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Abstract

Poisoning attacks pose a substantial threat to the trustfulness of Federated Learning. For
example, malicious participants can degrade the model performance of honest members
or implement backdoors that can be exploited at inference time to take advantage of in-
correct predictions. Researchers have been highly active to mitigate poisoning attacks.
Existing approaches prominently aim for defenses against poisoning attacks in central-
ized settings. While decentralized Federated Learning has gained significant attention as
a promising approach without a central entity, the security aspects related to poisoning
attacks remain largely unaddressed.
This work introduces a defense approach called“Sentinel” for mitigating poisoning attacks
in horizontal, decentralized Federated Learning. Sentinel leverages the advantage of lo-
cal data availability and defines a three-step aggregation protocol composed of similarity
filtering, bootstrap validation and normalization to protect against malicious model up-
dates. The proposed defense mechanism is evaluated on various datasets under different
types of poisoning attacks and threat levels. An extension of Sentinel, called Sentinel-
Global, is presented, which incorporates a global trust protocol to reduce computational
complexity and further improve the effectiveness against adversaries. Both Sentinel and
SentinelGlobal demonstrate promising results against untargeted and targeted poisoning
attacks. Hence, this work contributes to the advances in research against poisoning at-
tacks in decentralized federated systems. Additionally, the results of this work highlight
the need for more sophisticated defense strategies against backdoor attacks, independent
of the Federated Learning architecture.
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Verfälschungsangriffe (
”
Poisoning Attacks“) stellen eine erhebliche Bedrohung für die Ver-

trauenswürdigkeit des föderalen Lernens (
”
Federated Learning“) dar. Böswillige Teilneh-

mer können beispielsweise die Modellleistung ehrlicher Mitglieder verschlechtern oder Hin-
tertüren implementieren, die zum Zeitpunkt der Inferenz ausgenutzt werden können, um
von falschen Vorhersagen zu profitieren. Forscher haben sich intensiv mit der Abschwä-
chung von Verfälschungsangriffen befasst. Bestehende Ansätze zielen vor allem auf die
Abwehr von Verfälschungsangriffen in zentralisierten Umgebungen ab. Während dezen-
tralisiertes föderiertes Lernen als vielversprechender Ansatz ohne zentrale Instanz grosse
Aufmerksamkeit erlangt hat, bleiben die Sicherheitsaspekte im Zusammenhang mit Ver-
fälschungsangriffen weitgehend unbehandelt.
In dieser Arbeit wird ein Verteidigungsansatz namens

”
Sentinel“ zur Abschwächung von

Verfälschungsangriffen in horizontalem, dezentralisiertem föderiertem Lernen vorgestellt.
Sentinel nutzt den Vorteil der lokalen Datenverfügbarkeit und definiert ein dreistufiges Ag-
gregationsprotokoll, das aus Ähnlichkeitsfilterung,

”
Bootstrap“-Validierung und Normali-

sierung besteht, um vor böswilligen Modellaktualisierungen zu schützen. Der vorgeschla-
gene Verteidigungsmechanismus wird an diversen Datensätzen unter verschiedenen Arten
von Verfälschungsangriffen und Bedrohungsstufen evaluiert. Es wird eine Erweiterung von
Sentinel, genannt SentinelGlobal, vorgestellt, die ein globales Vertrauensprotokoll imple-
mentiert, um die Rechenkomplexität zu reduzieren und die Wirksamkeit gegen Angreifer
weiter zu verbessern. Sowohl Sentinel als auch SentinelGlobal zeigen vielversprechende
Ergebnisse gegen ungezielte und gezielte Verfälschungsangriffe. Daher trägt diese Arbeit
zu den Fortschritten in der Forschung gegen Verfälschungsangriffe in dezentralen föderier-
ten Systemen bei. Darüber hinaus unterstreichen die Ergebnisse dieser Arbeit den Bedarf
an ausgefeilteren Verteidigungsstrategien gegen Backdoor-Angriffe, unabhängig von der
föderalen Lernarchitektur.
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Chapter 1

Introduction

Although the success of Machine Learning (ML) has risen exponentially in recent years,
many domains cannot benefit from its advantages due to increased concerns about data
privacy, compromised confidentiality, and limited access to compute resources [1]. There-
fore, Federated Learning (FL) has emerged as a promising ML concept that enables differ-
ent devices or organizations to collaboratively learn a model without submitting private
data to a centralized server [2]. FL has the potential to solve privacy concerns, reduce
latency, and increase scalability and reliability by distributing the learning tasks through-
out many participants in a shared network [3]. Ultimately, the central server becomes
solely responsible for model aggregation and broadcasting.

However, the traditional concept of FL is relying on a central entity, which implicates
certain drawbacks such as communication bottlenecks and a single point of failure. For
that reason, Decentralized Federated Learning (DFL) has been proposed as an alternative
to avoid these vulnerabilities [4]. Despite the advantages and drawbacks of both FL archi-
tectures, research has shown that distributed ML in general is vulnerable to adversarial
attacks, particularly those focused on manipulating training data [5]. FL is highly sus-
ceptible to these attacks, as data inspection techniques cannot be used to detect altered
data. Hence, a dilemma exists between protecting privacy and establishing trust in FL.
This vulnerability has led to an arms race between newly proposed defense mechanisms
and corresponding attack strategies.

1.1 Motivation

One of the most significant threats to the integrity and effectiveness of FL are poisoning
attacks [6]. The consequences of successful poisoning in FL can be severe: a compromised
model may produce inaccurate predictions, misclassify inputs, or even introduce backdoors
that adversaries can exploit later. Moreover, these attacks can intensively impair the
collaborative learning process, eroding trust among participants and undermining the
very essence of FL’s privacy and security benefits. To defend against poisoning attacks in
FL, researchers and practitioners have been actively exploring various robust and secure

1



2 CHAPTER 1. INTRODUCTION

algorithms and techniques. These defenses focus on detecting and mitigating the effects
of poisoning attacks to maintain the integrity of FL and preserve the performance of
the individual participants’ model. However, most previous works focus on the security of
Centralized Federated Learning (CFL), whereas defense techniques in DFL remain largely
unexplored. In this context, this work aims to investigate the behavior of poisoning attacks
in the DFL architecture and explore new defense strategies for increased security.

1.2 Description of Work

This work focuses on mitigating poisoning attacks in horizontal DFL. A new defense ap-
proach named Sentinel is presented, which takes advantage of the local data availability
and defines a three-phase aggregation protocol to identify potentially malicious models.
The first step of similarity filtering uses the layer-wise average cosine similarity to reject
highly suspicious models. The remaining updates are then aggregated based on the local
bootstrap validation loss, whereas the aggregation weight is calculated using an adaptive
loss distance mapping. In a final step, the trusted models are normalized using the local
model norm as a threshold, to reduce the impact of potential stealth attacks. In summary,
Sentinel leverages a hybrid defense strategy composed of anomaly detection and robust
aggregation to mitigate poisoning attacks.
The proposed aggregation mechanism is evaluated on the MNIST, FMNIST and CIFAR10
datasets under data and model poisoning attacks in targeted and untargeted forms. Differ-
ent threat levels are investigated, which includes the number of attackers and the amount
of modified data. Furthermore, an extension of Sentinel is introduced: SentinelGlobal im-
plements a global trust protocol to further increase the security of Sentinel. The extended
mechanism uses the binary classification result of Sentinel as a local trust score, which
is shared with the federated network at each round. The global trust is then calculated
based on the average trusted neighbor opinion, which integrates the trust perspective of
assumed benign neighbors on a target node at hand. With the incorporation of global
trust, the computational complexity of Sentinel could be reduced significantly.
Moreover, this work also contributes to the research advances in DFL with an adopted,
synchronous version of Fedstellar, which paves the way for more comparable security
benchmarks in DFL. The adapted platform can be retrieved on GitHub1.

1.3 Thesis Outline

The structure of this work is outlined as follows. First, Chapter 2 establishes the theo-
retical baseline and describes the fundamental concepts used in this work. Subsequently,
previously proposed defense mechanisms for both architectures, CFL and DFL, are an-
alyzed for their limitations in Chapter 3. Based on these findings, an improved defense
mechanism is proposed together with an extended trust algorithm in Chapter 4. Fur-
thermore, a broad selection of poisoning attacks is defined and clarified, which is further

1https://github.com/janousy/fedstellar-sync



1.3. THESIS OUTLINE 3

used to evaluate the newly proposed attack mitigation algorithm. In the next Chapter
5, the technical specifications of the defense strategy and the underlying framework to
perform DFL experiments are outlined. An extensive evaluation of the proposed defense
mechanisms against specified poisoning attacks is given in Chapter 6. Lastly, Chapter 7
summarizes the findings of this work and proposes future opportunities.
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Chapter 2

Background

The following sections will summarize the theoretical foundation of FL and elucidate the
taxonomy of common poisoning strategies and objectives. Generally, FL encompasses a
broad set of applications, algorithms, and characteristics. Various concepts are transfer-
able between the different variations of FL, especially when it comes to security measures.
Hence, a general overview of FL and its vulnerabilities is given in this chapter, although
the focus of this work lies on DFL.

2.1 Federated Learning

Traditional machine learning models typically require vast amounts of centralized data
to be collected and transferred to a central server for processing [7]. In this centralized
approach, the data is collected to train a global model that can then be distributed back
to the individual devices or nodes for use [8]. While this centralized approach has shown
remarkable success, its application in practice is often limited due to privacy regulations
and legal restrictions [5]. FL addresses these challenges by bringing the model training
process to the data sources themselves, rather than centralizing the data. In this federated
setting, the training process takes place locally on each individual data center, computer,
or edge device, ensuring that raw data never leaves the data owner’s control [1]. FL has
found applications in various domains, including healthcare, finance, internet of things
(IoT), and natural language processing [7].

2.1.1 Fundamental Algorithm

Federated Average (FedAvg), proposed by McMahan et al. [2], has established itself as the
de facto standard algorithm for FL. As illustrated in Figure 2.1, its execution is distributed
over a central server and the participating clients or nodes. FL with FedAvg is composed
of several rounds of alternating local model training and global aggregation. In a first step,
the server initializes a global model w0 with random parameters or pre-trained weights
and distributes it to a selected subset of nodes. Each node then performs the local model

5



6 CHAPTER 2. BACKGROUND

training by updating the local model’s parameters w using techniques like Stochastic
Gradient Descent (SGD) or Batch Gradient Descent. After local training, each client
sends its model parameters (weights and biases) to a central server (aggregator) without
sharing the raw data. At any round t, the central server aggregates the model parameters
received from all clients by computing their weighted average. The aggregation weight
for each client’s model is usually determined by the amount of data (nk) it contributed to
the training process. The averaged model parameters become the updated global model
wt+1, which is in turn send back to each client again at the next round. The FL process
is iterated for a predefined number of rounds or until a convergence criterion is fulfilled.
With this procedure, the central server obtains a model that has been trained on data
from various locations without having direct access.

However, FedAvg also poses some challenges, such as dealing with heterogeneous data
distributions, addressing communication issues, and handling devices with limited com-
putational capabilities [3]. Moreover, the security of this approach has been rigorously
discussed since its proposal. Previous works have demonstrated that FedAvg is highly sus-
ceptible to poisoning attacks, as the protocol does not consider adversarial participation
[5], [6], [9].

Figure 2.1: Federated Average (FedAvg) [10].
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2.1.2 Architectural Variations

The architecture of CFL with a central entity has certain drawbacks [7]. First, all commu-
nication between clients and the central server is channeled through the network, whereby
the server becomes a communication bottleneck with increased scale. Second, the central
entity represents a single point of failure, since it is solely responsible for the orchestra-
tion of the FL process. Consequently, DFL has been proposed as an alternative, which
attempts to avoid the architectural drawbacks of CFL [4]. In DFL, the central entity is
eliminated, and its responsibilities are transferred to each local node. As a result, each
participant alternately performs both tasks of local model training and aggregation of all
model parameters received from its neighbors. The aggregation role can also be rotated
between nodes at each round, resulting in a semi-decentralized architecture. Figure 2.2
illustrates these different FL architectures. In addition to serving as a trainer and/or
aggregator, a node can also act as a proxy for model parameters to improve network
connectivity [7].

Figure 2.2: Variations in Federated Learning architectures [7].

Through this decentralization, the FL process can be fully autonomous and more resistant
to participant failures. However, managing the dynamic node connectivity and orchestrat-
ing the learning process becomes increasingly complex. For example, the communication
schema in FL can either be synchronous or asynchronous [11]. The former requires each
node to wait for other nodes to complete their aggregation and then jointly proceed to
the next round. In contrast, a node acts fully autonomously in an asynchronous schema.
This can lead to the fact that the training process of some nodes converges faster, while
stragglers fall behind. Moreover, each participant owns its individual local model instead
of working towards a globally shared model, which may lead to a conflict of interest [12].
Furthermore, without the presence of a trusted central entity as in CFL, all participants
are required to validate the honesty of their neighbors individually. Overall, these prop-
erties of DFL contribute to an increased threat by poisoning attacks.
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2.1.3 Heterogeneity

The federated approach to ML presents novel challenges: besides communication effi-
ciency, privacy, security and scalability, managing device and data heterogeneity is still
an open research topic [10].
Device heterogeneity in a federated system originates from different hardware capabilities,
including variations in processing power, memory, and storage capacities. For example,
some devices may be high-end smartphones with powerful CPUs and large memory, while
others may be low-end IoT devices with limited computational resources [13].
On the data level, individual nodes may have collected different types and scales of data
with varying distributions. This is particularly significant when the training data is
sourced from users in diverse geographical locations or with different usage patterns,
which yields a shift in prior probability [14]. In FL, the assumption of independent and
identically distributed (IID) samples across local nodes is often not realistic. Hence, tack-
ling these distribution shifts is still actively investigated [15]. Furthermore, a non-IID
scenario aggravates the challenge of differentiating between benign and malicious model
updates [16]. This becomes especially important in DFL, where each local node trains
towards a personal goal.

To tackle shifts in label or feature distribution, two popular variants of FL exist [7]:
Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL). HFL is
applied when participants posses a similar feature set but hold distinct data samples.
VFL can be applied when multiple parties collaboratively train a federated model by
combining their complementary data sets. Unlike HFL, the vertical variant involves par-
ties with different sets of features but overlapping samples. The focus of this thesis lies
on decentralized HFL.

2.2 Poisoning Attacks

The collaborative nature of FL makes the system a susceptible attack target. Model aggre-
gators cannot validate other participants’ contributions due to data privacy preservation.
Attacks on FL can be classified into two main categories: poisoning attacks and privacy
attacks [5]. Poisoning attacks are executed during the model training, whereas privacy
attacks are conducted at inference time. The goal of poisoning attacks is to degrade the
performance of the federated models or infiltrate their behavior. On the contrary, privacy
attacks are executed by honest-but-curious actors with the aim of gathering sensitive in-
formation from other participants, i.e., learning about their individually owned data.
The focus of this work lies on poisoning attacks. These can be viewed from two perspec-
tives: the attack strategy defines how a poisoning attack is constructed, which is either
through data or model modifications. In contrast, the attack objective specifies the goal of
the adversary. Adversaries either have a specific target to be misclassified, or their attack
is untargeted to degrade the overall model performance. The concepts of attack strategy
and objective are discussed in detail in the following sections.
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2.2.1 Attack Strategies

There exist two popular strategies to execute a poisoning attack: data and model poison-
ing [14], [17]. First, a data poisoning attack is performed at the data level. The adversary
operates on its training data and thereby indirectly alters the ground-truth of the model
training process. In contrast, model poisoning attacks presume a more relaxed scenario
where clients can break the protocol and directly modify the locally trained model, i.e.,
the submitted weights or gradients. These two concepts are illustrated in Figure 2.3. Note
that the separation of data and model poisoning is continuous, meaning a poisoned model
can be the result of a data poisoning attack [18].

Feasible attack strategies largely depend on an attacker’s knowledge about the FL process,
e.g., whether they know about another client’s data distribution. One can distinguish
between full and partial attacker knowledge [19]: with full knowledge, the attacker is
acquainted with the local datasets, protocols, and models of all participants. This is
often considered practically infeasible, hence full attacker knowledge is not considered in
this work. With partial knowledge, the attacker only has knowledge about compromised
participants. In the following, the two strategies of data and model poisoning will be
described in detail.

Label: Shirt

010001
100101
010110
011011

010001
100101
010110
011011

Label: Shoe

Local Training Data

Poisoned Model

Label: Shirt

010001
100101
010110
011011

010001
100101
010110
011011

Label: Pullover

Local Model

Local Training Data

+

Poisoned Model

Data Poisoning Model Poisoning

Figure 2.3: Illustration of data poisoning (left), where an adversary alters data labels and
features, and model poisoning (right), with the example of added noise to the model weights.

