
devices and data contained in the transmitted packets, it has become apparent that BLE-
based IoT devices can be similarly used to track objects or people. As such, it is important
to expand the horizon of HomeScout beyond personal trackers towards a variety of BLE
devices encountered in all facets of daily life.

Although HomeScout has shown its ability in filtering out personal trackers, it has limi-
tations on the device identification ability. It can only identify trackers between AirTag,
Chipolo ONE Spot, Galaxy SmartTag+ and Tile, which is achieved by analyzing the spe-
cific characteristic of each type individually. However, it’s almost impossible to support all
types of trackers on the market, especially given the vast number of existing and emerg-
ing trackers. Analyzing the specific characteristics of each tracker and incorporating them
into the application’s list of supported devices is a daunting task. Furthermore, another
limitation of HomeScout is that it only supports the identification of trackers, leaving
many other types of BLE devices remain unknown in the application, and consequently,
users may still have concerns about those unknown devices.

Therefore, it is crucial to develop an application based on HomeScout that can passively
scan and identify BLE devices and categorize them according to type or usage to enhance
user awareness, enable control over personal data, and increase security awareness. This
upgrade will help users have more awareness of the type of BLE devices around them and
thus relieve users’ concerns about safety significantly. The first step in achieving this is
identifying and classifying IoT devices so that their purpose, communication, and loca-
tion with respect to the user can be consistently recognized. As such, there have been a
multitude of suggested approaches, such as behavioral fingerprinting [9], automated clas-
sification from network traffic streams [7], identification based on communication analysis
[17], and deep packet inspection combined with keyword extraction for a rule-based clas-
sification approach. The last of which was demonstrated by IoTHunter [14], enabling the
accurate distinction between different types of BLE devices, such as smart home devices,
medical devices, or fitness trackers.

1.1. MOTIVATION AND RESEARCH OBJECTIVES 3

1.1 Motivation and Research Objectives

The motivation behind this research stems from the growing concerns related to security
and privacy associated with trackers and other Bluetooth Low Energy (BLE) devices.
The need to address these issues has driven our efforts to develop a method for effectively
classifying various types of BLE devices, including location trackers.

One of the primary motivations is the disparity in the level of protection between iOS and
Android users. Currently, iOS users enjoy enhanced security features against unwanted
tracking, while Android users lack equivalent protection. To bridge this gap, our research
focuses on creating an application specifically designed for the Android platform.

Previous efforts, such as HomeScout, have been focused on identification of personal track-
ers like Apple’s AirTag. However, certain limitations exist in the classification capabilities
of these existing solutions. Therefore, our research aims to overcome these limitations and
develop an improved classification method that will be integrated into the HomeScout ap-
plication.

The ultimate goal of our work is to enhance the functionality of HomeScout and provide
Android users with a robust tool to detect and classify various BLE devices. By achieving
this, we aim to alleviate user concerns about potential stalking or unauthorized tracking
through the proactive identification and categorization of BLE devices encountered in
daily life.

In summary, the main research objectives are as follows:

1. Develop a method for classifying different types of BLE devices, with a focus on
location trackers and other IoT devices.

2. Integrate the developed classification algorithm into HomeScout, expanding its de-
vice identification capability beyond trackers.

1.2 Description of Work

The focus of this work is to explore link layer communication in the BLE network to
recognize these devices and classify them into different categories.

The key contributions of this work include:

1. Examination of BLE link layer packets and exploration of their potential for classi-
fication.

2. Provision of a labeled dataset about BLE link layer packet, which provides the
information about the characteristics of packet.

3. Design and implementation of machine learning models to classify BLE devices.

4. Integration of the developed algorithm into HomeScout, thereby enhancing its device
identification capabilities.

4 CHAPTER 1. INTRODUCTION

1.3 Thesis Outline

This thesis is structured as follows: Chapter 2 presents related work in the area of BLE,
offline finding networks, IoT devices identification and classification algorithm. Chapter
3 introduces the basics about BLE network, especially the link layer. And it introduces
HomeScout, an Android app which our classification algorithm designed in this work
will be integrated in. Chapter 4 describes analysis of collected BLE link layer packets,
design and implementation of classification algorithm. Chapter 5 presents the results and
evaluation of the conducted experiments about the classification algorithms. Chapter 6
discusses some findings of this work, including MAC randomization. Finally, Chapter 7
closes this work with the conclusion of this work and provides some insights of potential
future work.

Chapter 2

Related Work

In this section, we provide a brief summary of the related work in two main categories:
IoT device classification, BLE network analysis. These categories are the closely related to
this work. After that, a research gap in the current academic community will be proposed.

2.1 IoT Device Classification

Given the limited existing research specifically dedicated to BLE device classification,
insights and inspiration can be gained by looking at the broader field of IoT device clas-
sification. The knowledge and techniques developed for IoT devices can be adapted and
applied to the context of BLE devices, enabling researchers to make meaningful progress
in this area.

There have been a multitude of suggested approaches in IoT device classification, such
as behavioral fingerprinting [9] [?], automated classification from network traffic charac-
teristics [19], identification based on communication analysis [17], deep packet inspection
combined with keyword extraction for a rule-based classification[14] and deep learning
based approach[7].

[9] present a methodology for IoT device behavioral fingerprinting, where a device’s be-
havior is determined using features extracted from its network traffic. These features are
then used to train a machine learning model that can identify similar device types.

[19] introduces an unsupervised machine learning methodology for categorizing IoT de-
vices based on traffic characteristics at the network level. The research addresses the
challenge of device heterogeneity in IoT and the need for device classification for various
applications. The study evaluates the performance of K-Means and BIRCH clustering
algorithms on a real dataset.

In the study presented in [?], researchers introduced a fingerprinting technique using
machine learning to identify Bluetooth wearables, specifically smartwatches. The primary
feature utilized for the machine learning models was the distribution of inter-arrival-
times of Bluetooth packets. Results demonstrated high precision and recall in identifying

5

6 CHAPTER 2. RELATED WORK

wearables that operate on the Bluetooth classic protocol, indicating the effectiveness of
the inter-arrival-time distribution as a distinguishing feature.

[17]introduces a device identification method that identifies device types and models based
on general communication information. By calculating the similarity of features extracted
from network packets, this method can identify various IoT devices without the need for
specialized equipment.

IoTHunter[14] is a Deep Packet Inspection based IoT traffic classifier that extracts unique
keywords, such as domain names and device names, to identify flows belonging to a
particular device. The system automates the keyword extraction process by using the
frequency of occurrence of words belonging to flows of different devices. To enhance
performance, IoTHunter combines device-specific keywords with the MAC address of the
device for subsequent flow labeling.

IoTHunter use the data from the same device for training and testing on a temporal basis
and can thus only achieve intra-device identification and classify IoT devices already exist
in the training dataset. [7] proposed a deep learning-based approach to classify unseen IoT
devices by designing a feature extraction method and identifying invariant dependencies
across devices. Their framework includes a LSTM-CNN cascade model that captures
temporal correlations and effectively classifies IoT devices using real-world traffic data.

2.2 Bluetooth Low Energy Network

Although there is currently limited research on BLE device classifier, there are a lot
of work focusing around broader field of BLE network, including environment detection
using BLE advertising packets [18], analysis of Apple’s Bluetooth Low Energy Continuity
Protocols [15], tracking of BLE device with MAC address vulnerabilities [8] and BLE
trackers detection[10] [12].

[18] is an AI-driven classifer that identify the category of environment. It scans BLE
advertising packets and extracts features such as signal strength from them. The clas-
sification system of it is based on a two-layer dense neural network. It achieves an 84%
of accuracy in differentiating between 7 categories of environment, including - home, of-
fice, shopping, transport, nature, street, and restaurant. The paper demonstrated the
significant potential of leveraging BLE advertising packets for classification purpose.

[15] reverse-engineered various Continuity protocol message types and identified unen-
crypted data fields. They found that these messages are broadcast over BLE in response
to various user actions, such as locking/unlocking the device, copying/pasting informa-
tion, and making phone calls. The study also demonstrates that the content and format
of Continuity messages can be used to fingerprint devices and profile users.

[8] introduces an address-carryover algorithm that exploits the asynchronous nature of
payload and address changes to track devices beyond their address randomization cycles.
The method extracts identifying tokens from the payload of advertising messages.

2.3. RESEARCH GAP 7

HomeScout[10] is an Android application used to detect stalking from BLE devices. It
identifies malicious trackers that persistently appear in the user’s vicinity and promptly
alerts them. The parameters defining ’vicinity’ and the frequency of ’persistent appear-
ance’ are adjustable, allowing users to customize the application according to their specific
needs.

AirGuard[12] is an Android application developed to protect Android users from potential
stalking threats associated with Apple’s Find My network. It detects Find My enabled
tracking devices through BLE background scans and provides users with timely notifica-
tions and guidance for locating the tracker.

2.3 Research Gap

Although there has been works focusing on IoT device classification and BLE network as
described in section 2.1 and section 2.2. There remains a gap in the current literature,
with no specific focus on classifying BLE devices-a step that could significantly alleviate
user concerns about being tracked by devices like AirTags. To address this gap, this work
introduces a novel BLE device classifier. For broader impact and seamless user experience,
this classifier has been integrated into an existing Android application, HomeScout, cre-
ating a more comprehensive solution for mitigating privacy and security risks associated
with BLE technology.

8 CHAPTER 2. RELATED WORK

Chapter 3

Background

This chapter introduces the fundamental background for this thesis around BLE technol-
ogy, HomeScout and three machine learning algorithms. Bluetooth Low Energy technol-
ogy will first be introduced, which is the pivotal foundation for this research. After that,
the HomeScout application will be described as the application on which the classifier is
built. Additionally, its functionality and limitations will be elaborated on. Finally, we will
introduce three popular machine learning algorithm, including Support Vector Machine,
Random Forest and Multi-layer Perceptron. They will be leveraged to build the classifier
of this work.

3.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE), also known as Bluetooth Smart, is a wireless communi-
cation technology that enables low-power, short-range communication between devices.
BLE was developed to address the growing demand for low-power, small-form-factor de-
vices that can operate on a single coin-cell battery for extended periods of time. It is
designed to be a low-power variant of the classic Bluetooth protocol, which is optimized
for high-speed and high-throughput data transfer.

BLE operates in the 2.4 GHz ISM band and uses frequency-hopping spread spectrum
(FHSS) to avoid interference from other wireless devices operating in the same band. It
uses a master-slave architecture, with a central device (master) initiating and controlling
communication with peripheral devices (slaves). BLE devices can operate in either a
connected or advertising state, with the advertising state allowing devices to broadcast
their presence and enable discovery by nearby devices.

BLE has several advantages over classic Bluetooth, including lower power consumption,
smaller form factor, and lower cost. It is particularly well-suited for applications that
require low power consumption, such as wearable devices, medical sensors, and Internet
of Things (IoT) devices. BLE also has a relatively short range, which makes it ideal for
use in environments where devices need to communicate over short distances, such as in
a smart home or building automation system.

9

10 CHAPTER 3. BACKGROUND

One of the key features of BLE is its ability to operate in a very low-power mode known as
sleep mode. In this mode, the device consumes very little power and wakes up only when
it receives a signal from a central device. This allows BLE devices to operate on a single
coin-cell battery for extended periods of time, making them ideal for use in applications
that require long battery life.

Another important feature of BLE is its support for GATT (Generic Attribute Profile)
protocol, which enables devices to exchange data in a standardized format. GATT defines
a set of services and characteristics that can be used to transmit data between BLE devices.
This makes it easier for developers to create applications that work with a wide range of
BLE devices.

Overall, BLE is a versatile and flexible communication technology that has enabled a
wide range of low-power, small-form-factor devices to be developed. It is an important
technology for the Internet of Things (IoT) and is expected to play a key role in the
development of smart homes, smart cities, and other IoT applications.

3.1.1 Specifications

The Bluetooth specifications provide the foundation for developers to create devices that
can communicate with each other. These specifications are managed by the Bluetooth
Special Interest Group (SIG) and are regularly updated to keep pace with changing tech-
nology and market demands.

Core Specification

The Bluetooth Core Specification outlines the structure of the technology and its layers,
describes its important features, and defines the formal procedures for key operations and
protocols for devices to communicate at different layers of the stack. It’s a comprehensive
specification that guides developers in implementing a Bluetooth stack or its features.
Essentially, it defines how Bluetooth technology works and the requirements for developers
to follow when working with it.

Profile Specification

Profile specifications in Bluetooth Low Energy (BLE) define the behavior and functionality
of devices in specific application domains. They standardize the way devices interact and
communicate with each other to enable interoperability between different manufacturers
and implementations.

3.1. BLUETOOTH LOW ENERGY 11

Core Specification

The Bluetooth Core Specification outlines the structure of the technology and its layers,
describes its important features, and defines the formal procedures for key operations and
protocols for devices to communicate at different layers of the stack. It’s a comprehensive
specification that guides developers in implementing a Bluetooth stack or its features.
Essentially, it defines how Bluetooth technology works and the requirements for developers
to follow when working with it.

Service Specification

In Bluetooth Low Energy (BLE), state data on server devices is stored in formally defined
data items called characteristics and descriptors. These characteristics and descriptors
are organized and grouped within constructs called services. Services provide a context
or framework for assigning meaning and defining behaviors to the characteristics and
descriptors they contain.