Data Poisoning Attacks. The adversary manipulates its own local training data and
thereby indirectly alters the source of the model training process. An adversary can
achieve this through the manipulation of features or labels, or simply through data inser-
tion. The main constraint of data poisoning attacks is their effectiveness. A large amount
of poisoned samples and inherently numerous adversaries are required to make the attack
successful [5]. Stand-alone data poisoning can be considered as offline attacks, as they
are executed once before the training process is started [17]. The malicious actor then
trains its model as usual, but on poisoned data. Data poisoning attacks can be combined
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with model poisoning to maximize the adversarial impact [6]. The following are the two
common data poisoning procedures used to attack FL models:

• Label Flipping [5], [20]: The adversary changes the labels of specific data records
while leaving the features intact. Label flipping falls into the category of dirty-label
attacks. The labels to be flipped are either chosen at random or selectively by a
predefined target.

• Sample Poisoning [5], [20]: Instead of manipulating the labels of the data owned
by an adversary, the sample’s features are modified to deteriorate the class char-
acteristics. This is also referred to as a clean-label attack since the labels remain
unmodified. A common targeted strategy is the creation of artificial backdoors,
discussed in Section 2.2.2.

Model Poisoning Attacks. Although data poisoning attacks eventually induce modifi-
cations to the model update, model poisoning attacks can be regarded as an individual
attack class which does not interfere with the local training data [18], [21]. In contrast to
data poisoning, model poisoning attacks presume a more relaxed scenario where clients
can break the protocol and directly modify the locally trained model, i.e., the submitted
weights or gradients. Consequently, model poisoning attacks pose an enhanced threat,
since they are more effective and usually harder to detect [6], [18]. However, model poi-
soning is less intuitive as this approach is not directly affiliated with the training data.

The categorization of model poisoning attacks is broad and there is yet a consensus to be
reached in literature. In this work, it will be distinguished between two model poisoning
attack strategies: random weights generation and optimized methods, whereas the two can
also be combined [5].

• RandomWeights Generation: The adversary directly manipulates the model weights
by generating random values of the same dimensionality as benign updates [16]. A
common strategy for this type of untargeted model poisoning is to add random noise
to the local model update [6], [19].

• Optimized Methods: If the goal of the attacker is to remain undetected, a model
poisoning attack becomes a trade-off between effectiveness and stealth [22]. Thus,
adversaries aim to craft their update as similar as possible to past benign updates,
while maximizing their attack impact. This strategy is usually employed to exploit
the vulnerabilities of specific defense mechanisms [19], [23].

2.2.2 Attack Objectives

Poisoning attacks can be further categorized by attack objective, i.e., as untargeted, tar-
geted and backdoor attacks [6], [22]. These attack objectives can be realized through
both, data and model poisoning. Note that in existing literature, there is not a strict but
rather continuous distinction between these attack objectives [14]. Figure 2.4 gives an
overview of different attack objectives using examples from object recognition.
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Figure 2.4: Different types of attack objectives in poisoning attacks: targeted, backdoor and
untargeted [17].

Untargeted Attacks. The overall objective of untargeted attacks is to degrade the gen-
eral model performance, i.e., prevent the model from converging. Thus, this attack type
can also be considered as an indiscriminate availability attack [17] or Byzantine attack
[18]. As illustrated in Figure 2.4, none of the test data samples should remain correctly
classified to consider an untargeted attack successful. Such attacks are often easier to de-
tect than others, since the declined model performance is a good indicator for adversary
presence [24], [25]. A common untargeted attack is sign-flipping [26], where an attacker
simply inverts the algebraic sign of his updates. Further, the additive noise attack [26]
using the aforementioned random weights generation strategy is another method of de-
grading model performance. Both of these approaches are model poisoning attacks. Data
poisoning strategies such as random label flipping can also provoke an untargeted attack.

Targeted Attacks. In these attacks, an adversary deliberately manipulates the training
data, with the goal of causing the model to produce incorrect or biased predictions on
specific target inputs. The adversary infiltrates the model such that only a specific target
set or class is misclassified, while the remaining set remains classified correctly [17]. Tar-
geted attacks are usually more difficult to detect than untargeted, as they only affect the
model accuracy of one specific class [27]. This target class is only known to the adversary.
In Figure 2.4, a malicious actor could for example flip all labels belonging to the images
of trucks to the label of a car. If the attack is successful, the poisoned model of a benign
participant would incorrectly predict all trucks as cars. Inputs of other objects would
remain classified correctly.

Backdoor Attacks. Another prevalent poisoning attack is the backdoor attack, which
can also be regarded as a subclass of targeted attacks [5]. The goal is that only a specific
target set with a certain property, i.e., a trigger, is misclassified [17]. An adversary injects
one or multiple triggers into the model during training, which can then be exploited during
inference to the attacker’s advantage [16]. Specifically, the model behaves normally in the
absence of the trigger, but an attacker can provoke a desired prediction or classification
by presenting the trigger at inference time. The trigger or target set property can be
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of semantic or artificial nature [28]: (1) Semantic backdoors exhibit naturally occurring
triggers, such as a striped background of certain colors (see Figure 2.4) or a specific word
sequence. The trigger thus occurs naturally in the distribution of the training data, but
the attacker flips the labels of these target instances. (2) On the other hand, artificial
backdoors are crafted through manually injected triggers, i.e., through sample poisoning.
In Figure 2.4, this trigger is represented by an“F”. To create an artificial trigger, the clean
input data is modified before the FL process is started. However, these modifications do
not necessarily have to be visible to the human eye. To prevent a backdoor from vanishing
during the model averaging process, model poisoning techniques such as constrain-and-
scale and train-and-scale have been developed to evade defense mechanisms and increase
the model accuracy on the backdoor [16], [28].



Chapter 3

Related Work

In this chapter, the current state of research and the contribution of other authors is
discussed. Due to the vulnerability of FL to poisoning attacks, researches have been highly
active in investigating countermeasures. The most prominent methods are designed for
the centralized setting, where the model aggregation by a single parameter server is less
complex. In this work, the approaches to mitigate model poisoning attacks are categorized
into: Byzantine-robust aggregation, anomaly detection and hybrid approaches [22], [28],
[29]. In the following, each category and its encompassed techniques will be discussed.

3.1 Byzantine-Robust Aggregation

The main goal of these defense techniques is to provide a robust aggregation rule such
that malicious updates cannot deteriorate the model performance. Thereby, convergence
is ensured and the impact of the attacks is limited [23], [30]. This robustness is also
referred to as Byzantine resilience [31]. These defense methods can mainly be divided
into geometric measures, regularization, and decomposition. Geometric approaches can
further be divided into vector-vise and coordinate-wise (or dimension-wise) filtering [17].
The latter is a more drastic approach, as it removes entire client vectors, instead of only
the deviating vector elements. In general, Byzantine-robust aggregation methods defend
well against untargeted poisoning but have limited effect against optimized, i.e., stealthy,
targeted attacks [19], [32].

Coordinate-wise Median. This defense method applies dimension-wise filtering [33]. The
coordinate-wise median is a generalization of the median in higher dimensions, as repre-
sented in (3.1) for a single dimension j, where xi represents a single client update. As
a dimension-wise filtering approach is insensitive to skewed distributions, it effectively
defends against a model replacement attack [16].

[COMED (x1, . . . ,xn)]j := median
(
[x1]j , . . . , [xn]j

)
(3.1)

13
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TrimmedMean. Similar to the coordinate-wise median, TrimmedMean [34] also applies
dimension-wise filtering. However, the idea of TrimmedMean is to exclude the lowest
and largest values in each dimension of the sorted updates using a trimming parameter,
represented by β in (3.2). The foundational assumption of this approach is that malicious
updates represent outliers when compared with honest updates. Both approaches, Median
and TrimmedMean, are considered robust as long as the majority of participants is benign.

[TM (x1, . . . ,xn)]j :=
1

n− 2β

n−β∑
i=β+1

[
x

j(i)

]
j

(3.2)

On the other hand, some approaches try to improve the robustness in CFL using a vector-
wise approach, e.g., RFA [35], Krum & Multi-Krum [36] or Bulyan [30].

RFA. The approach in RFA is a simple alteration of FedAvg, where the mean aggregation
is replaced with the geometric median, as noted in (3.3). The geometric median is an
effective technique against untargeted poisoning attacks, such as an additive noise attack.
However, if an attacker’s goal is to shift the geometric center with a sing-flipping attack,
the defense can be broken [37].

GeoMed (x1, . . . , xk) := argmin
y∈X

k∑
i=1

∥y − xi∥+ (3.3)

Krum. Next, a more sophisticated approach was proposed by Blanchard and his col-
leagues [36]. The core idea of Krum is to assign a score to each client update based on the
similarity to other updates. Formally, a client’s score is calculated by summing the Eu-
clidean distance to the closest n− f − 2 other client updates, where n is the total number
of clients, and f the amount of assumed adversaries. The global model is then updated
with the vector from the client assigned to the lowest score. Thereby, the approach selects
a single update that is most similar to a group of its closest neighbors, while excluding
any potential malicious agents. The authors also proposed a variation called Multi-Krum
[36]: instead of selecting a single client update as the next global model, m client updates
are selected for averaging, where 1 ≤ m ≤ n. The theoretical convergence guarantee of
Krum & Multi-Krum is given for n ≥ 2f + 1 and n ≥ 2f + 3, respectively. However, the
major limitation of Krum and other distance-based approaches is that they suffer from
the curse of dimensionality, i.e., the Euclidean distance becomes insignificant for large
dimensions. An attacker can introduce larger perturbations for single model parameters
without affecting the norm [25]. Additionally, an a priori assumption on the parameter
f is required, i.e., the number of malicious workers, which may be infeasible in practice
[38].
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Bulyan. Mhadi et al. [30] addressed the limitations of Krum with regard to the curse of
dimensionality with Bulyan. First, the approach recursively selects θ ≤ n− 2f model up-
dates, i.e., the closest neighbors, similarly to Krum. Second, a coordinate-wise Trimmed-
Mean approach is applied to aggregate the selected set. Bulyan is reported to be robust
for n ≥ 4f + 3. However, experiments have demonstrated that in some scenarios, Bulyan
performs worse than Multi-Krum due to potentially trimming benign updates [39].

All aforementioned statistical techniques based on vector-wise filtering build on the as-
sumption that honest updates are close to each other, and malicious updates deviate in
terms of distance. This assumption becomes problematic in the non-IID data setting,
where honest updates may exhibit larger variance. Evaluations in the CFL architecture
have shown that especially the Krum method suffered from diminished model accuracy
when applied in a non-IID scenario [23], [27], [40]. Multi-Krum and Bulyan on the contrary
have been reported to perform well under a non-IID data setting. Further comparisons
have also demonstrated that more complex protocols are not necessarily performing bet-
ter in certain attack configurations [5]. Fang et al. [41] evaluated different aggregation
strategies, i.e., TrimmedMean, Coordinate-wise Median, Krum and Bulyan, within their
BRIDGE framework in the decentralized schema with Byzantine failures. Their evalua-
tions support the reported performance drops as the data distribution is shifted towards
extreme non-IID settings.

Zeno++. Xie et al. [11] proposed an asynchronous protocol for robust CFL that also
applies regularization. The authors suggested an approximated gradient descent score
based on the estimated loss and the update magnitude to decrease the impact of poten-
tially malicious gradient updates. This score thus represents a client’s trustworthiness.
Consequently, the approximation requires that the server owns a validation dataset, which
can be viewed as a major limitation in the centralized setting. Robustness based on perfor-
mance instead of parameters also introduces a computational overhead [31]. Additionally,
the author did not evaluate the protocol in non-IID scenarios. Nevertheless, Zeno++ has
the advantage of exhibiting robustness against a large number of attackers, as the protocol
only requires at least one benign update for convergence.

Adaptive Federated Averaging. Muñoz-González et al. [42] proposed an approach that
does not just focus on filtering potentially malicious updates, but blocks adversaries en-
tirely from participation. Adaptive Federated Averaging (AFA) uses a Hidden Markov
Model based on gradient cosine similarity to predict a client’s behavior, thereby introduc-
ing a learning component to the defense system. This predictive score is then used as a
weight factor in the aggregation, representing a regularization term. The approach demon-
strated increased performance in comparison to other techniques such as Multi-Krum or
Coordinate-wise Median. Using cosine similarity has the advantage that it is not affected
by intentionally scaled updates, as it is the case for Euclidean distance [43]. However, the
evaluation did not regard non-IID scenarios or more advanced targeted poisoning attacks.
For example, a malicious actor could pretend to be benign and only attack within the last
few iterations to decoy the behavioral scoring [31].
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RSA. Li et al. [26] incorporated the ℓ1-norm regularization into SGD to increase the
robustness against Byzantine attacks. The mechanism effectively defended against scaled
sign-flipping attacks. Furthermore, the authors demonstrated increased performance in
comparison to other Byzantine defense methods such as Krum or geometric median based
approaches, especially in the non-IID settings. However, other evaluations debated these
results [17].

DnC. Shejwalkar et al. [44] suggested an alternative defense mechanism for model poi-
soning attacks in CFL, called divide-and-conquer (DnC). The approach tackles the curse
of dimensionality problem through dimensionality reduction, and then uses spectral anal-
ysis, i.e., singular value decomposition, to detect and filter poisoned updates. Evaluations
demonstrate that these techniques perform well in the IID setting. However, experiments
on the non-IID FEMNIST dataset indicate that DnC cannot effectively prevent attacks
when the adversary has knowledge about honest updates from benign clients. Despite
this limitation, DnC has an advantage over other vector-wise filtering methods in terms
of computational complexity, as the algorithm does not require a pair-wise distance matrix
of each update vector.

Robust Learning Rate. As a defense against backdoor attacks, researchers also investi-
gated a learning rate decomposition. In the context of CFL, the server can modify the
learning rate per gradient dimension and thereby control the client’s contributions [5].
Ozdayi et al. [24] suggested a lightweight strategy called robust learning rate (RLR). It
builds on previous learning rate modification approaches such as SignSGD [45], which
reportedly performed badly in the non-IID setting [17]. The key concept of RLR is that
clients vote for a global model update direction through the algebraic sign of their update
vector. For every dimension of the update vector, the total number of votes must reach a
certain learning threshold, otherwise, the particular learning rate is negated. Thereby, the
aggregation algorithm moves towards the gradient for dimensions where there is insuffi-
cient agreement, and thus moving away from potentially malicious updates. Evaluations
have demonstrated, that RLR serves as an effective defense against backdoor attacks,
regardless of the data distribution [5]. The drawback however is the choice of the learning
threshold, which may not be exceeded by the number of malicious clients.

3.2 Anomaly Detection

Defense mechanisms through anomaly detection, also referred to as Byzantine detec-
tion, aim at identifying and removing potentially malicious updates [29]. In contrast to
Byzantine robustness, these anomaly detection schemes do not implement the defense
strategy into the aggregation rules. Such detection mechanisms can either be classified
as validation-based or gradient-based. Validation-based approaches investigate the per-
formance behavior of individual updates, whereas gradient-based methods analyze the
inherent numeric properties.
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ERR & LFR. Building on robustness guarantees in distributed machine learning, Fang
et al. [19] proposed two adapted defense strategies for CFL: Error Rate based Rejection
(ERR) and Loss Function based Rejection (LFR). The key concept of these strategies
is to evaluate the performance of the collected client models on a server-side validation
dataset. Before averaging the received models, a predefined number of updates that have
the largest impact on either the loss or the validation error are rejected. Subsequently, the
remaining models are aggregated using a Byzantine robust mechanism, e.g., Median, Krum
or TrimmedMean. The authors evaluated ERR & LFR individually and also both applied
simultaneously for untargeted poisoning attacks. The defense mechanisms demonstrated
limited effectiveness when an attacker has full-knowledge about the deployed defense.
As a drawback, the server is required to collect a clean data set, which may violate the
privacy-preserving concept of FL.

PDGAN. To overcome the limitation of server-side data collection, Zhao et al. [46] pro-
posed PDGAN. Instead of requiring a clean validation dataset, the system trains a gen-
erative adversarial network (GAN) concurrently to the original federated learning task.
Once trained, PDGAN reconstructs a client’s data from their model updates received on
the server side. The generated data can then in turn be used to audit individual updates
and label malicious clients as attackers. Focusing on a heterogeneous data distribution,
the authors reported an effective defense against label flipping attacks. However, the
mechanisms can only defend from attackers after a certain number of iterations, when
the GAN is assumed to be trained well-enough. Additionally, the server must be suffi-
ciently performant to train a neural network in time and simultaneously to the federated
aggregation.

FoolsGold. Fung et al. [40] proposed an anomaly detection mechanism based on gradient
similarity called FoolsGold. It is designed to defend against Sybil attacks in CFL under
the assumption that the clients controlled by an adversary exhibit a large similarity in
comparison to benign updates. The authors introduce a client contribution similarity
based on cosine similarity and add a historical component to the algorithm that analyses
the variance of client updates over time. Thereby, FoolsGold identifies a Sybil group when
a set of updates becomes too similar. Overall, the approach works well in the non-IID set-
ting with a high number of adversaries. Evidently, the effectiveness decreases as the data
distribution shifts towards IID and benign gradient updates exhibit higher similarity [23].
FoolGold is vulnerable to constrain-and-scale attacks, as there is no norm-thresholding
defense applied [28]. Additionally, FoolsGold fails to defend against a single adversary
due to the nature of the adversary classification. As a mitigation, the authors suggest to
use FoolsGold in combination with other defense strategies. Due to the strong data distri-
bution assumptions of FoolsGold, the method also fails to defend against simultaneously
injected backdoors and stealthier constrained attacks [43].

FLDetector. Another approach to detect malicious participants is to investigate the
gradient consistency of client updates. FLDetector [47] predicts a client’s update based on
its past contributions. Specifically, the server applies a quasi-newton approach to estimate
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the Hessian of an update and compare it to the integrated Hessian. The defense appears to
be effective against various adaptive attacks, such as scaling attacks, distributed backdoors
and untargeted model poisoning. However, predicting consistency is computationally
expensive.

Spectral Anomaly Detection. Li et al. [37] suggested a defense mechanisms based on
training a spectral anomaly detection model to identify malicious updates in a low-
dimensional latent space. Essentially, an encoder-decoder architecture is trained on un-
biased model updates. The encoder creates low-dimensional embeddings that represent
data variability in absence of noise and redundant features. The decoder then aims at
reconstructing a model update from these embeddings. The reconstruction error arising
from this process allows differentiating between benign and malign updates. The latter
exhibit a larger reconstruction error under the assumption that an attacker modifies their
update. The authors propose to dynamically set the error threshold based on the mean
error. Consequently, updates above the threshold are excluded from the aggregation, and
the updates considered benign are weighted based on their reconstruction error. Bench-
marks in a non-IID environment demonstrated an effective defense against untargeted
and targeted attacks, i.e., sign-flipping, additive noise and artificial backdoors. However,
appropriately selecting the benign model updates to train the encode-decoder model is
critical.

Sniper. Based on gradient similarity, Sniper [48] maps client updates into a graph-
cluster. For each pair of updates, the Euclidean distance is calculated and an edge between
the two clients is created if the distance is below an adaptive threshold. If there exists a
maximum clique composed of more than half of all clients, the updates of this clique are
aggregated. Otherwise, the threshold limiting the edge creation is increased. The method
effectively defends against untargeted and targeted attacks, as long as the data is IID. In
a more heterogeneous setting, the performance declines.

3.3 Hybrid Defense Techniques

In this work, hybrid defenses are defined as approaches that employ a combination of
both, robust aggregation and anomaly detection mechanisms.

FLTrust. Cao et al. [32] proposed a trusted aggregation mechanism for CFL based on
comparing local model updates to a trusted bootstrapping model. Therefore, the server
acquires a clean root dataset to train a reference model on its own. At each iteration,
the received model updates are compared to the reference model using the ReLU-clipped
cosine similarity. The result is then used as a trust score, whereby updates that deviate
too much from the reference model receive a score of zero. Additionally, each client
update is normalized using the norm of the reference model as a scaling factor. All
normalized updates are then aggregated using their trust score as a weight. The authors
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evaluated FLTrust in homogeneous and heterogeneous distributions and demonstrated
that the method effectively defends against untargeted local model poisoning, backdoors
through label-flipping and scaled targeted attacks. Other experiments [49] debated this
and indicate high attacker success rates with increasing non-IID degree. Furthermore, it
may not be practicable in a CFL architecture to obtain a root dataset.

Trusted DFL. Gholami et al. [50] implemented the concept of trusted aggregation in the
decentralized architecture. Each node is judged based on a behavioral score that reflects
a participant’s performance contribution and update consistency. Computationally, this
is represented by cluster-based and distance-based metrics. The local trust score of each
neighboring node is then broadcasted, such that each node can compute a global trust
score based on their neighbors opinions. Thereby, the trust perspective of each node
on their neighbors propagates through the network. At each iteration, local trust and
global trust scores are recomputed, which allows a node to recover from misjudgment.
Finally, the global trust score of a neighboring node serves as a weighting factor during
the aggregation phase. This trust framework has only been successfully evaluated on
untargeted model attacks (random weights) with a low number of attackers (≤ 20%) in a
non-IID scenario. The defense effectiveness on targeted attacks, e.g., artificial backdoors,
is yet to be established. However, the authors suggest using their framework as a building
block for secure DFL.

FedInv. Zhao et al. [49] tackled the limitations of anomaly detection mechanisms such
as FLTrust and PDGAN requiring training data. The defense mechanism is inspired
by membership inference attacks. The authors proposed a privacy-preserving model in-
version strategy, such that dummy data can be synthesized from each client’s gradient
updates. In a second step, the local model updates are assigned a score: for each pair of
synthesized dummy dataset, the distribution divergence is calculated using the Wasser-
stein distance. To reflect non-IID scenarios, the scores are additionally clustered into
two groups. The group containing the majority of participants is then aggregated. The
authors evaluated the approach on various datasets and varying data distributions. In
comparison to Multi-Krum, FLTrust and LFR and tested against untargeted (Gaussian
noise, Krum attack) and targeted attacks (Badnet, label flipping), FedInv demonstrated
the best performance overall. The authors claimed that this was the first defense ap-
proach to mitigate stealthy poisoning attacks. However, the computational complexity of
FedInv was discussed. Moreover, although the authors claimed that the model inversion
is privacy-preserving, reconstructing client data may contradict the concept of federated
learning.

Norm Clipping. A thoroughly investigated approach against targeted attacks is vector
re-scaling, also referred to as clipping, norm bounding or thresholding [39]. Norm clipping
is designed to defend against semantic backdoor attacks combined with boosting in CFL,
where an attacker performs label flipping and submits update vectors with scaled norms for
greater attack impact [24]. Thus, the idea is to limit the scale of individual model weights
using a threshold parameter M , as defined in (3.4). The model weights are represented by
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xk
t , where t indicates the aggregation round and k the client index in the set of participants

S. Applying norm thresholds to model updates provably limited the success of naive model
poisoning attacks such as scaling [28]. However, the approach was not effective against
untargeted poisoning such as sign-flipping [37]. The defense mechanism only considers the
magnitude, but not the direction of an update. Additionally, finding a suitable clipping
threshold imposes another difficulty.

∆xt+1 =
∑
k∈St

∆xk
t+1

max
(
1,
∥∥∆xk

t+1

∥∥
2
/M

) (3.4)

Subsequently, Karimireddy et al. [51] proposed a centered clipping strategy, given in (3.5):
The local model updates xi are compared to the global model vl of the previous aggre-
gation at round l + 1, then the norm is limited by a threshold parameter τl. Note that
the threshold is set iteratively. The authors additionally introduced worker momentum
to tackle time coupled attacks that introduce an accumulated error over time. By using
momentum, the clients’ gradients are averaged to reduce the variance. A worker momen-
tum is composed of the momentum of the previous round mt−1,i and the current gradient
gi(xt−1), weighted by a momentum β, as display in (3.6). The server then aggregates all
worker momenta. The authors empirically evaluated their defense strategy in an IID sce-
nario and determined the momentum β and the clipping threshold τ empirically based on
the learning rate. Experiments demonstrated an effective defense against untargeted and
backdoor attacks at low computational costs. Furthermore, He et al. [52] transferred the
idea of centered clipping and local worker momentum to the DFL architecture. Instead
of using the global model as a reference, the local model update is used, which yields i.e.,
self-centered clipping. Evaluations show that the defense strategy also performs well in
non-IID scenarios. However, the authors argue that choosing a suitable clipping threshold
is still an open problem.

vl+1 = vl +
1

n

n∑
i=1

(xi − vi)min

(
1,

τl
∥xi − vl∥

)
(3.5)

mt,i = (1− βt) gi (xt−1) + βtmt−1,i (3.6)

DeepSight. Rieger et al. [23] proposed a rather unique defense strategy called DeepSight
for CFL. The authors argue that using a combined strategy of filtering and clipping
drastically reduces an attacker’s possibilities. It is argued that existing hybrid approaches
often misclassify benign updates. Thus, DeepSight analyses the internal neural network
structure of each client update. By investigating the last layer, the author’s defense creates
a first fingerprint based on label distribution and a second fingerprint based on the change
in predicted probability. To generate the fingerprints, the approach does not require any
server-side data. Instead, random input vectors are used as model inputs. Additionally,
the pair-wise cosine similarity is calculated. These three characteristics then serve as
features of the defense layer. On one hand, HDBSCAN is used to cluster updates. On the
other hand, the models are classified based on backdoor probabilities. Finally, the filtered
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models are clipped before aggregation. DeepSight serves as an effective defense in both
IID and non-IID scenarios against sophisticated backdoor attacks. The disadvantage of
DeepSight is its computational complexity. Especially, the network fingerprinting creates
a significant overhead.

FLAME. With the goal to mitigate backdoor attacks, Nguyen et al. [43] propose a hy-
brid approach based on dynamic clustering, adaptive clipping and noising. In a first step,
the client updates are clustered based on pair-wise cosine similarity to capture angular
deviation. The authors argue that existing clustering-based approaches often group the
models into malicious and benign. This leads to the issue that when no adversaries are
present, benign updates become removed. Therefore, a custom HDBSCAN clustering al-
gorithm is applied under the assumption, that at least half of the participating nodes are
benign. Updates considered as outliers are then filtered. In a second step, the updates
are clipped to reduce the impact of potentially undetected malicious updates. The au-
thors argue that generally, the average norm of updates decreases as the training process
proceeds. Therefore, a dynamic clipping threshold is proposed, whereby at each iteration,
the median norm of all updates (incl. outliers) is set as the norm threshold. As a final
step, the aggregated model is smoothed using adaptive noising. Broadly, the amount of
noise is determined based on the distances of the remaining model updates. The authors
evaluated FLAME for various datasets under backdoor and untargeted attacks with suc-
cess. However, with the clustering configuration in use, the defense fails with the number
of attackers rising above 50%. Additionally, with the data distribution shifting towards
extreme non-IID cases, the model suffers from slight performance drops. As HDBSCAN
is computationally expensive, FLAME cannot be regarded as a light-weight approach.

3.4 Post-Aggregation Techniques

In the context of this work, post-aggregation techniques are defined as approaches that
do not interfere with the aggregation progress. Instead, model updates are modified after
the aggregation.

Neuron Pruning. As a defense against backdoor attacks in the CFL setting, Wu et al.
[53] presented a technique based on neuron pruning. The underlying concept of pruning is
that backdoors activate neurons of a neural network that would otherwise remain dormant,
i.e., not activated. To identify the maliciously activated neurons, each client submits a
voting sequence to the server, based on their averaged activation values of the last network
layer from the locally trained model. The server then aggregates these votes and decides
which neurons to prune. Pruning is only effective for targeted attacks, as untargeted
attacks affect the entire neural network [17].

Weak Differential Privacy. Sun et al. [39] additionally proposed the incorporation of
weak differential privacy in the form of Gaussian noise for extended robustness. Smoothing
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model updates is a common technique to achieve differential privacy. The authors argue
that low amounts can also protect against backdoor attacks. However, there is a trade-off
between defense effectiveness and negative impact on model accuracy. When applied as a
stand-alone defense mechanism, the main task accuracy drops significantly. It is also not
trivial to determine the amount of noise to be added. Nevertheless, the approach is used
as an effective defense component in various works [43], [54].

3.5 Research Motivation

As of the current state of research, a noticeable knowledge gap exists in the domain of DFL
concerning defenses against poisoning attacks. Poisoning attacks pose a substantial threat
to the trustfulness of collaborative learning. Previous attempts prominently explored
defenses against poisoning attacks in centralized settings, but only few works investigated
defense mechanisms in fully decentralized systems. While DFL has gained significant
attention as a promising approach without a central entity, the security aspects related
to poisoning attacks remain largely unaddressed.

A summary of previous work with a focus on either DFL or CFL is available in Table
3.1. This overview highlights the need for innovative research and robust techniques to
safeguard DFL systems against poisoning attacks effectively. For comparison, the defense
mechanisms proposed in this work are also listed. Defense approaches that incorporate the
use of Blockchain solutions are not considered, since the goal is to design a lightweight DFL
protocol without the dependency on an additional decentralized system. Moreover, most
works assume that the majority of the FL participants act honestly. Consequently, this
work will investigate the mitigation of poisoning attacks in DFL without any assumptions
about the adversarial environment. Addressing this research gap will pave the way for
secure and trustworthy FL in decentralized environments.
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Table 3.1: Classification of defense techniques against model poisoning attacks. For each
approach, the intended effectiveness against untargeted (U) and targeted attack (T) is reported,
unknown effectiveness is marked with “?”. The schema describes the FL architecture for which
the defense method has been designed for: CFL or DFL. Adopted from [22], [28], [29].

Category Type Method Technique Schema
Objective

U T

Robust Aggregation Geometry COMED [33] Coordinate-wise median CFL ✓ x

RFA [35] Geometric median CFL ✓ x

TrimmedMean [34] Filtered mean CFL ✓ x

Krum [36] Euclidean distance CFL ✓ x

Multi-Krum [36] Euclidean distance CFL ✓ x

Bulyan [30] Krum and TrimmedMean CFL ✓ x

Regularization Zeno++ [11]
Approximated gradient
descent score

CFL ✓ x

AFA [42]
Gradient similarity, Hidden
Markov model

CFL ✓ x

RSA [26] Norm regularization CFL ✓ x

Decomposition DnC [44]
Dimensionality Reduction
(PCA) and SVD

CFL ✓ x

RLR/SignSGD [24], [45] Learning rate decomposition CFL ? ✓

Anomaly Detection Validation ERR, LFR [19] Global validation CFL ✓ ✓

PDGAN [46] Model accuracy auditing CFL ✓ ✓

Gradient-based FoolsGold Gradient similarity (cosine) CFL ✓ ✓

FLDetector [47]
Hessian-based gradient
consistency

CFL ✓ ✓

Li et al. [37] Spectral anomaly detection CFL ✓ ✓

Sniper [46] Graph clustering CFL ? ✓

Hybrid Mechanism FLTrust [32]
ReLU-clipped cosine
similarity, norm thresholding

CFL ✓ ✓

Gholami et al. [50] Trusted aggregation DFL ✓ ?

FedInv [49]
Gradient-based clustering
distribution divergences

CFL ✓ ✓

Centered Clipping [52]
Clipping and worker
momentum

DFL ✓ ✓

DeepSight [23]
Classification and clustering
with update fingerprinting

CFL ✓ ✓

FLAME [43]
Clustering (cosine
similarity), adaptive
clipping, noising

CFL ✓ ✓

Post-Aggregation Wu et al. [53] Neuron Pruning CFL x ✓

Sun et al. [39] Weak Differential Privacy CFL x ✓

This work Sentinel
Model similarity, bootstrap
validation and normalization

DFL ✓ ✓

SentinelGlobal Trusted neighbor opinion DFL ✓ ✓
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Chapter 4

Defense Design

With the theoretical baseline and the identified research gap established, this chapter
introduces the fundamental design choices of poisoning attacks and defense approaches
used in this work. First, a set of attacks is selected that will serve as a measure of de-
fense effectiveness in subsequent chapters. Second, the underlying concepts of the defense
strategies proposed in this work will be thoroughly discussed.

4.1 Attack Specification & Evaluation Metrics

In the context of this work, four types of poisoning attacks are chosen to analyze the
behavior of existing and newly proposed defense techniques: targeted and untargeted label
flipping, targeted sample poisoning and untargeted model poisoning. Further on, the term
backdoor attack and targeted sample poisoning is used interchangeably. This set of attacks
is selected as it represents the baseline performance measure of defense mechanisms against
poisoning attacks. Furthermore, these attacks are not designed to make any assumptions
about the attacker’s knowledge of the deployed aggregation algorithm. Additionally, the
following attack parameters are introduced:

• Poisoned Node Ratio (PNR) describes the percentage of participants in the network
which are malicious.

• Poisoned Sample Ratio (PSR) represents the percentage of data samples (features)
or labels altered by the attacker.

• Noise Ratio (NR) corresponds to the amount of noise an attacker introduces to the
local data or model.