A service specification outlines a specific service’s details, including its characteristics
and descriptors. It defines how the server device should behave and respond to various
conditions and values of the state data. Essentially, a service specification represents one
aspect of the behavior exhibited by the server device.

In simpler terms, services act as containers that hold characteristics and descriptors,
which represent specific data and functionality of a device. The service specification
provides guidelines on how the server device should operate within that service, defining
its behavior and how it interacts with other devices.

Assigned Numbers

In the context of Bluetooth Low Energy (BLE), assigned numbers refer to unique identi-
fiers that are assigned to different entities within the Bluetooth ecosystem. These assigned
numbers are used to identify and differentiate between different types of devices, services,
characteristics, and other entities that are part of the BLE protocol.

There are four types of assigned numbers used in BLE: company identifier, service UUID,
characteristic UUID, and descriptor UUID. The company identifier is a 16-bit number
that identifies a particular company or organization. The service UUID is a 128-bit num-
ber that identifies a specific service or feature that a device provides. The characteristic
UUID is a 128-bit number that identifies a specific characteristic of a service, such as tem-
perature or heart rate. The descriptor UUID is a 128-bit number that provides additional
information about a characteristic, such as the units of measurement or the format of the
data. The Bluetooth SIG manages the assignment of these numbers to ensure uniqueness
and compatibility among BLE devices. The full list of assigned numbers can be found on
Bluetooth SIG’s official website[1].

12 CHAPTER 3. BACKGROUND

3.1.2 Discovery Process

In the Bluetooth Low Energy (BLE) Link Layer discovery process, devices utilize adver-
tising channels to find each other. One device operates in advertising mode, broadcasting
its presence and information, while another device operates in scanning mode, actively
listening and searching for advertising packets.

Advertising

BLE Advertising Broadcast, commonly known as advertising, is a communication mode in
Bluetooth Low Energy (BLE) that operates without establishing a connection. It serves
two main purposes: transferring data and indicating the availability of a peripheral device
for connection.

Advertising packets are designed to be received by any scanning device within range.
Therefore, advertising allows for the simultaneous transmission of data to multiple scan-
ning devices in a one-to-many topology. However, there is also a special form called
directed advertising, which enables the one-to-one communication of data from an adver-
tising device to a specific scanning device identified by its Bluetooth device address.

Advertising is primarily unidirectional, enabling data transmission from the advertising
device to scanning devices. However, scanning devices can reply to advertising packets
with Protocol Data Units (PDUs) to request additional information or initiate a connec-
tion.

It’s important to note that advertising is considered an unreliable transport method since
the receivers send no acknowledgments. This means that there is no guarantee of successful
packet delivery or reception.

The Bluetooth Core Specification defines two categories of advertising procedures: legacy
advertising and extended advertising. Legacy advertising will be mainly discussed in this
thesis.

Scanning

There are two types of scanning: passive scanning and active scanning. In passive scan-
ning, the scanner device solely listens for advertising packets without actively interacting
with the advertiser. The advertiser, on the other hand, is unaware of whether its adver-
tising packets have been received by any scanning device. Active scanning is typically
employed when a potential central device requires additional information beyond what is
provided in an ADV IND (advertising indication) packet before deciding to establish a
connection. During an advertising interval, the scanner device initiates the active scan-
ning process by sending a SCAN REQ (scan request) packet to the advertising device.
In response, the advertiser sends a SCAN RSP (scan response) packet containing supple-
mentary information to the scanner. This exchange allows the scanner to gather more
details about the advertiser, aiding in the decision-making process of whether to proceed
with a connection.

3.1. BLUETOOTH LOW ENERGY 13

3.1.3 Protocol Stack

The Bluetooth Low Energy (BLE) protocol stack is a set of smaller protocols that coop-
erate to provide the overall functionality of the BLE protocol. It consists of three primary
subsystems, namely the application, host, and controller blocks.

The application part acts as an interface between the user and the Bluetooth Low Energy
protocol. It integrates the entire BLE protocol’s functionality into a package that is easily
accessible by the user. The host subsystem is typically a software stack that includes the
uppermost layers of the BLE stack and profiles. The controller subsystem comprises the
lower layers of the BLE stack. It includes the physical layer(PHY) and link layer(LL) of
BLE. An overview of layers included in each part can be seen in Figure 1.

Figure 1: The Bluetooth Low Energy Protocol stack.

3.1.4 Physical Layer

The physical layer of Bluetooth Low Energy (BLE) is responsible for establishing and
maintaining the physical communication link between BLE devices. It defines the mod-
ulation scheme, frequency hopping pattern, and transmission power levels used for data
transmission.

The BLE physical layer operates in the 2.4 GHz ISM band, which is divided into 40
channels, each with a 2 MHz bandwidth. To minimize interference and maximize the ro-

14 CHAPTER 3. BACKGROUND

bustness of the communication, BLE employs frequency hopping spread spectrum (FHSS)
technique. This means that the BLE devices switch between these channels at a rapid
rate, typically hopping 1600 times per second.

BLE uses a Gaussian frequency shift keying (GFSK) modulation scheme to encode data for
transmission. This modulation scheme helps in achieving a good trade-off between power
efficiency and spectral efficiency, making it suitable for low-power and low-complexity ap-
plications. GFSK modulation allows the transmitted signal to occupy a wider bandwidth
compared to simple on-off keying, which helps combat multipath fading and interference.

The transmission power levels in BLE are adjustable, allowing devices to optimize the
communication range and power consumption based on their specific requirements. The
power levels range from -20 dBm to +20 dBm, with increments of 4 dBm. Lower power
levels result in reduced communication range but also lower power consumption.

Furthermore, the BLE physical layer defines two types of channels: advertising channels
and data channels. Advertising channels are used for device discovery and initial connec-
tion establishment, while data channels transmit actual data between connected devices.
Advertising channels utilize three of the 40 available channels (channel indices 37, 38, and
39), while data channels can use any of the remaining 37 channels.

In summary, the physical layer of BLE encompasses the use of the 2.4 GHz ISM band with
40 channels, frequency hopping spread spectrum (FHSS) technique, Gaussian frequency
shift keying (GFSK) modulation scheme, adjustable transmission power levels, and the
differentiation between advertising and data channels. These specifications enable BLE
devices to establish reliable and low-power communication links.

3.1.5 Link Layer

The Link Layer of Bluetooth Low Energy (BLE) is a fundamental component of the BLE
protocol stack. It is responsible for establishing and maintaining reliable communication
links between BLE devices. It specifies the format of several types of packets that are
transmitted in the context of BLE. The Link Layer handles critical functions such as
device discovery, connection establishment, data packet transmission, and error handling.
It supports advertising mechanisms to broadcast device information and allows devices
to discover each other. It also enables the establishment of different types of connections,
including master-slave and peer-to-peer connections.

BLE Packets

BLE v5.1 specifications defines two packet types. The first is used by the uncoded PHYs
, LE 1M and LE 2M, as shown in Figure 3. The second type is used by the LE Coded
PHY as shown in Figure ??. Given that most devices used the uncoded PHYs, the BLE
packets format, and relevant knowledge discussed will be focused on it in the following
discussion.

3.1. BLUETOOTH LOW ENERGY 15

Figure 2: Link layer packet format for the LE uncoded PHYs. Source [2].

Figure 3: Link layer packet format for the LE Coded PHY. Source [2].

For ease of use, BLE utilizes a unified packet format for both advertising and data trans-
missions. It consists of four main components: Preamble, Access Address, Protocol Data
Unit(PDU), and Cyclic Redundancy Check(CRC). The preamble is a one-octet field that
acts as a synchronization sequence. It helps the receiver detect the start of the packet and
synchronize its clock. Access address is a four-octet field that provides a unique identifier
for the Bluetooth packet. It helps differentiate between different Bluetooth networks op-
erating in the same area. PDU carries the actual data or control information within the
packet. Its length can vary from 2 to 257 octets, depending on the type of packet and the
information it carries. CRC is a three-octet field that contains error-checking information.
It is used to detect and correct transmission errors, ensuring the integrity of the data.

PDU

Depending on whether packets are transmitted on an advertising channel or data channel,
the format of PDU has two variants. The format of Advertising Channel PDU is shown
in Figure 4 as the format of Data Channel PDU is shown in Figure 5. As this work
focuses mostly on advertising packets, the PDU discussed in the following will also focus
on Advertising Channel PDU.

Advertising Channel PDUs serve two primary purposes: Broadcast data for applications
that do not require a full connection and discover slaves and connect to them [3]. The

Figure 4: Advertising Channel PDU format. Source [2].

16 CHAPTER 3. BACKGROUND

Figure 5: Data Channel PDU format. Source [2].

Advertising PDU packet contains a 16-bit header and a variable-size payload. The header
contains six segments, as displayed in Figure 6.

PDU Type in the header indicates the type of PDU being used. RFU is Reserved for
future use. ChSel is 1 if LE Channel Selection Algorithm is supported. TXAdd is 0 if the
transmitter address is public, 1 if random. RXAdd is 0 if the target’s address is public,
1 if random. The length segment indicates payload length. PDU type can generally be
divided into Legacy Advertising and Extended Advertising. The details of the Legacy
Advertising PDU type are shown in Figure 7. Extended Advertising PDU type will not
be discussed as devices in this work don’t use extended advertising.

ADV IND packet

ADV IND packet is used when a broadcaster wants to broadcast its presence and provide
basic information to unspecified devices, known as undirected advertising. The differ-
ence between it and ADV NONCONN IND is ADV NONCONN IND doesn’t accept the
connection, which is commonly used in Beacon applications. For ADV IND packets, the
peripheral device requests connection to any central device. It serves as a means for the
advertising device to actively notify potential scanning devices of its existence and avail-
ability. It contains essential information such as the device’s identity, capabilities, and
available services. This packet is designed to be received by any scanning device within
range.

The payload of ADV IND packet consists of the advertiser device address and advertise-
ment data as shown in Figure 8. The advertisement data is specified by the manufacturer
of the peripheral device to deliver information about itself. It consists of several Adver-
tisement Data Structures having the following format: AD Length, AD type, and AD
data. This follows the well-known LTV (length-type-value) format. The structure of ad-
vertisement data is shown in Figure 9. AD length indicates the length of AD type and
AD data. AD type indicates the type of AD data, which is specified in the assigned
number specifications of Bluetooth [1]. AD data contains the data that the manufacturer

Figure 6: Advertising PDU header. Source [2].

3.1. BLUETOOTH LOW ENERGY 17

Figure 7: Advertising PDU type. Source [5]

decides to deliver, which typically contains information like device name, manufacturer
information, and other related information.

SCAN RSP packet

In Bluetooth Low Energy (BLE), the Scan Response (SCAN RSP) packet is a type of
packet used in response to a scan request from a scanning device. The SCAN RSP packet
is sent by a peripheral device and provides additional information beyond what is available
in the advertising packet.

The SCAN RSP packet typically follows the scan request initiated by the scanning device,
in which the SCAN REQ is sent. It contains data fields that are structured to convey
specific information such as device identification, service availability, or any other relevant
data that the advertising device wishes to communicate.

The structure of SCAN RSP packet is typically similar to ADV IND, which is introduced
in detail in the last section.

State Machine

The Link Layer of Bluetooth Low Energy (BLE) employs a state machine to manage its
operations and ensure efficient and reliable communication between devices. It consists

Figure 8: ADV IND payload.

18 CHAPTER 3. BACKGROUND

Figure 9: ADV IND payload AD structure. Source [5].

Figure 10: The link layer state machine. Source [5].

of seven states, which is shown in Figure 10.

At a high level, the Link Layer state machine has three main states: Advertising, Initi-
ating, and Connection. In Advertising State, the device actively broadcasts advertising
packets to nearby devices. It waits for connection requests and handles events such as
receiving connection requests or timing out without receiving any requests. When a con-
nection request is received, the state machine transitions to the Initiating state. Upon
transitioning to initiating state, the device sends a connection request to the desired ad-
vertising device. It awaits a connection response and handles events such as receiving
a connection response, timing out, or encountering an error. If a connection response
is received and validated, the state machine transitions to the Connected state. Con-
nected State represents an established connection between two BLE devices. It involves
bidirectional data exchange, error handling, and various connection-related events. The
state machine handles events such as data transmission, disconnection requests, link-layer
encryption, and periodic supervision timeout. Based on these events, the state machine
can transit to different states as necessary.

3.2. HOMESCOUT 19

3.2 HomeScout

HomeScout is an Android application designed to address safety concerns associated with
BLE trackers [10]. The main functionality of this Android app is to perform scanning,
identification, and classification of BLE trackers as either malicious or non-malicious.
However, the tracker identification is implemented based on individual analysis, which
doesn’t provide a holistic classification. Thus, the overall structure, functionality, and
limitations of HomeScout will be introduced in this section.

3.2.1 App Workflow

The main functionality is divided into three services, which are depicted conceptually in
Figure 12. Firstly, tracking protection needs to be enabled. Afterward, the app evaluates
whether the user is moving or stationary. Once the user starts moving, BLE adver-
tisements are scanned and saved in a database. Simultaneously, the tracking algorithm
attempts to detect any malicious BLE device among all the scanned BLE devices or
advertisements.

Figure 11: Sketch of the app workflow. Source [10].