Table 4.1 gives an overview of all attacks and their parameters. Not all parameters are
applicable to an attack. The details of the individual implementation of each attack will
be clarified in the course of this section.

25
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Attack Type Parameter Metric

PNR [%] PSR [%] NR [%]

Model Poisoning [0,100] - [0,100] F1-Score

Untargeted Label Flipping [0,100] [0,100] - F1-Score

Targeted Label Flipping [0,100] [0,100] - ASRlf

Backdoor [0,100] [0,100] - BA

Table 4.1: Configuration overview for each of the selected attacks. Cells marked with “-” specify
that the metric is not applicable to the corresponding attack.

Untargeted Model Poisoning. For this attack, a random weights generation strategy
is applied, as described in Section 2.2.1. Specifically, the attack uses a salt noise, which
changes a selected weight to the value 1. The number of weights to be altered is defined by
the NR ∈ [0, 100]. Thus, adversaries train their local model on the original data, and apply
model poisoning before sending the model to their neighbors. Model poisoning is applied
at each round of the FL process. As the goal of untargeted attacks is to degrade the
model performance of benign participants, the Attacker Success Rate (ASR) is measured
by the average F1-score of all benign participants. The F1-Score is defined in (4.1). The
lower the average benign F1-score, the more successful the attack.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(4.1)

Untargeted Label Flipping. For this type of attack, the adversary changes the labels
of any local data items from the original label li to a randomly chosen label lmod, with
li, lmod ∈ L, where L is the set of all labels known to the attacker. The number of labels
to be flipped is defined by the PSR, where PSR ∈ [0, 100]. Therefore, an attacker can
flip 100% of the local labels at maximum. The sample features remain unmodified. The
aim of this attack is to degrade the model performance of benign actors. Thus, the ASR
of untargeted label flipping can be measured by the average benign F1-score, similar to
untargeted model poisoning.

Targeted Label Flipping. With the targeted objective of label flipping, the attacker aims
at provoking a misclassification of a source label to a desired target label. Therefore, the
labels of the local data items are not chosen randomly. Instead, the adversary changes
data items having a source label lsrc to a predefined target label lt, with lsrc, lt ∈ L.
Local items with labels other than the source label remain unmodified. The attacker can
choose to flip the source labels at a PSR ∈ [0, 100]. The ASR of targeted label flipping is
measured by the number of samples having a true label y = lsrc being incorrectly predicted
as the target label, i.e., ŷ = lt. With the confusion matrix C computed on the local test
data, the ASR of targeted label flipping is defined as in (4.2), where cij is the number of
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samples having true label yi and predicted label ŷj. L represents the set of labels in the
corresponding dataset. The ASR is averaged for all benign participants.

ASRlf =
csrc,t∑|L|
j=0 csrc,j

(4.2)

Targeted Sample Poisoning. The goal of the targeted sample poisoning is to introduce
a backdoor in the model of the benign participants. In this work, only artificial backdoors
are considered. Specifically, the adversary marks local data samples corresponding to a
specific target label lt with a trigger in the form of a 5×5 pixel X on the top-left of an
image, as illustrated in Fig. 4.1. Similarly, the attacker chooses any PSR ∈ [0, 100]. To
measure the backdoor accuracy (BA), a backdoor dataset B is constructed, where all
samples of any label are marked with the defined trigger. B has the same size as the
local test dataset. The BA is defined as the ratio of samples incorrectly predicted as
the target label: with the confusion matrix C computed on the backdoor data using an
individual local benign model, the BA is defined as in (4.3), where cij is the number of
samples having true label yi and predicted label ŷj. L represents the set of labels in the
corresponding dataset. The BA is then averaged for all benign participants.

BA =

∑|L|
j=0mj,t −mt,t

|D| −mt,t

(4.3)

Figure 4.1: An example of an original low-resolution image of a sweatshirt (left), and the same
image with the artificial trigger added on the top-left (right).

4.2 Defense Design

In CFL, the nodes are organized in a star network with a server as the central entity
and there are no connections between the individual nodes. It is therefore feasible to
assume that a defined subset of models is received on the server at each round. This
property allows for the application of grouping algorithms into benign and malicious
nodes. However, this concept does not hold for DFL. Due to the dynamic connectivity
and diverse network topology, there is no fixed number of neighbors for an individual node.
As a consequence, commonly used anomaly detection mechanisms, such as clustering, are
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not applicable to detect adversaries. Instead, a mechanism is defined that does not rely
on the number of neighbors. On the other hand, defense mechanisms in DFL have the
advantage of local data availability that can be used to evaluate models received from
neighbors. In the following sections, a defense mechanism called Sentinel will be proposed
that adopts the aforementioned properties of DFL. Furthermore, an extension of Sentinel,
SentinelGlobal, will be proposed that aims to reduce the computational complexity and
increase the stability of the base aggregation algorithm.

4.2.1 Sentinel

Sentinel is a defense mechanism that aims to adapt to the dynamic connectivity DFL and
does not depend on the number of neighbors in each round. The purpose of Sentinel is to
defend against poisoning attacks. It incorporates the local data availability and relies on
the two metrics cosine similarity and bootstrap loss to evaluate the trust performance of
a neighbor’s model. Sentinel, defined in Algorithm 1, is a three-phase protocol consisting
of (1) similarity filtering, (2) bootstrap validation and (3) layer normalization. These
steps will be elucidated in the following paragraphs. An illustration of the protocol is
given in Figure 4.2. The formal overview of Sentinel is given in Algorithm 1. If not
otherwise stated, the local model M is defined as the model trained on the individual
node available in any round when Sentinel or SentinelGlobal is applied. A model received
from an adjacent node ni is referred to as a neighbor model Pi.

Step 2:
Bootstrap Validation

Bootstrap

Loss 
History

Step 3:
Normalization

Aggregation
Weights

Aggregated 
Model

Step 1: 
Similarity Filtering

Local Model Pi

Neighbor 
Model Pk

Neighbor 
Model Pj

Local Node i

Figure 4.2: High-level overview of the aggregation process in Sentinel.

(1) Similarity Filtering. At the first stage, Sentinel computes the layer-wise average co-
sine similarity between the current local model and all neighbor models received. This
similarity is denoted as Sj. The computation of the cosine similarity is defined in Algo-
rithm 2. The cosine similarity is chosen due to its advantage over the Euclidean distance,
as discussed in Section 3.1. In contrast to existing methods, Sentinel does not cluster or
weigh models based on cosine similarity, but rather filters them instead. This step there-
fore serves as a preliminary similarity evaluation to exclude potentially malicious models
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Algorithm 1 Sentinel Aggregation Algorithm

Require: P : Neighbor parameters, Dbs: Bootstrap dataset, H: Loss history, τS : Similarity
threshold, τL: Loss distance threshold.

1: r ← current round
2: M ← local model
3: w ← 0
4: for j in P , j ̸= i do ▷ (1) Similarity filtering
5: Sj ← CosineSimilarity(Pj ,M)
6: if Sj < τS then Remove Pj from P

7: Hi[r]← ComputeBootstrapLoss(M,Dbs) ▷ (2) Bootstrap validation
8: for j in P , j ̸= i do
9: lj ← ComputeBootstrapLoss(Pi, Dbs)
10: Hj [r]← lj ▷ Update loss history
11: wj ←MapLossDistance(Hi, Hj , τL)

12: for j in N , j ̸= i do ▷ (3) Normalization
13: P̃j ← NormaliseModel(Pi, Pj)

14: θ ← 1∑
j∈N wj

(∑
j∈N wjP̃j

)
▷ Aggregate

15: return θ

Algorithm 2 CosineSimilarity

Require: P : Neighbor parameters, M : Local model parameters
Ensure: |M | = |P |
1: for lm, lp in M , P do
2: SP ← SP + ϕ( v1·v2

∥v1∥∥v2∥) ▷ row-wise average

3: SP ← SP /|M | ▷ layer-wise average
4: return SP

and reduce the computational overhead of the second stage. The decision boundary is
defined by τS, such that all models exhibiting a lower cosine similarity to the local model
than τS will be filtered.

(2) Bootstrap Validation. At the second stage, the remaining models are evaluated on
the basis of their loss. To do so, each node holds a small bootstrap dataset Dbs, which
is randomly sampled from the validation dataset of the same node. The size of this
bootstrap dataset is set to a third of the validation dataset or at least 300 samples, i.e.,
|Dbs| = max(|Dval|, 300). The number of collected samples required to effectively measure
the loss has been investigated in other works and is therefore not within the scope of this
thesis [32], [46], [49]. In general, choosing the bootstrap dataset size is a trade-off between
computational overhead and performance. Therefore, the chosen size should be suitable
for the device specifications of each participating node. The computation of the bootstrap
validation loss is defined in Algorithm 3. Note that the local node also computes the
bootstrap validation loss for its own local model for a more accurate comparison.
After computing the performance of each received model, Sentinel computes the average
of the loss history up to the current aggregation round. This procedure simply takes
all previously computed loss values into account. Thus, if the bootstrap loss was not
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computed in a previous round, since the model was filtered in step (1), there will be
consequently fewer values to be averaged. Generally, the averaging serves for better
computational stability. Finally, all average loss values are then compared to the local
average bootstrap loss according to Algorithm 4, which results in an aggregation weight
wi.
Sentinel maps the average loss distance according to a damped decay function, illustrated
in Figure 4.3. The damping factor κ is defined as the inverse of the average local loss. In
theory, the local loss could be 0. Hence, a minimum average loss lmin must be defined for
numerical stability, e.g., lmin = 0.001. Consequently, the local model and any neighbor
model that presents a loss lower than the local model will receive w = 1. With this
approach, Sentinel becomes more defensive as the average local loss decreases, which is
expected during the FL process. If this does not occur and the local loss increases, i.e.,
the node is not learning, and Sentinel becomes more exploratory.

Algorithm 3 ComputeBootstrapLoss

Require: P : Model parameters, Dbs: Bootstrap dataset
1: for each (x, y) in Dbs do
2: ypred ← Predict with P on x

3: L← 1
|Dbs|

∑|Dbs|
i=1 l (y, ypred) ▷ Compute loss

4: return L

Algorithm 4 MapLossDistance

Require: Hi: Local loss history, Hl: Neighbor loss history, τL: Loss distance threshold.
1: l̄i ← ϕ(Hi), l̄j ← ϕ(Hj) ▷ Average current loss history
2: κ← max(l̄i, lmin)

−1 ▷ Damping factor
3: d̄l ← max(l̄j − l̄i, 0)
4: w ← exp (−k ∗ d̄l)
5: if w < τL then w = 0

6: return w
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Figure 4.3: An illustration of the MapLossDistance procedure for different average local
bootstrap loss values ϕ(li). The threshold τL is not displayed.

(3) Layer Normalization. Inspired by recent normalization approaches [24], [32], [52],
the last step of Sentinel is the normalization of models to defend against potential stealth
attacks that were able to pass defense layers (1) and (2). This procedure is defined in
Algorithm 5. The normalization reduces the magnitude of potentially scaled attacks,
which are commonly used to introduce backdoors. Such that Sentinel does not rely on
a threshold, the ratio of the local model norm and the neighbor model norm is used as
a scaling factor ρ. Sentinel only decreases the norm of neighbor models, hence ρ ≤ 1.
Subsequently, the normalized models are aggregated according to Algorithm 1 line 14.

Algorithm 5 NormalizeModel

Require: P : Neighbor parameters, M : local model parameters
1: L← number of layers
2: for l in |M | do
3: ρ← min(1, ∥P [l]∥

∥M [l]∥)

4: P̃ [l]← ρ ∗ P [l]

5: return P̃
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4.2.2 SentinelGlobal

As an extension of Sentinel, a global trust variant is proposed that aims at reducing
the computational complexity of the individual defense stages. This extension is specified
therein as SentinelGlobal. The fundamental idea of SentinelGlobal is to expand the model
evaluation to a cluster of trustworthy nodes. Thereby, a global network perspective on
potentially malicious actors is obtained. A single node may not be able to reliably detect
a poisoned model due to the heterogeneity of the local data. Combining the neighboring
opinions creates a collaborative decision that overcomes this limitation.

With the first step of cosine filtering and the second step of bootstrap validation, node
ni applying Sentinel either aggregates a neighbor model Pj to some extent, or excludes
the update entirely from the aggregation. This decision can be mapped to a binary
trust value X , where X = 0, if the model is excluded from aggregation (either by cosine
similarity or bootstrap validation), and X = 1 if the model is included in the aggregation.
Consequently, a local node ni evaluating parameters from node j at round r indirectly
computes a trust perspective X r

ij ∈ {0, 1}. The Xr
i is thus the set of trust perspectives

on each neighbor of node ni. Note that a node always trusts itself, i.e., Xii = 1. The
local trust scores can then be shared with the neighboring nodes to create a global trust
perspective. This concept is incorporated into SentinelGlobal, defined in Algorithm 6,
which is based on Sentinel as a baseline aggregation algorithm.

SentinelGlobal becomes active after a predefined activation round rα. The mechanisms can
only be activated by the second round earliest, since the trust scores of the previous round
are required. Every node computes its local trust scores at each round, independently of
rα, and sends this perspective to its neighbors. Once r ≤ rα holds true, the procedure
TrustedNeighborOpinion (Algorithm 7) decides whether a neighbor model Pj should be
evaluated by Sentinel or discarded ahead of time. For a target node j, this procedure
collects the trusted neighbors of the node ni, i.e., X r

ik = 1, k ∈ N and averages all trusted
opinions on the target node nj. The average trusted neighbor opinion Φ̃j is then compared
to the trust threshold τχ.

Figure 4.4 illustrates an example, where five nodes represent a fully connected network.
At the current round r + 1, node n1 evaluates the global trust of n2. From the local
trust of the previous round X r

1 , the trusted neighbors are n3 and n4. The average trusted
neighbor opinion is then computed as follows: Φ̃j ← ϕ(X r

12,X r
32,X r

42) = ϕ(0, 1, 0) = 1
3
.
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Algorithm 6 SentinelGlobal Aggregation Algorithm

Require: P : Neighbor parameters, Dbs: Bootstrap dataset, H: Loss history, τS : Similarity
threshold, τχ: Global trust threshold. rα: Activation round τL: Loss distance threshold.

1: r ← current round
2: M ← local model
3: w ← 0
4: for j in N , j ̸= i, r ≥ rα do ▷ (0) Trust evaluation
5: Φ̃j ← TrustedNeighbourOpinion(X , j)
6: if Φ̃j < τχ then Remove Pj

7: for j in P , j ̸= i do ▷ (1) Cosine filtering
8: Sj ← CosineSimilarity(Pj ,M)
9: if Sj < τS then Remove Pj from P

10: Hi[r]← ComputeBootstrapLoss(M,Dbs) ▷ (2) Bootstrap validation
11: for j in P , j ̸= i do
12: lj ← ComputeBootstrapLoss(Pi, Dbs)
13: Hj [r]← lj ▷ Update loss history
14: wj ←MapLossDistance(Hi, Hj , τL)

15: for j in P , j ̸= i do ▷ (3) Normalization
16: P̃j ← NormaliseModel(Pi, Pj)

17: θ ← 1∑
j∈N wj

(∑
j∈N wjP̃j

)
▷ Aggregate

18: X r
i ← P ▷ Update local trust

19: Send X r to neighbors
20: X r

j ← Receive neighbor trust from Sj

21: return θ

Algorithm 7 TrustedNeighborOpinion

Require: X: Trust, j: Target index
1: Φ← 0
2: nt ← 0
3: for k in N do
4: if X r−1

ik = 1 then ▷ Trusted neighbors
5: Φ← Φ+ X r−1

kj ▷ Add Neighbor Opinion
6: nt = nt + 1

7: Φ̃← Φ/nt

8: return Φ̃
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Figure 4.4: An example of the TrustedNeighborOpinion for node n1 (blue) and target node n2

(red). Only required X shown due to spacing. Node n1 trusts n3 and n4 (green), thus considers
their trust opinion on n2.



Chapter 5

Implementation

Fedstellar [55] was chosen as the underlying platform to run DFL scenarios. Fedstellar,
implemented in Python, is designed to configure and run FL scenarios with a wide range
of customization options. It is available open source on GitHub1. The platform allows
the user to execute the FL process in a decentralized, semi-decentralized, and centralized
manner. It deploys the desired scenario to each specified client and manages the network of
participants in terms of node connectivity. The user can choose to run the FL scenario on
selected physical devices or in a containerized simulation on Docker2. It is fully extensible,
such that the user can implement custom models, load new datasets, and define the
preferred aggregation algorithms. Furthermore, Fedstellar is ML framework-agnostic. In
the context of this work, PyTorch Lightning3 was used to perform deep learning. In
the following, the required adaptions to Fedstellar for this thesis and the implementation
details of Sentinel and SentinelGlobal are discussed.

5.1 Adaptions to Fedstellar

Fedstellar defines three types of roles each node can take up: aggregators, which train and
aggregate models; trainers, which only train and distribute models, but do not aggregate;
and proxies, which simply act as a network hop for model distribution. For simplicity,
this work only considers aggregators. Additionally, Fedstellar executes the FL process in
asynchronous mode (at the time of this thesis). That is, each node is allowed to update its
local model independently and asynchronously, without waiting for other nodes to finish
their updates. There are certain advantages over a synchronous FL process, such as ro-
bustness to node failures. However, due to this asynchronous constellation, a node is not
guaranteed to aggregate a specified number of models at each round, which yields some
non-determinism in the FL process. To make experiments more reproducible, an adapted,
synchronous version has been implemented. This fork of Fedstellar, further referred to as

1https://github.com/enriquetomasmb/fedstellar
2https://www.docker.com/
3https://www.pytorchlightning.ai

35
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Fedstellar-Sync, is also available on GitHub4.
In the following, the changes required to arrive at Fedstellar-Sync are discussed. Before-
hand, the original core procedure of Fedstellar executed by each node is clarified on a
high level. The corresponding definition can be retrieved from Algorithm 8. At the start
of the FL scenario, the controller5 preliminary defines a starter node. Each node is in-
dividually responsible to define or acquire the local training, validation and test dataset.
This selected starter node then commands all nodes to start learning, including itself.
Each node owns an aggregator instance, which is responsible for collecting models and
performing the aggregation. While a node is training, it can receive other models and
add them to its aggregator. Once the training finishes, the node’s aggregator performs a
partial aggregation of all models received up to this point. A gossiping algorithm then
distributes this partial aggregation repeatedly. Details about the gossiping algorithm can
be retrieved from the code of Fedstellar6. On the other hand, if a node takes too long to
train and the aggregator reaches a timeout, the node stops its local training and continues
the partial aggregation without its own model. Subsequently, the node proceeds with the
next round, independently of the state of other nodes. After completing R rounds, the
node tests its final model on the local test dataset and completes its FL process.

For the synchronous version of Fedstellar, a number of adaptions have been implemented.
An abstract definition is outlined in Algorithm 9. First, before any node starts its ini-
tial round, the connection to all neighbors is ensured. This change is implemented in
node_start.py7. Additionally, the node connection timeout in node_connection.py8 has
been removed. Secondly, once the local training is finished, only the local model is broad-
casted to the corresponding neighbors. The gossiping and partial aggregation have been
removed. Instead of an aggregation timeout, the aggregator of each node waits until
it has received the local model and a model from every neighbor. Consequently, this
adjustment ensures that all nodes terminate their local training round, followed by a
complete aggregation. The technical specifications are available in the abstract aggrega-
tor class aggregator.Aggregator9. As a final adaption, a synchronization barrier ensures
that all nodes complete the current round before proceeding to the next. This is for-
mally defined in Algorithm 9 line 15 onwards. Details can be retrieved from the code in
node.Node.__on_round_finished10. With these changes in place, every node is ensured to
aggregate each neighbor model and synchronize the round progression. Correspondingly,
if a one or more nodes fail, the FL scenario is terminated holistically.

4https://github.com/janousy/fedstellar-sync
5The controller represents the administrative instance of Fedstellar and orchestrates the scenario setup.
6fedstellar/gossiper.py
7fedstellar/node start.py
8fedstellar/node connection.py
9fedstellar/learning/aggregators/aggregator.py

10fedstellar/node.py
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Algorithm 8 Federated participant cycle in Fedstellar, adapted from [55]

Require: R: local round, α: learning rate, λ: regularization parameter, Sj : socket to neighbor
j, D: local dataset

1: DTrain, DTrain ← split(D)
2: for r in R do
3: Initialize Local Model with Parameters θ
4: for each (x, y) in DTrain do
5: θ ← θ − α(∇Jθ, x, y) + λθ ▷ Train

6: while not agg timeout do


in parallel

7: for j in N do
8: Pj ← add model parameters from j via Sj ▷ Receive

9: θ ← GossipModelAggregation(P ) ▷ Aggregate
10: Update Local Model with θ

11: for each (x, y) in DTest do
12: ypred ← Predict with Local Model on x ▷ Test

13: L← 1
|DTest|

∑|DTest|
i=1 l (y, ypred) ▷ Compute Loss

14: procedure GossipModelAggregation(P )
15: Pagg = Aggregator.getPartialAggregation(Pcurr)
16: for j in N do
17: Send Pagg ← Sj ▷ Send

Algorithm 9 Synchronous participant cycle in Fedstellar

Require: R: local round, α: learning rate, λ: regularization parameter, Sj : socket to neighbor
j, D: local dataset

1: DTrain, DTrain ← split(D)
2: for j in N do ▷ Connect
3: connect Sj

4: for r in R do
5: Initialize Local Model with Parameters θ
6: for each (x, y) in DTrain do
7: θ ← θ − α(∇Jθ, x, y) + λθ ▷ Train

8: Broadcast Pi after training
9: while not all models received do


in parallel

10: for j in N do
11: Pj ← add model parameters from j via Sj ▷ Receive

12: θ ← Aggregator.aggregate(P ) ▷ Aggregate
13: Update Local Model with θ
14: for j in N do
15: Send model ready

16: while not all model ready do
17: wait() ▷ Sync Barrier

18: for each (x, y) in DTest do
19: ypred ← Predict with Local Model on x ▷ Test

20: L← 1
|DTest|

∑|DTest|
i=1 l (y, ypred) ▷ Compute Loss
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5.2 Aggregation

Fedstellar follows a composite design, where each node initializes a predefined type of
aggregator at the setup of the FL scenario. An aggregator represents an abstract class
that manages the aggregation of models, as concisely defined in Listing 1. More technical
details can be retrieved from aggregator.py11. By default, this parent class implements ev-
ery member function, except aggregate(). Consequently, specific aggregation algorithms
extend this class and are required to implement the aggregate() function.

Generally, the aggregator is a thread that is started by adding the first model at each
round. Thereby, the aggregation will be executed in the background as soon as all models
are added. Moreover, this thread represents an observable. Hence, the node registers as
an observer to become notified once the aggregation has completed. The add_model()

function in Fedstellar-Sync was extended to accept a general ModelMetrics object instead
of just the number of samples. This dictionary can compromise custom metrics such as
cosine similarity, bootstrap validation loss or trust scores. The function check_and_run_ ⌋

aggregation is called as soon as the last model is added to the aggregator, which then
ensures that all models are available, and finally executes the aggregation.

Listing 1 Aggregator Parent Class

1 class Aggregator(threading.Thread, Observable):

2 def run(self):

3 # Wait for the aggregation. Then, notify node.

4 def aggregate(self, models):

5 # Aggregate the models with custom algorithm.

6 def add_model(self, model: OrderedDict, nodes: List[str], metrics: ModelMetrics):

7 # Add a model. The first model to be added starts the `run` method.

8 def get_local_model(self):

9 # Retrieve the local model from the aggregator.

10 def get_full_aggregation(self):

11 # Aggregate all current models.

12 def check_and_run_aggregation(self):

13 # Check if all models have been added and start aggregation if so.

14 def clear(self):

15 # Clear all for a new aggregation.

11fedstellar/learning/aggregators/aggregator.py
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5.2.1 Sentinel

The definition of Sentinel given in Algorithm 1 was implemented for Fedstellar in Python.
Listing 2 clarifies how the aggregation function of the parent class was overwritten. The
individual functions used in the aggregation (filter_models_by_cosine(), get_mapped_ ⌋

avg_loss(), normalise_layers()) were implemented according to Algorithms 1, 4 and 5,
respectively. The procedure evaluate_model() computes the cosine similarity and boot-
strap validation loss (for sufficiently high Sc). Further technical specifications can be
retrieved from the file sentinel.py12. Note that in the specific case of Fedstellar, Sentinel
does not aggregate in round 0, as this round is a diffusion round to synchronize the model
initialization on each node. Instead, Sentinel returns the local model at round 0. Tech-
nically, it would be possible to evaluate a model within add_model() while a node is still
training. However, this would result in a loss of generality and impact the comparability
to other algorithms.

5.2.2 SentinelGlobal

The global trust extension to Sentinel was implemented according to Algorithm 6. An
extract of relevant functions is available in Listing 3. The trust scores are represented as
dictionaries, with a key value pair for every node. When a model is added to Sentinel-
Global via add_model(), the trust perspective of the corresponding neighbor is extracted
and added to the local dictionary, which keeps track of all neighbor opinions for each
round. The aggregate procedure is implemented similar to Sentinel, but adds an addi-
tional step 0 for the trust evaluation. Therefore, the function evaluate_model_trusted

computes the trusted neighbor opinion as defined in Algorithm 7. If the neighbor is not
trusted, the model metrics are set accordingly, such that the model becomes excluded
in step 1 of similarity filtering. Otherwise, the model is evaluated. Finally, the current
local trust scores, resulting from the cosine filtering and loss distance mapping, are added
to the node’s trust records for the next round. Further details are available in the file
sentinelglobal.py13.

12fedstellar/learning/aggregators/sentinel.py
13fedstellar/learning/aggregators/sentinelglobal.py
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Listing 2 Sentinel (logging removed)

1 class Sentinel(Aggregator):

2 # [...]

3

4 def aggregate(self, models):

5 # Compute metrics

6 local_model = models.get(self.node_name)

7 for node_key in models.keys():

8 model = models[node_key][0]

9 metrics: ModelMetrics = models[node_key][1]

10 metrics_eval = self.evaluate_model(model, node_key, metrics)

11 models[node_key] = (model, metrics_eval)

12

13 # Step 1: Evaluate cosine similarity

14 filtered_models = filter_models_by_cosine(models, self.similarity_threshold)

15 if len(filtered_models) == 0:

16 return models.get(self.node_name)[0]

17

18 # Step 2: Evaluate bootstrap validation loss

19 loss = {}; mapped_loss = {}; cos = {}

20 for node_key, msg in filtered_models.items():

21 params = msg[0]

22 metrics: ModelMetrics = msg[1]

23 loss[node_key] = metrics.validation_loss

24 mapped_loss[node_key] = self.get_mapped_avg_loss(node_key,

metrics.validation_loss)↪→

25 cos[node_key] = metrics.cosine_similarity

26

27 # Step 3: Normalise the remaining (filtered) untrusted models

28 normalised_models = {}

29 for key, msg in filtered_models.items():

30 model_params = msg[0]

31 metrics = msg[1]

32 if key == self.node_name:

33 normalised_models[key] = (local_params, metrics)

34 else:

35 normalized_params = normalise_layers(model_params, local_params)

36 normalised_models[key] = (normalized_params, metrics)

37

38 # Aggregate

39 accum = (list(normalised_models.values())[-1][0]).copy()

40 for layer in accum:

41 accum[layer] = torch.zeros_like(accum[layer])

42 for node, message in normalised_models.items():

43 model = message[0]

44 weight = mapped_loss[node] / sum(mapped_loss.values())

45 for layer in model:

46 accum[layer] = accum[layer] + model[layer] * weight

47 return accum

48
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Listing 3 SentinelGlobal Implementation (logging removed)

1 class SentinelGlobal(Aggregator):

2 # [...]

3

4 def aggregate(self, models):

5 # Step 0: Compute trust, metrics if trusted

6 for node_key in models.keys():

7 model = models[node_key][0]

8 metrics: ModelMetrics = models[node_key][1]

9 # the own local model also requires eval to get loss distance

10 metrics_eval = self.evaluated_model_trusted(model, node_key, metrics)

11 models[node_key] = (model, metrics_eval)

12

13 # [...] Sentinel.aggregate

14

15 # Store local trust scores

16 for node_key in models.keys():

17 if node_key in malicious and node_key != self.node_name:

18 self.global_trust[self.agg_round][self.node_name][node_key] = 0

19 else:

20 self.global_trust[self.agg_round][self.node_name][node_key] = 1

21 return accum

22

23 def evaluate_model_trusted(self, model: OrderedDict, node: str, metrics:

ModelMetrics):↪→

24 # Evaluate if not yet active

25 if self.agg_round < self.active_round:

26 metrics = self.evaluate_model(model, node, metrics)

27 super().add_model(model=model, nodes=[node], metrics=metrics)

28 return

29

30 # Step 0: Check whether the model should be evaluated based on global trust

31 avg_global_trust = self.get_trusted_neighbour_opinion(node)

32 if avg_global_trust < TRUST_THRESHOLD and node != self.node_name:

33 metrics.cosine_similarity = 0 # model will be removed by similarity

filtering↪→

34 metrics.validation_loss = float('inf')
35 else:

36 metrics = self.evaluate_model(model, node, metrics)

37

38 super().add_model(model=model, nodes=[node], metrics=metrics)

39 return metrics

40

41 def add_model(self, model: OrderedDict, nodes: List[str], metrics: ModelMetrics):

42 for node in nodes:

43 self.neighbor_keys.add(node)

44 # Add the received trust metrics to the local trust record

45 self.add_neighbour_trust(metrics.global_trust)

46 super().add_model(model=model, nodes=nodes, metrics=metrics)

47
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Chapter 6

Evaluation

Hereinafter, an evaluation of the two defense mechanisms Sentinel and SentinelGlobal will
be provided, in comparison to other state-of-the-art aggregation algorithms on various
datasets. This chapter will first outline the experimental setup, then present the results
of the experiments, and conclude with a discussion of the observations.

6.1 Experiment Setup

The following sections will specify the datasets, their corresponding model and a selection
of reference algorithms that were used to evaluate Sentinel and SentinelGlobal. Further-
more, the threat model and the configuration of Fedstellar-Sync will be discussed.

6.1.1 Datasets and Models

For this work, three datasets and a corresponding deep learning model were chosen to
evaluate the aggregation algorithms implemented for Fedstellar-Sync. The distribution of
the following datasets is considered IID:

• MNIST [56] is a popular baseline benchmark for neural networks. It consists of
handwritten digits represented by grayscale level pixels of size 28×28. It compro-
mises 60 000 training samples and 10 000 test samples. The labels are represented
by 10 classes, which correspond to the digits from 0 to 9.
The chosen model1 to learn the MNIST dataset is a multilayer perceptron (MLP)
with a linear input layer of size 28 ∗ 28× 256, a linear hidden layer of size 256× 128
and a linear output layer of size 128× 10. The input layer and the hidden layer use
a ReLU activation function, the output layer applies softmax to produce the final

1fedstellar/learning/pytorch/emnist/models/mlp.py

43
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logits. The optimizer and the learning rate are set to Adam2 and 1e−3, respec-
tively. As a loss function, the cross-entropy loss is applied. This MLP is trained for
3 epochs per federated round.

• FashionMNIST (FMNIST) [57] was created as a drop-in replacement for MNIST to
increase the difficulty of the learning task. Similarly, it consists of 60 000 training
samples and 10 000 test samples, which are 28×28 grayscale images. Instead of
digits, the 10 labels represent clothing articles such as“trouser”, “pullover”or“dress”.
For the FMNIST dataset, the same MLP as for MNIST is used. Again, the model
is trained for 3 epochs per round.

• CIFAR10 [58] is a widely used dataset in computer vision as a benchmark for ob-
ject recognition. It consists of 10 classes corresponding to well-defined objects such
as “airplane”, “automobile”, or “bird”. The samples are represented as 32×32 color
images. In total, there are 50 000 training and 10 000 test images.
To train an object recognition model on the CIFAR10 dataset, a small convolu-
tional neural network (CNN) designed for mobile applications is used [59]. The
model architecture3 is briefly summarized as follows: the initial input layer of the
model consists of a standard convolutional layer with 3 input channels, 32 output
channels, a kernel size of 3, a stride of 1, and padding of 1. This is followed by
batch normalization and ReLU activation. Subsequently, the input layer is fed into
5 depthwise separable convolutional layers with different input and output channel
sizes and strides. These layers help in reducing the computational cost of the model
while preserving expressive power. Finally, global pooling in the form of an adaptive
average pooling layer is applied to reduce the spatial dimensions of the output fea-
ture map to a size of 1×1. This is followed by a fully connected layer that maps the
output of the previous layer to the required number of output classes. The optimizer
and the learning rate are set to Adam and 1e−3, respectively. This convolutional
network is trained for 5 epochs per round.