3.2.2 App Architecture

The general architectural components of the app are the User Interface (UI), the data
layer and the services. Figure 12 shows the general architecture of the app.

20 CHAPTER 3. BACKGROUND

Figure 12: App architecture of HomeScout. Source [10].

3.2.3 User Interface

The user interface is comprised of the app intro and UI layer itself. The app intro consists
of four screens to guide users to request necessary permissions.

App Intro

The app consists of four screens. The first screen informs the user about the Bluetooth
permission. The second screen explains the location permissions required for the app to
access background locations. The third screen serves as a placeholder for requesting the
user to ignore battery optimization. The last screen expresses gratitude to the user for
granting the requested permissions. Figure 14 displays screenshots of these four screens.

UI Layer

The UI layer also consists of four pages, Welcome, Notifications, Settings, and Scan frag-
ments. Figure 14 shows screenshots of those four fragments including the bottom naviga-
tion bar.

3.2.4 Services

The tracking protection functionality of HomeScout is divided into three separate services.
The first service tracks the user’s location, while the second service scans for BLE devices if
necessary. The third service applies a classification algorithm to the scanned BLE devices

3.2. HOMESCOUT 21

(a) (b) (c) (d)

Figure 13: Screenshots of four pages in app intro. a) asks for Bluetooth, b) for location,
and c) for battery optimization permissions. Finally, d) thanks the user for granting the
permissions.

and alerts the user when a malicious tracker is detected. Each of the three services will
be introduced in detail in this section.

The main focus of this work is to enhance and modify the third service, namely classi-
fication algorithm, in HomeScout. The current algorithm is not comprehensive as it is
derived from individual analysis. In this section, the third service of HomeScout will be
introduced in details so as to understand the limits of it.

Location Tracking

The LocationTrackingService determines user mobility, initiating the BluetoothScanningSer-
vice and TrackerClassificationService only when the user is in motion. This strategy helps
conserve battery life and targets potential threats during user movement. The user’s mo-
bility status is determined by creating a ”tail” of previous positions using a ring buffer
data structure. If the user’s travelled distance, calculated based on this tail, exceeds 50
meters, it is assumed the user is in motion.

Bluetooth Scanning

The BluetoothScanningService controls the scanning process for BLE devices in the app,
optimizing battery use by managing scan periods and intervals. It initiates scanning
through the startBleScan function and sets up handlers to define a 12-second scan period
and an 18-second scan interval. This ensures signals from all BLE devices are captured,
with the scanning process repeating twice per minute until the user is stationary or disables
tracking protection.

22 CHAPTER 3. BACKGROUND

(a) (b) (c) (d)

Figure 14: Screenshots of four UI pages in HomeScout. a) Welcome fragment b) the
Notifications, c) the Settings page and d) the Scan fragment. Source [10].

This scanning process yields a ScanResult, an object defined in Android APIs. It describes
information about a detected device and consequently BLE link layer packets can be
retrieved. Our classification algorithm is intergrated into HomeScout from this point. It
mainly makes use of this service to get BLE link layer packets, which serves as the data
source of classification process

Tracker Classification

The TrackerClassificationService in HomeScout classifies BLE devices as either malicious
trackers or non-threatening entities, operating every 30 seconds for accuracy and battery
efficiency.

The service organizes scanned BLE devices in a hashmap, sorted by MAC addresses
and scan time. The classification algorithm evaluates maliciousness using three user-set
parameters: occurrences, timeInMin, and distance.

First, it checks occurrences, requiring at least two detections for further assessment. De-
vices with insufficient occurrences are deemed non-malicious.

Next, it examines the time span between the earliest and latest scans, comparing this
against the timeInMin parameter. Devices that exceed the allowed time are not labeled
as malicious.

Finally, it assesses the distance traveled by the user between scan points. Devices that
surpass the distance threshold are also deemed non-malicious.

However, the system has limitations. The dependency on user-set parameters may lead
to misclassification if set inaccurately. Also, this classification service depends on the

3.2. HOMESCOUT 23

successful identification of trackers, which is illustrated and demonstrated to be unreliable
in next section due to its limited generalization ability.

3.2.5 Tracker Identification

In Bluetooth scanning segment of HomeScout, trackers including AirTag, Chipolo ONE
Spot, Galaxy SmartTag+ and Tile can be classified from their BLE advertisement with
individual analysis. It doesn’t provide a comprehensive classification method to identify
trackers. The classification is derived from analyzing the characteristic of the advertise-
ment packet of the four trackers individually. The pattern of each trackers is investigated
and then used to identify. The pattern analysis of four trackers will be introduced in this
section.

AirTag

The identification of AirTag in HomeScout is based on results of reverse engineering
of BLE advertisements of Apple devices by Heinrich et al [12]. The interpretation and
processing of this manufacturer-specific data are necessary to eventually identify an AirTag
as such. The reverse engineering result of Apple devices’ advertisement packet format is
shown in Figure 15. And from reading status byte of the advertisement packet, AirTag
can be identified. By applying and() operation with 0x30 and a right shift with 4 bits,
the third and fourth bits of the status byte can be retrieved. If the third and fourth bits
equal 0b01, the device can be identified as an AirTag.

Figure 15: Apple’s advertisement packet format. Source [10].

Chipolo One Spot

Chipolo One Spot works as part on Apple’s Find My Network, which means it can be
identified using the same method as AirTag. The only difference is the third and fourth
bits of it equals 0b10.

24 CHAPTER 3. BACKGROUND

Galaxy SmartTag+

The identification of Galaxy SmartTag+ is managed by reading the local name in the ad-
vertisement packet. Galaxy SmartTag+ expose its name in the payload, which is straight-
forward for identification.

Tile

Tile is identified by UUID in the advertisement packet. A UUID is a universally unique
identifier. If the UUID found in advertisement packet equals 0000FEED-0000-1000-8000-
00805F9B34FB, the device will be classifed as a Tile tracker. However, the accurary of
this method is in doubt, as there is no guarantee that the UUID is assigned to a Tile
tracker uniquely.

3.3 Support Vector Machines

Support Vector Machines (SVMs) are a category of high-performance supervised learning
models used in machine learning and statistics for both classification and regression tasks.

3.3.1 Basic Concept and Mechanism

The core principle of an SVM is to construct a hyperplane, or a set of hyperplanes, in
a high or infinite dimensional space that can be utilized for classification, regression, or
other tasks. In the realm of classification, the key intuition behind SVM is to find the
optimal hyperplane that separates the data into two classes, while maximizing the margin
between the classes.

In this scenario, a hyperplane is a decision boundary separating the feature space into two
half spaces. Each half space corresponds to a particular class label. In a two-dimensional
space, a hyperplane is simply a line, while in a three-dimensional space, it becomes a
plane, and so on.

The margin in an SVM context is defined as the distance between the nearest data point
from each class and the separating hyperplane. The data points that are closest to the
decision boundary are known as support vectors. SVMs strive to maximize this margin,
hence creating the largest possible distance between the decision boundary and the nearest
instances from both classes.

Maximizing the margin is beneficial as it contributes to better model generalization, re-
ducing the risk of overfitting. Models with larger margins are more robust to noise and
have a better predictive capability for unseen data.

3.3. SUPPORT VECTOR MACHINES 25

3.3.2 Kernel Functions

Kernel functions play an integral role in SVM’s capacity to classify non-linearly separa-
ble data by transforming the input space into a higher-dimensional feature space. This
transformation allows us to draw a linear separating hyperplane in this new space, thus
enabling SVM to handle non-linearly separable problems.

There are several types of kernel functions that are commonly used in SVMs:

• Linear Kernel: The simplest form of kernel function is the linear kernel, given by the
dot product of two input vectors. The resultant SVM is a linear classifier, operating
in the original feature space.

• Polynomial Kernel: Polynomial kernels, expressed as (γ⟨x, x′⟩ + r)d, allow SVM
to classify data that is separable by a polynomial decision boundary. Here, ⟨x, x′⟩
denotes the dot product, d is the degree of the polynomial, and γ and r are kernel
parameters.

• Radial Basis Function (RBF) or Gaussian Kernel: Arguably the most widely used
kernel function, the RBF kernel allows the construction of a decision boundary that
is a smooth curve in the original feature space. It is expressed as exp(−γ|x− x′|2),
with γ determining the spread of the Gaussian.

• Sigmoid Kernel: The Sigmoid kernel, given as tanh(γ⟨x, x′⟩+r), is similar to the hy-
perbolic tangent activation function used in neural networks and provides a decision
boundary that resembles a step function in the original feature space.

Choosing the right kernel function for an SVM is crucial and typically depends on the
nature of the data and the problem at hand. A good choice of kernel can greatly enhance
the performance of the SVM, enabling it to handle complex, high-dimensional data, and
classify it accurately.

However, using a kernel function, especially a non-linear one, increases the risk of overfit-
ting, especially with a high-dimensional feature space. To mitigate this risk, parameters
of the kernel function are often tuned using techniques such as cross-validation to balance
the trade-off between model complexity and overfitting.

3.3.3 Advantages and Disadvantages

SVMs come with a set of unique benefits and challenges that dictate their application in
certain scenarios:

26 CHAPTER 3. BACKGROUND

Advantages

• Effective in high dimensional spaces: SVMs are especially effective when the number
of dimensions is greater than the number of samples.

• Versatility: Different kernel functions can be specified for the decision function,
offering flexibility to model various types of data.

• Maximal Margin: SVMs aim to maximize the margin around the separating hyper-
plane, which tends to result in robust classification.

• Overfitting control: SVMs provide good generalization performance, which is con-
trolled by the hyperparameters C (regularization parameter) and parameters of the
kernel function.

Disadvantages

• Need for careful preprocessing: SVMs require careful preprocessing of the data and
tuning of the parameters. This includes scaling of the data, selection of a suitable
kernel, and tuning of the hyperparameters.

• Poor performance with large datasets: SVMs do not perform well when the dataset
is very large or when there are a lot of noise and overlapping classes.

• No probability estimation: SVMs do not directly provide probability estimates.
These are calculated using expensive five-fold cross-validation.

3.4 Random Forest

Random Forest is a powerful, ensemble-based machine learning algorithm that operates
by constructing a multitude of decision trees at training time and outputting the class
that is the mode of the classes output by individual trees for classification tasks, or mean
prediction of the individual trees for regression tasks.

3.4.1 Decision Tree

A decision tree, a core component of a Random Forest, is a model presented in a flowchart-
like structure. It is composed of nodes, branches, and leaf nodes, and its purpose is to
divide the dataset into groups or classes based on a variety of conditions.

Nodes are points of data division. The root node, positioned at the top, partitions the
data following a specific criterion. This division persists through what are termed internal
nodes, which continue the process until a leaf node is reached. Each individual node
assesses a specific attribute.

3.4. RANDOM FOREST 27

Branches serve to portray the results of a test at a node, and they provide a connection
between nodes, indicating the flow from one node to the next.

Leaf nodes, also referred to as terminal nodes, represent the final outcomes or decisions.
Once a data sample reaches a leaf node, it is assigned a class label.

The decisions made by decision trees are straightforward and easy to understand, which
contributes to their popularity. Their decisions can be visualized and interpreted logically,
which is a significant advantage when model interpretability is essential.

A crucial element in decision tree creation is the selection of which attribute to test at each
node. Several metrics, such as Gini impurity and information gain, can aid in determining
the best attribute.

While a single decision tree may be susceptible to overfitting, especially if it is allowed
to grow too complex or deep, the Random Forest algorithm mitigates this problem by
creating an ensemble of different decision trees and using their aggregate predictions. Each
tree in the ensemble is trained on a different subset of the training data, which contributes
to the diversity of the trees and ultimately leads to a more robust and generalizable model.

3.4.2 Basic Concept and Mechanism

The Random Forest algorithm is built on the principle of ensemble learning, where mul-
tiple learning models (in this case, decision trees) are developed independently and their
predictions are combined to produce the final output.

Bagging and Bootstrapping

Random Forest uses a technique called bagging (bootstrap aggregating), which is crucial
to its operation. Bagging involves creating multiple subsets of the original dataset, with
replacement, where each subset is the same size as the original set. These subsets, called
bootstrap samples, are then used to train individual decision trees. This means that
each decision tree is trained on a different dataset, adding variety to the ensemble and
improving the model’s robustness. Moreover, bootstrapping reduces the variance of the
prediction, thereby helping to prevent overfitting.

Decision Trees and Feature Randomness

Random Forest constructs a multitude of decision trees, where each tree is built by split-
ting on a series of nodes. At each node, the split is determined by the feature that provides
the best separation of the data, according to a certain criterion such as Gini impurity or
information gain. However, in a Random Forest, rather than considering all features, a
random subset of features is selected at each node, further promoting diversity within the
ensemble.

28 CHAPTER 3. BACKGROUND

Each decision tree is grown to the maximum depth, meaning that no pruning is done.
While this could lead to overfitting in a single decision tree, it is not a concern in a
Random Forest because the final prediction is the aggregate of all the trees, which helps
to balance out any overfitting that might occur in individual trees.

Prediction Aggregation

Once the decision trees have been trained, predictions are made by feeding the new data
through each tree in the forest. Each tree makes a prediction independently, and the
final output is determined by aggregating these predictions. For classification problems,
the most common class (mode) predicted by the trees is selected, whereas, for regression
problems, the average (mean) prediction of the trees is taken. This approach leverages
the wisdom of the crowd, reducing the impact of individual tree errors and leading to
more accurate and robust predictions.