6.1.2 Selected Reference Algorithms

Such that the defense techniques in this work can be evaluated, three state-of-the-art de-
fense techniques are chosen as a reference for effectiveness: Krum, TrimmedMean, FlTrust.
These aggregation algorithms are selected based on their performance against various poi-
soning attacks and their transferability to DFL. Additionally, FedAvg serves as a baseline
for the FL process under benign assumptions. In the following, the approach and the con-
figuration of all aggregators investigated are briefly described.

• FedAvg (Section 2.1.1) averages all parameters layer-wise, weighted by the number
of samples used to train the respective model.

• TrimmedMean (Section 3.1) computes the aggregated model with a coordinate-wise
mean, but removes the largest and smallest β of them, and computes the mean of

2https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
3fedstellar/learning/pytorch/cifar10/models/simplemobilenet.py
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the remaining m− 2β parameters for each layer. For the experiments of this work,
TrimmedMean is configured with a trimming parameter of β = 1.

• Krum (Section 3.1) selects one of the m local models that is most similar to all other
models as the next local model based on Euclidean distance. Krum does not accept
any configuration parameters.

• FlTrust (Section 3.3) represents an adapted version for DFL. Instead of using a
root dataset to train a reference model, all received neighbor models are compared
to the locally trained model in terms of the layerwise, ReLu-clipped cosine similarity,
which serves as a trust score. Every model is normalized using the norm of the local
model, and then aggregated based on the respective trust score.

• Sentinel (Section 4.2) aggregates according to Algorithm 1. For the experiments in
this work, Sentinel is configured with τcos = 0.5 and τloss = 0.5.

• SentinelGlobal (Section 4.2) aggregates according to Algorithm 6. SentinelGlobal
is configured with τcos = 0.5 and τloss = 0.5, and additionally τχ = 0.5. Thereby,
the majority of trusted nodes need to agree on an evaluation of a target node.
SentinelGlobal becomes active after rα = 3 for all three datasets: MNIST, FMNIST
and CIFAR10.

6.1.3 Threat Model

As poisoning attacks in FL are the focus of this work, all aggregators mentioned in Section
6.1.2 were tested against various poisoning attacks and different configurations. The fol-
lowing attacks have been selected for evaluation: targeted and untargeted label flipping,
artificial backdoor attack (targeted sample poisoning) and untargeted model poisoning.
Technical details can be retrieved from Section 4.1. The targeted label flipping attack
always tries to provoke a misclassification from samples with label l3 to label l7, indepen-
dent of the dataset. For MNIST, this targets the digit 4 to be misclassified as an 8. For
FMNIST, this involves the images illustrating a “dress” to be classified as a “bag”. And
finally, for CIFAR10, label l3 is represented by “cat” and l7 represents “horse”. Similarly,
the backdoor is configured to the target label l3 for all datasets.

As of the parameters, the PNR was set to 10, 50, and 80%, i.e., a low, medium, highly
poisoning environment. Similar to the PNR, the attackers executed a light, medium, and
strong attack with a PSR of 30, 50, and 100% where applicable. For the model poisoning,
a salt NR of 80% was chosen. Lower salt NR are not effective enough to degrade the
model performance, even for FedAvg. The attack parameters are summarized in Table
6.1. Per aggregator, this resulted in 3 experiments for model poisoning and 9 experiments
for each other attack. Per dataset, 60 experiments have been conducted, and thus 180
experiments in total for all datasets.
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Table 6.1: Configuration overview for each of the selected attacks. Cells marked with ”-” specify
that the parameter is not applicable to the corresponding attack.

Attack Type Parameter Metric

PNR [%] PSR [%] NR [%]

Model Poisoning (10, 50, 80) - 80 F1-Score

Untargeted Label Flipping (10, 50, 80) (30, 50, 100) - F1-Score

Targeted Label Flipping (10, 50, 80) (30, 50, 100) - ASRlf

Backdoor (10, 50, 80) (30, 50, 100) - BA

6.1.4 Fedstellar Configuration

In the following paragraphs, the internal configuration of Fedstellar is described. Although
the adapted version Fedstellar-Sync was used for all experiments, the configurations listed
hereinafter are also applicable to the base version. Hence, this section does not further
distinguish between these two versions.

For the network constellation, a total number of nodes |N| = 10 was used. The network
has been configured to be fully connected, i.e., each node was assigned to 9 neighbors, as
illustrated in Figure 6.1. The set of neighbors remained constant, i.e., node connections
were kept established. The position of malicious nodes was assigned randomly. Note that
with a maximum PNR of 80%, defined in Section 6.1.3, and 10 nodes, there are always
at least 2 benign participants. Each participating node took up the role of an aggregator,
i.e., there were no proxy nodes. Note that an aggregator in DFL also trains its own model.

As for the aggregation algorithm in place, all nodes applied the same aggregation tech-
nique, whether malicious or benign. Furthermore, the data was split equally among all
nodes with an IID distribution. In the case of MNIST and FMNIST, each node conse-
quently received 6 000 training samples and 1 000 test samples. For CIFAR10, there were
5 000 training samples and 1 000 test samples locally available at each node. The splitting
factor to obtain a validation dataset from the training samples was set to 10% for all
experiments.

The duration of the FL process has been configured to 10 rounds for all experiments.
It is worth mentioning that Fedstellar executes a model diffusion in round 0, such that
there are actually 11 rounds in total, but the local training occurs only for the remaining
10 rounds. This number of rounds is not necessarily required to achieve an acceptable
model performance, but it gives the attackers enough time to poison the models of benign
participants. The network arguments of Fedstellar were set to be efficient, i.e., the rate
was configured to 1 Mbps, the loss to 0% and the delay to 0 ms. Thus, the results of the
experiments were not influenced by inconsistent network behavior. A full list of Fedstellar
specific configuration parameters can be retrieved from Appendix B.1.
All experiments were simulated using the Docker functionality of Fedstellar. In terms of
hardware, two different single machine environments were used as an experiment platform.
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A CPU environment was used for MNIST and FMNIST, and a GPU environment for
CIFAR10:

• CPU environment: AMD EPYC 7502P 32-Core Processor @ 2.50GHz, 48 Sockets,
3-level cache hierarchy and AVX2 support, 100 GB RAM, OS: Ubuntu.

• GPU environment: (2) NVIDIA GeForce RTX 3080, Intel(R) Core(TM) i7-10700F
CPU @ 2.90GHz, 16 Sockets, 3-level cache hierarchy and AVX2 support, 100 GB
RAM, OS: Ubuntu.

n0
n1

n2

n3

n4
n5

n6

n7

n8

n9

Figure 6.1: The Fedstellar network constellation used for all experiments, 10 nodes in a fully
connected network.

6.2 Results

In the following, the evaluation of the performance of Sentinel and SentinelGlobal in
comparison to other protocols is reported. First, a baseline performance reference under
benign settings is established. Subsequently, each attack is discussed individually for all
datasets. If not otherwise stated, the metrics were evaluated on the test dataset of each
local node. Where applicable, the Standard Error Mean (SEM) is reported. A collection
of the raw result data is available in the GitHub repository of Fedstellar-Sync4.

6.2.1 Baseline Performance

The baseline performance serves as a reference for subsequent experiments in a malicious
environment, such that the effectiveness of a defense mechanism can be evaluated. Addi-
tionally, it is important to measure the baseline performance of an aggregation algorithm
to prevent any interference with the FL process under normal circumstances.

4evaluation/results
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Table 6.2 gives an overview of the behavior of the selected aggregation algorithms in a
benign environment, i.e., there are no poisoning participants. The metrics were calculated
using the average metric of all participants after completing the final round 10. For the F1-
Score, SentinelGlobal performed the best for MNIST, whereas FedAvg reached the highest
F1-score for FMNIST and CIFAR10. For all datasets, the SEM F1-score lied between
0.036 and 0.093. Therefore, there was a negligible variability in terms of performance
between participants. This can be explained by the stochastic nature of machine learning
in general.

In particular, the average SEM F1-score positively correlated with the average F1-score.
On MNIST, where the highest F1-scores were reached, the SEM was almost twice as
high as the SEM for CIFAR10, where the lowest F1-scores were reached. This also holds
true for the average loss values. In particular, Krum performed overall the worst in the
benign environment. For all datasets, the aggregator reached the lowest F1-score and the
highest loss. The performance drop increased with task complexity, i.e., for CIFAR10,
Krum exhibited a F1-score difference of approximately 0.1 compared to FedAvg. This is
likely due to the single model selection approach of Krum, whereby no model knowledge
can be combined. In contrast, Sentinel and SentinelGlobal performed almost on par with
FedAvg.

Figure 6.2 visualizes the FL process for the complete process. For MNIST and FMNIST,
almost all nodes reached the final F1-score after round 1. For CIFAR10, the increased
complexity of the learning task becomes noticeable. The F1-score continuously increased
with each round. On the same dataset, Krum appeared to converge faster, but becomes
outpaced after round 2 and its performance levels off. With these results presented as
the baseline performance, the task difficulty is further referred to as the maximum F1-
score a participant can achieve with the given model architecture on a specific dataset,
regardless of the aggregation algorithm in place. Therefore, the relative task difficulty
for the chosen datasets can be put in the following increasing order: MNIST, FMNIST,
CIFAR10. Furthermore, the performance reduction from the baseline is calculated by the
difference between the results under any attack and the baseline performance of FedAvg.
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(c) FMNIST F1-Score
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(e) CIFAR10 F1-Score
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Figure 6.2: Baseline performance for MNIST, FMNIST and CIFAR10 for 10 rounds, with the
F1-score on the y-axis and the round progression on the x-axis.



50 CHAPTER 6. EVALUATION

Table 6.2: Baseline F1-score performance for MNIST, FMNIST and CIFAR10 after 10 rounds
in terms of mean and SEM on the local test dataset.

(a) Mean F1-score after round 10.

(b) Mean Loss after round 10.
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6.2.2 Model Poisoning

In the untargeted model poisoning attack, malicious actors train a local model on unmod-
ified training data. But before the model is sent to their neighbors at each round, the
weights are randomly altered with salt noise. The NR remained fixed at 80% for all config-
urations. Instead, the PNR was varied with the ratios 10%, 50% and 80% for all datasets.
Table 6.3 summarizes the performance in terms of the F1-score for the three datasets and
each PNR configuration after round 10. Sentinel and SentinelGlobal performed the best,
with a maximum F1-score reduction of 0.04 from the baseline performance with FedAvg,
observed on CIFAR10 and a PNR of 80%. Figure 6.3 illustrates the defense effectiveness
of all aggregators for the three datasets. Sentinel and SentinelGlobal were unaffected by
the model poisoning attack for all PNR, when compared to the other aggregators. Both
FedAvg and TrimmedMean, with an F1-score lower than 0.02, were unable to learn from
the dataset under a model poisoning attack with any PNR. For a PNR of 10%, only Sen-
tinel, SentinelGlobal, FlTrust and Krum were able to defend against model poisoning on
MNIST and FMNIST. On CIFAR10, FlTrust cannot reach any acceptable F1-score for
any PNR. Krum generally performs slightly worse than Sentinel and SentinelGlobal, but
could not defend against a model poisoning attack when more than the majority of nodes
are malicious, on all three datasets. To conclude, other investigated aggregators can be
severely affected by model poisoning, while Sentinel and SentinelGlobal remain robust for
any number of attackers involved in the FL process.
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Table 6.3: F1-score performance in terms of mean and SEM under targeted model poisoning for
MNIST, FMNIST and CIFAR10 after 10 rounds for all PNR configurations.

(a) MNIST F1-Score

(b) FMNIST F1-Score

(c) CIFAR10 F1-Score
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Figure 6.3: Performance under model poisoning for MNIST, FMNIST, CIFAR10 after 10 rounds,
with the F1-score on the y-axis and an increasing PNR on the x-axis.
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6.2.3 Untargeted Label Flipping

With this attack, the adversaries modify the local training data by randomly altering
the labels of their data samples. Thereby, malicious actors learn a different task than
benign ones. The aim is to degrade the performance of the model from benign actors, i.e.,
provoking random mispredictions. As declared in Table 6.1, the PNR was varied with a
value of 10%, 50% and 80%, combined with selected PSR values of 30%, 50% and 100%.
Table 6.4 and 6.4 summarize the result of the effectiveness of untargeted label flipping.
With the lowest PSR of 30%, most aggregators were not affected by the label flipping of
adversaries, for any PNR. Only the performance of FlTrust severely declined with a high
number of attackers (PNR = 80%): in case of the FMNIST dataset, the F1-score dropped
by over 50% compared to the baseline performance. Similar results can be observed
for a PSR of 50%. Surprisingly, FlTrust was not affected in the CIFAR10 experiments.
Instead, benign nodes applying the Krum aggregation performed the lowest for all PSR
configurations, followed by FedAvg. With the highest PSR of 100%, the effectiveness
of untargeted label flipping becomes apparent: while all aggregators remained robust
for a low PNR of 10%, none of the selected reference algorithms were able to defend
the attack for a PNR of 80%. Only Sentinel and SentinelGlobal could maintain their
baseline performance for any attack configuration. The maximum performance drop for
the aggregators proposed in this work was observed for Sentinel on CIFAR10 and the
configuration PSR = 100%, PNR = 80%, with a F1-score reduction of approximately
8.4%.



6.2. RESULTS 55

Table 6.4: F1-score performance in terms of mean and SEM under untargeted label flipping for
MNIST, FMNIST and CIFAR10 after 10 rounds for all PNR & PSR configurations.

(a) MNIST

(b) FMNIST

(c) CIFAR10
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(a) MNIST
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(b) FMNIST
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Figure 6.4: Performance under untargeted label flipping for MNIST, FMNIST, CIFAR10 and
different PSR configurations after 10 rounds, with the F1-score on the y-axis and increasing
PNR on the x-axis.
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6.2.4 Targeted Label Flipping

The targeted objective of label flipping does not aim at degrading the model performance
of benign participants, Instead, the attack aims at provoking a misclassification of a se-
lected source label lscr to a target label lt. The success of this poisoning attack is measured
by the amount of test data samples labeled with the source label classified as the target
label by the final models of benign participants. This ratio is represented by the ASRLF ,
as defined in Section 4.1. The results of the experiments with this attack are reported
in Table 6.5 and Figure 6.5. At first glance, none of the investigated aggregators were
affected by targeted label flipping with the lowest PNR of 10%. Hence, a single malicious
actor was not able to effectively attack the benign nodes of the FL scenario. Additionally,
the attack effectiveness appears to decrease with increasing task difficulty: on MNIST,
the highest ASRLF achieved is 0.969 for Krum. In contrast, the malicious participants
only reached a maximum ASRLF of 0.486 when attacking benign nodes applying Krum.

From the given results, it can also be observed that the PSR does not have a crucial
impact on the ASRLF for FlTrust and TrimmedMean. Furthermore, benign participants
performing an aggregation with Krum were only able to defend a maximum amount
of 50% of malicious actors on MNIST. On FMNIST and CIFAR10, Krum performed
remarkably worse than the other aggregation algorithm. On the other hand, Sentinel
and SentinelGlobal effectively defended against the label flipping attack: for all PNR
and PSR configurations on MNIST, the ASRLF remained below 0.02. For FMNIST, the
attackers were not able to introduce any misclassification to the target label, i.e., the
ASRLF remained 0 for all experiments.

Only in experiments on the CIFAR10 dataset, a small attack effectiveness was observed
with a maximum ASRLF of 0.078 for Sentinel with a configuration of PNR= 80% and
PSR= 100%. Furthermore, SentinelGlobal appeared to perform better than Sentinel on
CIFAR10, with an ASRLF reduction of 80% and 100% for a PSR= 50% and a PSR=100%,
respectively. This can be explained by the exclusion of untrusted nodes after round rα
by SentinelGlobal and thereby preventing an aggregation of malicious, but highly similar,
poisoned models.

Figure 6.6 visualizes these results in the form of the confusion matrix computed on the
local test dataset of FMNIST for each node representing the participant n0. For the
reference algorithms in the Figures 6.6a to 6.6d, it is observable that almost all data
samples with source label lsrc=3 “Dress” were incorrectly predicted as the target label lt=7

“Shirt”. Some samples were classified with a label other than the target label or the source
label, but none of them were correctly classified. In contrast, a success of the targeted
label flipping attack was not observed for Sentinel and SentinelGlobal, where none of the
test samples having label lscr=3 were classified as the target label lt=7. The confusion
matrices for MNIST and CIFAR10 illustrate the same idea and are thus not reported in
this section.
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Table 6.5: ASRLF performance in terms of mean and SEM under targeted label flipping for
MNIST, FMNIST and CIFAR10 after 10 rounds for all PNR & PSR configurations.