3.5 Multi-layer Perceptron

A Multi-layer Perceptron (MLP) is a class of feedforward artificial neural network that is
widely used in supervised learning scenarios, such as classification and regression tasks.
An MLP consists of at least three layers of nodes: an input layer, a hidden layer, and an
output layer. Each node, also known as a neuron, within a layer is connected to every
neuron in the subsequent layer, forming a fully connected network.

3.5.1 Basic Concept and Mechanism

The foundation of an MLP is the perceptron, a binary classifier that maps a set of input
features to an output via a set of weights. In an MLP, these perceptrons are organized in
layers. The input layer corresponds to the features in the dataset, the hidden layer per-
forms computations and transformations on these inputs, and the output layer generates
the final output of the network.

Each neuron in the MLP takes the weighted sum of its inputs, adds a bias term, and then
applies a non-linear activation function. The weights and biases are parameters of the
model that are learned during training. The activation function introduces non-linearity
into the model, which allows the MLP to model more complex relationships between the
inputs and the output.

Backpropagation is the key algorithm for training an MLP. During backpropagation, the
model makes a prediction, calculates the error (difference between the prediction and
the actual value), and then propagates this error back through the network, adjusting the
weights and biases along the way to minimize this error. This process is repeated multiple
times on batches of data from the dataset until the model’s predictions are satisfactory.

3.5. MULTI-LAYER PERCEPTRON 29

3.5.2 Activation Functions

Activation functions play a critical role in neural networks, as they introduce non-linearity
into the model, which enables the network to capture more complex patterns in the data.
There are several activation functions commonly used in MLPs:

The sigmoid function maps its input to a value between 0 and 1, which can be used to
represent probabilities. The hyperbolic tangent function (tanh) also maps its input to a
value between -1 and 1, providing a zero-centered output which can help the model learn
more effectively. The Rectified Linear Unit (ReLU) function maps its input to a value
that is either 0 (for negative inputs) or the input value itself (for positive inputs). ReLU
is often used in the hidden layers of neural networks due to its computational efficiency.

3.5.3 Advantages and Disadvantages

Advantages

• Capability to Model Non-linear Relationships: The key advantage of MLPs is
their ability to model non-linear relationships. This is achieved through the use of
multiple layers of neurons and non-linear activation functions. This feature makes
MLPs highly flexible and powerful, able to model complex functions and patterns
in data that linear models might miss.

• Availability of Learning Algorithms: With the backpropagation algorithm and the
power of modern computing, MLPs can be efficiently trained on large datasets. Fur-
thermore, various optimization techniques, such as gradient descent and its variants,
can be used to speed up the learning process.

• Scalability: MLPs can easily be scaled up by adding more hidden layers or neurons
per layer to handle larger and more complex datasets.

Disadvantages

• Risk of Overfitting: Due to their flexibility and capacity to fit complex functions,
MLPs are prone to overfitting, especially when dealing with high-dimensional data
or when the network has too many layers or neurons. Overfitting occurs when
the model learns the training data too well, including its noise and outliers, which
negatively impacts the model’s generalization ability.

• Requirement for Large Datasets: MLPs usually require large amounts of training
data to perform well and avoid overfitting. This is due to the large number of
parameters (weights and biases) that need to be learned. Insufficient training data
can lead to a poorly performing model.

30 CHAPTER 3. BACKGROUND

• Opaque Decision Making: MLPs, like many neural networks, suffer from being
”black box” models, meaning their decision-making process is not readily inter-
pretable. This lack of transparency can be a drawback in applications where in-
terpretability is important.

• Sensitivity to Input Scaling: MLPs are sensitive to the scaling of input features.
Features need to be properly normalized or standardized before being fed into the
network, or else features with larger scales may dominate the learning process.

Chapter 4

Design and Implementation

In this chapter, the design process and implementation details of a BLE device classifier
will be introduced. The classifier developed in this work will be incorporated into a
pre-existing Android application known as HomeSocut. However, the development and
testing of algorithms on the Android platform pose certain challenges. Therefore, to
circumvent these hurdles, data capture, algorithm design, development, and testing are
initially conducted on the Windows 10 platform. The transfer of the algorithm to the
Android platform is a straightforward process. The major complexity arises from the
differences in the BLE packets accessible via Android APIs versus the data captured on
a PC. The analysis of this problem is thoroughly explained in Section 4.1.

4.1 Data Acquisition

Considering the abundant information available in the link layer of BLE networks, as
discussed in Section 3.1, this work primarily relies on BLE link layer packets as a valuable
source of data. The specific characteristics of BLE broadcast packets, such as their fre-
quent transmission, the transmission of data in plaintext, the inclusion of comprehensive
device information, and the capacity to be captured without necessitating a connection,
make them particularly suitable for BLE device identification. Moreover, the scan re-
sponse data provides additional data on devices. Therefore, BLE broadcast data and
scan response data are mainly used in this work.

As mentioned before, it is crucial to understand the format of BLE data that can be cap-
tured with Android APIs. In Android APIs, scanning of BLE devices returns ScanResult
from the ScanCallback function, which contains ScanRecord. The ScanRecord contains
the raw bytes of scanning results. By experimenting on a physical Android phone, it is
found that the ScanRecord is comprised of BLE advertising data and scan response data.
The comparison of ScanRecord with advertising data and scan response data collected
on PC is shown in Table 1 and Tabel 2, indicating that the ScanRecord is the concate-
nation of advertising data and scan response data. Thus, it makes sense to utilize both
advertising data and scan response data of BLE scanning in this work.

31

32 CHAPTER 4. DESIGN AND IMPLEMENTATION

Android phone

ScanRecord

02011808ff7d02010303ffff0816eefd0101000f01

020a0017094855415745492057415443482047542032652d434142

Table 1: Scan Record data captured on Android phone

PC

Advertising data 02011808ff7d02010303ffff0816eefd0101000f01

Scan response data 020a0017094855415745492057415443482047542032652d434142

Table 2: Advertising data and scan response data captured on PC

There is no known available BLE link layer dataset that is suitable for BLE device clas-
sification. Therefore, a labeled BLE link layer dataset is part of the contribution of this
work. To collect BLE link layer data on a PC, specific hardware and software are nec-
essary to enable the successful capture of BLE packets. For this project, a USB dongle
sniffer equipped with a nRF52832 SoC is selected, which is depicted in Figure 16. And
Wireshark 1, a widely recognized tool, is utilized to facilitate data capture and analysis.

In this work, a diverse collection of 30 devices, spanning 13 different types, are served as
data sources. Each device underwent a dedicated monitoring period to collect a sufficient
volume of data frames. The specifics of the device capture list can be found in Appendix
B. In an effort to maintain balance across the different device types, a nearly equivalent
amount of data frames are collected for each category. Leveraging the combination of a
USB sniffer and Wireshark, BLE advertising data and scan response data were successfully
captured, generating pcapng files for subsequent analysis.

1https://www.wireshark.org/

Figure 16: USB dongle with a nRF52832 SoC.

4.2. DATA ANALYSIS 33

4.2 Data Analysis

In this section, the focus will be on the analysis of the gathered BLE link layer packets,
exploring the information they encompass. The aim is to determine if this information is
both adequate and valuable for the classification of BLE devices.

In section 4.2.1, different AD types will be analyzed to decide if sufficient information can
be retrieved from link layer packets for classification purposes.

In section 4.2.2, the collected data from trackers will be analyzed, as they are main threats
to privacy and security among BLE devices.

4.2.1 AD analysis

Upon careful examination of BLE advertising data and scan response data, it can be
concluded that it can be effectively utilized for identifying BLE device types, as supported
by the following key findings. Firstly, the frequent transmission of these two types of
packets by devices makes them ideal for enabling the real-time detection and identification
of nearby BLE devices. Secondly, the various types of Advertising Data (AD) contained
within these packets possess distinct characteristics (outlined in Table 3). These unique
traits provide sufficient information that can be leveraged for classifying and identifying
BLE devices.

Flags AD analysis

The Flags AD field indicates the basic capabilities of the BLE device and gives other de-
vices an understanding of how to interact with it. This field contains 8 bits of information,
each indicating a specific capability. The first bit, when set, indicates that the device is in
the LE Limited Discoverable Mode, typically applied for devices open to discovery for a

Table 3: BLE AD type.

AD type Description

Flags Flags field that indicates the interaction capabilities of device

Manufacturer Specific Information or data specified by the manufacturer

Service Data Data of services provided by the device

Service UUID Unique identifier of services provided by the device

TX Power Level Transmitted power level of the packet

Appearance External appearance of the device

Local Name Local name assigned to the device

34 CHAPTER 4. DESIGN AND IMPLEMENTATION

Table 4: Description of each bit of Flags AD. Adapted from [4].

Data Type Octet Bit Description

Flags

0 0 LE Limited Discoverable Mode

0 1 LE General Discoverable Mode

0 2 BR/EDR Not Supported.

0 3 Simultaneous LE and BR/EDR to
Same Device Capable (Controller)

0 4 Simultaneous LE and BR/EDR to
Same Device Capable (Host)

0 5..7 Reserved for future use

brief time frame. The second bit, when flagged, indicates the device’s status is in the LE
General Discoverable Mode, meaning the device is openly advertising its presence to other
devices in its proximity, ready to establish connections. The third bit denotes whether
the device supports the Basic Rate/Enhanced Data Rate (BR/EDR) functionality, a fea-
ture of Classic Bluetooth mode. If this bit is set, it implies the device does not support
BR/EDR, which is commonly the case with devices that exclusively support BLE. The
fourth and fifth bits indicate simultaneous LE and BR/EDR to the same device capable
of controller and host. The remaining bits from bit five to bit seven are reserved for future
use. Table 3 summarizes the description of each bit. The most notable bit is the third
bit. For those BLE devices that only support BLE and don’t support Classic Bluetooth,
this bit can be used as an important sign to distinguish it from other devices.

By interpreting the Flags AD, it becomes possible to gain insights into the basic capabil-
ities of a BLE device and determine the strategy for establishing a connection.

Manufacturer Specific AD analysis

This data segment allows manufacturers to include specific information that may not
conform to the standard BLE specifications, ensuring that their unique capabilities and
features can be communicated to other devices within the network.

This data follows a two-octet company identifier, which is assigned by the Bluetooth Spe-
cial Interest Group (SIG) [1]. This identifier ensures that devices receiving the information
recognize and appropriately respond to the manufacturer-specific data.

This type of AD provides the manufacturer information contained in the identifier and
the manufacturer-specific payload, which can be exploited in the identification process.

4.2. DATA ANALYSIS 35

Service Data AD analysis

The Service Data AD type consists of a service UUID and the data associated with that
service. The service UUID is typically 16-bit, 32-bit, or 128-bit, following which is the
service data.

Information about services provided by the device can be extracted from this type of AD
to be utilized in classification.

Service UUID AD analysis

The Service UUID AD includes a list of service or service class UUIDs. The key difference
between these UUIDs and those in the Service Data AD is their use. Here, the UUIDs
correspond to the services provided by the device, whereas in the Service Data AD, they
typically represent the manufacturer’s UUID.

This type of AD allows extraction of the types of services provided by devices, an impor-
tant indication of the type of the device.

Local Name AD analysis

Some devices incorporate their local name within the advertising packets or scan response
packets. If the device type is present in the local name, this AD type will be a strong
indicator of the device type.

4.2.2 Analysis of collected data from trackers

Trackers like Airtags are crucial devices that should be analyzed considering the security
issues. Thus, a thorough analysis of the link layer packets of some typical trackers will
be undertaken in this section. The objective is to discover whether there are any unique
attributes that can be extracted to aid their identification.

AirTag

Apple has implemented extensive measures to protect users’ security and privacy. One
notable action is the strategic concealment of information exposed in Airtags’ advertising
packets. This privacy-centric approach aligns with our findings from the collected BLE
link layer packets, as demonstrated by the examination of representative packets from
Airtags, presented in Appendix A.1. The advertising packet includes just one Advertise-
ment Data (AD) - Manufacturer Specific. It indicates the manufacturer of this device is
Apple and carries the data specified by the company.

36 CHAPTER 4. DESIGN AND IMPLEMENTATION

Observations indicate that the advertising packets from AirTag exhibit distinct patterns
depending on their state. The state of an AirTag can be categorized into three types:
’Unpaired’, ’Nearby’, and ’Lost’. The ’Unpaired’ state refers to an AirTag that has not
yet been established and bonded by a user. The ’Nearby’ state indicates an AirTag
in close proximity to its bonded user. Conversely, the ’Lost’ state indicates an AirTag
that is significantly distanced from its bonded user. In terms of safety implications,
the ’Unpaired’ state could be considered the least threatening, while the ’Lost’ state
has the highest potential for security concerns. A demonstration and comparison of the
advertising packets of AirTag in different states is shown in Appendix A.5. The ’Nearby’
state distinguishes itself from the other two states by the significantly shorter length
of the packet. The difference between the ’Unpaired’ state and ’Lost’ state lies in the
manufacturer specific data. Upon reverse-engineering the manufacturer specific data, it
was found that the starting byte of the payload is a way to distinguish them. The starting
byte of an AirTag in an unpaired state is typically 0x07, while the starting byte of the
lost state is typically 0x12.