(a) MNIST

(b) FMNIST

(c) CIFAR10
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(b) FMNIST

10 20 30 40 50 60 70 80
PNR

0.0

0.2

0.4

0.6

0.8

1.0

AS
R-

LF

PSR: 30

10 20 30 40 50 60 70 80
PNR

PSR: 50

10 20 30 40 50 60 70 80
PNR

PSR: 100

FedAvg
FlTrust

Krum
Sentinel

SentinelGlobal
TrimmedMean

(c) CIFAR10

Figure 6.5: Performance under targeted label flipping for MNIST, FMNIST, CIFAR10 and
different PSR configurations after 10 rounds, with the ASRLF on the y-axis and increasing PNR
on the x-axis.
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(a) FedAvg (b) Krum

(c) FlTrust (d) TrimmedMean

(e) Sentinel (f) SentinelGlobal

Figure 6.6: The confusion matrix at round 10 of participant n0 for each aggregator, computed
on the test dataset under targeted label flipping on FMNIST. The values represent the absolute
number of samples with their true and predicted label. PNR = 80%, PSR = 100%.
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6.2.5 Backdoor

For the last attack in this section, the effectiveness of targeted sample poisoning, i.e., the
backdoor attack defined in 4.1, will be discussed. In this attack, malicious participants
try to provoke a misclassification to a predefined target label lt by using an artificial
trigger. In this work, this trigger is represented by the form of an “X” on any image of the
three selected datasets. Table 6.6 and Figure 6.7 put the results of the experiments with
different aggregators and attack configurations into perspective. To measure the success
of the adversarial participants in each FL scenario, the BA is computed on a copy of the
test dataset, where each sample is marked with the selected trigger. The higher the BA,
the more successful the attack.

A single attacker could not successfully incorporate the backdoor into the model of benign
participants for all experiments. With a PNR of 10% and a PSR of 30%, the highest BA
of 0.124 is reported for FlTrust on MNIST. However, all algorithms performed almost
equally well in low adversarial environments. In regard to MNIST & FMNIST and a
sufficient number of attackers (PNR > 10%), it becomes apparent that the lowest PSR of
30% already fully poisoned the models of benign participants, when any of the reference
aggregators was used. In contrast, Sentinel and SentinelGlobal achieved the lowest BA
overall for any PNR > 10%. Without considering CIFAR10, the highest BA achieved
on the aggregators proposed in this work was observed for Sentinel on FMNIST and the
configuration PSR = 50%, PNR = 80%, with a value of 0.151. SentinelGlobal indicated
an improved performance over Sentinel for all experiments with PSR ≥ 30%, similar to
the observations in targeted label flipping in Section 6.2.4.

Figure 6.8 illustrates the performance difference between the proposed aggregation mecha-
nisms and the reference aggregators: Figures 6.8a to 6.8d visualize the backdoor confusion
matrix for each experiment on FMNIST with a fixed configuration of PSR = 100%, PNR
= 80%. In this case, the backdoor confusion matrix is computed on the triggered test
dataset using the model of benign participant n0. The confusion matrices for MNIST
with the aforementioned configuration are very similar to the ones of FMNIST and are
thus not reported.

With the CIFAR10 dataset, however, the results look different: firstly, it is notable that
in general the attacker success is lower with the increased task complexity of CIFAR10.
Overall, the average BA is higher in MNIST and FMNIST for any PNR > 30%. The BA
increased linearly with the increase of the PNR, whereas the increase in PSR seemed to
have little impact. In terms of the aggregation algorithm in place, the results appeared to
be highly variable, such that the overall best performing algorithm cannot be determined.
This is especially valid for Krum, which reported the lowest BA for a PSR > 30% and a
PNR = 50%, but the weakest defense results for higher PNR. Furthermore, Figure 6.9 also
highlights that Sentinel and SentinelGlobal could not reliably defend against the backdoor
attack on CIFAR10. For all aggregators, almost all backdoor test samples are classified
as the target label lt=3. In conclusion, none of the investigated aggregation algorithms
could effectively defend against poisoning attacks on CIFAR10.
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Table 6.6: BA in terms of mean and SEM under targeted sample poisoning (backdoor attack)
for MNIST, FMNIST and CIFAR10 after 10 rounds for all PNR & PSR configurations.

(a) MNIST

(b) FMNIST

(c) CIFAR10
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(b) FMNIST

10 20 30 40 50 60 70 80
PNR

0.0

0.2

0.4

0.6

0.8

1.0

BA

PSR: 30

10 20 30 40 50 60 70 80
PNR

PSR: 50

10 20 30 40 50 60 70 80
PNR

PSR: 100

FedAvg
FlTrust

Krum
Sentinel

SentinelGlobal
TrimmedMean
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Figure 6.7: Performance targeted samples poisoning (backdoor attack) for MNIST, FMNIST,
CIFAR10 and different PSR configurations after 10 rounds, with the BA on the y-axis and
increasing PNR on the x-axis.
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(a) FedAvg (b) Krum

(c) FlTrust (d) TrimmedMean

(e) Sentinel (f) SentinelGlobal

Figure 6.8: The backdoor confusion matrix after round 10 of participant n0 for each aggregator,
computed on the triggered test dataset under backdoor attack on FMNIST. The values represent
the absolute number of samples with their true and predicted label. PNR = 80%, PSR = 100%.
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(a) FedAvg (b) Krum

(c) FlTrust (d) TrimmedMean

(e) Sentinel (f) SentinelGlobal

Figure 6.9: The backdoor confusion matrix after round 10 of participant n0 for each aggregator,
computed on the triggered test dataset under backdoor attack on CIFAR10. The values represent
the absolute number of samples with their true and predicted label. PNR = 80%, PSR = 100%.
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6.2.6 Compute Resources

A resource-efficient aggregation mechanism is crucial to the scalability of DFL. In the
following, the compute resources used by each FL scenario with a corresponding aggregator
in use are analyzed. Therefore, the resources consumed by a single node were collected.
The raw data is available on the GitHub repository5. For each experiment, the benign
participant n0 is used to compare the metrics between aggregators, datasets and attack
types. It is important to note that the resource consumption generally depends on the
configuration of the ML framework, such as the number of workers used for data loading6.
For the experiments in this section, this configuration remained the same. The following
metrics are chosen to report the performance of each aggregation algorithm:

• CPU (%): is reported as the mean utilization in percent of all CPUs available to
a node (i.e., 48 in case of the CPU environment listed in 6.1.4), averaged over 10
rounds. Additionally, the SEM is reported.

• GPU (%): is reported as the utilization in percent, averaged over all rounds. As a
node in Fedstellar only accesses one GPU, the metrics are computed for a single pro-
cessor. The GPU instances are only used by CIFAR10. The mean GPU utilization
is reported together with the SEM.

• Memory (MB): is reported as the average amount of RAM consumed over all rounds,
measured in MB. If the node used a GPU, the VRAM is reported instead.

• Traffic (MB): refers to the total amount of messages sent to other nodes summed up
to the completion of round 10, measured in MB. No corresponding error is reported,
as this metric is an absolute total.

As a reference, 6.10 illustrates the baseline performance in terms of computing resources
in the benign environment, i.e., in the absence of any malicious participants. Numerical
values are available in 6.7. The results on resource usage are reported for the FMNIST
and CIFAR10 dataset to be able to compare the results with GPU and CPU metrics.

In a benign environment, all aggregators utilized a similar amount of compute resources:
The processor utilization was determined within a range of approximately 37% to 41%
for CPU and 62% to 70% for GPU. The highest processor utilization is reached by Sen-
tinelGlobal, with 40.164 % and 68.639 % for CPU and GPU, respectively. In terms of
memory, SentinelGlobal again reported the highest consumption with 1011 MB on FM-
NIST, whereas the highest average on CIFAR10 was reached by Sentinel with 4491 MB.
However, the difference to the best performing aggregator is negligibly small, as high-
lighted in Figure 6.10. The amount of total traffic reached a range of approx. 45 – 47 MB
for FMNIST and 27 – 31 MB for CIFAR10. The reduced amount of traffic in CIFAR10
can be explained by the size of the models exchanged. In contrast, CIFAR10 required
more processor utilization and memory.

5evaluation/metrics/resources
6https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
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Figure 6.10: The baseline compute metrics in a benign environment for FMNIST and CIFAR10.
For CPU and memory, the mean and SEM over all rounds is shown. Traffic represents the total
amount of messages sent.

Table 6.7: The baseline compute metrics in a benign environment for FMNIST and CIFAR10.
For CPU and memory, the mean and SEM over all rounds is shown. Traffic represents the total
amount of messages sent.

(a) Baseline FMNIST (b) Baseline CIFAR10
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Figure 6.11 and Table 6.8 summarize the results for the resource consumption of each
attack and dataset. Similar to the baseline, there were no notable differences in resource
usage. For all attacks, the CPU usage stretched between 36% and 41%, whereas the GPU
utilization was between 50% and 70%. In terms of memory, the investigated aggregation
algorithms used between 979 and 1018 MB of RAM on FMNIST and between 3819 and
4486 MB of VRAM on CIFAR10. Whereas three is no observed pattern for CPU utiliza-
tion, TrimmedMean, Krum and FedAvg generally use less RAM than FlTrust, Sentinel
and SentinelGlobal for all attacks on CIFAR10. Overall, SentinelGlobal reported a slight
performance improvement over Sentinel, with a maximum reduction of processor GPU of
approx. 14% (absolute) and a reduction of RAM consumption of approx. 500 MB (abso-
lute) on CIFAR10 for targeted label flipping. The maximum reduction for CPU utilization
was below 2%. However, the differences in resource usage were generally very small be-
tween all aggregators, for both RAM/VRAM and CPU/GPU. Additionally, Sentinel and
SentinelGlobal both showed a slightly increased amount of traffic. This is expected, due
to the additional metrics and trust scores that are exchanged between nodes.
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Figure 6.11: The compute metrics for all attacks with PNR = 80%, PSR = 100% (except model
poisoning) on FMNIST. For CPU and memory, the mean and SEM over all rounds is shown.
Traffic represents the total amount of messages sent.
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Figure 6.12: The compute metrics for all attacks with PNR = 80%, PSR = 100% (except model
poisoning) on CIFAR10. For CPU and memory, the mean and SEM over all rounds is shown.
Traffic represents the total amount of messages sent.
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Table 6.8: The compute metrics for all attacks with PNR = 80%, PSR = 100% (except model
poisoning) on CIFAR10 and FMNIST. For CPU and memory, the mean and SEM over all rounds
is shown. Traffic represents the total amount of messages sent.

(a) Model Poisoning, FMNIST (b) Model Poisoning, CIFAR10

(c) Untargeted Label Flipping, FMNIST (d) Untargeted Label Flipping, CIFAR10

(e) Targeted Label Flipping, FMNIST (f ) Targeted Label Flipping, CIFAR10

(g) Backdoor, FMNIST (h) Backdoor, CIFAR10
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6.3 Discussion

From the results in Section 6.2, it becomes clear that poisoning attacks are a serious threat
to DFL. Most aggregation algorithms in the chosen subset of this work cannot effectively
defend against malicious participants, especially with an increasing PNR. With more
than the majority of the participants being benign, only Sentinel and its extended version
SentinelGlobal could reliably defend against any number of attackers.

However, it is important to consider the focus of this work. The DFL process can be
seen from two perspectives: the global view is the perspective of an administrator, that is
responsible for the setup of the FL process. The goal in the view of the global perspective
is to evaluate the FL scenario as a whole, such that all participants conclude with a per-
formant and benign model. Additionally, a global observer should be able to distinguish
between benign and malicious participants. In the case where the majority of participants
are malicious, this distinction becomes unreasonable, since a global observer considers the
task the majority aims to learn as benign. With a PNR > 50%, the attackers’ goal will
become the global goal, as the majority trains a poisoned model. In contrast to the global
perspective, the focus of this thesis is the local node perspective. This view considers the
local objective individually, which is to obtain a performant, benign model as a local node.
Thus, from a local perspective, a node needs to be able to mitigate poisoning attacks from
any number of neighbors. Its ultimate goal is to conclude the FL process with a trusted
model that generalizes well.

The increased threat of a large attacker group was observed for untargeted model poisoning
attacks for all investigated datasets. In terms of the untargeted label flipping attack, a
high PSR is required to effectively impact the FL process. For the targeted version of
label flipping, however, a low amount of altered labels is already sufficient to provoke a
misclassification in the models of benign participants. Sentinel and SentinelGlobal were
not successfully impacted by label flipping.

Nevertheless, the results in Section 6.2.5 highlight the threat of backdoor introduced by
targeted sample poisoning: it appears to be fairly effortless in terms of PNR and PSR
for a group of attackers to incorporate the backdoor in the model of the benign partici-
pants. While Sentinel and its variant were able to effectively defend the backdoor attack
on MNIST and FMNIST, none of the investigated algorithms indicated any defensive
capabilities on CIFAR10. Thus, an increased task complexity appears to correlate with
the effectiveness of the defense mechanisms to some extent, at least for backdoor attacks.
This highlights the need for an investigation of further, more complex datasets. In the fol-
lowing, the effectiveness of Sentinel and SentinelGlobal are investigated in detail for each
attack. Furthermore, the choice of the algorithm parameters of Sentinel will be analyzed.
Lastly, the computational advantages of SentinelGlobal over Sentinel is highlighted.

6.3.1 Metric Effectiveness

To investigate the effectiveness of the proposed aggregators in detail, a subset of defensive
metrics is analyzed. Therefore, all four attacks in Section 6.2 were evaluated with a PNR
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= 50%, combined with a PSR ∈ {30, 50, 100}. Since the attacker behavior in terms of
metrics is similar for other PNR, they are not investigated in this section. For each attack,
the metrics are reported by the benign participant n0 on all neighbor models. All data can
be retrieved from the GitHub repository7 of Festellar-Sync. It is distinguished between
models classified as benign or malicious, i.e., the corresponding parameters are received
from an actual honest or malicious neighbor. Further, the following metrics are analyzed
for each set of model parameters Pj received by a neighboring node nj: cosine similarity
Sj, average bootstrap loss l̄j, and the aggregation weight wj (before normalization).

Model Poisoning

In case the FL scenario is attacked by model poisoning, the similarity filtering of Sentinel
was sufficient to exclude the adversarial models from aggregation, for all three datasets.
Figure 6.13 illustrates the difference in cosine similarity between benign and malicious
models. The benign models can clearly be separated from the malicious models: after
round 2, the models received from benign neighbors almost reach a cosine similarity of
1. This was observed for all datasets. For malicious models, the cosine similarity was
constantly below 0.2 for MNIST and FMNIST, and below 0.5 for CIFAR10. Hence, with
a similarity threshold τS = 0.5, all malicious models were filtered by Sentinel. Moreover,
it is interesting to see that the cosine similarity was always positive, except for the first
two rounds on FMNIST. This also explains the low performance of FlTrust under model
poisoning in Section 6.2.2: since its algorithm aggregates any model with a positive cosine
similarity proportionally, the malicious models can take up a substantial part of the final
model, especially when the poisoned models exhibit a large cosine similarity despite being
poisoned. The small drop in similarity at round 1 is due to the aggregation not being
active at round 0, as this round is a diffusion round in Fedstellar.

Since the cosine similarity of malicious models is always below the predefined threshold,
their bootstrap validation loss is never computed. Consequently, as all malicious models
had received a cosine similarity lower than the threshold, they were never validated on the
bootstrap dataset. This also led to an aggregation weight wi = 0 for all malicious models.
In contrast, the benign models take up relatively equal shares of the aggregated model. In
these experiments, the validation loss is not computed for any filtered models. But other
experiments have shown that the bootstrap validation loss rises exponentially for models
altered with random weights generation. This means in case a malicious model exhibits
a cosine similarity higher than the threshold, it would still be assigned an aggregation
weight of wi = 0 due to the bootstrap loss mapping.

In this thesis, only the salt noise type was investigated with a fixed PNR = 80%. Lower
PNR did not appear to be effective against most aggregation algorithms. It may be
interesting to experiment with other noise types and investigate the behavior of Sentinel
and SentinelGlobal. For example, a Gaussian noise exhibits a higher variability in changed
weights, which may provoke different effects in an FL scenario.

7evaluation/metrics/sentinel
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Figure 6.13: The cosine similarity of models received from benign and malicious neighbors at
participant n0 under model poisoning.

Untargeted Label Flipping

For the untargeted variant of label flipping, the cosine similarity was not sufficient to
filter malicious models. Figure 6.14 illustrates the average bootstrap validation loss values
and Figure 6.15 the resulting aggregation weights for FMNIST and CIFAR10. Only for
FMNIST and a PSR = 100%, the average loss of malicious models remained constant after
the first round, which means they were not further evaluated. For all other scenarios, there
is a clear difference in terms of loss between benign and malicious models. However, this
difference appeared to diminish with a decreasing PSR, since fewer labels were flipped.
In CIFAR10 and PSR set to 30% and 50%, it can be observed that the aggregation
weights of benign and malicious models become almost equal. Although the poisoned
models were aggregated at all rounds, the untargeted label flipping attack vanished for
a PSR < 80%, as reported in Section 6.2.3. For the highest PSR, Sentinel was able to
successfully distinguish between malicious and benign at any round based on the average
bootstrap loss. Nevertheless, these observations illustrate how similar malicious models
can be, despite being poisoned.

Arguably, the restrictiveness of the MapLossDistance function could be increased, e.g.,
adjusting the damping factor κ, but this would essentially also lead to a higher possibility
of excluding benign models that are slightly less similar than the local models. In conclu-
sion, it is difficult to detect poisoned models under label flipping with a low PSR. But due
to the low effectiveness of the attack, this deficit can be neglected. Moreover, an attacker
cannot anticipate the required PSR to maximize his impact while remaining stealthy and
is thus encouraged to apply a maximum PSR. Further investigations on more complex
scenarios than CIFAR10 with CNN could be of interest.
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Figure 6.14: The average bootstrap loss of models received from benign and malicious neighbors
at participant n0 under untargeted label flipping on FMNIST and CIFAR10.
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Figure 6.15: The aggregation weights of models received from benign and malicious neighbors
at participant n0 under untargeted label flipping on FMNIST and CIFAR10.
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Targeted Label Flipping

If the label flipping attack is executed with a targeted objective, Sentinel was able to
clearly distinguish between malicious and benign models using the bootstrap validation
loss. Figure 6.16 displays the average bootstrap loss from the perspective of participant
n0 on all neighbor models for FMNIST and CIFAR10. The metrics on MNIST are very
similar, and thus not reported in this section. It can be observed that the average loss
of benign models on the bootstrap dataset continuously decreased as the FL scenario
progressed. In contrast, the loss of malicious models constantly increased until round 10.
Further, there appeared to be no connection between PSR and the loss ratio to benign
models. Consequently, all malicious models received an aggregation weight wi = 0, for
any dataset and PSR. As a result, the loss distance mapping approach of Sentinel was
effective against targeted label flipping in all experiments.
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Figure 6.16: The average loss of models received from benign and malicious neighbors at
participant n0 under targeted label flipping on FMNIST and CIFAR10.

Backdoor Attack

In Section 6.2.5, it was pointed out that Sentinel and SentinelGlobal were only able to
defend against the backdoor attack on MNIST and FMNIST, for any attack configuration.
On CIFAR10, all aggregators fully incorporated the backdoor, whereas the BA appeared
to be linearly dependent on the PSR. For a PNR > 10%, even a low PSR of 30% poisoned
the models of benign participants with a BA > 40%. Hence, no defense effectiveness was
observed for any aggregation algorithm. Similarity measures such as Euclidean distance
or cosine similarity are not able to reliably defend against backdoor attacks.
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Figure 6.17 and Figure 6.18 display the average bootstrap loss and the aggregation weight
on FMNIST and CIFAR10, respectively, with the PSR fixed to 30%. It can be observed
that the loss of malicious models is almost twice as high as for benign models. For
CIFAR10, on the other hand, this factor is much smaller. Since the adversaries also
aggregate benign models during the FL process, their loss decreases at a similar rate as
those of honest neighbors. Although Sentinel was able to separate the malicious models
based on their loss in FMNIST, this was not possible for CIFAR10, where all received
models were assigned similar weights. Hence, participant n0 was successfully attacked
with a BA of 0.27.

In conclusion, the average bootstrap loss, or a validation loss in general, is not a sufficient
metric to detect targeted sample poisoning. One could argue clustering the loss values
may be a promising approach. However, only consistent, fully connected networks were
analyzed in this work. For other dynamic DFL network configurations, a node may be
connected to any number of neighbors between 1 to |N |. This makes clustering infeasible,
as it cannot be assumed that there will always one cluster of benign and malicious nodes.
Alternatively, there may be other metrics that better serve at detecting backdoors. For
example, this work only focused on layer-wise average cosine similarity as model similarity
measure. It might be possible to identify the weight change responsible for the triggered
backdoor classification. Other extensions of Sentinel could include model smoothing or
neural pruning, as discussed in Section 3.4. Further investigations on backdoor attacks in
DFL are encouraged.

0 2 4 6 8
Round

0.4

0.6

0.8

1.0

1.2

Av
g.

 L
os

s

Benign
Malicious

(a) Avg. Loss, PSR: 30%, FMNIST

0 2 4 6 8
Round

1.0

1.2

1.4

1.6

Av
g.

 L
os

s

Benign
Malicious

(b) Avg. Loss, PSR: 30%, CIFAR10

Figure 6.17: The average bootstrap loss of models received from benign and malicious neighbors
at participant n0 under backdoor attack.
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Figure 6.18: The aggregation weights of models received from benign and malicious neighbors
at participant n0 under backdoor attack.

6.3.2 Threshold Analysis

The loss distance threshold τL of Sentinel determines the extent to which a model will be
aggregated. With the function MapLossDistance defined in Algorithm 4, each received
model is assigned an aggregation weight in the range [0, 1], which is further normalized.
Models with a weight wi lower than the predetermined threshold will be discarded. In
general, setting the threshold τL to a small ϵ is recommended for numerical stability. For
the experiments in Section 6.2, this threshold was fixed to τL = 0.5. In the following, the
impact of the loss threshold configuration is analyzed. Therefore, a set of experiments
was run with Sentinel and all attacks from Section 4.1 with a PNR = 50 and a PSR
= 100, for 10 rounds. A PSR is not required for model poisoning. The effectiveness of
Sentinel was tested for the following loss threshold configurations: 0.01, 0.1, 0.25, 0.5,
0.75, 1. Essentially, with a threshold of τ = 1, a node applying Sentinel only aggregates
models with a bootstrap loss equal to or lower than its own. The success of the attack is
measured by the corresponding metric defined in Section 4.1, whereby the mean result of
all benign participants at round 10 is computed.

Arguably, Sentinel also uses a threshold for similarity filtering, specified by τS. How-
ever, as this threshold is used mainly to reduce the computational complexity of model
aggregation, an analysis of τS is not within the scope of this section.

The results of these experiments are presented in Figure 6.19. The processed data is
available on the repository8. For the three attacks model poisoning, untargeted label
flipping and targeted label flipping, the threshold τL did not have a considerable impact
on the defense effectiveness. In model poisoning, all nodes were able to reach the baseline
F1-score for all datasets and any τL. For untargeted label flipping on CIFAR10, a drop
in F1-score of approximately 7% from the baseline was observed with τL = 0.01. Similar,
for targeted label flipping on CIFAR10, a threshold of 0.01 resulted in a slight increase of
ASRLF to approx. 0.06.

8evaluation/metrics/sentinel threshold
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Additionally, it can be observed in Figure 6.19d that for MNIST and FMNIST, the BA
decreases with an increasing threshold. This is not the case for CIFAR10, where the effec-
tiveness of the backdoor attack seems to be highly variable, independent of the threshold.
Only with a threshold τL > 0.75, the backdoor could be mitigated. Nevertheless, the
results highlight the need for an additional defense metric. While for model poisoning
and label flipping, the cosine similarity and the bootstrap loss distance are reliable mea-
sures, they cannot effectively detect a poisoned model with a backdoor. It is not feasible
to determine an appropriate loss threshold in advance in a realistic FL scenario. Hence,
further investigations are required to improve Sentinel. A possible mitigation for back-
door attacks could be to set a threshold in relation to the current model performance and
dynamically decrease the threshold as the FL process progresses.
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Figure 6.19: Different thresholds for all attacks with PNR = 50%, PSR = 100% (except model
poisoning) on all datasets. The relevant performance metric is on the y-axis, and an increasing
threshold τL is found on the x-axis.
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6.3.3 Computational Advantages of SentinelGlobal

SentinelGlobal extends on Sentinel and applies a global trust perspective to decide whether
a model should be discarded or evaluated, hence considered for aggregation. This concept
of global trust is explained in Section 4.2.2. Briefly, the trust evaluation mechanism
of SentinelGlobal retrieves the perspectives of the locally trusted neighbors on a target
node at hand. A neighboring node is considered trusted if its model was involved in the
aggregation of the previous round, i.e., it received an aggregation weight wi > 0. The
aim of this global trust concept is to reduce the number of evaluations needed at each
aggregation round, thus decrease the computational complexity of Sentinel.

To measure the effectiveness, the number of evaluations was recorded at each round for the
same experiment configuration as in Section 6.2. For this evaluation, only the FMNIST
dataset is considered, as the concept is independent on the dataset9. Table 6.9 summarizes
the total number of models evaluated after the 10th round for each combination of PSR
and PNR at the benign participant n0. With a total number of nodes |N|=10, the number
of rounds R set to 10 and SentinelGlobal becoming activate at round rα = 3, there are
always at least |N| ∗ rα = 30 evaluations. From the round rα, only the models considered
trusted are evaluated and aggregated in the optimal scenario. Consequently, in the best
case there are 44 evaluations for PNR = 80%, 65 for PNR = 50% and lastly 93 for PNR
= 10%.

As illustrated in the results of Table 6.9, in 25 of the 39 experiments, SentinelGlobal was
able to reduce the number of local evaluations to the optimum. In other cases, only a
slight increase is observed. Thus, SentinelGlobal can effectively reduce the computational
effort of Sentinel. This reduction depends on the number of participants in the network
which are considered malicious.

Nevertheless, this computational advantage could not be clearly observed in the compu-
tational metrics listed in Section 6.2.6: although the number of evaluations was reduced
by more than 50% for highly malicious environments, only a small amount of CPU and
RAM decrease is notable in Figure 6.11. This means that the evaluation of Sentinel on a
small bootstrap dataset and the model sizes considered in this work does not introduce a
distinct overhead.

9evaluation/metrics/sentinelglobal
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Table 6.9: The number of models evaluated with SentinelGlobal in use, for all attacks measured
on benign participant n0.

There are a few exceptions where SentinelGlobal was not effective: for untargeted label
flipping and PNR = 80%, PSR = 30%, the number of evaluations is recognizably larger.
Figure 6.20 illustrates the reason for these results. For a high PSR, the model evaluation
mechanism of Sentinel could reliably distinguish between benign and malicious models.
All attackers received a global trust score of 0 at each round and were consequently not
evaluated. In contrast, SentinelGlobal was not reliable with a lower PSR of 30%: after
round 5, all benign models received an average global trust score Φ̃j < τχ = 0.5. Instead,
the malicious actors became trusted. Surprisingly, none of the neighbors was considered
trusted from round 7 on, whether malicious or benign. This is the only scenario where
SentinelGlobal classified benign neighbors as trusted and did not perform as expected.

As long as benign models are not incorrectly classified as malicious, the underlying ag-
gregation mechanisms can still defend from poisoning attacks. This was observed for the
backdoor attack, where all neighbors were considered trusted and consequently always
evaluated. With a PSR = 50% and a PNR = 50%, SentinelGlobal correctly distinguished
between malicious and benign neighbors. However, with a lower PSR of 50% and a sin-
gle attacker, the adversary also became trusted, however with a lower Φ̃j than benign
neighbors.

Hence, a more fine-grained trust concept might be required. Instead of binary trust
scores, taking the aggregation weight as a trust score could be more reliable. Additionally,
averaging the trust perspective over multiple or even all rounds could be advantageous.
Another option could be to increase the influence of the local node within the global
trust score computation. However, future improvements of Sentinel will consequently also
improve the reliability of SentinelGlobal. In this context, it is also important to consider
the attackers’ perspective: with a low PSR, attacks such as label flipping are not effective.
It can thus be expected that an attacker chooses a high PSR, whereas SentinelGlobal
demonstrated a high reliability. On another node, network topologies other than a fully
connected network have not yet been investigated. A lower node connectivity within the
FL process may have an impact on the performance of SentinelGlobal.
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(a) Targeted Label Flipping, PNR: 80%, PSR: 100% (b) Targeted Label Flipping, PNR: 80%, PSR: 30%

(c) Backdoor, PNR: 50%, PSR: 100% (d) Backdoor, PNR: 10%, PSR: 50%

Figure 6.20: The SentinelGlobal trust scores recorded on participant n0 on FMNIST under
targeted label flipping and backdoor attack.



Chapter 7

Summary and Conclusions

In this work, two sophisticated defense strategies have been proposed: Sentinel and Sen-
tinelGlobal. Sentinel applies a multi-level defense protocol composed of similarity filtering,
bootstrap validation and model normalization to mitigate poisoning attacks. By taking
advantage of the local data availability in DFL, Sentinel demonstrates the transferability
of promising defense strategies proposed for CFL. SentinelGlobal extends on the concepts
of Sentinel with a global trust framework to reduce the threat of adversaries and decrease
the computational complexity of Sentinel. Extensive evaluations on the datasets MNIST,
FMNIST and CIFAR10 with various attack configurations have demonstrated their ef-
fectiveness. Compared to other state-of-the-art aggregation algorithms, the aggregation
protocols proposed in this work reliably defended against poisoning attacks, especially
in highly malicious environments. Furthermore, this work demonstrated the usability of
Fedstellar for more comparable security benchmarks in DFL. Individual customizations
have outlined its adaptability to the needs of specific research goals.

Specifically targeted sample poisoning attacks, i.e., backdoors, have been found to be
difficult to defend. For increasingly complex learning tasks, such as training a CNN on
CIFAR10, not even Sentinel and SentinelGlobal were able to effectively defend against
this type of attack without relying on an appropriately configured threshold. Possible
improvements to Sentinel could be to use a more fine-grained similarity filtering approach
and adaptive loss thresholds in relation to the local model performance. Additional de-
fense layers that incorporate weak differential privacy, neuron pruning, or novel strategies
against backdoor attacks may be promising components to further enhance the effective-
ness of Sentinel. Additionally, this work only investigated simple, artificial backdoors.
Other backdoor strategies, such as distributed or semantic backdoor attacks, are yet to
be studied.

Investigations on the computational resource usage have demonstrated that Sentinel-
Global can effectively reduce the number of model evaluations required by Sentinel and
consequently decrease its computation complexity. However, selected experiments have
demonstrated that the reliability of SentinelGlobal is highly dependent on the perfor-
mance of the underlying aggregation mechanisms. To establish a robust binary trust
score, a defense protocol is required to confidently distinguish between malicious and
benign. Future improvements to Sentinel consequently enhance the trust evaluation of
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SentinelGlobal. Despite that, supplemental improvements, such as a more fine-grained
trust protocol that incorporates temporal aspects, could also be the focus of future work.
Concretely, this could involve using the aggregation weight as the local trust perspective
on a node over multiple rounds.

Furthermore, all conducted experiments used a fully connected network of ten nodes. It
is thus important to consider that the investigations of this work evaluated the worst case
scenario in DFL. In a fully connected network, malicious actors are given the opportunity
to attack every participant in the network. With scenarios where more than the majority
is malicious, defending against poisoning attacks becomes a highly difficult task. Other
network topologies such as ring topologies or random graphs with or without clustered
components may reveal interesting results and reflect more realistic applications of DFL.
On another note, only datasets in an IID setting were analyzed. With future findings to
improve the convergence of DFL in non-IID scenarios, the defense techniques should also
be evaluated in more heterogeneous experiments.
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Appendix A

Installation Guidelines

Technical instructions on running the adapted version of Fedstellar and reproducing the
experiments in this work can be retrieved from the corresponding GitHub repository:
https://github.com/janousy/fedstellar-sync.
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Appendix B

Evaluation

B.1 Fedstellar Configuration

Listing 4 Fedstellar Scenario Parameters

1 {

2 "BLOCK_SIZE": 4096,

3 "NODE_TIMEOUT": 20,

4 "VOTE_TIMEOUT": 60,

5 "AGGREGATION_TIMEOUT": 60,

6 "HEARTBEAT_PERIOD": 4,

7 "HEARTBEATER_REFRESH_NEIGHBORS_BY_PERIOD": 4,

8 "WAIT_HEARTBEATS_CONVERGENCE": 10,

9 "TRAIN_SET_SIZE": 10,

10 "TRAIN_SET_CONNECT_TIMEOUT": 100,

11 "AMOUNT_LAST_MESSAGES_SAVED": 100,

12 "GOSSIP_MESSAGES_FREC": 100,

13 "GOSSIP_MESSAGES_PER_ROUND": 100,

14 "GOSSIP_EXIT_ON_X_EQUAL_ROUNDS": 20,

15 "GOSSIP_MODELS_FREC": 1,

16 "GOSSIP_MODELS_PER_ROUND": 5,

17 "ROUND_PROCEED_TIMEOUT": 180

18 }
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