Nutale

Nutale, a tracker that works within Apple’s Find My network, exhibits a unique pattern
of link layer packets compared to AirTag. A thorough examination of Nutale’s link layer
packets is illustrated in Appendix A.2. Similar to AirTags, Nutale’s packets maintain a
short total length and feature an equal number of Advertisement Data entries. However, a
distinction lies in the AD type, as Nutale incorporates Service Data within its advertising
packets, diverging from the pattern observed in AirTags.

HuaweiTag

An analysis of the link layer packets of Huawei Tag reveals they are very similar to
AirTag’s packets. The interpreted result of the typical link layer packets of Huawei Tag
by Wireshark and characteristics of Huawei Tag’s packet are displayed in Appendix A.3.
Attributes of link layer packets, such as total length, number of Advertisement Data,
Advertisement Data type, and Advertisement length are the same as AirTag packets.
However, the company ID and manufacturer-specific advertising data of Huawei Tag dis-
tinguish it from AirTag.

The patterns of three different states identified in the AirTag are similarly observed in the
Huawei Tag, as shown in Appendix A.6. However, identifying between the three states of
a Huawei Tag differs slightly from the methodology applied to the AirTag. Much like the
AirTag, the ’Nearby’ state of a Huawei Tag is distinguished from the other two states by a
notably shorter packet length. However, the ’Unpaired’ state distinguishes itself from the
’Lost’ state through the presence of the initial two bytes as ’0x0503’, whereas the ’Lost’
state typically begins with ’0x2019’.

4.3. PROTOTYPE DESIGN 37

Tile

The link layer packets of the Tile tracker exhibit noticeable differences from those of the
Airtag and HuaweiTag. A comprehensive breakdown of the link layer packets of Tile
is presented in Appendix A.4. Notably, the amount of Advertisement Data Structure
surpasses that of the other two devices. Despite this, the overall packet length remains
consistent with the other two trackers. This is because all of them are relatively short due
to the absence of scan response data.

4.2.3 Analysis of collected data from non-tracker devices

As described in Section 4.2.2, several typical trackers share common characteristics within
their link layer packets. However, the scope of interest extends beyond these patterns to
the analysis of non-tracker devices. This section presents an examination of select non-
tracker devices, with a focus on exploring potential patterns for classification.

An initial attempt was made to identify patterns in non-trackers in general. One represen-
tative device from six distinct categories of non-tracker devices was selected for analysis,
and the findings are displayed in Figure 17. The results reveal that the length of BLE
link layer packets in non-trackers is generally greater than in trackers, and the number of
Advertisement Data (AD) is also higher. This can be attributed to the inclusion of data in
the scan response data (Scan RSP) as indicated in Figure 17. In contrast, scan response
data is frequently absent in trackers. Manufacturers of these devices often provide more
information in their link layer packets than trackers, as non-tracker devices face fewer
security concerns.

Driven by the successful identification of patterns among non-tracker devices in general,
we will investigate the possibility of discovering patterns within device categories of finer
granularity.

For this exploration, the ’Headphone’ and ’Smart Watch’ categories were chosen due to
the greater availability of devices in these groups. Four representative devices from each
category were selected for analysis and comparison. The analysis is depicted in Figure 18.
No obvious pattern has been found in these two types to distinguish them utilizing packet
characteristics. Another potential feature to be exploited in the BLE link layer packets
could be Local Name AD. However, it is found that this AD is absent in some devices,
making it unsuitable to be utilized to identify these two types.

4.3 Prototype Design

In this section, a feature based prototype is proposed, considering the specific information
available in the BLE link layer packets. Several features from the BLE link layer packets
are manually extracted, and the design of a SVM classifier, a Random Forest classifier
and a Multi-layer Perceptron to exploit the manually selected features is illustrated.

38 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 17: Analysis results of BLE link layer packets of non-tracker devices.

Considering the failure to find patterns in grouping devices into small categories as dis-
cussed in the last section, the classification granularity are decided to be (tracker, non-
tracker).

Although the wealth of information embedded within the raw bit stream of BLE link
layer packets, the high dimensionality of the raw advertising packets makes it difficult
to be learned from the model. As the methodology evolves, the focus shifts towards a
more refined approach to packet classification - feature extraction. The feature extraction
approach selects specific, informative characteristics (or ”features”) from the BLE link
layer packets as input for the classifier.

Several motivations drive the introduction of a model incorporating feature extraction.
First, while raw packets contain abundant information, not all of this data is equally
relevant for distinguishing device categories. Feature extraction concentrates on packet
attributes most relevant to the classification task, potentially enhancing model perfor-
mance. Furthermore, feature extraction can reduce data dimensionality, mitigating the
”curse of dimensionality”. This dimensionality reduction can result in simpler models that
are more interpretable and less susceptible to overfitting.

To achieve this, meaningful features from the link layer packets are extracted and used as
inputs to three different classification models - a SVM model, a Random Forest classifier
and a Multi-Layer Perceptron (MLP) neural network. These models are selected due to
their capability to manage complex, non-linear data and their versatility in model tuning,

4.3. PROTOTYPE DESIGN 39

Figure 18: Analysis results of BLE link layer packets of Headphone and Health devices.

making them appropriate for this classification task. The subsequent sections will focus
on the feature extraction process and the details of each classification model.

Feature Engineering

Given the importance of identifying trackers in the task, features are first selected based on
observation of trackers’ packet characteristics. Four noteworthy patterns set these packets
apart from others: packet length, the number of AD (Advertising Data) structures, a
feature indicating support for Classic Bluetooth or not, and a feature indicating if ’Service
Data’ or Manufacturer Specific” AD structure is presented or not.

The length of the packet serves as the first potential feature. It’s discovered that tracker
packets are generally shorter in length compared to packets from other device categories,

40 CHAPTER 4. DESIGN AND IMPLEMENTATION

as demonstrated in section 4.2.2. This difference in packet length suggests that length
could be a promising feature for differentiating trackers from non-trackers.

Secondly, a lower count of AD structures within tracker packets is observed. The AD
structure count provides crucial insights into the complexity and amount of information
in each packet. Thus, a reduced number of AD structures may hint towards a more
straightforward or less information-dense packet, which aligns with the characteristics of
trackers as privacy and security are considered to be crucial in these devices.

Another observation is that tracker packets typically either lack support for traditional
Bluetooth or suffer from missing information. This pattern of missing information or
limited Bluetooth support can serve as an additional feature to discern tracker packets
from those of other devices.

By observing the content of the Advertising Data structures within the packets of trackers,
it’s noticed that tracker packets typically contain either Manufacturer Specific Data or
Service Data within their AD structures. This pattern provides an additional feature to
consider, as its presence can serve as a strong indicator of tracker packets.

With the potential features identified, their distribution across both device categories:
tracker and non-tracker is examined. This examination helps verify whether these features
can offer a clear partition between the classes, crucial for successful classification.

The probability density distributions of the packet length feature and the number of AD
structure feature across the two device categories are visualized, as shown in Figure 19.
Notably, the overlap between the two distributions is not significant and the peak of the
two distributions lies in different regions in these two features. This suggests that these
features could play a critical role in distinguishing between the classes.

As Classic Bluetooth feature and presence of manufacturer-specific or service data feature
are categorical features, the feature distribution across tracker and non-tracker categories
is visualized in the form of a bar chart in Figure 20. The figure shows that no trackers
support Classic Bluetooth and a non-tracker can be either Classic Bluetooth supported,
not supported, or unknown when there is a flag AD in the packet. It indicates the Classic
Bluetooth feature can be useful in distinguishing trackers from non-trackers. Conversely,
both categories of devices typically incorporated either Manufacturer Specific or Service
Data in their packets. This makes it less likely to contribute effectively to the differenti-
ation of device categories.

Given these observations, packet length, the number of AD (Advertising Data) structures,
and Classic Bluetooth feature are selected as features for models.

4.3.1 Data Preprocessing

After feature engineering, the process continues to data preprocessing. BLE link layer
packets were captured using Wireshark, producing pcapng files. These pcapng files were
then parsed using Pyshark, a Python library proficient at pcapng file parsing. The out-
come of this parsing was a dataset encompassing the raw bit stream of link layer packets,

4.3. PROTOTYPE DESIGN 41

(a) Box plot of distribution of length of packet
across three categories.

(b) Box plot of distribution of number of AD
across three categories.

Figure 19: Probability distributions of length of packet and number of AD feature.

(a) Box plot of distribution of Classic Blue-
tooth feature across three categories.

(b) Box plot of distribution of length of packet
across three categories.

Figure 20: Box plot distribution of manufacturer or service feature and manufacturer or
service feature.

three previously selected features and packet labels, designating whether a packet origi-
nates from trackers.

4.3.2 Feature-based Prototype

Support Vector Machine Classifier

The Support Vector Machine is a robust machine learning model, boasting several merits.
It excels in remains resilient against noise, Moreover, SVM can handle linear and non-
linear data while being an innate binary classifier. Therefore, an SVM model was chosen
to classify devices into the trackers, non-trackers category.

Prior to training the SVM model, standardization was applied to the data samples to
ensure zero mean and unit variance. This is pivotal as SVM, being a distance-centric
algorithm, is sensitive to feature scale. Absent standardization, dominant features could
overpower the model, leading to sub-par performance. Moreover, standardizing data
improves the model’s numerical stability and expedites the optimization algorithm’s con-
vergence inherent in SVM.

42 CHAPTER 4. DESIGN AND IMPLEMENTATION

Hyperparameter Value list

C [0.01, 0.1, 1, 10]

degree [2, 3, 4, 5]

coef0 [0.0, 0.1, 0.5, 1.0]

gamma [’scale’, ’auto’, 0.1, 1, 10, 100]

Table 5: Hyperparameters list for grid search in SVM.

For this specific task, the Polynomial kernel function was selected. This choice was inspired
by the potential complex and polynomial relationship between dataset features and the
target variable. The Polynomial kernel allows non-linear classification, projecting data
into higher dimensions where classes can be more easily distinguished. The function
possesses two vital parameters: the polynomial’s degree and the coefficient ’C’. The degree
dictates model complexity, while ’C’ steers the balance between permitting training errors
and demanding stringent margins.

Considering the dataset’s limited size, creating a separate validation set was deemed
unnecessary. A validation set might inadequately reflect data distribution, culminating
in sub-optimal model calibration and potentially misleading evaluation metrics. Instead,
a more comprehensive strategy was implemented through grid search.

Grid search is a method of hyperparameter tuning that tests and evaluates a model for
every possible combination of hyperparameters within a predefined list. Notably, during
grid search, each iteration of model training incorporates cross-validation rather than
solely relying on a singular hold-out validation set.

In cross-validation, training data gets segmented into ’k’ subsets or ’folds’. The model
then undergoes training ’k’ times, each iteration using ’k-1’ folds for training and the
left-out fold for validation. The average of the values computed in this loop becomes
the performance metric presented by the k-fold cross-validation. This technique ensures
maximal utilization of the limited data available for both training and model validation,
giving a far more accurate estimate of model performance compared to a single validation
set. This method is especially valuable when handling datasets of limited size.

Using grid search and cross-validation, an exploration of values was conducted for the
SVM classifier’s hyperparameters with the polynomial kernel. This exploration covered
parameters such as ’C’, ’degree’ for the polynomial kernel function (’poly’), ’coef0’ - an
independent term in the kernel function, and the ’gamma’ parameter. This exhaustive, au-
tomated search identified the optimal parameters, resulting in the highest cross-validated
performance on the training data and thus improving the final model’s ability to general-
ize to new, unseen data. The hyperparameters used for grid search can be found in Table
5.

4.3. PROTOTYPE DESIGN 43

Random Forest Classifier

The selection of a machine learning model for the classification of BLE link layer packets
based on the extracted features leans towards a Random Forest classifier due to several
reasons.

Firstly, given the absence of a known public dataset and the difficulty of collecting enough
BLE devices to provide a large dataset, overfitting poses a significant challenge for this
classification task. The Random Forest classifier, as an ensemble method, provides a
robust means of dealing with overfitting. By creating multiple decision trees and combin-
ing their output, the model can maintain high accuracy and generalizability, even with
complex feature sets. Secondly, Random Forest, with the randomness introduced during
the training process, is robust to outliers and noise in the dataset, preventing them from
significantly impacting the performance of the model.

While employing standardization as a pre-processing step and grid search for hyperparam-
eter optimization, attention is dedicated to tuning key hyperparameters of the Random
Forest Classifier. The following parameters are considered:

’n estimators’ denotes the number of trees in the forest. Each tree in the forest is trained
independently, and the final prediction of the forest is an aggregation of the predictions
from all trees. Having a large number of trees can reduce overfitting, making the training
process slower and requiring more memory.

’max features’ is the number of features to consider when looking for the best split. This
can be a critical parameter to tune, as considering all features at each split can lead to
overfitting. Two options, ’auto’ and ’sqrt’, are under our consideration.

’max depth’ controls the maximum depth of each tree in the forest. A tree’s depth is
the length of the longest path from the root to a leaf. A larger depth allows the tree to
model complex patterns by creating more splits, but it also makes the model more prone
to overfitting.

’min samples split’ defines the minimum number of samples required to split an internal
node, while ’min samples leaf’ is the minimum number of samples required to be at a
leaf node. These parameters help prevent overfitting by controlling how deep our tree can
grow.

’bootstrap’ parameter indicates whether bootstrap samples are used when building trees.
Bootstrap sampling can help reduce variance and overfitting.

’criterion’ is the function to measure the quality of a split. We have considered ’gini’ for
Gini impurity and ’entropy’ for the Shannon information gain.

Through an exhaustive grid search and optimization process, the optimal combination of
these parameters delivering the best performance for the Random Forest Classifier can be
identified. A table of these parameters is presented in Table 6.

44 CHAPTER 4. DESIGN AND IMPLEMENTATION

Hyperparameter Value list

n estimators [10, 50, 100, 200]

max features [’auto’, ’sqrt’]

max depth [10, 20, 30, None]

min samples split [2, 5, 10]

min samples leaf [1, 2, 4]

bootstrap [True, False]

criterion [’gini’, ’entropy’]

Table 6: Hyperparameters list for grid search in Random Forest Classifier.

Multi-Layer Perceptron Classfier

Multi-Layer Perceptron (MLP), a type of artificial neural network, serves as the second
classifier employed in this prototype. MLP, with its multiple layers and non-linear activa-
tion functions, exhibits high capability in modeling complex and non-linear relationships,
which is often seen in practical classification problems. Again, we select the same features
as explained in Random Forest classifier.

The three extracted features from BLE link layer packet: packet length of packet, num-
ber of AD structures, and Classic Bluetooth feature, may have intricate relationships in
defining the device classes. The powerful non-linear modeling ability of MLP can thus be
leveraged to capture these relationships, thereby distinguishing between different device
types more effectively.

Moreover, MLP has the added advantage of efficiently handling high-dimensional data.
Even though our current dataset consists of only three features, MLP’s potential to deal
with more features can facilitate the inclusion of additional characteristics in the future,
enhancing the flexibility and scalability of our model.

Despite its strengths, MLP’s performance heavily relies on the optimal configuration of
several hyperparameters, including the number of hidden layers, the number of neurons
in the hidden layers, and the type of activation function used. Consequently, we apply
a similar hyperparameter optimization strategy as with the Random Forest classifier,
using grid search to fine-tune these parameters for optimal model performance. We’ve
considered several key parameters in our Multi-layer Perceptron (MLP) model for fine-
tuning, as explained below.

The ’hidden layer sizes’ parameter specifies the structure of the hidden layers in terms of
layer count and neurons per layer. This impacts the model’s capacity to learn complex
patterns in the data. The various options allow the model to explore different balances
between capacity and overfitting risk.

4.4. INTEGRATION OF CLASSIFICATION ALGORITHM INTO HOMESCOUT 45

The ’activation’ parameter sets the activation function used by the neurons in the hidden
layers. This function introduces non-linearity into the model, allowing it to learn more
than just linear relationships in the data. We considered ’tanh’ and ’relu’ because they
are commonly used and generally perform well.

The ’solver’ parameter specifies the optimization algorithm used to adjust the weights
during training. We considered ’sgd’ (Stochastic Gradient Descent) and ’adam’ as they are
two of the most popular optimization algorithms. The former is known for its robustness
and the latter for its efficiency.

The ’alpha’ parameter sets the rate of L2 regularization, which can help prevent over-
fitting by adding a penalty term to the loss function based on the magnitude of the
weights. We’ve considered multiple values to find the right balance between underfitting
and overfitting.

The ’learning rate’ determines how the weights in the network are updated. A ’constant’
learning rate means that the learning rate does not change during training. ’adaptive’
learning rate, on the other hand, means that the learning rate will decrease as the model
gets closer to a solution, potentially leading to better final performance.

’learning rate init’ is the initial learning rate when ’solver’ is set to ’sgd’ or ’adam’. Differ-
ent learning rates can lead to significantly different training dynamics and results, so we’ve
considered several common values to find the one that leads to the best performance.

A set of values for each hyperparameter was selected, as shown in Table 7. The optimal
parameters for the model, determined after the grid search, will be discussed in Chapter
5.

Furthermore, to enhance model performance and generalization, batch normalization and
dropout were integrated into the MLP structure. Batch normalization helps in achieving
consistent activations throughout the training, thus accelerating convergence. Meanwhile,
dropout serves as a regularization method, where a fraction of neurons are randomly
dropped or deactivated during training, reducing the risk of overfitting.

Following the grid search, the optimal architecture for the hidden layers has been de-
termined. The hidden layer comprises three layers, each with 10, 20, and 10 neurons
respectively. Each hidden layer is followed by a batch normalization layer and a dropout
layer to further enhance the model’s resilience to overfitting. This structure forms the
final architecture of the model, as depicted in Fig 21.

4.4 Integration of Classification Algorithm into HomeScout

Incorporating trained machine learning models into Android applications requires a sys-
tematic approach to ensure easy integration and real-time performance. TensorFlow Lite 2

is a mobile library for deploying models on mobile. It offers a lightweight solution that can
run TensorFlow models on devices with limited computational resources. Furthermore,

2https://www.tensorflow.org/lite

46 CHAPTER 4. DESIGN AND IMPLEMENTATION

TensorFlow Lite models are optimized for speed, ensuring quick inference times, which
is essential for real-time applications on mobile devices. More importantly, TensorFlow
provides an end-to-end workflow - from training the model using TensorFlow to deploying
it on mobile devices using TensorFlow Lite.

In light of these advantages, classification model is rebuilt using TensorFlow, subsequently
converting it to TensorFlow Lite format, which can be loaded into Android framework
for seamless integration into HomeScout. The overall transition process is illustrated in
Figure 22.

Data preprocessing and feature extraction were also replicated in implementation in Home-
Scout. After integration of proposed algorithm, HomeScout is able to classify between
tracker and non-tracker. A demonstration of the implemented classification service in
HomeScout is shown in Figure 23.

Hyperparameter Value list

hidden layer sizes
[(10),(20),(50),(10,10),(10,20),(10,50),(10,10,10),

(10,20,10),(10,50,10),(20,20,20),(20,40,20),(50,50,50)]

activation [’tanh’, ’relu’]

solver [’sgd’, ’adam’]

alpha [0.0001, 0.001, 0.01]

learning rate [’constant’,’adaptive’]

learning rate init [0.1, 0.01, 0.001, 0.0001]

Table 7: Hyperparameters list for grid search in MLP.

4.4. INTEGRATION OF CLASSIFICATION ALGORITHM INTO HOMESCOUT 47

Figure 21: Network architecture of MLP model.

Figure 22: Integration process of model into HomeScout.

48 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 23: Integrated classification service in HomeScout.

Chapter 5

Results and Evaluation

In this chapter, the results and evaluation of the proposed feature-based prototype. Its
capability in classifying BLE packets into pre-defined categories is demonstrated and
discussed.

5.1 Evaluation Metrics Selection

Before evaluating the models, several metrics are selected to determine the capability of
classification as follows:

• Accuracy: Accuracy is the most intuitive performance measure and it is simply a
ratio of correctly predicted observation to the total observations.

Accuracy =
True Positive + True Negative

Total Observations
(5.1)

• Precision: Precision is the ratio of correctly predicted positive observations to the
total predicted positive observations. It’s also known as the Positive Predictive
Value.

Precision =
True Positive

True Positive + False Positive
(5.2)

• Recall (Sensitivity): Also termed as Sensitivity or True Positive Rate, it represents
the ratio of correctly predicted positive observations to all observations in the actual
class.

Recall =
True Positive

True Positive + False Negative
(5.3)

• F1-Score: The F1 Score is the weighted average of Precision and Recall. This
score takes both false positives and false negatives into account and is particularly
beneficial when the class distribution is uneven.

F1 Score = 2 · Precision · Recall
Precision + Recall

(5.4)

49

50 CHAPTER 5. RESULTS AND EVALUATION

Category Number of Frames Ratio
Tracker 89511 51%

Non-tracker 87639 49%

Table 8: Distribution of data frame in tracker and non-tracker category.

• Confusion Matrix: A table that describes the performance of a classification model.
It illustrates the different types of correct and incorrect predictions made by a clas-
sifier. The confusion matrix offers a comprehensive picture of the classifier’s per-
formance, shedding light on not only the errors made by the classifier but also the
nature of these errors.

5.2 Evaluation Dataset

Devices are categorized into two groups in this work: trackers and non-trackers. To ensure
a balanced distribution of data samples across the two classes, the amount of data frame
in two categories is counted and displayed in Table 8. The distribution is balanced, with
approximating a 1:1 ratio between the two categories.

5.3 Evaluation of Feature-based Prototype

This section describes the performance evaluation of proposed three feature-based models
in BLE packets classification, SVM classifier, Random Forest classifier and Multi-Layer
Perceptron classifier.

5.3.1 SVM Classifier

5.3.2 Hyperparameters Fine-tuning

To find the best hyperparameters for the SVM model with a polynomial kernel, the grid
search strategy was utilized. This technique involves training and validating the model on
all possible combinations of the hyperparameters in a predefined list. By systematically ex-
ploring this parameter space, the combination that maximizes the model’s cross-validated
performance was identified.

The grid search was conducted over the following parameters:

• ’C’: The regularization parameter, with smaller values specifying stronger regular-
ization. This controls the trade-off between achieving a low training error and a low
testing error, which is the ability to generalize the classifier to unseen data.

5.3. EVALUATION OF FEATURE-BASED PROTOTYPE 51

Category Precision Recall F1-score

Non-tracker 0.99 0.93 0.96

Tracker 0.88 0.98 0.93

Table 9: Classification report of Support Vector Machine classifier

• ’degree’: The degree of the polynomial kernel function. This parameter represents
the power to which the sum of the product of the input vectors, along with the
independent term ’coef0’, is raised.

• ’gamma’: The kernel coefficient, which can affect the shape of the decision boundary.

Following the grid search procedure, the optimal hyperparameters were identified as: C =
10, degree = 4, coef0 = 0.1, gamma = ’scale’. This indicates that a 4-degree polynomial
kernel with a regularization parameter of 10, an independent term of 1.0, and a kernel
coefficient 0.1 in the kernel function yielded the highest cross-validated performance.

5.3.3 Model Evaluation

In this section, the performance of the proposed SVM model with a polynomial kernel is
evaluated.

Class 0, representing non-trackers, achieves a precision of 0.99 and a recall of 0.93, leading
to an F1-score of 0.96. Class 1, which stands for trackers, exhibits a precision of 0.88 and
with a recall of 0.98. The harmonic mean of precision and recall, or the F1-score, is thus
0.93. This demonstrates that the model has good performance in distinguishing between
trackers and non-tracker in the dataset. A summary of these metrics are displayed in
Figure 9

The macro average of precision, recall, and F1-score are around 0.93, 0.95, and 0.94,
respectively, while the weighted averages are 0.95, 0.95, and 0.95, respectively, suggesting
low overall performance.

The good performance is further supported by the confusion matrix as displayed in Figure
24. While only 7% of non-tracker instances have been misclassified in the test set, less
(2%) of tracker instances have been misclassified as non-tracker.

5.3.4 Random Forest Classifier

Hyperparameters Fine-Tuning

Following the grid search over a predefined set of hyperparameters, an optimal set that
enhanced the performance of the Random Forest Classifier was identified. The chosen
hyperparameters are as follows:

52 CHAPTER 5. RESULTS AND EVALUATION

Figure 24: Confusion matrix of Support Vector Machine classifier.

• ’n estimators’: 10 - Increasing the number of trees can improve model accuracy up
to a certain point, but can also lead to slower training times and overfitting. A value
of 10 is selected to balance model accuracy and computational efficiency.

• ’max depth’: 10 - More depth can allow the model to learn more complex patterns
by creating additional splits, but may also lead to overfitting. A value of 10 was
chosen to control the complexity of the learned models and prevent overfitting.

• ’max features’: ’auto’ - This determines the number of features to consider when
looking for the best split. Setting this to ’auto’ lets the model decide the optimal
number of features to consider.

• ’min samples leaf’: 2 - This parameter avoids creating trees where any leaf would
have only a few samples, again controlling the complexity of the learned models and
preventing overfitting.

• ’min samples split’: 10 - A larger value ensures that the model is not overfitting the
training data.

• ’criterion’: ’Entropy’ is chosen as the criterion to measure the impurity of an input
set. This is consistent with our guess as Entropy tends to produce slightly more
balanced trees than Gini Impurity. This is because it is more sensitive to differences
in class probabilities.

• ’bootstrap’: False - Whether bootstrap samples are used when building trees. When
set to False, the whole dataset is used to build each tree.

5.3. EVALUATION OF FEATURE-BASED PROTOTYPE 53

Figure 25: Confusion matrix of Random Forest classifier in feature-based prototype.

Model Evaluation

The model achieves an accuracy of 93.7% on test dataset, surpassing the proposed SVM
classifier. Class 0, representing non-tracker devices, achieves nearly perfect precision (0.99)
and high recall (0.92), leading to an F1-score of 0.95. Class 1, which stands for trackers,
exhibits good precision (0.84) and a high recall of 0.99. The harmonic mean of precision
and recall, the F1-score, is thus 0.90.

The weighted averages of precision, recall, and F1-score are all around 0.94, demonstrating
impressive overall performance. These metrics are reported in Table 10.

The confusion matrix further supports these findings and is presented in 25. 92% of non-
tracker is correctly classified. For tracker, only 1% is mistakenly predicted as non-tracker.

These results indicate that the Random Forest Classifier is highly proficient at distin-
guishing between non-tracker and tracker devices and have better classification accuracy
on test set.

Category Precision Recall F1-score

Non-tracker 0.99 0.92 0.95

Tracker 0.84 0.99 0.90

Table 10: Classification report of Random Forest classifier

54 CHAPTER 5. RESULTS AND EVALUATION

5.3.5 Multi-Layer Perceptron Classifier

Hyperparameters Fine-Tuning

The grid search strategy identifies an optimal set of hyperparameters for the Multi-layer
Perceptron model.

The ’activation’ function selected was ’relu’ (Rectified Linear Unit). The rectifier function
is a popular choice as it introduces non-linearity without requiring expensive computa-
tions. It aids in mitigating the vanishing gradient problem, which is a common issue
during backpropagation in deep neural networks, thereby improving the training phase’s
efficiency and effectiveness.

The model uses an ’alpha’ value of 0.0001. The choice of alpha affects the compromise
between underfitting and overfitting. An alpha value of 0.001 indicates that the model
benefits from some regularization to prevent overfitting but is not so strong as to over-
simplify the model to the point of underfitting.

The ’hidden layer sizes’ determined to be optimal were (20, 40, 20). This indicates a
network structure with three hidden layers, each comprising 10 neurons. This configu-
ration allows the model to learn a sufficient level of complexity from the data without
overcomplicating the network and risking overfitting.

The ’learning rate’ parameter was set to ’constant’. A constant learning rate implies that
the step size in weight remains the same throughout the training process. This constant
learning rate suggests that an adaptive learning rate may not be necessary for this dataset
and task.

The ’learning rate init’ was set at 0.1, a relatively high value indicating that the model
takes relatively large steps during the initial iterations of weight updates in backpropa-
gation. It implies that the model converges faster and doesn’t require a very slow initial
learning process.

Lastly, the ’solver’ parameter was set to ’sgd’ (Stochastic Gradient Descent). SGD is a
widely used optimization algorithm known for its robustness, especially when dealing with
large and complex datasets. It suggests that for this task, SGD provided better or similar
results compared to other optimization algorithms like ’adam’.

This tuned MLP model leverages these optimal hyperparameters to train and predict
effectively, resulting in enhanced model performance.

Model Evaluation

The evaluation metrics of MLPs on the performance of test set are examined in this
section.

The model achieves an accuracy of 94.5%, surpassing the proposed Random Forest Clas-
sifier. It exhibits a nearly perfect precision (0.99) for non-tracker, and high precision

5.4. EXPERIMENTS ON UNSEEN DEVICE 55

Category Precision Recall F1-score

Non-tracker 0.99 0.93 0.96

Trackers 0.88 0.98 0.93

Table 11: Classification report of Multi-Layer Perceptron classifier.

(0.88) for tracker, indicating reliable predictions for these classes. Recall rates further
demonstrate this model’s capabilities, with non-tracker at 0.93 and an even higher rate of
0.98 for tracker, indicating the model’s proficiency in correctly identifying class instances.
The F1-scores, 0.96 for non-tracker and 0.95 for tracker, further prove the model’s accu-
racy and reliability by balancing the precision and recall. A summary of these evaluation
metrics is provided in Table 11.

In conclusion, the Multi-layer Perceptron classifier generally outperforms the Random
Forest classifier in classifying the selected features on test set. The superior performance
of the Multi-layer Perceptron (MLP) over the Random Forest Classifier can be attributed
to several reasons tied to the nature of MLPs and the characteristics of the dataset.

MLPs are more suitable for datasets with non-linear relationships due to their architec-
ture, which allows them to learn and model non-linear interactions between variables.
Conversely, random forests may struggle with complex non-linear relationships.

In an MLP, all features interact with each other through weights in the hidden layers,
allowing the model to capture complex patterns within the data. In contrast, Random
Forests consider features independently, which could potentially limit their ability to de-
tect intricate patterns that rely on multiple feature interactions.

5.4 Experiments on Unseen Device

In prior evaluations, the emphasis was on the model’s proficiency in classifying data within
the same group of devices, namely intra-device classification capability. This approach,
while essential, does not paint the full picture of a model’s capabilities. Real-world scenar-
ios often demand the identification of unfamiliar devices, and the model must be equipped
to handle this challenge. Consequently, the next phase of experimentation will focus on
’inter-device classification’, where the model will be evaluated based on its capacity to
classify data from devices it hasn’t encountered before. This phase is crucial to ascertain
the model’s generalization capabilities, revealing its performance on dynamic and diverse
world of devices.

To conduct such experiments, 10 devices are collected to serve as the evaluation dataset.
Each device underwent a dedicated monitoring period to collect a sufficient volume of
data frames. The specifics of the device capture list can be found in Appendix B.

The three proposed models will be further assessed to determine their generalization
strength, ensuring its suitability for deployment in HomeScout.

56 CHAPTER 5. RESULTS AND EVALUATION

Figure 26: Confusion matrix of Multi-Layer Perceptron classifier in feature-based proto-
type.

Category Precision Recall F1-score

Non-tracker 0.99 0.92 0.95

Tracker 0.87 0.98 0.92

Table 12: Classification report of Multi-Layer Perceptron classifier on unseen data.

The Multi-layer Perceptron (MLP) model demonstrated superior performance on the un-
seen device test set, achieving an accuracy of 88%. In comparison, the SVM model
attained 68% accuracy, while the Random Forest Classifier reached 80%. This under-
scores the effectiveness of the MLP model in this context. The classification report and
confusion matrix of the Multi-layer Perceptron for this test are presented in Figures 12
and 27, respectively. The model posted an accuracy rate of 88%, which aligns close to the
results from the intra-device classification on the test dataset. Based on these results, the
Multi-layer Perceptron model is proved to be more reliable and suitable to be deployed in
HomeScout.

5.5 Validation Experiments on Homescout

To further validate the enhanced classification capabilities of HomeScout, specifically its
ability to distinguish between trackers and non-trackers after integrating the proposed
model—an experiment was conducted. In this test, 14 devices were evaluated using
HomeScout, of which only 2 were inaccurately predicted. This translates to an accu-
racy of 85.7%, consistent with the results presented in the previous sections. Detailed

5.5. VALIDATION EXPERIMENTS ON HOMESCOUT 57

Figure 27: Confusion matrix of Multi-Layer Perceptron classifier on unseen data.

classification outcomes can be found in Table 13. This validates that the integration of
the proposed model has indeed enhanced HomeScout’s identification capability. It under-
scores the model’s adaptability and generalization capabilities when applied in real-world
scenarios, rather than just controlled environments.

58 CHAPTER 5. RESULTS AND EVALUATION

Device name MAC address Predicted Label Ground Truth

Tile Slim C0:B9:F6:A7:E5:6E Tracker Tracker

Mangotek F6:CB:48:86:FD:0F Tracker Tracker

AirTag EE:C1:4C:D9:5C:12 Tracker Tracker

HuaweiTag C1:67:DA:10:04:12 Tracker Tracker

Nut Focus C5:2E:E4:02:69:8D Non-tracker Tracker

Huawei Watch GT2 34:B2:0A:95:8C:AB Non-tracker Non-tracker

Keep S2 34:B2:0A:95:8C:AB Tracker Non-tracker

Omron Blood Glucose Device F0:5E:CD:4A:59:3E Non-tracker Non-tracker

Huawei Scale 3 Pro-037 88:22:B2:CB:F6:F6 Non-tracker Non-tracker

Huawei Watch 8 40:DC:A5:18:DE:FA Non-tracker Non-tracker

Logitech Pebble Mouse E7:2C:D0:C9:9A:D3 Non-tracker Non-tracker

Lepu Oximeter E9:D1:6B:E5:2D:46 Non-tracker Non-tracker

Yuwell Blood Pressure Meter 44:28:A3:62:E7:68 Non-tracker Non-tracker

Dell Mouse EA:54:3A:7D:E9:7A Non-tracker Non-tracker

Table 13: Classification results of experiment on HomeScout

Chapter 6

Conclusion and Future Work

This chapter serves as a conclusion to this work, summarizing the main findings and
contributions. Additionally, this chapter also provides insights for researchers who wish
to pursue further research in this field.

6.1 Conclusion

In this work, we have addressed the pressing security and privacy concerns associated
with Bluetooth Low Energy (BLE) devices, particularly location trackers, by developing
a comprehensive method for classifying BLE devices. The motivation behind our research
was driven by the need to bridge the gap in security measures between iOS and Android
users and to empower Android users with a powerful tool to detect and categorize various
BLE devices encountered in their daily lives.

Research objectives were successfully achieved through a systematic and methodical ap-
proach. This work thoroughly examined the BLE link layer communication and collected a
diverse dataset comprising 30 BLE devices. Several unique patterns were identified from
these collected link layer packets and then used as input features for machine learning
models. A feature based prototype was proposed. Four features were evaluated and three
featueres were selected to be the final feature list. Three machine learning models were
implemented to pick the best performing one. The Multi-Layer Perceptron model demon-
strated a superior performance over the SVM model and the Random Forest model, thus
becoming our final model of choice. This model effectively distinguishes between tracker
and non-tracker with a 94.5% of accuracy in the test set and 88% on unseen device test
set, providing users with increased awareness and control over their surrounding BLE
devices.

Before the integration of the classification algorithm into HomeScout, a bug was iden-
tified in the application. The AppIntro library was found to be unreliable for handling
permission requests. On certain Android devices, the application encounters difficulties
in successfully obtaining permission and repeatedly redirects to the app intro page in

59

60 CHAPTER 6. CONCLUSION AND FUTURE WORK

a recursive manner. It was finally replaced by XXPermissions library and successfully
address this problem.

Following this fix, the classification algorithm was integrated into the HomeScout appli-
cation. The integration with TensorFlow Lite has significantly extended its capabilities,
enabling the detection and classification of personal tracker and non-tracker. This en-
hancement has provided Android users with an equivalent level of protection to their iOS
counterparts against potential tracking threats.

6.2 Future Work

The classifier built for this work is a prototype, hence it is not ready for the market. It
can be used to classify BLE devices into three categories, but further improvements are
necessary.

While our research objectives were achieved through a systematic approach, we recognize
that one of the significant limitations of this work is the scale of the dataset. The dataset
used for training and evaluation was relatively small, comprising a limited set of BLE
devices from various types. To ensure the generalization capability and robustness of
the classification model, it is essential to include a more extensive and diverse dataset
consisting of a wide range of BLE devices.

To address this limitation, further research efforts to expand the dataset are encouraged.
Incorporation of a more diverse array of BLE devices from different manufacturers, regions,
and applications can be essential. This expansion will not only allow the algorithm to
classify into more categories but will also provide a refined granularity of those categories.
Such detailed classification is crucial for practical applications, as it ensures that the
system can accurately identify and distinguish between various BLE devices. Furthermore,
the creation of a public dataset can be beneficial for the research community. However,
careful consideration must be given to ethical concerns and data anonymization to ensure
that user privacy and sensitive information are adequately protected.

Another constraint in this work is the challenge presented by MAC randomization. Within
the current framework, MAC randomization hasn’t been considered. If a BLE device
changes its MAC address post-detection by HomeScout’s scanning service, it will be rec-
ognized as a separate entry, causing the application to interpret it as two different devices.
To address this issue, a mechanism that can track devices undergoing MAC randomization
needs to be developed, ensuring that they are consistently identified as the same device
regardless of address changes, thus preventing redundant entries in the device detection
list of the application.

To further improve the performance of the classification, it’s worthwhile to consider in-
corporating an additional prospective feature in the feature engineering process, which
is the inter-arrival-time distribution of BLE advertising packets. This feature has been
demonstrated effective in classifying Bluetooth Classic packets of Wearable in [6]. The
inter-arrival-time often captures the unique temporal patterns of devices. Different devices
can have distinct patterns of sending data, making this metric valuable for identification.

6.2. FUTURE WORK 61

However, the classification algorithm was initially developed and trained on a Windows
platform before being integrated into the Android platform in this work. Given that
hardware variations can influence inter-arrival-time distributions, this feature was not
considered in this study.

62 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] Assigned Numbers | Bluetooth® Technology Website — bluetooth.com. https:

//www.bluetooth.com/specifications/assigned-numbers/. [Accessed 06-Jun-
2023].

[2] BLE Advertising packet format | BLE Data packet format —
rfwireless-world.com. https://www.rfwireless-world.com/Terminology/

BLE-Advertising-and-Data-Packet-Format.html. [Accessed 06-Jun-2023].

[3] BluetoothxAE; Low Energy Packet Types - Developer Help — mi-
crochipdeveloper.com. https://microchipdeveloper.com/wireless:

ble-link-layer-packet-types. [Accessed 06-Jun-2023].

[4] Core Specification Supplement | Bluetooth® Technology Website —
bluetooth.com. https://www.bluetooth.com/specifications/specs/

core-specification-supplement-9/. [Accessed 18-Jun-2023].

[5] The Bluetooth LE Security Study Guide | Bluetooth® Technology Web-
site — bluetooth.com. https://www.bluetooth.com/bluetooth-resources/

le-security-study-guide/. [Accessed 06-Jun-2023].

[6] Hidayet Aksu, A. Selcuk Uluagac, and Elizabeth S. Bentley. Identification of wearable
devices with bluetooth. IEEE Transactions on Sustainable Computing, 6(2):221–230,
2021.

[7] Lei Bai, Lina Yao, Salil S Kanhere, Xianzhi Wang, and Zheng Yang. Automatic
device classification from network traffic streams of internet of things. In 2018 IEEE
43rd conference on local computer networks (LCN), pages 1–9. IEEE, 2018.

[8] Johannes K Becker, David Li, and David Starobinski. Tracking anonymized bluetooth
devices. Proc. Priv. Enhancing Technol., 2019(3):50–65, 2019.

[9] Bruhadeshwar Bezawada, Maalvika Bachani, Jordan Peterson, Hossein Shirazi, In-
drakshi Ray, and Indrajit Ray. Behavioral fingerprinting of iot devices. In Proceed-
ings of the 2018 workshop on attacks and solutions in hardware security, pages 41–50,
2018.

[10] Louis Bienz. GitHub - LouisBienz/HomeScout: An Android App to scan, identify and
classify BLE devices. — github.com. https://github.com/LouisBienz/HomeScout.
[Accessed 06-Jun-2023].

63

64 BIBLIOGRAPHY

[11] Robert Chojnacki. Item Tracker Sales Soar Along-
side Luggage and Travel Accessories, Reports Circana —
npd.com. https://www.npd.com/news/press-releases/2023/

item-tracker-sales-soar-alongside-luggage-and-travel-accessories-reports-circana/.
[Accessed 28-Jun-2023].

[12] Alexander Heinrich, Niklas Bittner, and Matthias Hollick. Airguard-protecting an-
droid users from stalking attacks by apple find my devices. In Proceedings of the 15th
ACM Conference on Security and Privacy in Wireless and Mobile Networks, pages
26–38, 2022.

[13] https://www.facebook.com/bbcnews. Apple AirTags - ’A perfect tool for stalking’ —
bbc.com. https://www.bbc.com/news/technology-60004257. [Accessed 06-Jun-
2023].

[14] Pratibha Khandait, Neminath Hubballi, and Bodhisatwa Mazumdar. Iothunter: Iot
network traffic classification using device specific keywords. IET Networks, 10(2):59–
75, 2021.

[15] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske,
Lucas Foppe, Travis Mayberry, Erik C Rye, Brandon Sipes, and Sam Teplov. Handoff
all your privacy: A review of apple’s bluetooth low energy continuity protocol. arXiv
preprint arXiv:1904.10600, 2019.

[16] Brett Molina. Apple AirTag trackers to receive privacy update amid stalking
concerns — usatoday.com. https://www.usatoday.com/story/tech/2022/02/10/
apple-airtags-privacy-update-stalking/6738071001/. [Accessed 06-Jun-2023].

[17] Hirofumi Noguchi, Misao Kataoka, and Yoji Yamato. Device identification based
on communication analysis for the internet of things. IEEE Access, 7:52903–52912,
2019.

[18] Valentin Poirot, Oliver Harms, Hendric Martens, and Olaf Landsiedel. Blueseer: Ai-
driven environment detection via ble scans. In Proceedings of the 59th ACM/IEEE
Design Automation Conference, pages 871–876, 2022.

[19] Fäıçal Sawadogo, John Violos, Aroosa Hameed, and Aris Leivadeas. An unsupervised
machine learning approach for iot device categorization. In 2022 IEEE International
Mediterranean Conference on Communications and Networking (MeditCom), pages
25–30. IEEE, 2022.

Abbreviations

BLE Bluetooth Low Energy
MAC Media Access Control
SoC System on a Chip
SVM Support Vector Machine
MLP Multi-layer Perceptron
API Application Programming Interface
BER Bit Error Rate
CRC Cyclic Redundancy Check
PDU Protocol Data Unit
UUID Universally Unique Identifier
AD Advertising
dbm decibel-milliwatts
SIG Special Interest Group
LSB Least Significant Bit
RBF Radial Basis Function
ReLU Rectified Linear Unit
BR Basic Rate
EDR Enhanced Data Rate
IoT Internet of Things
AI Artificial Intelligence

65

66 ABBREVIATONS

Glossary

Regularization A technique in machine learning and statistics that applies a penalty to
the complexity of the model. This helps in preventing overfitting by discouraging
overly complex models which can fit the training data closely but perform poorly
on unseen data. Regularization adds a penalty term to the original loss function of
the model, with the aim of shrinking the parameter values towards zero (or a small
value) to ensure simpler models.

Hyperparameter A parameter whose value is set before training a machine learning
model. It is external to the model and cannot be estimated from the data. Ex-
amples include the learning rate, regularization strength, and number of hidden
layers in neural networks.

Grid Search A method used to perform hyperparameter tuning in which a grid of hyper-
parameter values is exhaustively searched. For each combination of parameters, the
model’s performance is evaluated to find the optimal set of hyperparameters.

Dropout A regularization technique for neural networks where, during training, random
subsets of neurons are dropped out (set to zero) at each iteration. This helps prevent
overfitting by ensuring that no single neuron is overly reliant on its inputs.

Batch Normalization A technique to improve the training of deep neural networks. It
normalizes the activations of the neurons in a layer for each training mini-batch,
making the distributions of activations consistent and aiding in faster convergence
and improved generalization.

BLE Device Any device which has BLE (Bluetooth Low Energy) capabilities, allowing
for energy-efficient short-range wireless communication.

BLE Tracker A BLE device with the intended purpose of tracking and locating an item,
often used for finding misplaced objects or ensuring the safety of valuable items.

Classic Bluetooth The original form of Bluetooth wireless technology, which provides a
way for devices to connect and exchange data over short distances. It is distinct
from BLE in that it is generally more power-intensive and is suited for continuous
streaming of data.

67

68 GLOSSARY

List of Figures

1 The Bluetooth Low Energy Protocol stack. 13

2 Link layer packet format for the LE uncoded PHYs. Source [2]. 15

3 Link layer packet format for the LE Coded PHY. Source [2]. 15

4 Advertising Channel PDU format. Source [2]. 15

5 Data Channel PDU format. Source [2]. 16

6 Advertising PDU header. Source [2]. 16

7 Advertising PDU type. Source [5] . 17

8 ADV IND payload. 17

9 ADV IND payload AD structure. Source [5]. 18

10 The link layer state machine. Source [5]. 18

11 Sketch of the app workflow. Source [10]. 19

12 App architecture of HomeScout. Source [10]. 20

13 Screenshots of four pages in app intro. a) asks for Bluetooth, b) for location,
and c) for battery optimization permissions. Finally, d) thanks the user for
granting the permissions. 21

14 Screenshots of four UI pages in HomeScout. a) Welcome fragment b) the
Notifications, c) the Settings page and d) the Scan fragment. Source [10]. . 22

15 Apple’s advertisement packet format. Source [10]. 23

16 USB dongle with a nRF52832 SoC. 32

17 Analysis results of BLE link layer packets of non-tracker devices. 38

18 Analysis results of BLE link layer packets of Headphone and Health devices. 39

19 Probability distributions of length of packet and number of AD feature. . . 41

69

70 LIST OF FIGURES

20 Box plot distribution of manufacturer or service feature and manufacturer
or service feature. 41

21 Network architecture of MLP model. 47

22 Integration process of model into HomeScout. 47

23 Integrated classification service in HomeScout. 48

24 Confusion matrix of Support Vector Machine classifier. 52

25 Confusion matrix of Random Forest classifier in feature-based prototype. . 53

26 Confusion matrix of Multi-Layer Perceptron classifier in feature-based pro-
totype. 56

27 Confusion matrix of Multi-Layer Perceptron classifier on unseen data. . . . 57

28 Interpreted information of example BLE link layer packets retrieved by
Wireshark from AirTag. 74

29 Attributes of example BLE link layer packets of AirTag. 74

30 Interpreted information of example BLE link layer packets retrieved by
Wireshark from Nutale. 75

31 Attributes of example BLE link layer packets of Nutale. 75

32 Interpreted information of example BLE link layer packets retrieved by
Wireshark from HuaweiTag. 76

33 Attributes of example BLE link layer packets of HuaweiTag. 76

34 Interpreted information of example BLE link layer packets retrieved by
Wireshark from Tile. 77

35 Attributes of example BLE link layer packets of Tile. 77

36 Comparison of AirTag’s patterns in three different states 78

37 Comparison of HuaweiTag’s patterns in three different states 79

List of Tables

1 Scan Record data captured on Android phone 32

2 Advertising data and scan response data captured on PC 32

3 BLE AD type. 33

4 Description of each bit of Flags AD. Adapted from [4]. 34

5 Hyperparameters list for grid search in SVM. 42

6 Hyperparameters list for grid search in Random Forest Classifier. 44

7 Hyperparameters list for grid search in MLP. 46

8 Distribution of data frame in tracker and non-tracker category. 50

9 Classification report of Support Vector Machine classifier 51

10 Classification report of Random Forest classifier 53

11 Classification report of Multi-Layer Perceptron classifier. 55

12 Classification report of Multi-Layer Perceptron classifier on unseen data. . 56

13 Classification results of experiment on HomeScout 58

14 Specifics of device capture list . 82

15 Specifics of device capture list of unseen device 83

71

72 LIST OF TABLES

Appendix A

Example link layer packets

In this chapter, example link layer packets will be shown to allow for further analysis and
comparison.

73

74 APPENDIX A. EXAMPLE LINK LAYER PACKETS

A.1 AirTag

Figure 28: Interpreted information of example BLE link layer packets retrieved by Wire-
shark from AirTag.

Figure 29: Attributes of example BLE link layer packets of AirTag.

A.2. NUTALE 75

A.2 Nutale

Figure 30: Interpreted information of example BLE link layer packets retrieved by Wire-
shark from Nutale.

Figure 31: Attributes of example BLE link layer packets of Nutale.

76 APPENDIX A. EXAMPLE LINK LAYER PACKETS

A.3 HuaweiTag

Figure 32: Interpreted information of example BLE link layer packets retrieved by Wire-
shark from HuaweiTag.

Figure 33: Attributes of example BLE link layer packets of HuaweiTag.

A.4. TILE 77

A.4 Tile

Figure 34: Interpreted information of example BLE link layer packets retrieved by Wire-
shark from Tile.

Figure 35: Attributes of example BLE link layer packets of Tile.

78 APPENDIX A. EXAMPLE LINK LAYER PACKETS

A.5 Three different states of an AirTag

Figure 36: Comparison of AirTag’s patterns in three different states

A.6. THREE DIFFERENT STATES OF AN HUAWEITAG 79

A.6 Three different states of an HuaweiTag

Figure 37: Comparison of HuaweiTag’s patterns in three different states

80 APPENDIX A. EXAMPLE LINK LAYER PACKETS

Appendix B

Device capture list

This chapter present a comprehensive overview of the specific BLE devices analyzed in
this work. Link layer packets are captured from these devices to analyze if there are
patterns in these devices for further classification purpose. The specifics of device capture
list is presented in Table 1. The specifics of the devices capture list of unseen devices used
in section 5.4 is shown in Table 2.

81

82 APPENDIX B. DEVICE CAPTURE LIST

No. Local Name Device type Number of collected frames

1 AirTag Tracker 6516

2 HuaweiTag Tracker 4644

3 Tile Slim Tracker 4818

4 Nutale Air Tracker 10165

5 Momax Tracker 8362

6 Mili Tag Tracker 1428

7 Baseus T2 Tracker 578

8 Baseus T2 Pro Tracker 2577

9 Xiaomi Watch S1 Smart Watch 4481

10 Huawei Watch GT2 Smart Watch 3679

11 Oppo Smart Band 2 Smart Watch 4481

12 Edifier Lollipods Headphone 2315

13 Edifier Headphone Headphone 2216

14 Samsung Galaxy Buds Live Headphone 4485

15 Huawei Freebuds 4E Headphone 4833

16 Xiaomi Buds Pro Headphone 1504

17 Haier Oximeter Oximeter 5044

18 Konsung Oximeter Oximeter 6767

19 Xiaomi Thermometer Pro Thermometer 1982

20 Xiaomi Scale 2 Scale 4432

21 Huawei Scale 3 Scale 5303

22 Yuwell Glucose Glucose Meter 5457

23 Omron isens631 Glucose Meter 4629

24 Omron u728t Blood Pressure Meter 5229

25 Xiaomi Blood Pressure Meter Blood Pressure Meter 3892

26 Lenovo Xiaoxin Laptop Laptop 4195

27 iphone 13 Smart Phone 2842

28 iflytek Recorder Recorder 3000

29 Dell Mouse Mouse 3537

30 Samsung Galaxy Watch 3 Smart Watch 1504

Table 14: Specifics of device capture list

83

No. Local Name Device type Number of collected frames

1 Huawei mangotek Tracker 11897

2 Nut Focus Tracker 1650

3 Huawei band 8 Smart Watch 4001

4 Logitech pebble mouse Mouse 4753

5 Rapoo mouse Mouse 5881

6 Ugreen mouse Mouse 5593

7 Huawei scale Pro Scale 5979

8 Xiaomi scale 8 Scale 8369

9 Yuwell blood pressure meter Blood pressure meter 1259

10 Lepu Oximeter Oximeter 1957

Table 15: Specifics of device capture list of unseen device

